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Abstract: Research and development efforts in the field of commercial applications have invested
strategic interest in the design of intelligent systems that correctly handle out-of-stock events. An out-
of-stock event refers to a scenario in which such customers do not have the availability of the products
they want to buy. This scenario generates important economic damage to the producer and to the
commercial store. Addressing the out-of-stock problem is currently of great interest in the commercial
field as it would allow limiting the economic damages deriving from these events. Furthermore, in
the era of online commerce (e-commerce), it would significantly limit out-of-stock events which show
a considerable economic impact in the field. For these reasons, the authors proposed a solution based
on deep learning for predicting the residual stock amount of a commercial product based on the
intelligent analysis of specific visual–commercial data as well as seasonality. By means of a combined
deep pipeline embedding convolutional architecture boosted with a self-attention mechanism and a
downstream temporal convolutional network, the authors will be able to predict the remaining stock
of a particular commodity. By integrating and interpreting climate/seasonal information, customers’
behavior data, and full history data on the dynamics of commercial sales, it will be possible to
estimate the residual stock of a certain product and, therefore, define purchase orders efficiently.
An accurate prediction of remaining stocks allows an efficient trade order policy which results in a
significant reduction in out-of-stock events. The experimental results confirmed the effectiveness of
the proposed approach with an accuracy (in the prediction of the remaining stock of such products)
greater than 90%.

Keywords: deep learning; agrifoods; out-of-stock prediction; time series forecasting

1. Introduction

Modern technology developments are enabling new challenges and opportunities in
the field of the commercial market [1,2]. Specifically, recent predictive technologies based
on deep learning are making it possible to deal more effectively with the out-of-stock (OOS)
problem of commercial products, i.e., their unavailability upon customer request [3,4].
Practically, an efficient prediction system will be able to correlate product availability in
terms of out-of-stock (OOS) events. Formally, the OOS event occurs when the product
requested by customers is not available on the market store shelves and it is addressed
when the related product(s) are received in the storage at the market store. In this time
window, the OOS events certainly generate economic damage as a function of the intensity
of product’s demand [5].

Despite major commercial companies’ efforts to reduce the impact of OOS events, the
wide impact on the retail industry is still significant. In [6], it was estimated that 4% of
total worldwide annual revenue in the commercial market is lost due to OOS events (it
is close to more than USD 900 billion in losses). The authors of the work reported in [5]
discovered that OOS events distort the true commercial demand and impact brand loyalty
and commercial market dynamics. For these reasons, the scientific community investigated
deeply new information technology solutions for addressing the issue of OOS.
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In more detail, both statistical-based approaches as well as deep learning and bioin-
spired solutions have been widely investigated to cover the OOS issue. As mentioned, the
significant economic impact of OOS events in commercial stores make the modeling of
this phenomenon extremely important for large companies. Therefore, in this work, the
authors, in addition to proposing a valid solution for a reduction in OOS events, will also
try to frame the complexity of the problem and the related solutions proposed to address it.
Specifically, the effectiveness of deep learning in predicting and detecting the OOS events
related to multiple products will be analyzed.

Some of the proposed solutions try to solve the OOS issue from a manufacturer’s per-
spective, using point-of-sale data enhanced by other discriminative features retrieved using
statistical analysis or machine learning approaches [6–11]. Furthermore, the approaches
featured in scientific literature use statistical models and deep-learning-based approaches
(mostly supervised) to determine both the risk of an OOS event and the corrective factors
to be applied (to the product’s inventory) to minimize OOS events [5–12]. However, these
scientific approaches degrade in performance due to implicitly unpredictable dynamics
that significantly impact OOS events [10–12] and that can hardly be modeled from previ-
ous data. This assumption is supported by the fact that, sometimes, the underlying OOS
event’s dynamic is sometimes new and historical data of the market store have never been
exploited [12,13]. Moreover, the predictive models of OOS events may not take into account
all the stochastic variables that influence this phenomenon [12,13].

The algorithm proposed herein goes beyond the mentioned limits as although it is
based on historical data of the commercial point of sale, it integrates real-time context
information which comes from distinct knowledge bases (climate impact and customer
sentiment) and, therefore, enriches the features of historical data used to model and predict
OOS events. Unlike the methods proposed in the scientific literature, the designed pipeline
contains a temporal processing downstream system based on the hypothesis that the OOS
events embed a temporal autocorrelation dynamic. As confirmed by the results reported in
the specific “experimental results” section, this enhancement significantly improves the
performance of the proposed system in comparison with the other methods outlined in the
literature. This aspect allows us to consider the proposed approach very promising.

Specifically, the authors of this work propose a combined system which integrates
deep learning and advanced statistical analysis for addressing OOS events in a commercial
store. The work described herein is organized as follows: Section 2 reports a summary of
the most interesting solutions proposed in the literature for addressing the OOS issue. In
Section 3, the proposed pipeline are introduced and described in detail. In Section 4, the
collected experimental results retrieved through extensive testing and validation of the
proposed pipeline are reported. Finally, in Section 5, related conclusions and future works
about the proposed system are discussed.

