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Abstract: Road lighting is one of the largest consumers of electric energy in cities. Research into
energy-saving street lighting is of great significance to city sustainable development and economies,
especially given that many countries are now in a period of energy shortage. The control system is crit-
ical for energy-saving street lighting, due to its capability to directly change output power. Here, we
propose a control system with high intelligence and efficiency, by incorporating improved YOLOv5s
with terminal embedded devices and designing a new dimming method. The improved YOLOv5s
has more balanced performance in both detection accuracy and detection speed compared to other
state-of-the-art detection models, and achieved the highest cognition recall of 67.94%, precision
of 81.28%, 74.53%AP50, and frames per second (FPS) of 59 in the DAIR-V2X dataset. The proposed
method achieves highly complete and intelligent dimming control based on the prediction labels of
the improved YOLOv5s, and a high energy-saving efficiency was achieved during a two week-long
lighting experiment. Furthermore, this system can also contribute to the construction of the Inter-
net of Things, smart cities, and urban security. The proposed control system here offered a novel,
high-performance, adaptable, and economical solution to road lighting.

Keywords: control system; lighting; energy saving; dimming method; improved YOLOv5s;
lightweight; real-time detection

1. Introduction

With the development of the city, road lighting accounts for 15–19% of worldwide elec-
tricity consumption [1]. Therefore, next-generation smart street lighting requires a control
system to be more intelligent and energy-saving. However, most conventional energy-
saving systems are based on sensors to collect external environmental data, and sensors
are very susceptible to dust and fallen leaves, resulting in low energy-saving efficiency [2].
Recently, developing artificial intelligence technology in road-lighting control systems has
attracted a lot of attention, including using neural networks (e.g., [3,4]), image process-
ing (e.g., [5,6]), and fuzzy theory (e.g., [7–9]). By continuously collecting environmental
information around a light pole, they can manage the huge road-lighting network more
intelligently and predict the appropriate output power for different road traffic situation.
However, all of these studies have failed to maximize energy efficiency, and collecting and
processing the massive and complex environment data is also a big challenge. Inspired
by license plate recognition, object-detection models exhibit their capacity to accurately
identify complex road conditions. This capacity, however, has not yet been accomplished
in road-lighting systems. In this paper, we first introduce the improved YOLOv5s [10]
into the road-lighting system, and design a matching dimming method to provide a more
intelligent and energy-saving control system.

YOLOv5s is one of the most popular object-detection models, which is frequently
used to detect vehicles. The prediction results of YOLOv5s will be used as the input for the
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dimming method, and the dimming method determines how to change the output power.
Detection ability of the model is the basis factor for the stable operation of the system. Based
on this mechanism, we optimized the model in terms of detection speed and detection
accuracy. Introducing the SoftPool [11] algorithm and adopting the squeeze-and-excitation
(SE) [12] block to YOLOv5s improved detection accuracy, and the speed improvement came
from the GhostNet [13]. With these modifications, the AP50 increased by 4.79%, the size of
the model compressed by 8.27% and the average recognition speeds per image decreased
by 6.9% compared with the original YOLOv5s.

Designing the dimming method according to the model’s prediction labels become the
most critical factor in the energy-saving control system [14]. The design of the dimming
method must first ensure the lighting safety of the road at night, while also considering its
energy-saving efficiency, intelligence and usability. Then, we built a complete and intelligent
dimming method for the dimming controller with four lighting modes: motor vehicle mode,
non-motor vehicle mode, pedestrian mode, and none mode. Different detection results will
be matched to their own lighting modes, and each of them has different priority and output
power. The contributions of this study are summarized as follows:

1. For the first time, we introduced YOLOv5s into the embedded device of a road-lighting
terminal.

2. We made targeted improvements to YOLOv5s, and proposed a novel, high-performance
energy-saving control system.

3. We designed a complete, intelligent dimming method for the dimming controller, and
the energy-saving efficiency has increased by nearly 14.1% and 35.2% compared with
the same street lighting without dimming the street lighting at the same experimen-
tal site.

