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Abstract: Cultures around the world show varying levels of conservatism. While maintaining
traditional ideas prevents wrong ones from being embraced, it also slows or prevents adaptation to
new times. Without exploration there can be no improvement, but often this effort is wasted as it fails
to produce better results, making it better to exploit the best known option. This tension is known
as the exploration/exploitation issue, and it occurs at the individual and group levels, whenever
decisions are made. As such, it is has been investigated across many disciplines. We extend previous
work by approximating a continuum of traits under local exploration, employing the method of
adaptive dynamics, and studying multiple fitness functions. In this work, we ask how nature would
solve the exploration/exploitation issue, by allowing natural selection to operate on an exploration
parameter in a variety of contexts, thinking of exploration as mutation in a trait space with a varying
fitness function. Specifically, we study how exploration rates evolve by applying adaptive dynamics to
the replicator-mutator equation, under two types of fitness functions. For the first, payoffs are accrued
from playing a two-player, two-action symmetric game, we consider representatives of all games in
this class, including the Prisoner’s Dilemma, Hawk-Dove, and Stag Hunt games, finding exploration
rates often evolve downwards, but can also undergo neutral selection as well depending on the
games parameters or initial conditions. Second, we study time dependent fitness with a function
having a single oscillating peak. By increasing the period, we see a jump in the optimal exploration
rate, which then decreases towards zero as the frequency of environmental change increases. These
results establish several possible evolutionary scenarios for exploration rates, providing insight into
many applications, including why we can see such diversity in rates of cultural change.

Keywords: adaptive dynamics; exploration/exploitation; social learning; evolutionary dynamics;
mutation rate evolution

1. Introduction

In any learning process, individuals leverage past information along with the opinions
of others to decide their best action. Broadly speaking, one can either continue using a
strategy that has worked, or try a new approach. While exploration is necessary to discover
better strategies, it often results in wasted effort, so it is usually better to exploit the best
known strategy. These opposing approaches are very general, applying any time a decision
must be made. As such, this concept is relevant across scales, both at the individual such as
animal or cells, and group levels, in a wide range of areas from biology to economics [1].
Much work has gone into studying this issue from a variety of perspectives.

One can think of mutation as exploration in the space of genomes. Since all lifeforms
replicate their genetic information, the study of mutation rates has been a longstanding
area in biology with significant implications. One theory, the drift-barrier hypothesis, posits
that natural selection favors arbitrarily small mutation rates, and is evidenced by relative
measures of mutation [2]. Other studies have investigated the mechanisms for viral RNA
repair mechanisms, which allow for the mutation rate to evolve up or down depending on
which errors get corrected, and phenotypic switching in bacteria, finding that recombina-
tion reduces or even eliminates stable non-zero switching rates [3,4]. There has also been
considerable theoretical work on mutation rates in sexually reproducing organisms, finding
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higher mutation rates can be selected for or against depending on model specifics, such
as the type of fitness, whether individuals are haploid or diploid, reproduce asexually or
sexually, and if so with or without recombination [5,6]. Beyond the level of individual cells,
decision making in humans has been studied in the exploration/exploitation framework,
including its neuroscientific underpinnings [7,8]. Additionally, this approach has been
employed in several areas of ecology, including foraging and analyzing host-parasite or
predator-prey systems [9–11]. Through simulation and analysis, these studies found that
exploration rates generally decrease to or stabilize around zero, though factors like limited
lifespans or recombination can make exploration less valuable.

Computer scientists have also investigated the balance between exploration and
exploitation through evolutionary algorithms, which feature a mutation parameter [12,13].
This value is critical to the success of the algorithm, however few general techniques
guide its tuning. For example, particle swarm optimization is a technique that uses a
collection of agents to discover optimal values in a complex space [14]. One approach,
known as simulated annealing, decreases the exploration rate over time to concentrate
the population around the global optimum. Yet another technique called reinforcement
learning has individuals track the performance of a set of possible actions over time to
determine the optimal choice [15]. In this framework, one makes an explicit policy for
whether new actions are chosen to update these values, exploration, or the current best
value is used, exploitation. This area has seen increasing interest from its application to
artificial intelligence.