Notations Table

In this work, the authors make use of several notations and acronyms. For this reason,
it was considered useful to summarize these notations and acronyms in the following table.

OOS: out-of-stock;
SKU: stock-keeping unit;
RFID: radio frequency identification;
HMM: hidden Markov model;
CNN: convolutional neural network;
RNN: recurrent neural network;
GNN: graph neural networks;
TCNN: temporal convolutional neural network;
CAT-CNN: crowd attention convolutional neural network;
CCP: criss-cross processing;
CCL: criss-cross layer;
CU: convolutional unit;
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3D-DCNN: 3D densely connected convolutional neural network;
NLB: nonlocal block;
GDPR: general data protection regulation;
CAT-CNN-CCnet: crowd attention convolutional neural network with criss-cross layer;
SGD: stochastic gradient descent.

2. Related Works

A simple approach for detecting and predicting OOS events is monitoring anomalies in
the transactional data provided by retailers. In that topic, data monitoring can be efficiently
empowered by using deep learning or soft computing-based algorithms [7–9]. In [9], an
intelligent classification method for reducing OOS events, based on inventory control
models boosted by ad hoc statistical classification methods, is proposed. The approach
analyzed in [9] is in line with the classical methods proposed in the literature for the
management of OOS events.

Another approach is described in [7] and embeds an ensemble learning approach.
With a performance of about 90.2% (area under the curve), the method described in [7]
confirmed the promising results of machine learning in OOS event management.

A similar OOS predictor was described in [10,11]. Other approaches, including
image-processing methods [12], an autonomous robotic system for the monitoring a store’s
shelves [13], depth cameras and neural networks for monitoring market store shelves [14],
deep learning [15], and both supervised [16] and semisupervised learning [17–20] have
been investigated in the scientific literature. All these proposed approaches are based on
the use of internal historical data of the store and, therefore, are affected by the limit of
modeling dynamics already present in historical data, showing reduced performance due
to OOS trends not included in the historical series.

In order to provide a robust approach for addressing OOS events, several studies
analyzed the so-called “drivers” of the OOS events as well as the consequence of these
events and, finally, the mathematical predictor of the OOS events [19–21]. These approaches
will be described in the next paragraphs.

As introduced, the reasons for which many researchers are investigating OOS event
management in the commercial field range from negative consumer reactions to store
switching, product switching, or purchase postponement [21–26].

Fitzsimons et al., in [20], presented a systematic review about the drivers of retail
on-shelf availability and OOS-correlated events. The OOS drivers can be grouped into two
sectors: retail store practices and upstream problems in the retail supply chain. In the first
group, we can include the inventory inaccuracy, shrinkage, and so on. The second group
includes product transportation issues as well as forecast model inaccuracy [4,5,27,28].
In this context, Kang et al. in [29] analyzed the problems generated by wrong inventory
systems. This work confirmed that inventory inaccuracy generates OOS events [29,30].
Specifically, Kang et al. discovered that the performance of the OOS event prediction
approach is highly sensitive to the inventory inaccuracy. For this reason, Reiner et al. tried
to address the inventory inaccuracy issue through the optimal reallocation of the shopper
shelf space [31]. The results seem interesting as the OOS event rate can be reduced (about
30%) with this optimal reallocation.

Another interesting research field related to OOS event reduction is the so-called
RFID [32] used for monitoring both shelf arrangement as well as product delivery policy.

In [33], the combined correlation between demand and supply side issues on repeated
OOS events was analyzed. Another promising investigation relied on studying the re-
lationship between the SKU and stockout performance. This relation seems robust: the
OOS event begins when the final saleable unit of an SKU is removed from the shelf, and it
ends when the presence of a saleable unit on the shelf is replenished [33]. This correlation
confirms that focusing on a relatively small number of SKUs can be an effective strategy to
lower OOS sales losses [33].
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In [34], it was confirmed that stockout performance was negatively affected by the
presence of fast-selling dynamics, while the automation of the ordering process can affect
OOS events positively. Product availability is also related to the performance of the
developed forecasting algorithms [35]. In [36], the authors proposed an approach that
leverages a hybrid artificial neural network to develop a sales forecasting model. The
model’s predictions allow the identification of whether there are either insufficient or too
many products in store. By using data from a consumable product category, the approach
reported in [36] was shown to outperform approaches based singularly on order or POS
data, by up to 25%.

In [37], Chen et al. discovered that larger case packs decrease the number of store
replenishments, i.e., the store’s chance of stockouts decreases. In [38,39], highly interesting
methods based on the analysis of employees’ walking dynamics were presented. The results
seem very promising as the proposed algorithms analyzed employees’ motion dynamics,
trying to correlate these data with the OOS event. Despite the promising results (an
accuracy/sensitivity >80%), the method showed financial limitations partially correlated to
the unavailability of staff to conduct physical audits.