2. Related Work
2.1. Energy-Saving Road-Lighting Control System

Manual control, mechanical control, and computer control are three steps of the
development process for a road-lighting system [15]. The research into computer control
has mainly focused on the communication mode, operation and maintenance, and the
management of streetlamps, e.g., [16–19]. The authors in [17] presented an energy-saving
control method that can recognize the signal of body by applying infrared and sound
sensors, and then dynamically control lighting output power through data processing. We
believe that this sensor-based control system is insufficiently dependable, since the sensor is
easily coated in dust, reducing its precision. In [7,8], the authors used fuzzy control theory
to predict lighting output power. The shortcoming of fuzzy-based control systems is that
they do not provide a mechanism to specify the control target. If the data are inadequate,
the system’s working efficiency will suffer [20]. In contrast to the above works, our method
is to use image processing technology to control the lighting output power. We are not
the first to do this (e.g., [5]), but what is interesting is that we introduce the improved
object-detection model in road-lighting system.

2.2. YOLOv5s

YOLOv5 is the latest one-stage object-detection algorithm launched since YOLOv4 [21],
proposed by the Ultralytics LLC team in 2020. YOLOv5 has four different architectures—
YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x—and the key distinction among them is the
feature-extraction modules and convolution kernels in each network’s unique region.
YOLOv5s is the network with the shortest network depth and feature map width, and
the latter three are continuously deepening and widening on this basis [22]. YOLOv5s’
most important feature is its superior flexibility, which makes it easy to deploy quickly on
the embedded device side, which is one of the primary reasons we chose YOLOv5s. The
network structure of YOLOv5s is shown in Figure 1.
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Figure 1. The network structure of YOLOv5s.

2.3. YOLOv5s-Based System

YOLOv5s is widely used in traffic detection, and many studies have shown its ability
to be incorporated with embedded devices and detect in real time.The authors in [23]
proposed a large-scale fusion module based on YOLOv5s’ backbone network to detect
vehicles on the road. In [24], the authors deployed the improved YOLOv5s on embedded
devices to achieve a low-cost and real-time vehicle-exhaust detection. In [25], the authors
proposed an automatic license-plate recognition technique based on deep learning and
trained YOLOv5 to detect license plates in traffic videos. These YOLOv5s-based systems
provided a lot of inspiration, and made us think of introducing YOLOv5s into road lighting.

3. Methodology
3.1. Proposed System

The reported control system is composed of a high-definition camera, an object-
detection chip, a control chip, a dimming controller, and an LED lighting board. The
high-definition camera is installed on the top of the pole, with a 2.8 mm focal length
and a resolution of 1920 × 1080. We deployed YOLOv5s in the embedded chip, which
drastically reduced the system response time. The dimming controller included four gears,
which matched to the four lighting modes that we designed. Figure 2 depicts how our
control system works: the high-definition camera transmits the captured video frames to
the object-detection chip, which will report the prediction labels to the control chip after
completing the image processing. Then, the prediction labels will be used as the input of
the dimming method for a series of data-processing stages in the control chip. Lastly, the
dimmer controller will activate a lighting mode on the LED lighting board according to the
output of the dimming method.
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Figure 2. The structure of the proposed system.

3.2. Dimming Method

The proposed method achieved highly complete dimming control by involving three
important modules: prediction result processing (PRP), motion-detection algorithm (MDA),
and mode assignment (MA). PRP is a parameter-extraction module, which reports the
required motion-detection parameters to the database and MA module by analyzing and
processing the model prediction results. Three significant types of data, including the
classification of predicted labels, the number of each label, and the coordinates of bounding
boxes in the prediction results, will be extracted and saved in the database as background
data. Simultaneously, the same data from the current video frame will be submitted to
the MDA module as incoming data, i.e., the PRP module provides an input for the MA
module with three-dimensional data of classification, quantity, and coordinates, which is
also necessary for motion detection.

