
Citation: Guroob, A.H. EA2-IMDG:

Efficient Approach of Using an

In-Memory Data Grid to Improve the

Performance of Replication and

Scheduling in Grid Environment

Systems. Computation 2023, 11, 65.

https://doi.org/10.3390/

computation11030065

Academic Editors: Alexander

Feoktistov, Igor Bychkov and

Andrei Tchernykh

Received: 19 January 2023

Revised: 28 February 2023

Accepted: 2 March 2023

Published: 20 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

EA2-IMDG: Efficient Approach of Using an In-Memory Data
Grid to Improve the Performance of Replication and
Scheduling in Grid Environment Systems
Abdo H. Guroob

Department of Mathematics and Computer Science, SUMAIT University, Zanzibar P.O. Box 1933, Tanzania;
abduohassan@gmail.com

Abstract: This paper proposes a novel approach, EA2-IMDG (Efficient Approach of Using an In-
Memory Data Grid) to improve the performance of replication and scheduling in grid environment
systems. Grid environments are widely used for distributed computing, but they are often faced
with the challenge of high data access latency and poor scalability. By utilizing an in-memory data
grid (IMDG), the aim is to significantly reduce the data access latency and improve the resource
utilization of the system. The approach uses the IMDG to store data in RAM, instead of on disk,
allowing for faster data retrieval and processing. The IMDG is used to distribute data across multiple
nodes, which helps to reduce the risk of data bottlenecks and improve the scalability of the system.
To evaluate the proposed approach, a series of experiments were conducted, and its performance
was compared with two baseline approaches: a centralized database and a centralized file system.
The results of the experiments show that the EA2-IMDG approach improves the performance of
replication and scheduling tasks by up to 90% in terms of data access latency and 50% in terms of
resource utilization, respectively. These results suggest that the EA2-IMDG approach is a promising
solution for improving the performance of grid environment systems.

Keywords: grid environment system; in-memory data grid; data replication and scheduling

1. Introduction

Grid environments are widely adopted for distributed computing and have become
essential infrastructure for various scientific, business, and engineering applications. Such
environments facilitate the sharing of resources and services across multiple locations,
which enables the efficient execution of large-scale, parallel, and distributed computing
tasks. However, the performance of grid environments is often limited by the high data
access latency and poor scalability of the underlying data management systems. This
limitation is especially problematic for grid environments that require real-time processing
or have high-concurrency workloads.

In-memory data grids (IMDGs) have emerged as promising solutions for improving
the performance of data management systems. An IMDG stores data in RAM, which can
significantly reduce the latency associated with reading and writing data to disk. Addition-
ally, an IMDG can improve the scalability of a system by allowing for the distribution of
data across multiple nodes, which reduces the risk of data bottlenecks. These benefits are
particularly useful for grid environments, which often involve large volumes of data that
must be accessed and processed quickly and in parallel.

This paper proposes an efficient approach, EA2-IMDG (Efficient Approach of Using
an In-Memory Data Grid), for using an IMDG to enhance the performance of replication
and scheduling in grid environment systems. Replication involves copying data from
one location to another to provide data redundancy and availability, while scheduling
involves allocating resources and managing the execution of tasks in a grid environment.

Computation 2023, 11, 65. https://doi.org/10.3390/computation11030065 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11030065
https://doi.org/10.3390/computation11030065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-4165-8541
https://doi.org/10.3390/computation11030065
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11030065?type=check_update&version=2

Computation 2023, 11, 65 2 of 15

Both processes are critical for the proper functioning of grid environments, and their
performance can significantly impact the overall system performance.

The proposed approach utilizes the IMDG to store data in RAM, allowing for faster
data retrieval and processing. Furthermore, distributing data across multiple nodes using
IMDG reduces the risk of data bottlenecks and enhances system scalability. To evaluate
this approach, a series of experiments was conducted to compare its performance with
two baseline approaches: a centralized database and a centralized file system. The results
demonstrate that the EA2-IMDG approach enhances the performance of replication and
scheduling tasks by up to 90% in terms of data access latency and 50% in terms of resource
utilization, respectively.

This research presents a novel approach to improve the performance of grid envi-
ronments by utilizing an IMDG. The approach is expected to be beneficial for a wide
range of grid environment systems, including distributed storage systems, distributed
databases, and distributed data processing systems. The research outcomes offer a valuable
reference for researchers and practitioners in the field of distributed computing and grid
environments.

The remainder of this paper is organized as follows: Section 2 reviews related work
on in-memory data grids and their use in grid environment systems. Section 3 describes
the methodology of the experimental setup and the parameters used in the experiments.
Section 4 presents the experimental results, while Section 5 discusses the performance of the
in-memory data grid approach compared with the baseline approaches. Finally, Section 6
concludes the paper and discusses future work.

2. Literature Review

The use of in-memory technology has gained popularity in recent years for its ability
to provide high throughput and low latency in trade systems. As a result, Java-based
frameworks such as Ignite, Flink, and Spark have replaced traditional high-performance
languages such as C and C++. Ref. [1] presents a new trade surveillance system using
Apache Ignite’s in-memory data grid (IMDG) that optimizes the system architecture for
high performance, both on a single node and at scale.

In [2] introduce Avocado, a secure in-memory storage system that addresses the
challenges of security, fault tolerance, and performance in untrusted cloud environments.
Avocado leverages trusted execution environments (TEEs) to ensure security and extend
trust to the distributed environment. It provides strong security and consistency through
various layers, such as the network stack, replication protocol, trust establishment, and
memory management. The system demonstrates improved performance compared with
other BFT-based systems. In [3] introduce “Fundy”, a scalable and extensible resource
manager that employs a microservice architecture with an in-memory data grid. The data
grid enhances data processing and enables Fundy to easily scale, facilitating its microservice-
based architecture. The paper also presents new features, including a packing algorithm to
improve allocation and a tensor scheduling algorithm for parallel processing.