An interesting study was described in [40]. In this paper, a key project based on
the usage of RFID infrastructure for OOS tracking was highlighted. This work reported
interesting performance even though such authors raised such limitations on the usage
of RFID technology confirmed by the poor specificity of the related application [40]. In
fact, the authors of [40,41] addressed the physical limits of RFID, improving the sensitivity
and specificity of the proposed approach. Anyway, RFID is still more expensive than
conventional recognition technology, and its applications often require higher costs [42–44].

In [45,46], probabilistic-based methods were investigated in order to detect OOS events.
Specifically, in [46], the use of Bayesian probability to correct “phantom stockout” using
historical data integrated with inventory inspection policies was presented. The authors
of [46] leveraged the so-called “Bernoulli shrinkage process” for OOS event management.
The authors investigated the correlation between sales transactions, shopping store on-shelf
availability, consecutive zero-sales events, and similar data [10,11,46–49]. Through the
application of the HMM (in which the OOS condition was represented by the hidden state),
the authors of scientific papers reported in [48,49] achieved promising results in terms of
the accuracy predicting OOS events.

However, leveraging the promising results in data prediction collected with modern
techniques based on deep learning, the authors investigated the usage of deep architecture
trained on both a supervised and unsupervised basis for predicting OOS events. Due to
the interesting capability of feature interaction, deep neural networks were investigated to
extract nonlinear predictive patterns in input time series. Specifically, the deep solutions
known as DeepAR [50] and LogTrans [51] were proposed for univariate time series pre-
diction. Moreover, emerging transformer-based architectures or enhanced convolutional
neural networks (CNNs)/recurrent neural networks (RNNs) were analyzed for time series
forecasting based on the inference processing of long-range dependencies embedded in
the input time series [52]. The results in multivariate/multihorizon time series forecasting
were very promising [50–52].

In more detail, in [53], a complete survey containing an interesting examination of the
methods based on artificial intelligence for the management of the inventory of shopping
centers (and, therefore, for the management of OOS events) was described. This study
focused its analysis on research articles embedded in two scientific databases published
between 2012 and 2022 for a detailed study. Similar other works confirmed that deep
learning can be used efficiently to improve the management of commercial inventory and
then to reduce OOS events [54–56].

Another set of research works in the field of time series forecasting were based on
the usage of GNNs as well as spatial–temporal GNNs, which usually embed a graph
convolution capturing the spatial structure and a deep architecture dealing with time series
on nodes through CNNs. These approaches showed remarkable performance in the time
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series forecasting of multivariate uncorrelated input time series; even the designed deep
backbones were very complex and computationally expensive [57–62].

In this scientific context, the authors of this manuscript proposed a solution based on
a framework which combines different deep networks and multivariate data for retrieving
the remaining stock amount of the analyzed product and then the corresponding OOS
event risk.

3. Materials and Methods

In this section, the proposed pipeline will be described. In Figure 1, the designed
system is reported.

Computation 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 

Another set of research works in the field of time series forecasting were based on 

the usage of GNNs as well as spatial–temporal GNNs, which usually embed a graph con-

volution capturing the spatial structure and a deep architecture dealing with time series 

on nodes through CNNs. These approaches showed remarkable performance in the time 

series forecasting of multivariate uncorrelated input time series; even the designed deep 

backbones were very complex and computationally expensive [57–62]. 

In this scientific context, the authors of this manuscript proposed a solution based on 

a framework which combines different deep networks and multivariate data for retrieving 

the remaining stock amount of the analyzed product and then the corresponding OOS 

event risk. 

3. Materials and Methods 

In this section, the proposed pipeline will be described. In Figure 1, the designed 

system is reported. 

 

Figure 1. Overall scheme of the proposed pipeline. 

As described in Figure 1, the proposed system is composed of different subsystems 

which provide input data to the downstream “Deep TCNN System” (which embeds a 

TCNN) suitable to provide the prediction of the final stock amount of the analyzed com-

modity. The designed subsystems are: “The Visual Counting System” which will make a 

daily count of the customers present in the market store (using a computer vision ap-

proach) and, therefore, reconstruct an average of the customers who have frequented the 

store in a specific period. After that, there is the “Management Database” which has the 

target of providing historical information relating to the purchase, sale, and orders of the 

product whose future final stock is to be predicted. Finally, there is the “Climate Analysis 

System”, which provides information on the climate in the last period and in the context 

of the store. This multimodal information will then be fed as an input to the deep TCNN 

system which has the task of correlating these data with the final stock of the product after 

a certain number of days. This TCNN system is based on a temporal causal–convolutional 

backbone with self-attention layers, as better described in the following subsections. Each 

of the described blocks will be detailed in the following paragraphs. 