Lastly, there is a significant history of studying exploration/exploitation in eco-
nomics [16]. Applications include theories of firm’s flexibility and understanding product
development and innovation [17–19]. By analyzing economic data, these studies char-
acterize the optimal balance between exploiting present capabilities and exploring new
ones. Additionally, March’s seminal model of mutual learning in organization, where an
individuals and the firm learn from each other dynamically, has been extensively studied
and generalized over the last few decades in management science [20–23]. These dynamics
tend to lead to low rates of exploration, which is often beneficial in the short term but
detrimental in the long term.

While previous studies have applied a variety of tools from different disciplines, few
have asked how the exploration rate changes over time. Our study builds on recent work
that applies the technique of adaptive dynamics to answer this, determining the evolution
of exploration rate [24,25]. We extend previous research by approximating a continuous
trait space, considering a local model of exploration, and investigating several realistic
fitness functions. Specifically, we investigate the evolutionary forces on exploration rates
in dynamic environments. Earlier work has considered a finite set of traits, with fitness a
function of the current environment that cycles through a finite set of possibilities, finding
the optimal exploration rate was near zero, and zero was a local optima [26,27]. In contrast,
our work investigates local exploration and considers a variety of contexts to determine
fitness, broadly divided into two classes. The first uses a feedback mechanism between the
strategies in a population and the fitness of those strategies. Specifically, we encode this
as the average payoff of an individual when interacting with other players uniformly at
random in a population playing a two-player two-action symmetric game. This approach
is grounded in the tradition of evolutionary game theory. The other scenario we consider
in this work is explicitly representing the fitness of each strategy by a time dependent
function. In particular, we consider the fitness landscape with to have a single peak of
some width, and whose location oscillates in time in some regular manner. Earlier work
has found that in the absence of recombination, the optimal mutation rate maximizes the
geometric mean of the fitness of a population [28]. Other studies have also investigated the
population dynamics where a game governs fitness as above, but where the game changes
over time [29,30]. This case represents the fact that few environments are static in time,
and often undergo periodic changes. For example, if we think of traits as preferred nesting
sites in space, then the changing fitness could apply to the study of migration or dispersal.
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We will interpret some of our results through the concept of an Evolutionarily Stable
Strategy (ESS), introduced by Maynard Smith and Price to describe traits that were stable
under evolutionary change, which has been an influential idea throughout biology [31,32].
By using a combination of analysis and simulation, we determine the evolutionary trajectory
of the exploration rate in a variety of realistic yet understudied contexts.

2. Methods

We think of the set of actions an individual could take as a bounded continuous set,
specifically real numbers in the unit interval, and the best action as a trait. This may
seem restrictive, but up to linear transformations it can capture any bounded trait one can
reasonably assign a number to, for example an organism’s height or weight. By putting
traits in a space, we can ensure exploration is local, with an exploration kernel to describe
the probability distribution of an individual’s trait in the near future given its current trait
and some exploration rate u. In this work we consider a normal distribution with variation
equal to u. Specifically, the model we will use for population dynamics is the replicator
mutator equation:

d
dt
~x = (Q(u)F(~x, t)− φI)~x (1)

where ~x is the trait distribution, Q(u) gives the probability of exploration from one trait to
another based on a exploration rate parameter u, F(~x, t) is a diagonal matrix with iith entry
the fitness of trait i given the population distribution ~x and time t, and φ is the average
fitness in the population (introduced as in the classical replicator equation to ensure the
vector ~x sums to one). Essentially this equation makes individuals reproduce according
to their fitness, for example by being imitated through social learning, and explore by the
matrix Q(u), depending on their exploration rate u. This framework is built on vectors,
so the trait space is necessarily finite. Consequently, exploration cannot occur outside
of the boundary, which we handle by truncating these values. Alternatively, one could
accumulate them at the endpoints, or shift them to the other endpoint, making the trait
space circular [33].