For real-time communication, in-memory databases have been adopted as cache
systems to ensure fast database operations. Ref. [4] evaluates three in-memory databases—
Memcache, Redis, and Local (OpenSIPS built-in)—based on the performance of the store
and fetch operations under heavy load traffic. The results show that Local has lower mem-
ory consumption, but Memcache is preferred for persistency due to its high throughput
and low call-response time. In [5], the authors introduce DISTIL, a distributed in-memory
spatiotemporal data processing system that addresses the challenges posed by the rapid
growth of location data. DISTIL uses a distributed in-memory index and storage infrastruc-
ture built on the APGAS programming paradigm and supports high-throughput updates
and low-latency processing of spatiotemporal range queries.

In [6] present an in-memory computing approach to address the challenges posed
by data I/O bottlenecks in large-scale online power grid analysis. The simulation results

Computation 2023, 11, 65 3 of 15

and performance analysis demonstrate the potential benefits of in-memory computing for
online power grid analysis.

In another study [7], the authors introduce CoREC, a resilient in-memory data staging
runtime for large-scale in situ workflows. CoREC combines dynamic replication with
erasure coding based on data access patterns and includes optimizations for load balancing
and conflict avoidance encoding, as well as a low overhead lazy data recovery scheme.
The results of an evaluation demonstrate its ability to tolerate in-memory data failures
while maintaining low latency and high storage efficiency at large scales. In [8] propose
Clio, a cross-layer interference-aware optimization system that mitigates stragglers by
scheduling both maps and reducing tasks while considering the various factors contributing
to stragglers. Clio implements Apache Spark and demonstrates speedups of up to 67%
compared with existing algorithms.

In [9] present a comparison of traditional data management systems and in-memory
data grids for big data implementation. The study evaluates scheduling techniques for
planning different types of jobs in grid environments using the Alea simulator. The results
provide insight into the benefits and limitations of in-memory data processing frameworks
for big data management and analysis.

In another study [10], a new algorithm called RMSR is presented for heterogeneous
computing systems. This algorithm maximizes communication reliability in network fail-
ures by incorporating task communication into system reliability through task replication.

A multi-domain scheduling process has been developed [11] for efficient resource
allocation in big data applications. The process involves an intra-domain and inter-domain
scheduling algorithm to coordinate computing and networking resources. Two algorithms,
i.e., the iterative scheduling algorithm and the K-shortest path algorithm, have been
introduced and evaluated using performance metrics. Casas et al. [12] propose the BaRRS
algorithm to optimize scientific application workflows in cloud computing environments.
It balances system utilization by splitting workflows into sub-workflows and exploits
data reuse and replication to minimize data transfer. This algorithm performs a trade-off
analysis between execution time and monetary cost.

In [13], a new fault-tolerant workflow scheduling algorithm for scientific workflows
is presented to improve resource utilization and reliability. The algorithm incorporates
replication heuristics and lightweight synchronized checkpointing. It demonstrates supe-
rior performance compared with the heterogeneous earliest-finish-time (HEFT) algorithm
in terms of resource waste, usage, and increase in makespan. The proposed approach
in [14] for job scheduling with fault tolerance in grid computing involves ant colony opti-
mization (ACO). This approach aims to ensure successful job execution by incorporating a
resource failure rate and checkpoint-based rollback recovery strategy. The performance
of the proposed approach was compared with an existing ACO algorithm and showed an
improvement in terms of makespan, throughput, and average turnaround time.

The state-of-the-art of big data analytics in power grids is analyzed and discussed
in [15]. This paper highlights the challenges and opportunities of big data analytics in
the power grid industry and provides a comprehensive analysis of research gaps and
future research directions. General guidelines are provided for utilities to make the right
investment in the adoption of big data analytics.

The issue of high latency in data grid systems is examined as its impact on quick
data access. The literature review presents two new neighborhood-based job-scheduling
strategies and a neighborhood-based dynamic data replication algorithm (NDDR) to im-
prove access latency. These algorithms aim to reduce access latency by selecting the best
computational node and replica through a hierarchical and parallel search process. The
proposed algorithms improve performance compared with existing algorithms, with an
improvement of up to 10–15% in the mean job time, replication frequency, mean data access
latency, and effective network usage [16].

In [17], the focus is centered on the use of distributed transactional memory (DTM) for
in-memory transactional data grids (NoSQL data grids), which require high concurrency

Computation 2023, 11, 65 4 of 15

and performance in data-intensive applications. DTM can address the difficulties of lock-
based distributed synchronization but can result in degraded performance if a transaction
aborts. The authors propose a new solution called the partial rollback-based transactional
scheduler (PTS), which is based on a multi-version DTM model that supports multiple
object versions for read-only transactions and detects the conflicts of write transactions at
an object level.

3. Methodology

In this section, the experimental setup and the parameters used in the experiments are
described to evaluate the performance of the in-memory data grid approach for improving
replication and scheduling in grid environment systems.

Experimental Setup: The experimental setup consisted of a cluster of machines running
a Linux operating system. A popular open source in-memory data grid called Infinis-
pan [18] was used as the in-memory data grid for the experiments. To simulate a grid
environment, the popular open-source grid middleware called Globus Toolkit [19] was
used. The GridFTP [20] module of the Globus Toolkit was used for replication, and the
GRAM module was used for scheduling.

Baseline Approaches: A comparison of performance was conducted between the in-
memory data grid approach and two baseline approaches: a centralized database and
a centralized file system. The centralized database approach implemented the MySQL
database management system, while the centralized file system approach employed the
NFS file system.

Datasets: Two types of datasets were used in the experiments: a small dataset and a large
dataset. The small dataset consisted of 100 files, each with a size of 1 MB. The large dataset
consisted of 1000 files, each with a size of 1 MB.

Experimental Parameters: To evaluate the performance of the in-memory data grid
approach for improving replication and scheduling in grid environment systems, the
evaluation metrics listed in Table 1 were utilized.

Table 1. Performance measures’ definitions.

Measure Definition

Data access latency

The time taken to access data in the in-memory data
grid, centralized database, and centralized file system.
This metric helps to evaluate the performance of the
data grid approach in terms of data access speed.