The three basic types of motion-detection methods are background subtraction, tem-
poral differencing, and optical flow. Background subtraction is the most popular motion-
detection method and consists of the differentiation of moving objects from a maintained
and updated background model, which can be further grouped into parametric type and
non-parametric type [26]. The proposed MDA module is a simpler motion-detection al-
gorithm that combines background subtraction and YOLOv5s prediction results. The
prior background frame Bt−1(x, y) and the incoming frame It(x, y) are then combined with
the current background image. The following basic adaptive filter is used to create the
background model:

Bt(x, y) = (1− β)Bt−1(x, y) + βIt(x, y) (1)

β is an empirically adjustable parameter. The binary motion-detection mask D(x, y) is
defined as follows:

D(x, y) =

{
1, if |It(x, y)− Bt(x, y)| > τ

0, if |It(x, y)− Bt(x, y)| ≤ τ
(2)

where τ is the preset pixel threshold, and the pixel blocks exceeding this threshold in
the background subtraction process will be regarded as motion labels and report to the
MA module.

Finally, after counting the classification and quantity of the motion labels, the MA
module will determine the priority of each label’s lighting mode, which is also the final
output of the control chip. Figure 3 is the flow chart of the proposed dimming method.
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Figure 3. The proposed dimming method.

Road-lighting design standards can provide people with safe, reliable, and compliant
night lighting. There are many road-lighting standards that can be referred to at present,
and the most widely used ones are the Road-Lighting Standard Recommendation for
the Lighting Roads for Motor and pedestrian Traffic promulgated by the International
Commission on Illumination (CIE) in 2020, the road-lighting standard IESNA-RP-8-00,
and China’s urban road-lighting standard CJJ 45-2006 [27]. The experimental site of this
study is in China, so the standard we used is CJJ 45-2006. Average road surface luminance,
average road surface illuminance, overall uniformity of road surface luminance, uniformity
of road surface illuminance and glare threshold increment are five important values of
road lighting. The motor vehicle and non-motor vehicle traffic (including pedestrians)
road-lighting standard values in CJJ 45-2006 are listed in Tables 1 and 2, respectively.

Table 1. Motor vehicle traffic road-lighting standard values.

Road type
Average
Surface

Luminance

Average
Surface

Illuminance

Overall
Uniformity

of
Luminance

Uniformity
of

Illumiance

Glare
Threshold
increment

Major road 1.5/2.0 20/30 0.4 0.4 10
Local road 0.75/1.0 10/15 0.4 0.35 10
Conflict areas of major
road and conflict road / 30/50 / 0.4 /

Table 2. Non-motor vehicle traffic (including pedestrians) road-lighting standard values in residen-
tial area.

Night Traffic Flow Average Surface Illuminance Minimum Light Surface Illuminance

High 10 7.5
Middle 7.5 5
Low 5 1
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The factory settings of the street lighting with LED light sources, which we used in line
with the above lighting standard, i.e., when the lights are installed at a suitable height, can
adjust its output power to make the above five values meet the requirements of CJJ 45-2006.
The dimming controller contains a chip that can adjust the output power by changing the
voltage, which is why our system can save energy. The motor vehicles have the highest
requirements for night lighting, which is because drivers need to observe obstacles through
the window, and they are all moving at a high speed [28]. Considering that non-motor
vehicles move faster than pedestrians, they need to observe obstacles earlier, and there
is low or no traffic flow on the road in the middle of the night. According to Tables 1
and 2, we designed four lighting modes—motor vehicle mode, non-motor vehicle mode,
pedestrian mode, and none mode—which have different output powers and dimming
priorities. Motor vehicles have the highest dimming priority, followed by non-motor
vehicles, and pedestrians, i.e., motor vehicle mode turns on whenever a motor vehicle is
detected, regardless of other types of traffic on the road. The output power of the motor
vehicle mode is 120 W, non-motor vehicle mode, pedestrian mode and none mode are
100 W, 70 W and 50 W, respectively. Figure 4 shows the dimming circuit.