Equation (1) gives the short term population dynamics, and to represent the long
term dynamics on exploration rate, we use the approach of adaptive dynamics. In this
method, one considers the invasion fitness fx(y) of a mutant with trait y in a population
of individuals all with trait x, defined as their reproduction rate. It assumes mutations on
the exploration rate is rare, so it suffices to consider monomorphic populations, as one
trait will fixate before the next mutant arises. Further, if we assume these mutations are
small, we can use a linear approximation fx(y) ≈ fx(x) + (y− x)∂y fx(y)|y=x. If the term
∂y fx(y)|y=x is positive, y− x must be as well for the trait to fixate, so the trait will evolve
upwards. The same thing happens if this term is negative, so we can think of it as the rate
of change of our trait. This framework was connected to the replicator-mutator equation
in [24], which determined fx(y) was the difference between the maximum eigenvalue of
Q(u)F(x̃, t∗) and the current average fitness, where x̃ is the stable distribution reached
by the replicator-mutator equation under the exploration rate x, and t∗ is the time the
mutant emerges. Using this, we can investigate the evolution of exploration rate if we
specify the fitness function F(~x, t) and use the model of exploration specified above to
define Q(u). The code that implements this approach is available in the Github repository
https://github.com/bmDart/exploration-rate-evolution.

To make fitness frequency-dependent, we consider a population playing a game. Each
individual will then receive fitness that is the average payoff received over all possible
interactions. Specifically, we will consider two-player, two-action, symmetric games,
as these have a large degree of richness in their behavior. In these games, two players
interact by each choosing one of two actions, A or B, then receive a payoff dependent on
the pair of actions chosen. There are four pairs, so one write can the payoffs to a player in
the matrix

https://github.com/bmDart/exploration-rate-evolution
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A B
A a b
B c d

where the rows correspond to a player’s choice of A or B, and the columns indicate the
other player’s choice of action. This class is called symmetric, as both players use the same
matrix to determine their payoffs. It includes well known examples like the Prisoner’s
Dilemma (PD), if b < d < a < c, where individuals always do better by choosing the second
action, even though the best outcome is both players choosing the first. Also included
is the less intense version called the Hawk-Dove (HD), also called the Snowdrift, game,
if d < b < a < c. In this game, the optimal action is the opposite of the other player’s
action, making this an anti-coordination game. Another game this framework encompasses
is known as the Stag-Hunt (SH) game, where b < d < c < a. Here the optimal action is the
same choice the other player makes, so this is a coordination game.

Strategies in these games can be complex, but if the game only consists of one round,
and players have no information about each other, any strategy can be completely described
by a probability distribution over the actions, a mixed strategy. Since there are only two
possible actions, any strategy is a single number x, the probability of choosing the first
action. Then the average payoff to a player with strategy y interacting with a player of
strategy x is

R(y, x) = ayx + by(1− x) + c(1− y)x + d(1− y)(1− x)

Since this is linear in x, the average payoff of an y player interacting with a population
with mean strategy x̄ is just R(y, x̄). Since this is also linear in y, so the average payoff
over this population is R(x̄, x̄). This function, R(x, x), can give some insight, so we will
refer to it as the population fitness of a strategy x. Interestingly, this can look differently
within a class of games, for example (a, b, c, d) = (2, 0, 2.5, 1.5) and (2, 0, 5, 1.5) are two
prisoner’s dilemmas, yet the first makes R(x, x) concave up while the other is concave
down. We will see that increasing exploration rate often leads to a more spread out stable
distribution, which moves the average strategy closer to 0.5, and see the effect this will
have on a population’s fitness. We can also apply Adaptive Dynamics, thinking of R(y, x)
as fx(y) the fitness of an invading strategy y into a resident population of all x-players.
Here we see the strategy should evolve according to

∂yR(y, x)|y=x = ax + b(1− x)− cx− d(1− x)

This is a line connecting b− d at x = 0 to a− c at x = 1, so there are essentially four
cases depending on the relative signs of these terms, as shown in Figure 1 with represen-
tative games, and arrows indicating the dynamics of the invading strategies. Since the
diagonal cases are essentially mirrors, we consider just the three games mentioned above.