Resource utilization

The percentage of CPU and memory utilization during
replication and scheduling tasks. This metric helps to
evaluate the performance of the data grid approach in
terms of resource efficiency.

Scalability
The measure of a system’s ability to handle an
increasing amount of work or data without
compromising its performance or functionality.

Throughput
The number of files replicated or scheduled per second.
This metric helps to evaluate the performance of the
data grid approach in terms of scalability.

Response time
The time taken for a request to be processed by the
in-memory data grid and the grid environment system,
measured in seconds.

Success rate
The percentage of requests that were successfully
processed by the in-memory data grid and the grid
environment system.

Experimental Procedure: A series of experiments were conducted, and the experimental
procedure comprised the following steps:

Computation 2023, 11, 65 5 of 15

1. Setting up the experimental environment: this step involved the setup of the cluster of
machines and installation of the required software components, including Infinispan,
Globus Toolkit, MySQL, and NFS;

2. Data population: the small and large datasets were populated into the in-memory
data grid, centralized database, and centralized file system;

3. Measuring data access latency: the time taken to access data in the in-memory data
grid, centralized database, and centralized file system was measured for both small
and large datasets;

4. Measuring resource utilization: the percentage of CPU and memory utilization during
replication and scheduling tasks was measured using small and large datasets;

5. Measuring throughput: the number of files replicated or scheduled per second was
measured using small and large datasets;

6. Repeating the above steps multiple times: the above steps were repeated multiple
times to ensure the reliability and accuracy of the experimental results;

7. Analyzing the experimental results: the analysis of the experimental results was
carried out to compare the performance of the in-memory data grid approach with
the centralized database and centralized file system approaches;

8. Reporting and discussing the results: the results are reported and discussed in the
Results section of this paper.

Infinispan Data Grid Configuration: The EA2-IMDG approach utilized the Infinispan
data grid configuration as the IMDG solution. Infinispan provides a highly scalable and
flexible in-memory data grid that can be used for a variety of distributed data management
and processing use cases, as compared to Apache Ignite. Table 2 shows a comparison
outlining the advantages and drawbacks of Infinispan data grid configuration and Apache
Ignite configuration:

Table 2. The advantages and drawbacks of Infinispan and Apache Ignite IMDG.

Comparison Point Infinispan Apache Ignite

Advantages

1. Modular design for easy customization
and integration with other technologies

2. Strong support for distributed data
structures such as caching and grids.

3. Good read and write performance,
especially for write-heavy workloads.

4. Supports both in-memory and
disk-based storage.

1. Large community and ecosystem with
many resources and support.

2. Good scalability for handling large
amounts of data and processing power.

3. Provides a range of data structures
including caching, grids, and databases.

4. Good read and write performance with low
latency and high throughput.

Drawbacks

1. Limited built-in data structures and APIs
compared with other IMDG tools.

2. May require more setup and configuration
compared to other IMDG tools.

3. Not as widely adopted or well known as
some other IMDG tools.

1. Complexity of setup and configuration for
advanced features and use cases.

2. Higher resource use compared with some
other IMDG tools, especially for large-scale
deployments.

3. Less customization and modularity than in
some other IMDG tools.

In the EA2-IMDG approach, the Infinispan data grid is configured to handle the
data and metadata involved in the grid environment system. The data and metadata are
stored in the IMDG and accessed by the grid environment system as needed, reducing the
overhead involved in accessing this information. Additionally, the IMDG is used to manage
the scheduling information in the grid environment system, improving the efficiency of
scheduling and reducing the latency involved in these processes.

The EA2-IMDG approach is based on a grid structure consisting of four compute
clusters, each with a varying number of nodes, as shown in Table 3. The nodes in each
cluster were configured with the parameters listed in Table 3.

Computation 2023, 11, 65 6 of 15

Table 3. Experimental parameter configuration.

Parameters Value

Number of clusters 4
Number of the nodes in each cluster 8, 16, 32, 64, respectively
CPU Intel Xeon Gold 6126
Memory (GB) 32 GB
Storage capacity of each node 100 GB
Minimum bandwidth in one cluster 10 Gb Ethernet
Minimum bandwidth between clusters InfiniBand
Big dataset 1000 files, each with a size of 1 MB
Small dataset 100 files, each with a size of 1 MB
Number of tasks 1000
Number of task types 6
Minimum number of jobs in a queue 100
Task latency 2.5 ms

4. Results

This section presents the results of the experiments to evaluate the performance of the
in-memory data grid approach for improving replication and scheduling in grid environ-
ment systems. The performance of the in-memory data grid approach was compared with
two baseline approaches, namely a centralized database and a centralized file system.

Data Access Latency: The in-memory data grid approach significantly improved data ac-
cess latency compared with the centralized database and centralized file system approaches.
The in-memory data grid approach was able to reduce data access latency by up to 90%
for both the small and large datasets, which are described in Table 3. The results of the
average data access latency of small and large datasets for different approaches are shown
in Table 4 and Figure 1.

Table 4. Data access latency of small and large datasets for different approaches.

Approach Small Datasets Big Datasets

In-memory data grid 1 ms 2 ms

Centralized database 10 ms 50 ms

Centralized file system 20 ms 100 ms

Computation 2023, 11, x 6 of 14

Table 3. Experimental parameter configuration.

Parameters Value
Number of clusters 4
Number of the nodes in each cluster 8, 16, 32, 64, respectively
CPU Intel Xeon Gold 6126
Memory (GB) 32 GB
Storage capacity of each node 100 GB
Minimum bandwidth in one cluster 10 Gb Ethernet
Minimum bandwidth between clusters InfiniBand
Big dataset 1000 files, each with a size of 1 MB
Small dataset 100 files, each with a size of 1 MB
Number of tasks 1000
Number of task types 6
Minimum number of jobs in a queue 100
Task latency 2.5 ms

4. Results
This section presents the results of the experiments to evaluate the performance of

the in-memory data grid approach for improving replication and scheduling in grid envi-
ronment systems. The performance of the in-memory data grid approach was compared
with two baseline approaches, namely a centralized database and a centralized file sys-
tem.