Figure 4. The dimming circuit.

3.3. The Improved YOLOv5 Network Framework

We made three specific improvements to YOLOv5s to improve its traffic-detection
performance during nighttime. First, the improvements to detection speed allow the
control system to dimming quickly, which is also the most important feature of a real-time
detection system. GhostNet is a lightweight convolutional network proposed at CVPR2020
by Huawei’s Noah Lab. Through a series of linear transformations at cheap cost, GhostNet
can generate many ghost feature maps to retain interaction information [29]. The core idea
is to divide the original convolution operation into two stages. The first stage performs a
small amount of convolution calculations, and the second stage performs block-by-block
linear convolution on the basis of the feature map obtained in the first stage to generate
ghost feature maps, and finally combines them to obtain a large number of feature maps.
Figure 5 shows how the ghost module generates feature maps.
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Figure 5. The ghost module.

For input data X ∈ Rc×hw, c, h, and w are the input channel numbers, height, and
width of the feature map, respectively. After one convolution, it is n ∗ h′ ∗w′, the size of the
convolution kernel is k, and the size of the convolution kernel of a linear transformation is
d after s transformations. We can conclude from this that the theoretical speed-up ratio of
the ghost module is:

rs =
n · h′ · w′ · c · k · k

n
s · h′ · w′ · c · k · k + (s− 1) · n

s · h′ · w′ · d · d
=

c · k · k
1
s · c · k · k +

s−1
s · d · d

≈ s · c
s + c− 1

≈ s
(3)

n/s is the number of output channels in the first transformation; the identity map
does not need to be computed, but it is also counted as a part of the second transformation,
which is the reason the ghost module can accelerate the inference process.

Softpool is a fast and efficient method for exponentially weighted activation downsam-
pling, which can retain more information in the reduced-activation refined downsampling
to improve classification accuracy [11]. Most pooling operations rely on different combina-
tions of max pooling and average pooling, while SoftPool’s work is based on a the SoftMax
weighting operation to preserve the input’s basic properties [30]. We introduce SoftPool
into the SPP module to optimize the original pooling operation, which improves the detec-
tion accuracy under the same computing load and memory conditions. The downsampling
activation mapping process of SoftPool is shown in Figure 6.

Figure 6. SoftPool calculation.
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The main concept is the use of SoftMax to nonlinearly calculate the feature weight
value of region R according to the feature value Wi:

Wi =
eai

∑j∈R eaj
(4)

The weight Wi can ensure the transmission of important features, and the eigenvalues
in the region R will have at least a preset minimum gradient during reverse transfer. After
obtaining the weight Wi, the output is obtained by the eigenvalues in the weighted region R:

ã = ∑
i∈R

Wi ∗ ai (5)

Lastly, we introduce the SE block for our model, which can improve the performance
of detection models with minimal computational cost. SENets, which are stacked by SE
modules, can extract relevant features by combining spatial and channel-wise information
inside local receptive fields [12]. The SE block is a typical attention module that can handle
the loss problem produced by the varying relevance of different channels of the feature
map during the convolution pooling process. “Squeeze” is the first operation of the SE
block, which uses global average pooling to create statistics for each channel to achieve the
purpose of squeezing global spatial information into a channel descriptor [12]. Ftr stands
for any given information: X → U, X ∈ RH′×W ′×C′ , U ∈ RH×W×C, and the way to obtain a
statistic z ∈ Rc is to shrink U by a pooling size H×w, and the z′s c-th element is computed
as follows:

zc = Fsq(Uc) =
1

H × w

H

∑
i=1

W

∑
j=1

uc(i, j) (6)

The second operation of the SE block is “Excitation”, after the squeeze operation,
to fully capture channel-wise dependencies, using a fully connected neural network to
perform a nonlinear transformation on the result. However, two requirements must be
satisfied to carry out the excitation operation:

1. Nonlinear interactions between channels must be figured out.
2. Each channel should be assured to have a matching output, and instead of a one-hot

vector, a soft label can be generated.