Figure 1. The four possible cases for the evolution of strategies in two-player two-action symmetric

games. Depending on the entries of the payoff matrix

[
a b
c d

]
, either one endpoint will be attracting,

or there will be an interior equilibrium that is either stable or unstable. The corresponding cases are
labeled with their archetypal game.
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Lastly, we consider time-dependent fitness functions where the fitness landscape has
a single peak, of some width, whose location oscillates at some frequency. In particular,
we take the fitness at time t to be the normal distribution with variance 0.1 and mean
(1 + sin(ωt))/2, as this oscillates between the endpoints zero and one with period ω. We
investigate the effect of changing this period and also the variance of this distribution.

3. Results

First, we used the payoff matrix [
3 1
4 2

]
for the Prisoner’s Dilemma, finding that the replicator-mutator equation stabilized at the
distributions given in Figure 2. These show that lower exploration rates more closely
exploit the optimal strategy of defection, as expected. However, those populations have
lower fitness, as higher rates of choosing the second action, defection, are worse for the
population overall, since the population fitness R(x, x) is increasing for this game. Despite
higher exploration rates leading to a population with greater fitness, we see the invasion
fitness is only positive for lower exploration rates, so it can only evolve downward. This is
a dilemma, as it is better to have a large exploration rate and flat trait distribution, but this
will be selected against.

Figure 2. On the left we see the stable distributions of the replicator mutator-equation in the PD game
for various exploration rates. The right plot shows the invasion fitness as a function of the invading
exploration rate, for a resident value of 0.3. Since this is only positive to the left of the resident value,
exploration rates can only evolve downwards. This is representative of all resident values.

The next game we considered is the Hawk-Dove game, with payoff matrix[
1− c 2

0 1

]
where c is a parameter representing the cost of competing over a contested resource of value
one. In this case, we see populations approach the equalizer strategy cH + (1− c)D, which
makes all strategies have the same fitness, so there is no selection. Consequently, there is no
selection on exploration rate, so it will be subject to neutral selection. This is consistent with
the results of [24], which found multiple mutation rates could coexist in this game. Like
in the previous game, different stable distributions are reached for different exploration
rates. Here we see increasingly uniform distributions as the exploration rate increases,
in Figure 3, which is expected, as this represents larger exploration. Surprisingly, we see
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a dependence on the game parameter c. When this is not 0.5, the population does reach
the equalizer strategy c, as seen by plotting the average strategy over time, also in Figure 3.
This results in downward selection on exploration rate. Despite all Hawk-Dove games have
the same strategy dynamics from the perspective of a single player, this population model
demonstrates different effects depending on a parameter’s value. Interestingly, despite
exploration rates evolving downwards for c 6= 0, the population’s fitness can either increase
or decrease with exploration rate depending on if c is above or below one half, as seen by
considering the population fitness R(x, x). Thus as in the PD, it is possible the exploration
rate will evolve towards value that are worse for the population overall.

Figure 3. In the Hawk-Dove Game, we see flatter stable distributions, the first plot, for large
exploration rates for c = 0.5. However, for c 6= 0.5, the average strategy does not reach the equalizer
strategy c, shown in the second plot.

The final game we considered was the Stag-Hunt, with payoff matrix[
4 1
3 2

]
In this case, the population reaches unimodal distributions as in the Prisoner’s

dilemma, with individuals favoring one option more than the other. This is because
the optimal action is to choose the same action as the other player, so the population
becomes increasingly concentrated towards whichever pure strategy the initial mean was
closer to. As such, the population will evolve away from the unstable equilibrium of 0.5,
as in the single player dynamics. Depending on whether the initial mean is above or below
0.5, the population fitness is either increasing or decreasing with exploration rate, since this
moves the mean strategy closer to a half, which is good if the population is concentrated
around one but bad if it is concentrated around zero. Despite this, exploration rates can
only evolve downwards in both case, so in this game too, exploration rates can evolve
to less desirable levels. However in this case, selection becomes neutral for sufficiently
large initial exploration rates, since the population becomes centered around 0.5. Thus,
exploration rates that start large will drift up and down, but eventually become caught
around zero.