Finally, on top of these subsystems, a module named “GDPR Control System” will 

be embedded in the proposed pipeline with the aim of providing privacy control check 

activities in the collected data of the market store. 

3.1. The Visual Counting System 

The target of this block is to provide a robust approach to retrieve customer counting 

in the market store using computer vision techniques. Through this technique, the 

Figure 1. Overall scheme of the proposed pipeline.

As described in Figure 1, the proposed system is composed of different subsystems
which provide input data to the downstream “Deep TCNN System” (which embeds a
TCNN) suitable to provide the prediction of the final stock amount of the analyzed com-
modity. The designed subsystems are: “The Visual Counting System” which will make a
daily count of the customers present in the market store (using a computer vision approach)
and, therefore, reconstruct an average of the customers who have frequented the store in a
specific period. After that, there is the “Management Database” which has the target of
providing historical information relating to the purchase, sale, and orders of the product
whose future final stock is to be predicted. Finally, there is the “Climate Analysis System”,
which provides information on the climate in the last period and in the context of the store.
This multimodal information will then be fed as an input to the deep TCNN system which
has the task of correlating these data with the final stock of the product after a certain
number of days. This TCNN system is based on a temporal causal–convolutional backbone
with self-attention layers, as better described in the following subsections. Each of the
described blocks will be detailed in the following paragraphs.

Finally, on top of these subsystems, a module named “GDPR Control System” will
be embedded in the proposed pipeline with the aim of providing privacy control check
activities in the collected data of the market store.

3.1. The Visual Counting System

The target of this block is to provide a robust approach to retrieve customer counting in
the market store using computer vision techniques. Through this technique, the proposed
system will be able to count the average number of customers who visit the shopping
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store and, therefore, to reconstruct the average number of customers who visit the store in
a given period. Several approaches have been proposed in the literature for performing
crowd counting by means of computer vision and deep learning methods. The authors
proposed a modified version of the deep pipeline reported in [63]. The authors of [63]
proposed an interesting end-to-end architecture, i.e., CAT-CNN, which can adaptively track
human heads through an innovative encoding approach.

By using the concept of an “estimated density map”, the designed solution performs
crowd counting by integrating the final density map through the ad hoc encoding of this
map. More details are presented in [63]. Anyway, in order to improve the performance and
robustness of the proposed approach, we modified the backbone developed by the authors
of [63] by adding a further self-attention enhancement based on the usage of criss-cross
processing [64]. Through the criss-cross block, we were able to make the network’s hidden
features more discriminating as the self-attention mechanism will select the components
of the features related to the input data that contribute most to the overall pipeline per-
formance. This self-attention mechanism is characterized by an adaptive weighting of
the pixels of the features along a well-defined spatial path, precisely called criss-cross.
The criss-cross processing (CCP) was first described in detail in [64] as a self-attention
mechanism to improve the discrimination capability of the hidden features.

Basically, averaging pixel-based processing along the criss-cross path of the hidden
feature can improve the performance of the overall deep backbone as the parts of the
features that weigh the most in solving the problem will be more represented in the
inference phase. More details are presented in [64].

The following Figure 2 shows the modified version of the CAT-CNN embedding the
CCP block.

1 
 

 
 
 

 
Figure 2. The proposed Visual Counting System.

As reported in Figure 2, the designed model embeds a classical pipeline for visual
feature extraction for computing density maps from which it retrieves a crowd count.
Moreover, a self-attention mechanism based on criss-cross processing was added in order
to improve the overall performance of the implemented pipeline. To capture the video
frames of the market store, the authors propose using the surveillance cameras normally
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installed in shopping stores. The frames thus obtained have to be corrected in projection to
optimize the performance of the designed method.

Let f (x,y,t) the spatiotemporal frames captured by the shopping store’s camera for a
specific commercial area; the calibrated frame should be computed as follows:

I(x, y, t) = Γ( f (x, y, t), pi) (1)

where Γ() represents the calibration function, while pi represents the calibration parameters
defined to apply the spatial transformation of the input frame. The authors, after several
tests, propose the following projection–calibration function:

I(x, y, t) = Mp f (x, y, t) + T (2)

where Mp represents the rotation tensor, while T represents the translation component.
Basically, the projection correction is performed by means of a rototranslation of the input
frame f (x, y, t) through the coefficients of the matrixes Mp and T.

The Mp and T coefficients will be determined by optimizing the overall performance
of the proposed system and, therefore, will be subject to an initial calibration phase of the
whole architecture in which the optimal perspective transformation will be reconstructed
with unsupervised “trial and error” techniques; therefore, formally:

[
Mp(i, j), T(i, j)

]
= argmin [

(
S f − Sp

)2
= Ψ(I(x, y, t), ξ]

ξ
(3)

In Equation (3), we define the heuristic approach used for retrieving the optimal
coefficients of Mp and T matrixes in order to minimize the error in the prediction of the real
remaining stock (Sf) with respect to the predicted (Sp). The policy adopted to change the
coefficients of Mp and T is random and driven by Equation (3).