To meet these requirements, using a simple gating method for sigmoid activation, and
rescaling the transformation output U with the activation yields the block’s final output:

X̃c = Fscale (Uc, Sc) = Sc ·Uc (7)

Fscale (Uc, Sc) refers to channel-wise multiplication between the feature map Uc ∈
RH×W and the scalar Sc, and X̃ =

[
X̃1, X̃2, · · · , X̃c

]
. The structure of a squeeze-and-

excitation block is shown in Figure 7.

Figure 7. A squeeze-and-excitation block.
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With these three adjustments, the improved YOLOv5s network outperforms the
original network in terms of detection speed and accuracy, and the network structure is
shown in Figure 8.

Figure 8. The network structure of improved YOLOv5s.

3.4. The Traffic Dataset

The dataset we used is DAIR-V2X [31], which is the world’s first vehicle-infrastructure
cooperative 3D object-detection dataset released by the Institute of Artificial Intelligence,
Tsinghua University, in February 2022. The single-infrastructure-side dataset contains
10,084 traffic images of the Beijing High-level Autonomous Driving Demonstration Zone
with a resolution of 640× 640. This dataset includes a variety of weather conditions at
night such as clear, foggy, and rainy. Moreover, this dataset’s data are complete, including
desensitized original image and point cloud data, annotation data, timestamp, calibration
file, etc. We categorize the traffic annotations into three groups: motor vehicle, non-motor
vehicle, and pedestrian. Instead of using the entire content of DAIR-V2X, the images we
chose are from each period of the night scene. There are 6348 traffic images in the reworked
training set, which still has a very high object density, with 125,654 (80,047 + 27,406 + 18,201)
labeled objects, and covers almost all kinds of vehicles. Figure 9 depicts a sample image of
the dataset.



Computation 2023, 11, 66 10 of 17

Figure 9. A dataset sample image.

3.5. Experimental Environment

The experimental site of this study is the intersection of Yushi Street and Yushui Street,
Ganjingzi District, Dalian City, Liaoning Province, surrounded by residential areas, parks
and universities. In CJJ 45-2006, the type of road where the experimental site is located is a
“conflict area of major road and conflict road”, which is defined as a high traffic flow area.
Therefore, we adjusted the output power of motor mode, non-motor mode and pedestrian
mode to meet the requirements of the standard. We collected 1058 images of this location as
a test set, with a ratio of 6:2:2. The whole dataset was divided into training (6348 images),
validation (1058 images), and testing (1058 images). The training environment is Pytorch
and the GPUs we used are two Nvidia GTX 3090, each with 24 GB VRAM. In the test
experiment, we just used a single Nvidia GTX 3090 GPU and an i7-9700 CPU working
at 3.00 GHz. The momentum, batch size, decay of weight, training epochs, and learning
rate were set to 0.937, 48, 0.0005, 300, and 0.01, respectively.

3.6. Evaluation Metrics

Precision and recall are the most used evaluation metrics in the field of object
detection [32]. The proportion of accurate results predicted by the model to “all pre-
dicted results” is known as the precision value, and the recall value indicates the propor-
tion of the accurate results predicted by the model to “all positive samples”. We use (8)
and (9) to calculate precision and recall values. In practice, it is difficult for us to make the
value of these evaluation metrics high. Generally speaking, the higher the precision value,
the lower the recall value.