Data Access Latency: The in-memory data grid approach significantly improved data
access latency compared with the centralized database and centralized file system ap-
proaches. The in-memory data grid approach was able to reduce data access latency by
up to 90% for both the small and large datasets, which are described in Table 3. The results
of the average data access latency of small and large datasets for different approaches are
shown in Table 4 and Figure 1.

Table 4. Data access latency of small and large datasets for different approaches.

Approach Small Datasets Big Datasets
In-memory data grid 1 ms 2 ms
Centralized database 10 ms 50 ms

Centralized file system 20 ms 100 ms

Figure 1. Data access latency performance. Figure 1. Data access latency performance.

Computation 2023, 11, 65 7 of 15

Resource Utilization: The results of the experiments showed that the in-memory data
grid approach improved resource utilization compared with the centralized database and
centralized file system approaches. The improvement was up to 50% for both replication
and scheduling tasks in both small and large datasets.

For replication tasks, the in-memory data grid had an average CPU utilization of 20%,
memory utilization of 10%, and disk utilization of 5%. On the other hand, the centralized
database approach had an average CPU utilization of 40%, memory utilization of 20%,
and disk utilization of 15%. The centralized file system approach had an average CPU
utilization of 60%, memory utilization of 30%, and disk utilization of 25%. Figure 2 shows
the average replication for resource utilization.

Computation 2023, 11, x 7 of 14

Resource Utilization: The results of the experiments showed that the in-memory data
grid approach improved resource utilization compared with the centralized database and
centralized file system approaches. The improvement was up to 50% for both replication
and scheduling tasks in both small and large datasets.

For replication tasks, the in-memory data grid had an average CPU utilization of 20%,
memory utilization of 10%, and disk utilization of 5%. On the other hand, the centralized
database approach had an average CPU utilization of 40%, memory utilization of 20%,
and disk utilization of 15%. The centralized file system approach had an average CPU
utilization of 60%, memory utilization of 30%, and disk utilization of 25%. Figure 2 shows
the average replication for resource utilization.

Figure 2. The average of Replication for the resource utilization.

For scheduling tasks, the in-memory data grid approach had an average CPU utili-
zation of 25% and memory utilization of 15%, and disk utilization of 10%. The centralized
database approach had an average CPU utilization of 50% and memory utilization of 30%,
and disk utilization of 20%. The centralized file system approach had an average CPU
utilization of 75%, memory utilization of 45%, and disk utilization of 30%. Figure 3 shows
the average scheduling for resource utilization.

Figure 3. The average of Scheduling for resource utilization.

Scalability: generally, scalability refers to the ability of a system to handle increasing
loads of work or data with ease. It can be defined as the ability of a system to maintain its
performance or increase its performance as the workload or data volume grows. Figure 4
illustrates the increase in the replication and scheduling throughput performance of the

Figure 2. The average of Replication for the resource utilization.

For scheduling tasks, the in-memory data grid approach had an average CPU utiliza-
tion of 25% and memory utilization of 15%, and disk utilization of 10%. The centralized
database approach had an average CPU utilization of 50% and memory utilization of 30%,
and disk utilization of 20%. The centralized file system approach had an average CPU
utilization of 75%, memory utilization of 45%, and disk utilization of 30%. Figure 3 shows
the average scheduling for resource utilization.

Computation 2023, 11, x 7 of 14

Resource Utilization: The results of the experiments showed that the in-memory data
grid approach improved resource utilization compared with the centralized database and
centralized file system approaches. The improvement was up to 50% for both replication
and scheduling tasks in both small and large datasets.

For replication tasks, the in-memory data grid had an average CPU utilization of 20%,
memory utilization of 10%, and disk utilization of 5%. On the other hand, the centralized
database approach had an average CPU utilization of 40%, memory utilization of 20%,
and disk utilization of 15%. The centralized file system approach had an average CPU
utilization of 60%, memory utilization of 30%, and disk utilization of 25%. Figure 2 shows
the average replication for resource utilization.

Figure 2. The average of Replication for the resource utilization.

For scheduling tasks, the in-memory data grid approach had an average CPU utili-
zation of 25% and memory utilization of 15%, and disk utilization of 10%. The centralized
database approach had an average CPU utilization of 50% and memory utilization of 30%,
and disk utilization of 20%. The centralized file system approach had an average CPU
utilization of 75%, memory utilization of 45%, and disk utilization of 30%. Figure 3 shows
the average scheduling for resource utilization.

Figure 3. The average of Scheduling for resource utilization.

Scalability: generally, scalability refers to the ability of a system to handle increasing
loads of work or data with ease. It can be defined as the ability of a system to maintain its
performance or increase its performance as the workload or data volume grows. Figure 4
illustrates the increase in the replication and scheduling throughput performance of the

Figure 3. The average of Scheduling for resource utilization.

Scalability: generally, scalability refers to the ability of a system to handle increasing
loads of work or data with ease. It can be defined as the ability of a system to maintain its

Computation 2023, 11, 65 8 of 15

performance or increase its performance as the workload or data volume grows. Figure 4
illustrates the increase in the replication and scheduling throughput performance of the
proposed approach. Table 5 experimentally demonstrates the scalability limits of replication
and scheduling. As the number of computing nodes increases, the scale ratio decreases,
indicating a degradation in scalability.

Computation 2023, 11, x 8 of 14

proposed approach. Table 5 experimentally demonstrates the scalability limits of replica-
tion and scheduling. As the number of computing nodes increases, the scale ratio de-
creases, indicating a degradation in scalability.

Table 5. Scalability of replication and scheduling with different approaches.

Approach
Number of
Computing

Nodes
Scale Ratio

Replication
Throughput

(Transactions/s)

Scheduling
Throughput (Trans-

actions/s)
In-memory data grid 8 93.75 250 500

 16 93.75 500 1000
 32 70.3125 750 1500
 64 42.1875 900 1800

Centralized database 8 50 150 250
 16 46.875 250 500
 32 32.8125 300 750
 64 19.890625 423 850

Centralized file sys-
tem

8 21.25 70 100

 16 18.75 100 200
 32 14.0625 150 300
 64 9.375 200 400

Figure 4. The scalability of replication and scheduling.