The adopted calibrated frame is used as the input of the modified CAT-CNN in
which we embedded the criss-cross block as the self-attention mechanism to improve
the discrimination capability of the hidden deep features. Clearly, we are interested in
having the average count of the customers who visit the market store and each of the
store departments in a fixed time window. If we set the calibrated frames for the store
department “d” as Id(x,y,t) and the total number of customers who visit the market store as
cd, the total number of customers who visit the store per day (D1) can be defined as follows:

Np

(
D1

)
= ∑Nc

x=1 cx
d (4)

where Nc represents the total number of discount departments. The average number of
customers who visit the commercial store can be computed as follows:

Np(td) = 1/td

Dn

∑
x=1

Np(Dx) (5)

where td represents the time range (composed of Dn days) in which the proposed system
retrieves the average number of customers who visit the commercial store. In order to
improve the efficient pipeline proposed in [63], the authors embedded the criss-cross block
in the CAT-CNN designed by the authors of [63]. More specifically, in the multi-information
handling module embedded in the CAT-CNN, a convolutional neural network (CNN) was
used for generating deep features to be used by the downstream fusion blocks to retrieve
a density map and then a crowd-counting estimation [64]. We embedded the criss-cross
layer in the original multi-information handling module in the part named the CU, i.e., the
convolutional unit [64]. In this way, the CU block is the same as that proposed in [63] but
with a criss-cross block interpolated after the latest 3 × 3 convolutional layer and before
the output layer from which the feature map was extracted.
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Let us define as “H” the feature map of the convolutional layers (with “C” number of
channels and the dimensions W × H) before the CCL, the latter providing the following
feature processing (for each pixel i-th):

H′i = wi·AMΦi + wH ·Hi (6)

In which AM ∈ R[(H+W−1)×(W×H)] is an attention map generated by the “Affinity”
operator [64], Φi is the corresponding vectors across the criss-cross path of the pixel i-th,
while wi and wH are the weights determined during the training of the deep network. The
operation reported in Equation (6) is defined as “Aggregation”. More details are presented
in [64].

The visual features so enhanced will be used by the CAT-CNN to build the related
density map from which the crowd counting can be performed [63,64]. The remaining
blocks of the system described in Figure 2 are the same as reported in [63]. All the estimated
visual counts will be stored for the defined time period and then the average number of
customers will be computed as per Equations (4) and (5). This value as the final output of
the visual counting subsystem will be used in the downstream deep transformer together
with the other information coming from the other subsystems described in the next sections.

3.2. The Management Database System

The target of this subsystem is the extraction of the store management data from
the internal managerial software framework. All commercial stores are equipped with
management software that allows managing the data storage of goods, sales, orders,
commercial invoices, etc. By using this commercial software, the authors for the system
proposed herein need to retrieve the following information (for each product, px, for which
it is intended to predict the future average stock):

• Ipx: the inventory quantity of the product, px;
• Qi(px): the quantity of the product, px, ordered up to the moment of prediction;
• Qs(px): the quantity of the product, px, sold up to the moment of the prediction;
• Qip(px): the quantity of the product, px, sold up to the moment of the prediction,

promoted as a flyer;
• [Ds, Ss]: the date and season related to the prediction;
• Id: the product identification code and the macroarea to which it belongs;
• Lp: local or commercial flyer promotion.

These fields will be retrieved to the time instant of the prediction and automatically
extracted from the store management database. They will be arranged in a vector Tx
containing this information for the product px.

3.3. The Climate Analysis System

The target of this block is the local average climatic characterization of the geographical
area in which the market store is located. In order to characterize this aspect, a 3D-DCNN
enhanced with nonlocal self-attention layers was proposed [65]. The input of the designed
3D-DCNN will be the time–depth video frames captured by the outside (of the shopping
store) visual system in specific time instants. In this work, the authors proposed the
capturing of a visual snapshot of the outside of the market store in the morning (at 08.00 am)
followed by a second, sampled at 12.00 am, and, finally, in the afternoon at 5.00 pm. In this
way, it will be possible to characterize the climate of the local geographic area where the
shopping store is located.

Indeed, we are significantly confident about the key impact that climate estimation
certainly has in relation to the prediction of the future remaining stock of a specific
product. This is because it impacts the customers’ willingness to reach the shopping
store or the need to purchase that specific product. For instance, thirst-quenching liquid
products will certainly have a greater demand in summer climatic conditions with
high temperatures and intense heat, with significantly reduced interest in cold climatic
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periods. With sampling at different points of the day, it will be possible to determine an
average assessment of the climatic conditions of the place of residence of the market store.
For each captured frame, the designed 3D-DCNN will output a binary classification
“Oc”, as reported in the following:

• Optimal for customers (Class “1”);
• Not optimal for customers (Class “0”).