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

The number of objects that were found in the dataset is shown by TP (true positives).
The number of objects identified incorrectly by the detection model is shown by FP (false
positives). The number of objects missed by the detection model is represented by FN (false
negatives). When the IOU threshold [32] is set to 0.5, for n samples of a certain category,
if it has m positive examples, each positive example corresponds to a recall rate R value
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(1/m, 2/m, . . . ,1), calculates the maximum precision P for each recall rate, and then the AP
is calculated as follows:

AP =
1
m

m

∑
i

Pi =
1
m
∗ P1 +

1
m
∗ P2 + · · ·

1
m
∗ Pm =

∫ 1

0
PRDdR (10)

The AP is for a specific class, and a dataset typically has several categories, and the
mAP is calculated by averaging the AP values of all classes in the dataset:

mAP =
1
C

C

∑
j

APj (11)

Therefore, in mAP, P represents the maximum accuracy of a sample, AP represents
the average accuracy of a class of samples, and mAP is the average accuracy of the data set.

4. Results and Discussion
4.1. Detection Performance

Our experiments compared the proposed algorithm with the current state-of-the-art
detection algorithms including YOLOv5s, YOLOv4, YOLOv3, and SSD. In the proposed
system, both detection accuracy and detection speed significantly impact experimental
results. The detection accuracy is the guarantee of road lighting, and the detection speed
has a direct impact on the system’s dimming reaction time. After setting the IOU threshold
to 0.5, the improved YOLOv5s achieves a better balance between detection accuracy and
speed in the comparative experiments. To this end, we trained 200 epochs on the DAIR-V2X
dataset, and in Figure 10, we exhibit the mAP of each model (ours, YOLOv5s, YOLOv4,
YOLOv3, SSD) as a function of training epochs. The variation of mAP with training epochs
can be evaluated based on comprehensive precision and recall values, and the graph can
also provide a lot of information about the model performance.

Figure 10. The mAP map of each model evolves with the training epoch.

In our test, YOLOv4 has the highest AP50 value (0.8149), followed by YOLOv3 (0.7799),
the proposed model (0.7453), YOLOv5s (0.6974), and SSD (0.5853). In comparison with
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YOLOv5s, our mAP value is 4.79 percentage points higher, which is a significant improve-
ment. Furthermore, our curve showed a convergence trend in the comparison experiment.
After the 29th epoch, YOLOv5s began to converge, while the SSD curve remained flat,
and even progressively converged at the 101st epoch, which also demonstrates that our
model has a stronger learning ability. This also shows that the improved SPP module and
the introduced attention mechanism can improve the model’s detection ability at night.
We contrasted the replacement of the ghost module, the upgraded SPP module, and the
addition of the attention mechanism to verify our hypothesis, and the detection results are
plotted in Figure 11.

Figure 11. The AP50 and inference time of each model.

The introduction of SE block and the improved SPP module improved the mAP value
of the model to varying degrees (1.99% and 3.29%, respectively). In [11,12], the mAP value
improvement was more noticeable. Although the improvement in mAP is minor, it comes at
the cost of increasing inference time (1.99 ms and 3.29 ms, respectively). The ghost module
can be used to supplement the above modules, which is why our model surpasses YOLOv5s
in terms of inference time and mAP value. Since our system needs to deal with complex
road traffic at night and offer people with safe and reliable night lighting, we require the
object-detection model to include detection accuracy and speed. From the experimental
results, the proposed system performs very well in these two aspects. It inherits YOLOv5s’
amazing detection speed while also improving detection accuracy (74.53% and 17.1 ms,
respectively). We saved all the label detection maps from the test experiments, in which
we found a set of label maps (Figure 12) that can identify the detection capabilities of
our model.
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Figure 12. A set of label images obtained by detecting the test set with YOLOv5s and the suggested
model, respectively. For the same image, YOLOv5s fails to detect the pedestrian in the shadow (small
objection), but our proposed model correctly assigns the label to the objection (pedestrian).