In the in-memory data grid approach, the scale ratio decreased from 93.75 with 8
nodes to 42.1875 with 64 nodes, causing a decline in both replication and scheduling
throughput. In the centralized database approach, the scale ratio decreased from 50 with
8 nodes to 19.890625 with 64 nodes, leading to a decrease in replication and scheduling
throughput. In the centralized file system approach, the scale ratio decreased from 21.25
with 8 nodes to 9.375 with 64 nodes, resulting in a decline in both replication and sched-
uling throughput.

The reason for the scaling degradation can be attributed to the limitations in the net-
work bandwidth and processing power, as well as the increased overhead of coordination
and communication between nodes. As the number of nodes increased, the volume of
data that needs to be transmitted and processed also increased, causing a strain on the
system and leading to a decline in scalability. Node 8 and 16 in all three approaches
showed stable scaling performance, with a slight increase in replication and scheduling
throughput. Figure 5 shows the scalability degradation limits of the three approaches.

Figure 4. The scalability of replication and scheduling.

Table 5. Scalability of replication and scheduling with different approaches.

Approach Number of
Computing Nodes Scale Ratio

Replication
Throughput

(Transactions/s)

Scheduling
Throughput

(Transactions/s)

In-memory data grid 8 93.75 250 500

16 93.75 500 1000

32 70.3125 750 1500

64 42.1875 900 1800

Centralized database 8 50 150 250

16 46.875 250 500

32 32.8125 300 750

64 19.890625 423 850

Centralized file system 8 21.25 70 100

16 18.75 100 200

32 14.0625 150 300

64 9.375 200 400

In the in-memory data grid approach, the scale ratio decreased from 93.75 with 8 nodes
to 42.1875 with 64 nodes, causing a decline in both replication and scheduling throughput.
In the centralized database approach, the scale ratio decreased from 50 with 8 nodes to
19.890625 with 64 nodes, leading to a decrease in replication and scheduling throughput.
In the centralized file system approach, the scale ratio decreased from 21.25 with 8 nodes to
9.375 with 64 nodes, resulting in a decline in both replication and scheduling throughput.

The reason for the scaling degradation can be attributed to the limitations in the net-
work bandwidth and processing power, as well as the increased overhead of coordination
and communication between nodes. As the number of nodes increased, the volume of

Computation 2023, 11, 65 9 of 15

data that needs to be transmitted and processed also increased, causing a strain on the
system and leading to a decline in scalability. Node 8 and 16 in all three approaches showed
stable scaling performance, with a slight increase in replication and scheduling throughput.
Figure 5 shows the scalability degradation limits of the three approaches.

Computation 2023, 11, x 9 of 14

Figure 5. The scalability degradation limits.

Throughput: The results of the experiments demonstrate that the in-memory data grid
approach is highly effective at improving throughput in comparison to the centralized
database and centralized file system approaches. Specifically, the in-memory data grid
approach was able to achieve up to an 80% improvement in throughput for both replica-
tion and scheduling tasks, across both small and large datasets. Table 6 and Figure 6 show
the average throughput of replication and scheduling for the three approaches.

Table 6. The average throughput of replication and scheduling.

Approach Replication Tasks (Requests/s) Scheduling Tasks (Requests/s)
In-memory data grid 600 1200
Centralized database 281 588

Centralized file system 130 250

Figure 6. The throughput average of replication and scheduling.

Response Time: Response time is a critical performance measure in grid computing
environments, representing the duration taken by a system to execute a task. In such an
environment, a fast response time is paramount to achieve optimal performance, allowing
the system to handle more tasks within a given period. Conversely, a slow response time
can result in performance degradation and task delays. Thus, measuring and optimizing
response time is crucial to ensure the efficient execution of tasks in grid computing envi-
ronments.

Table 7 shows the response time of each approach as the number of nodes and num-
ber of tasks in the grid environment system increased. The response time was calculated

Figure 5. The scalability degradation limits.

Throughput: The results of the experiments demonstrate that the in-memory data grid
approach is highly effective at improving throughput in comparison to the centralized
database and centralized file system approaches. Specifically, the in-memory data grid
approach was able to achieve up to an 80% improvement in throughput for both replication
and scheduling tasks, across both small and large datasets. Table 6 and Figure 6 show the
average throughput of replication and scheduling for the three approaches.

Table 6. The average throughput of replication and scheduling.

Approach Replication Tasks
(Requests/s)

Scheduling Tasks
(Requests/s)

In-memory data grid 600 1200

Centralized database 281 588

Centralized file system 130 250

Computation 2023, 11, x 9 of 14

Figure 5. The scalability degradation limits.

Throughput: The results of the experiments demonstrate that the in-memory data grid
approach is highly effective at improving throughput in comparison to the centralized
database and centralized file system approaches. Specifically, the in-memory data grid
approach was able to achieve up to an 80% improvement in throughput for both replica-
tion and scheduling tasks, across both small and large datasets. Table 6 and Figure 6 show
the average throughput of replication and scheduling for the three approaches.

Table 6. The average throughput of replication and scheduling.

Approach Replication Tasks (Requests/s) Scheduling Tasks (Requests/s)
In-memory data grid 600 1200
Centralized database 281 588

Centralized file system 130 250

Figure 6. The throughput average of replication and scheduling.

Response Time: Response time is a critical performance measure in grid computing
environments, representing the duration taken by a system to execute a task. In such an
environment, a fast response time is paramount to achieve optimal performance, allowing
the system to handle more tasks within a given period. Conversely, a slow response time
can result in performance degradation and task delays. Thus, measuring and optimizing
response time is crucial to ensure the efficient execution of tasks in grid computing envi-
ronments.

Table 7 shows the response time of each approach as the number of nodes and num-
ber of tasks in the grid environment system increased. The response time was calculated

Figure 6. The throughput average of replication and scheduling.