As introduced, we proposed a 3D-DCNN to classify the input sampling video frames.
This 3D-DCNN has been enhanced by the usage of nonlocal blocks enabling a self-attention
mechanism embedded in the designed downstream network [66].

As reported in Figure 3, the proposed 3D-DCNN includes densely connected blocks
(dense layers) with 3D separable convolution layers (both depthwise and pointwise). We
embedded separable convolutions in order to optimize the model’s parameters without
a significant loss of overall performance. Each dense block embeds a sequence of dense
layers with a batch normalization layer, a 3D convolutional layer with a kernel size of
3 × 3 × 3 (depthwise and pointwise) completed by a ReLU activation. Each dense block is
followed by a convolutional layer with a kernel size of 1× 1× 1 followed by a max pooling
layer of kernel size 2 × 2 × 2. The output of the first dense block is then passed to the
nonlocal block (NLB). The NLB was first introduced by Wang et al. in [66] for improving
the ability of the deep network to learn long-time visual dependencies in input frames. Let
us formalize the processing made by the NLB.
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The following figure reports the scheme of the designed 3D-DCNN.
Let “pi” be the hidden pixel at any “i” position in the feature map; the NLB processing

is computed as follows:

yi =
1

ψ(x) ∑∀j ζ(xi, xj)β
(
xj
)

(7)

where ζ(·) is a pairwise potential correlated to the “affinity” between pixels at positions
“i” and “j”. β(·) is a heuristic coefficient which modulates the function ζ. The term ψ(x) is
a normalization factor. The parameters ζ, β e ψ are learned during the training phase as
follows:

ζ(xi, xj) = eΘ(xi)
T Φ(xj) (8)

where Θ e Φ are spatial transformation functions learned during the training by means of
the following relationship:

Θ(xi) = WΘxi
Φ
(
xj
)
= WΦxj

β
(
xj
)
= Wβxj

(9)
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where β(·) is an embedding function (usually a 1 × 1 × 1 convolutional block) with a
weight distribution WΘ, WΦ, Wβ learned during the training phase. The normalization
factor ψ(x) is computed as follows:

ψ(x) = ∑∀j ζ
(
xi, xj

)
(10)

The NLB processing as described in Equations (7) and (10) improves the modeling
of the long-term dependencies in the input frames and then the overall performance of
the whole deep architecture in predicting the climate’s impact on the remaining stock
estimation. The output of this subsystem will be fed as an input to the downstream deep
temporal convolutional network.

3.4. The Deep Temporal Convolutional Neural Network System

The aim of this block is to collect the output of the previous subsystems as reported in
Figure 1 (the visual counting system, the management database subsystem, and the climate
analysis subsystem) and then provide a correlation at the inference time to the general label
of the proposed architecture, i.e., the remaining stock of a determined product. In essence,
the input data are arranged in a vector containing the following field: (1) Np(td) as per
Equation (5), i.e., the average number of customers who visited the market store in a period,
td; (2) the vector Tx containing the information coming from the management database system;
(3) the binary classification (“1” or “0”) Oc coming from the visual climate analysis subsystem.
This 1D input data will be used as the input of the downstream regressor which will correlate
this input with the remaining stock amount of the product from which the input information
is retrieved. The following Figure 4 reports the overall description of the designed architecture.
Figure 4 highlights the underlying backbone of the designed regressor, i.e., an input vector
embedding data from the upstream subsystems and a regressor of the remaining product
stock based on the usage of the convolutional network.
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The deep architecture used as an intelligent regressor for performing the correlation
with the remaining stock prediction at T days as the temporal depth is a temporal con-
volutional neural network (TCNN). The TCNN was originally introduced by the authors
of [67] and it is suitable to provide the regression/classification of sequential 1D input data.
Unlike a traditional 2D CNN, which often processes data in a fixed-size window, the TCNN
is able to process variable-sequence-length data (while also embedding convolution with
dilation) which enables the network to have a larger receptive field without increasing the
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number of parameters. This makes the TCNN particularly well suited for tasks that require
processing long sequences of data. More detail is presented in [10].

In the application proposed herein, the designed TCNN is composed of 12 blocks in
which each block embeds a dilated 3 × 3 convolutional layer; followed by a normalization
layer, spatial dropout; followed by another dilated 3× 3 convolutional layer, normalization;
and, finally, a ReLU activation followed by another dropout block. The proposed TCNN
shows a residual backbone with skip connections applied to each block. The final block
contains a fully connected network with one output, i.e., the remaining stock prediction at
T steps of temporal depth. More detail is presented in [65–67].

3.5. The GDPR Control System

The target of this subsystem is the overall privacy monitoring of the collected data
of the input subsystems. The GDPR document contains the requirements which data
management has to respect in terms of privacy [67–69]. This block inserts a darkening or
blurring of the faces of the market customers that are acquired in the visual counting system.
There are several approaches to conduct this, but the authors preferred the generative
approach proposed in [66–68].