The other type of fitness we considered in this work had fitness an explicit time-
dependent function, with no dependence on the distribution of strategies in the population.
Specifically, we took f (x, t) = exp(−(x− (1 + sin(ωt))/2)2) where ω is a parameter for
the period of the oscillations. Here, one may also use the replicator-mutator equation to
simulate the population dynamics, but now populations need not reach stable distributions.
For example, a periodic fitness will lead to periodic changes in the population. Nonetheless,
we can adapt the results of the model by considering a time averaged fitness. Since the
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fitness function does not depend on the frequency of strategies, an invading subpopulation
with a novel exploration rate will grow independently of the resident population. Thus,
the exploration rate leading to a higher average fitness will eventually fixate. Here one
must use the geometric mean of fitness, as populations grow geometrically. This is because
fitness is essentially a reproduction rate, which are multiplied, not added, together to
aggregate over time periods, as is done in the geometric mean. Indeed, the order of the
geometric and arithmetic mean might swap between two sets, for example {50, 50} and
{100, 1}.

In Figure 4, we plot the time averaged fitness of each exploration rate, using fitness
functions of various periods. For small periods, we see fitness is maximized around zero,
decreasing with larger exploration rates until it reaches a local minimum then starts to
increase. This means that for rapidly changing environments, it is best to have minimal
exploration rate. However, if it starts above this minimum, exploration rates will increase
arbitrarily high. This suggests some rates result in the population lagging behind the
optimal strategy, to the extent that a uniform distribution is more effective. We see the
opposite curve for sufficiently large periods, where environmental change is slow. Here,
there is a local maximum at some nonzero exploration rate, indicating an intermediate
level of exploration is optimal. Interestingly, as the period changes, the optimal exploration
rate makes a jump from zero to an intermediate value. The exact period where this occurs
and value the optimal rate jumps to would depend on specifics of the model, namely
the type of curve defining the fitness. Further, optimal rate decreases with increasing
period, that is, slower changing environments. This makes sense, as a sufficiently slow
changing environment is effectively stable, for which arbitrarily small exploration rates
are usually optimal. Comparable effects in the evolution of exploration rate are observed
when the normal distribution has wider variance, indicating the generality of these results.
Theoretically, one could also compute the time averaged fitness of the limiting exploration
rates. When exploration rate is zero, the population will likely be entirely at the strategy
that maximizes the time averaged fitness function, and when it is infinite, the strategy
distribution will be uniform, so the time averaged fitness will simply be the average value
of the function (which is constant in time, so equals its time average).

Figure 4. For fitness that explicitly depends on time, we see both unstable and stable equilibria in the
evolution of exploration rate. When environmental change is slow, corresponding to a long period,
an intermediate level is optimal. Whereas for fast environmental change arbitrarily small exploration
rates are optimal, though if the initial value is large enough, they will become arbitrarily large.
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4. Discussion

In this work, we investigated the evolution of exploration rate under variable selec-
tion, employing adaptive dynamics and the replicator-mutator equation. For frequency
dependent fitness encoded by two-player/two-action, symmetric games, we found that
exploration rates often evolve downward, but neutral selection is also possible. This means
in most cases the exploration rate of zero (approaching from above) constitutes an ESS.
Despite this, it is possible in all games we considered for larger exploration rates to be
more beneficial to the population. The precise form of the exploration rate’s evolution
can also depend on the game’s parameters or the initial conditions, as in the HD and SH
games respectively. This suggests that while the cases we studied are representative of
the possible dynamics in this class of games, further richness could be observed in future
study. However, we conjecture that this class of games is incapable of selecting for large
exploration rates, as opposed to the more complicated class of two-player/three-action
symmetric games, where it was found the Rock-Paper-Scissors game led to selection for an
intermediate level of mutation [25]. This is because cyclic dynamics in this game allow for a
sub-population with multiple traits to remain resilient as the composition of the population
changes. Since cyclic dynamics cannot be observed in the smaller class of games, it is likely
that larger exploration rates cannot be selected for with these types of fitness function.
Then with fitness function a single peak that oscillated according to some frequency, we
found both attracting and repelling equilibria depending on the period. For fast changing
environments, arbitrarily small exploration rates are optimal, though a sufficiently large
initial exploration rate will evolve upwards. In contract, slow changing environments have
intermediate optimal exploration rates, and evolution proceed towards this. As the rate of
oscillation decreases further, this optimal value approaches zero [34].