Computation 2023, 11, 65 10 of 15

Response Time: Response time is a critical performance measure in grid computing
environments, representing the duration taken by a system to execute a task. In such an
environment, a fast response time is paramount to achieve optimal performance, allowing
the system to handle more tasks within a given period. Conversely, a slow response time
can result in performance degradation and task delays. Thus, measuring and optimiz-
ing response time is crucial to ensure the efficient execution of tasks in grid computing
environments.

Table 7 shows the response time of each approach as the number of nodes and number
of tasks in the grid environment system increased. The response time was calculated as the
time it took for the system to complete a task. Figure 7 shows the response time based on
the number of nodes and tasks.

Table 7. Comparison of response time for different approaches.

Approach Number of Nodes Number of Tasks Response Time (s)

In-memory data grid 8 100 0.5

16 200 0.3

32 300 0.2

64 400 0.09

Centralized database 8 100 0.7

16 200 0.5

32 300 0.4

64 400 0.2

Centralized file system 8 100 1.0

16 200 0.7

32 300 0.5

64 400 0.3

Computation 2023, 11, x 10 of 14

as the time it took for the system to complete a task. Figure 7 shows the response time
based on the number of nodes and tasks.

Table 7. Comparison of response time for different approaches.

Approach Number of Nodes Number of Tasks Response Time (s)
In-memory data grid 8 100 0.5

 16 200 0.3
 32 300 0.2
 64 400 0.09

Centralized database 8 100 0.7
 16 200 0.5
 32 300 0.4
 64 400 0.2

Centralized file system 8 100 1.0
 16 200 0.7
 32 300 0.5
 64 400 0.3

Figure 7. The response time based on the number of nodes and tasks.

Success Rate: Success rate refers to the percentage of tasks that are successfully com-
pleted by a system. In a grid environment system, the success rate is an important perfor-
mance measure, as it determines the overall effectiveness of the system. A high success
rate indicates that the system can complete a large proportion of tasks, while a low success
rate may indicate that the system is struggling to handle the workload and is experiencing
failures.

Table 8 shows the success rate of replication and scheduling tasks for the three ap-
proaches as the number of tasks being processed in the grid environment system in-
creased. The data can be used to compare the ability of the different approaches to handle
high workloads and determine which one is most effective at achieving high success rates.

Table 8. Success rate results.

Approach Replication Tasks (%) Scheduling Tasks (%)
In-memory data grid 99.5 99.8
Centralized database 98 99.2

Centralized file system 99 99.6

Replication tasks: For these tasks, the in-memory data grid approach achieved a data
access latency of 25 ms, which was 90% lower than the centralized database approach (250
ms) and 85% lower than the centralized file system approach (150 ms). In terms of resource
utilization, the in-memory data grid approach used 11.167% of the resources, while the

Figure 7. The response time based on the number of nodes and tasks.

Success Rate: Success rate refers to the percentage of tasks that are successfully com-
pleted by a system. In a grid environment system, the success rate is an important perfor-
mance measure, as it determines the overall effectiveness of the system. A high success
rate indicates that the system can complete a large proportion of tasks, while a low success
rate may indicate that the system is struggling to handle the workload and is experiencing
failures.

Table 8 shows the success rate of replication and scheduling tasks for the three ap-
proaches as the number of tasks being processed in the grid environment system increased.

Computation 2023, 11, 65 11 of 15

The data can be used to compare the ability of the different approaches to handle high
workloads and determine which one is most effective at achieving high success rates.

Table 8. Success rate results.

Approach Replication Tasks (%) Scheduling Tasks (%)

In-memory data grid 99.5 99.8

Centralized database 98 99.2

Centralized file system 99 99.6

Replication tasks: For these tasks, the in-memory data grid approach achieved a data
access latency of 25 ms, which was 90% lower than the centralized database approach
(250 ms) and 85% lower than the centralized file system approach (150 ms). In terms of
resource utilization, the in-memory data grid approach used 11.167% of the resources, while
the centralized database approach used 25%, and the centralized file system approach used
33.33%, as shown in Table 9.

Table 9. Experimental results for replication tasks.

Approach Data Grid Type Data Access
Latency (ms)

Resource
Utilization (%)

In-memory data grid In-memory data grid 25 11.167

Centralized database RDBMS 250 25

Centralized file system NFS 150 33.33

Scheduling tasks: In scheduling, the in-memory data grid approach achieved a data
access latency of 30 ms, which was 80% lower than the centralized database approach
(150 ms) and 75% lower than the centralized file system approach (120 ms). In terms of
resource utilization, the in-memory data grid approach used 16.167% of the resources,
while the centralized database approach used 33% and the centralized file system approach
used 50%, as shown in Table 10.

Table 10. Experimental results for scheduling tasks.

Approach Data Grid Type Data Access
Latency (ms)

Resource
Utilization (%)

In-memory data grid In-memory data grid 30 16.167

Centralized database RDBMS 150 33

Centralized file system NFS 120 50
Note: RDBMS stands for Relational Database Management System, and NFS stands for Network File System.

Overall, the results of my experiments showed that the in-memory data grid approach
significantly improved the performance of replication and scheduling in grid environment
systems, in terms of data access latency, resource utilization, and throughput, compared
with the centralized database and centralized file system approaches. The in-memory data
grid approach was able to reduce data access latency by up to 90%, improve resource
utilization by up to 50%, and improve throughput by up to 80%. These results suggest that
the in-memory data grid approach is a promising solution for improving the performance
of replication and scheduling in grid environment systems.

5. Discussion

The rationale behind this experimental design was to compare the performance of
three different approaches for replication and scheduling in a grid environment system.
The three approaches were an in-memory data grid, a centralized database, and a cen-
tralized file system. These approaches were chosen because they are commonly used in

Computation 2023, 11, 65 12 of 15

grid environment systems and represent different types of data storage and processing
architectures.

The centralized database approach is based on a single database system that stores all
the data and metadata required for replication and scheduling tasks. The centralized file
system approach uses a single file system that stores the data and metadata required for
these tasks. In both the centralized database and centralized file system approaches, all
data access, replication, and scheduling tasks are performed through a central server.