4.2. Energy-Saving Experiment

Based on the surveillance video we took at the experimental site, we conducted
lighting experiments in the laboratory. Before the experiment started, we did a simple
verification of whether the four lighting modes met the CJJ 45-2006: The height of the light
pole at the experimental site is about 7 m and the height of the street lighting from the
ground is 6.5 m. When the output power of the LED lighting board is 120 W, the light
environment of the road surface meets the requirement of Table 1’s conflict areas of major
road and conflict road. Therefore, we set the output power of the motor vehicle mode
at 120 W. Similarly, the light environment of the pedestrian mode should meet the high
traffic flow’s requirements in Table 2. Similarly, the light environment of the pedestrian
mode should meet the high flow requirements in Table 2, and the output power is 70 W.
None mode (50 W) corresponds to the low traffic flow in Table 2. Since the speed of non-
motorized vehicles is also very fast, especially electric bicycles, they need to find obstacles
in the road earlier than pedestrians, so we set the output power for the non-motor mode to
be 100 W.

4.2.1. Traffic Flow

We collected images for a total of 14 days (7:12 p.m. to 6:30 a.m., 25 June to 8 July
2021), and Figure 13 shows the traffic situation throughout the night at the intersection of
Yushi and Yushui on 28 June 2021. There were very few labels recorded between 12 p.m.
and 4 a.m., when we count labels at 5 min intervals; indeed, no label was recorded at all in
many time periods. Therefore, the energy-saving efficiency of the proposed system at this
experimental site is very impressive. Traffic flow statistics are listed in Table 3.

Table 3. Traffic flow statistics.

Time Motor Vehicle Non-Motor Vehicle Pedestrian

7.15–9.00 476 286 926
9.00–11.00 263 92 456
11.00–01.00 64 34 49
01.00–03.00 27 9 49
03.00–05.00 52 5 62
05.00–07.00 348 24 265

total 1516 450 1765
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Figure 13. Traffic flow graph.

4.2.2. Energy-Saving Efficiency

The street lighting at the experimental site was turned on from 7:00 p.m. to 6:00 a.m.
the next day, and we saved the surveillance videos from 25 June to 8 July 2021, for a total
of 14 days. Our energy-saving experiment is based on a surveillance video, which will
provide images for the improved YOLOv5s in the object-detection chip. We recorded the
power consumption of the proposed system for these 14 days, the power consumption of
the original street lighting at the experimental site during the same period of time, and
calculated the power consumption of street lighting with an LED light source that cannot
adjust its output power according to the road conditions (output power is 120 W). Figure 14
is a comparison of power consumptions.

Label 1 in Figure 14 represents the power consumption of the original street lighting
at the experimental site, label 2 represents the power consumption of street lighting with
an LED light source that cannot adjust its output power according to road conditions. Since
we use the electricity consumed by the street lighting to represent its energy consumption,
some external factors will cause fluctuations. These external factors are very complicated,
such as the heat dissipation of street lights. High-temperature weather will keep the lighting
at a relatively high temperature, resulting in slightly higher power consumption. Similarly,
rainfall and windy weather will also affect the power consumption of street lights. Lastly,
we tabulate the average power consumption and energy-saving efficiency (compared to
the proposed system) of these three lights in Table 4.

Table 4. Power consumption statistics.

Lighting Power Consumption (kwh) Energy-Saving Efficiency

1 1.59 135.2%
2 1.2 114.1%
Ours 1.03 1
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Figure 14. Comparison of power consumption of three lights.

In conclusion, the proposed control system has high energy-saving efficiency, which is
35.2% lower than the power consumption of street lighting at the experimental site and
14.1% lower than the lamp with an LED light source that cannot adjust its output power
according to the road conditions.

In fact, the energy consumption of our proposed system is slightly higher than the
experimentally obtained value, because we only record the energy consumption of the
lights and the total energy consumption includes the energy consumed by processing data,
communicating, driving cameras, etc. Because they consume very little energy, it is difficult
to measure their value in a single street-lighting system. However, in a huge road-lighting
system, their energy consumption may be very considerable. This is also the research work
we will do next: a district-level energy-saving road-lighting system solution for “smart
cities” based on energy consumption, cost, and construction difficulty of each part.