Previous work on exploration/exploitation has applied a wide range of techniques
to determine the optimal exploration rate, but not how it evolves. Our research answers
this question in a variety of environments, finding lower rates are usually selected for,
but time dependent fitness can make nonzero or even arbitrarily large exploration evolve.
We expand on previous research by using a local model of exploration, continuous approxi-
mation of traits, and the approach of adaptive dynamics. The results we find complement
experimental data from biology, providing additional theoretical evidence for the drift-
barrier hypothesis, as seen in our consideration of frequency dependent fitness. These
findings could also help explain how behaviors like foraging evolve, or the benefits and
harms of different levels of conformity in social groups [35] and the dynamics that select for
or against exploration. Our results suggest that genetic algorithms [36] might be improved
by generalizing the mutation to include the exploration rate itself, rather than tuning this
value manually. Lastly, the findings of this study could imply that the optimal tradeoff
between exploration and exploitation found in companies can be reached through market
forces [37], as these are analogous to natural selection.

5. Conclusions

Exploration and exploitation are two competing effects that combine to determine an
optimal strategy. Since one can never know if their current approach is best, exploration
is necessary to some degree to find better strategies. However, this often produces worse
results, especially when the current method performs well, so it is also important to balance
this exploration of new ideas with exploitation of the best known ones. This general
dilemma is found in many areas of research, including biology, ecology, computer science,
and economics.

The goal of our research was to see what resolution between these two factors is
reached through natural selection, by studying the evolution of an exploration rate param-
eter. To answer this, we applied adaptive dynamics to the replicator-mutator equations,
which gave the invasion fitness of exploration rates in various contexts. We consider fitness
that depends on the relative frequencies of other traits, and fitness that varies explicitly
in time. In the first case we found exploration rates often evolved towards zero, which
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was then an ESS, though trajectories could vary based on game parameters or initial condi-
tions. In the second case, we observed a discontinuous transition in optimal exploration
rate, from zero to an intermediate value which decreased back to zero as environmental
change slowed.

The generality of this framework makes it ideal to study several related question
about exploration versus exploitation. Future study could consider other trait topologies,
by adapting the matrix Q(u). For example, ref. [33] explores how mutation rates can evolve
upwards even in a fixed environment. This is found not just for traits in some interval,
but also in a circular space or finite strings on a finite alphabet. Preliminary results showed
the HD game with c = 0.5 led to increasingly polarized distributions are exploration
rates decreased, if exploration outside of the interval was accumulated at the endpoints.
In addition, making the trait space circular caused the time averaged fitness to strictly
decrease with exploration rate, indicating that in the absence of asymmetry, there is no
benefit to an intermediate level of exploration. Multidimensional trait spaces could also
be considered, but without dependencies between the axes, this may reduce to several
copies of a one dimensional trait. The fitness functions could also be changed within
this framework. For example, one could consider fitness that comes from nonlinear or
multiplayer games, like the Public Goods Game, or stochastic fitness functions, such as
jumping to a random position at some constant frequency, or some constant positions with
some random frequency. Recent studies suggest that interesting results could been found
in this area [38,39] One could even make the exploration rate itself non-constant, possibly
modeling it as a decreasing function of time, such as a linear or exponential function,
and study the evolution of the parameters of these functions. Lastly, one could experiment
with more intelligent agents. Whereas agents in this model explored randomly, one could
use a reinforcement learning framework like Q-learning to model agents who explore
based on previous knowledge. Such modifications would certainly change the balance of
importance between exploration and exploitation, likely leading to different results.
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