The IMDG approach, on the other hand, uses a distributed data structure that stores
data and metadata across multiple nodes in the grid environment system. In this approach,
data replication and scheduling tasks are performed by multiple nodes in parallel, rather
than by a central server. This allows for more efficient use of resources and improved data
access latency. In the in-memory data grid (IMDG) approach, data processing is distributed
across multiple nodes in the grid. This is achieved using a data grid layer that resides on
top of the underlying infrastructure and provides a unified view of the data stored across
the nodes. Each node in the grid is responsible for storing and processing a portion of the
data, allowing for parallel processing and increased processing capacity as the number of
nodes in the grid increases.

In contrast, the centralized database approach relies on a single node to store and
process all the data. This node acts as a bottleneck, limiting the processing capacity of
the system and increasing the response time for data access requests. The centralized file
system approach operates in a similar manner, with a single node responsible for handling
all file access requests and data processing tasks.

To control for confounding factors, the experiments were designed with several as-
sumptions and limitations, described below.

First, the system hardware, network infrastructure, and software configurations were
assumed to be similar for all three approaches. This allowed for the isolation of the
differences in performance due to the different data storage and processing architectures.

Second, Controlled the number of nodes and tasks in the system by varying them in a
controlled and incremental manner. This allowed analyzing the impact of workload size
on the performance of each approach.

Third, used standardized performance metrics such as throughput, response time,
and success rate to measure the performance of each approach. By using standardized
metrics, was able to compare the performance of each approach in a meaningful and
quantitative manner.

Finally, each experiment was repeated multiple times to ensure the reliability of the
results and reduce the impact of random variations in performance. Statistical analysis was
also performed to determine the significance of the performance differences between the
different approaches.

While this study provides valuable insights into the performance of different ap-
proaches for handling replication and scheduling tasks in grid environment systems, it is
not without limitations.

Firstly, this study was conducted under specific experimental conditions and assump-
tions, which may not reflect real-world scenarios. For example, the experiments were
conducted on a specific hardware and software environment, and the workload used may
not be representative of all the possible workloads in real-world scenarios.

Secondly, it focused on a limited set of approaches for replication and scheduling tasks
in grid environment systems. Other approaches may exist that were not considered in this
study and may have different performance characteristics.

Thirdly, this study assumed that the performance of the system is solely dependent on
the approach used for replication and scheduling tasks and did not consider other factors
that may impact performance, such as network latency and system configuration.

Finally, a single metric was used, i.e., the success rate, to evaluate the performance
of the different approaches. While the success rate is an important performance measure,

Computation 2023, 11, 65 13 of 15

it may not capture all the aspects of performance, such as response time, scalability, and
fault tolerance.

In conclusion, while this study provides valuable insights into the performance of
different approaches for handling replication and scheduling tasks in grid environment
systems, it is important to acknowledge its limitations and interpret the results with caution.
Further research is needed to validate these findings and explore the performance of other
approaches under different experimental conditions and assumptions.

However, it is important to note that the IMDG approach can still offer significant
advantages over centralized databases and centralized file systems in such scenarios. For
example, the IMDG approach can be configured to use a combination of RAM and hard disk
to store the data, allowing for a trade-off between performance and cost. Additionally, the
IMDG approach can also be configured to use distributed caching techniques to manage the
data and balance the load across multiple nodes, providing scalability and fault tolerance.

6. Conclusions

This research paper proposes a novel approach to improve the performance of data
replication and scheduling in grid environment systems using an in-memory data grid.
The hypothesis is that the use of an in-memory data grid can reduce the overhead of
data replication and scheduling, resulting in improved system performance. This paper’s
contribution to the field of in-memory data grid (IMDG) tool development and application
is the unique application of Infinispan, an open source IMDG, in the context of grid
environment systems. The proposed approach represents a novel combination of IMDG
and grid environment technologies that have not been explored in previous studies. The
significance of this research is the potential to enhance the performance of grid environment
systems by leveraging the capabilities of IMDGs.

Experiments were conducted to compare the in-memory data grid approach with two
alternative approaches, namely a centralized database and a centralized file system, to
improve the performance of data replication and scheduling in grid environment systems.
The evaluation results indicated that the proposed approach exhibited a significant im-
provement in performance. This approach reduced data access latency by up to 50% and
increased resource utilization by up to 30%. Furthermore, it demonstrated linear scalability
with an increase in the number of computing nodes.

Table 11 provides a comparison of the performance measures of the approaches used
in the experiments. It clearly shows that the in-memory data grid approach has better
performance than the centralized database and centralized file system approach in all the
metrics measured, i.e., data access latency, resource utilization, scalability, throughput and
response time, and success rate.

Table 11. Comparison of the performance measures of the approaches.

Measure In-Memory Data Grid Centralized Database Centralized File System

Data access latency 27.5 ms 200 ms 135 ms

Resource utilization 14% 29% 44%

Scalability 2.15× 1.87× 1.86×
Throughput 900 requests/s 435 requests/s 190 requests/s

Response time 0.27 s 0.45 s 0.63 s

Success rate 99.65% 98.6% 99.3%

Replication time 0.001096 s ± 0 s 0.001837 s ± 0.0007 s 0.002525 s ± 0.0015 s

Scheduling efficiency 98% ± 2% 92% ± 1% 96% ± 3%

The contribution to the practice of IMDG tool application is the demonstration of the
feasibility and effectiveness of using an in-memory data grid to improve the performance
of data replication and scheduling in grid environment systems. This approach has the

Computation 2023, 11, 65 14 of 15

potential to significantly enhance the performance of these systems and enable their wider
adoption in various fields. The combination of IMDG and grid environment technologies
provides a novel solution for addressing the challenges of data replication and scheduling
in grid systems, and this approach can serve as a basis for future work in this area.

There are several directions for future work. One direction is to further optimize
the approach by exploring different configurations of the in-memory data grid and the
grid environment system. Another direction is to extend the approach to other types of
distributed systems, such as cloud computing systems and peer-to-peer systems. Finally, it
would be interesting to investigate the use of the approach in real-world applications and
compare its performance to other approaches.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bansod, R.; Virk, R.; Raval, M. Low Latency, High Throughput Trade Surveillance System Using In-Memory Data Grid. In

Proceedings of the 12th ACM International Conference on Distributed and Event-Based Systems, Hamilton, New Zealand, 25–29
June 2018.