5. Conclusions

In this paper, we successfully applied the improved YOLOv5s in the field of road
lighting, and designed a complete and intelligent dimming method. Our improvements
to YOLOv5s are mainly to balance detection speed and detection accuracy in complex
road conditions, and we believe that the improved network can also be applied to more
scenarios in the future. Furthermore, we plan to promote and apply our system in other
complex traffic areas, such as urban business districts, large communities, schools, etc. To
do this, we need to ensure the efficient work of a single street lighting and the sharing of
information among street lights. We believe that the upgraded street lights can be applied
in more road scenarios and make more contributions to the sustainable development of the
city and the construction of the “smart city”.
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1. Bachanek, K.H.; Tundys, B.; Wiśniewski, T.; Puzio, E.; Maroušková, A. Intelligent street lighting in a smart city concepts—A

direction to energy saving in cities: An overview and case study. Energies 2021, 14, 3018. [CrossRef]
2. Toubal, A.; Bengherbia, B.; Ouldzmirli, M.; Maazouz, M. Energy efficient street lighting control system using wireless sensor

networks. In Proceedings of the 2016 8th International Conference on Modelling, Identification and Control (ICMIC), Algiers,
Algeria, 15–17 November 2016; pp. 919–924.

3. Ban, D. Research on intelligent street lamp energy-saving control system based on neural network. Univ. Electron. Sci. Technol.
China 2019, 1, 75.

4. Mohandas, P.; Dhanaraj, J.S.A.; Gao, X.Z. Artificial neural network based smart and energy efficient street lighting system: A case
study for residential area in Hosur. Sustain. Cities Soc. 2019, 48, 101499. [CrossRef]

5. Veena, P.; Tharakan, P.; Haridas, H.; Ramya, K.; Joju, R.; Jyothis, T. Smart street light system based on image processing. In
Proceedings of the 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India,
18–19 March 2016; pp. 1–5.

6. Badgelwar, S.S.; Pande, H.M. Survey on energy efficient smart street light system. In Proceedings of the 2017 International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Palladam, Tamil Nadu, India, 10–11 February 2017;
pp. 866–869.

7. Ai, M.; Wang, P.; Ma, W. Research and application of smart streetlamp based on fuzzy control method. Procedia Comput. Sci. 2021,
183, 341–348. [CrossRef]

8. He, J.; Zhu, Z.; Wang, F.; Li, J. Illumination control of intelligent street lamps based on fuzzy decision. In Proceedings of the
2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha, China, 12–13 June 2019;
pp. 513–516.

9. Alsuwian, T.; Usman, M.H.; Amin, A.A. An Autonomous Vehicle Stability Control Using Active Fault-Tolerant Control Based on
a Fuzzy Neural Network. Electronics 2022, 11, 3165. [CrossRef]

10. Xu, Z.; Huang, X.; Huang, Y.; Sun, H.; Wan, F. A Real-Time Zanthoxylum Target Detection Method for an Intelligent Picking
Robot under a Complex Background, Based on an Improved YOLOv5s Architecture. Sensors 2022, 22, 682. [CrossRef] [PubMed]

11. Stergiou, A.; Poppe, R.; Kalliatakis, G. Refining activation downsampling with SoftPool. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10357–10366.

12. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

13. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589.

14. Mahoor, M.; Hosseini, Z.S.; Khodaei, A.; Paaso, A.; Kushner, D. State-of-the-art in smart streetlight systems: A review. IET Smart
Cities 2020, 2, 24–33. [CrossRef]

15. Mukta, M.Y.; Rahman, M.A.; Asyhari, A.T.; Bhuiyan, M.Z.A. IoT for energy efficient green highway lighting systems: Challenges
and issues. J. Netw. Comput. Appl. 2020, 158, 102575. [CrossRef]
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