4. Experimental Results

In this section, the experimental results of the proposed architecture will be highlighted.
First, we present some information about the collected dataset. The authors collected the
local dataset including external images of the place where the market store, the object
of this work, was located. The collected images represented different climatic scenarios,
some manually as optimal for customers and some others classified as not optimal. The
classification was applied according to the impact on the commercial demand, that the
authors monitored, and then on the remaining stock of the related products.

Furthermore, information was obtained from the management database of a discount
store of a large food distribution holding present in the national territory where the authors
reside. Approximately 5 years (2017–2022) of commercial product management information
was collected in compliance with the provisions of the GDPR [69]. This dataset, composed of
600,000 records arranged as explained in Section 3.2 of this work, was split: approximately
70% was used for training, while the remaining 30% was used for the validation (15%) and
testing (15%) of the proposed architecture. Moreover, according to GDPR requirements,
we collected images reporting customers in the discount store in different numbers and
at different time instants. For each of the mentioned 600,000 records of commercial data,
the authors associated with it a set of images of the external climate scenario as well as
of customer distribution. This association was carried out according to the impact of
climate/customer number monitored by the authors in the local commercial store analyzed
in this work.

Beyond the validation of the system, the individual subsystems of visual counting and
climate analysis were validated with respect to the collected dataset and with respect to the
public domain dataset. Before presenting the benchmark performance data, we present
some information about the configuration of the proposed deep backbones as well as the
learning algorithms and parameter configuration.

Concerning the CAT-CNN enhanced with the criss-cross architecture, we used the
same backbone and combined loss function proposed in [63], enabling a cross-layer con-
nection with a 3 × 3 kernel size. The input frame size was defined as 800 × 600, with
the images which exceeded this size being reshaped. Our CAT-CNN backbone enhanced
with the criss-cross (CAT-CNN-CCnet) layer was tested against the Shanghaitech dataset
proposed in [70] and composed of two sets of images. The first set (part A) contained
300 training images and 182 test images; the second one (part B) contained 400 training
images and 316 test images. The following table reports the performance benchmarks of
the proposed architecture (by using the mean absolute error (MAE) as the metric [63]):
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As reported in Table 1, our proposed system performed better with respect to the
previous CAT-CNN [63] as well as with respect to other previous architectures. The training
algorithm was the classical SGD [63] with Adam optimization and a batch size of 8; the
initial learning rate was set to 1× 10−6. The simulation was run on a server with a multicore
INTEL-9 with 128 Gbyte of RAM and with an NVIDIA A6000 GPU with 48 Gbyte of video
memory. The code was developed in the Pytorch environment.

Table 1. Visual Counting subsystem: performance benchmark (metric: MAE).

Method Part A Part B

Switch-CNN [71] 90.4 21.6
MRA-CNN [72] 74.2 11.9

D-ConvNet-V1 [73] 73.5 11.0
IG-CNN [74] 72.5 13.6

CAT-CNN [63] 66.7 11.2
CAT-CNN-CCnet (ours) 65.1 10.2

After that, the visual climate analysis system was tested. We collected a total of
300 800 × 600 RGB images at different times of the day as described in Section 3.3. In
this case, we only worked with the luminance component (Y) of the input image after
a conversion from RGB to YCbCr. The dataset was split into 70% for training and the
remaining 30% for validation and testing. The used dataset was balanced as it included a
total of 150 samples representing class “1”, while the remaining samples represented class
“0”. K-fold (with k = 3) cross-validation was applied.

The proposed deep architecture enhanced with an NLB self-attention mechanism was
compared with the same one without NLB processing (the ablation study) and with respect
to other classical 3D backbones such as ResNet-101. The designed deep network was
trained with classical SGD boosted with Adam optimization, a batch size of 4, an an initial
learning rate of 1 × 10−6. The simulation was run on a server with a multicore INTEL-9
with 128 Gbyte of RAM and with an NVIDIA A6000 GPU with 48 Gbyte of video memory.
The code was developed in the Pytorch environment. The following Table 2 reports the
performance comparison related to the proposed solution.

Table 2. Visual Climate Analysis subsystem: performance benchmark.

Method Accuracy (%)

Proposed [71] 75.31
3D DenseNet-201 72.12
3D ReseNet-101 72.00

As shown in Table 2, the performance of our architecture enhanced with the self-
attention processing based on the usage of a criss-cross layer outperformed the classical
architectures (75.31% compared to 72.12% and 72% for the CNNs with DenseNet or ResNet
backbones) in classifying the input images containing the local scenario outside the discount
store analyzed in this work. Our proposed solution was able to better discriminate the
climate scenario, which increases the commercial demand compared to those that instead
have no impact or even reduce it. The collected dataset referred to products which were
selected from all the representative categories of the large food distribution holding.