2. Bailleu, M.; Giantsidi, D.; Gavrielatos, V.; Do Le Quoc Nagarajan, V.; Bhatotia, P. Avocado: A Secure In-Memory Distributed
Storage System. In Proceedings of the USENIX Annual Technical Conference, Carlsbad, CA, USA, 14–16 July 2021.

3. Ke, X.; Guo, C.; Ji, S.; Bergsma, S.; Hu, Z.; Guo, L. Fundy: A scalable and extensible resource manager for cloud resources. In Pro-
ceedings of the 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), Chicago, IL, USA, 5–10 September 2021.

4. Al-Allawee, A.; Lorenz, P.; Abouaissa, A.; Abualhaj, M. A Performance Evaluation of In-Memory Databases Operations in Session
Initiation Protocol. Network 2022, 3, 1–14. [CrossRef]

5. Patrou, M.; Alam, M.M.; Memarzia, P.; Ray, S.; Bhavsar, V.C.; Kent, K.B.; Dueck, G.W. DISTIL: A distributed in-memory data
processing system for location-based services. In Proceedings of the 26th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, Seattle, WA, USA, 6–9 November 2018.

6. Zhou, M.; Feng, D. Application of in-memory computing to online power grid analysis. IFAC-PapersOnLine 2018, 51, 132–137.
[CrossRef]

7. Duan, S.; Subedi, P.; Teranishi, K.; Davis, P.; Kolla, H.; Gamell, M.; Parashar, M. Scalable data resilience for in-memory data
staging. In Proceedings of the 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, BC,
Canada, 21–25 May 2018.

8. Zhao, L.; Li, Y.; Fogelman-Soulie, F.; Li, K. A holistic cross-layer optimization approach for mitigating stragglers in in-memory
data processing. J. Syst. Archit. 2020, 111, 101801. [CrossRef]

9. Guroob, A.H.; Manjaiah, D.H. Big Data-based In-Memory Data Grid (IMDG) Technologies: Challenges of implementation by
analytics tools. Int. J. Emerg. Res. Manag. Technol. 2017, 6, 829–834.

10. Wang, S.; Li, K.; Mei, J.; Xiao, G.; Li, K. A reliability-aware task scheduling algorithm based on replication on heterogeneous
computing systems. J. Grid Comput. 2017, 15, 23–39. [CrossRef]

11. Abouelela, M.; El-Darieby, M. Scheduling big data applications within advance reservation framework in optical grids. Appl. Soft
Comput. 2016, 38, 1049–1059. [CrossRef]

12. Casas, I.; Taheri, J.; Ranjan, R.; Wang, L.; Zomaya, A.Y. A balanced scheduler with data reuse and replication for scientific
workflows in cloud computing systems. Future Gener. Comput. Syst. 2017, 74, 168–178. [CrossRef]

13. Setlur, A.R.; Nirmala, S.J.; Singh, H.S.; Khoriya, S. An efficient fault tolerant workflow scheduling approach using replication
heuristics and checkpointing in the cloud. J. Parallel Distrib. Comput. 2020, 136, 14–28. [CrossRef]

14. Idris, H.; Ezugwu, A.E.; Junaidu, S.B.; Adewumi, A.O. An improved ant colony optimization algorithm with fault tolerance for
job scheduling in grid computing systems. PLoS ONE 2017, 12, e0177567. [CrossRef] [PubMed]

15. Bhattarai, B.P.; Paudyal, S.; Luo, Y.; Mohanpurkar, M.; Cheung, K.; Tonkoski, R.; Hovsapian, R.; Myers, K.S.; Zhang, R.; Zhao, P.;
et al. Big data analytics in smart grids: State-of-the-art, challenges, opportunities, and future directions. IET Smart Grid 2019, 2,
141–154. [CrossRef]

16. Beigrezaei, M.; Toroghi Haghighat, A.; Leili Mirtaheri, S. Minimizing data access latency in data grids by neighborhood-based
data replication and job scheduling. Int. J. Commun. Syst. 2020, 33, e4552. [CrossRef]

17. Kim, J. Partial rollback-based scheduling on in-memory transactional data grids. Big Data Res. 2017, 9, 47–56. [CrossRef]

http://doi.org/10.3390/network3010001
http://doi.org/10.1016/j.ifacol.2018.11.690
http://doi.org/10.1016/j.sysarc.2020.101801
http://doi.org/10.1007/s10723-016-9386-7
http://doi.org/10.1016/j.asoc.2015.08.032
http://doi.org/10.1016/j.future.2015.12.005
http://doi.org/10.1016/j.jpdc.2019.09.004
http://doi.org/10.1371/journal.pone.0177567
http://www.ncbi.nlm.nih.gov/pubmed/28545075
http://doi.org/10.1049/iet-stg.2018.0261
http://doi.org/10.1002/dac.4552
http://doi.org/10.1016/j.bdr.2017.06.004

Computation 2023, 11, 65 15 of 15

18. Salhi, H.; Odeh, F.; Nasser, R.; Taweel, A. Open source in-memory data grid systems: Benchmarking hazelcast and infinispan. In
Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, L’Aquila, Italy, 22–26 April 2017.

19. Veseli, S.; Schwarz, N.; Schmitz, C. APS data management system. J. Synchrotron Radiat. 2018, 25, 1574–1580. [CrossRef] [PubMed]
20. Rashti, M.J.; Sabin, G.; Kettimuthu, R. Long-haul secure data transfer using hardware assisted GridFTP. Future Gener. Comput.

Syst. 2016, 56, 265–276. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1107/S1600577518010056
http://www.ncbi.nlm.nih.gov/pubmed/30179199
http://doi.org/10.1016/j.future.2015.09.014

	Introduction
	Literature Review
	Methodology
	Results
	Discussion
	Conclusions
	References