Finally, we tested the downstream regressor based on the TCNN as shown in Figure 4.
The following Table 3 reports the collected comparison benchmark. The test execution
was run on a server machine with a multicore INTEL-9 with 128 Gb of RAM and with an
NVIDIA A6000 GPU with 48 Gb of video memory. We compared our proposed solution
by replacing the TCNN with a multilayer perceptron [75], LSTM [76], and LSTM with
attention (LSTM-A) [76]. The remaining product stock prediction was set to T = 5 as the
temporal depth.



Computation 2023, 11, 62 13 of 18

Table 3. The downstream regressor performance benchmark (T = 5 days).

Method Accuracy (%)

Proposed 94.11
Proposed with MLP 89.22

Proposed with LSTM 90.11
Proposed with LSTM-A 91.98

Additionally, in this case, as shown in Table 3, the proposed solution as reported
in Figure 4 outperformed the other architectures in terms of remaining stock prediction
for these commercial products. The following figure shows the overlay behavior of the
predicted time series and the actual ones for a specific product selected from the dataset.
Moreover, the training graph is reported.

As shown in the data reported in Figures 5–7 as well as in Table 3, the solution
proposed in this work and based on TCNN outperformed the other solutions based on
other deep backbones. In Figure 5, a comparison between the remaining stock dynamic
(ground truth in blue) of such commercial products with respect to predicted ones (in
red) is reported. The highlighted comparison confirms the effectiveness of the proposed
deep predictor based on the analysis of history data integrated with the contextual visual
information of the market store. The regression performance plot reported in Figure 6,
as well as the error dynamic (in the training/validation and testing sessions) reported in
Figure 7, confirms that the designed pipeline was able to learn and generalize the remaining
stock correlation with the input variables. Moreover, the performance in the validation
and test set confirmed that the no overfitting issue occurred in the learning phase of the
proposed pipeline. The accuracy of the prediction of the remaining products’ stock was
significantly greater (94%) compared to the other deep backbones due to the capability
of the TCNN to retrieve the temporal correlation between input data, providing robust
discriminative features to be used to generate an effective prediction of the remaining stock
of such products.
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5. Conclusions and Future Works

In the present work, the authors proposed a composite system named “iSPEAK” (an
acronym of innovative out-of-stock prediction system based on data history knowledge
deep learning) for predicting the residual stock of commercial products in the field of
large-scale food distribution. The system is made up of two visual pipelines (the visual
counting system and the visual climate analysis system) which allows characterizing the
external climate and the average number of customers who frequent the analyzed shopping
store. By means of a regressor based on convolutive temporal architectures, we were able
to correlate this visual information with historical product management data (orders, sales,
promotions, etc.) in order to predict the residual stock of the product at T days in the future.
In the experimental results section, the performance results of the designed pipeline were
reported. These data confirmed that, among those tested, the iSPEAK pipeline was able to
predict the residual stock of a commercial product (at T = 5 days) with an accuracy of over
90%. The proposed method, with respect to the solutions present in the scientific literature
and based on artificial intelligence, exhibited significantly higher performance compared
to classic architectures based on MLP, LSTM, or convolutional platforms. This result was
possible to obtain thanks to the integration of a pipeline that analyzed both “historical”-
type (a regression system based on the historical data of the stock of the commercial store)
and “current”-type data, that is, photographing the status of the market space in reference
to the sentiment of customers and climatic data. The usage of the TCNN improved the
performance of the designed system with respect to other solutions (94% vs. 90%, on
average) as it allowed elucidating well the time correlation between the input multimodal
data thanks to the “causal” module convolution embedded in the backbone of the TCNN.

The proposed system still has some critical issues regarding the prediction of the
residual stock at T days, with T > 5. In fact, according to the performed test sessions, we
noticed a degradation in performance which increased proportionally as the prediction time
depth increased. In fact, the performance in predicting the residual stock of a commercial
product gradually dropped to 79% (for T = 8) and 63% (for T = 13). We believe that this drop
in performance is attributable to the downstream regressor being unable to time-correlate
the features of historical and visual data (customer sentiment and climate) with the residual
product stock in the subsequent T days.

Future works will aim to significantly improve the performance at T days as the
temporal depth (with T > 5) by using transformer-based systems and integrating additional
predictive information by equipping the iSPEAK system with the related ability to establish
product order quantity based on residual inventory prediction. Moreover, the authors of
the solution described herein intend to investigate the relationship between robotic wireless
sensor networks and internet-of-things-based real-time production logistics as regards
out-of-stock detection based on deep learning algorithms, as these seem very promising
technologies in commercial and logistic fields [75–77].

6. Patents

Chamas, A.; Giaconia, C. GAIA: Great-Distribution Artificial Intelligence Algorithms.
IT Patent Nr. 101022000002828, 16 February 2022.

Chamas, A.; Giaconia, C. iSPEAK: innovative out-of-Stocks PrEdiction system based
on dA-ta-history Knowledge deep learning processing. IT Patent Nr. 102022000024186, 24
November 2022.
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