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Abstract: Early detection and timely breast cancer treatment improve survival rates and patients’
quality of life. Hence, many computer-assisted techniques based on artificial intelligence are being
introduced into the traditional diagnostic workflow. This inclusion of automatic diagnostic systems
speeds up diagnosis and helps medical professionals by relieving their work pressure. This study
proposes a breast cancer detection framework based on a deep convolutional neural network. To mine
useful information about breast cancer through breast histopathology images of the 40× magnification
factor that are publicly available, the BreakHis dataset and IDC(Invasive ductal carcinoma) dataset
are used. Pre-trained convolutional neural network (CNN) models EfficientNetB0, ResNet50, and
Xception are tested for this study. The top layers of these architectures are replaced by custom
layers to make the whole architecture specific to the breast cancer detection task. It is seen that the
customized Xception model outperformed other frameworks. It gave an accuracy of 93.33% for the
40× zoom images of the BreakHis dataset. The networks are trained using 70% data consisting of
BreakHis 40× histopathological images as training data and validated on 30% of the total 40× images
as unseen testing and validation data. The histopathology image set is augmented by performing
various image transforms. Dropout and batch normalization are used as regularization techniques.
Further, the proposed model with enhanced pre-trained Xception CNN is fine-tuned and tested
on a part of the IDC dataset. For the IDC dataset training, validation, and testing percentages are
kept as 60%, 20%, and 20%, respectively. It obtained an accuracy of 88.08% for the IDC dataset for
recognizing invasive ductal carcinoma from H&E-stained histopathological tissue samples of breast
tissues. Weights learned during training on the BreakHis dataset are kept the same while training the
model on IDC dataset. Thus, this study enhances and customizes functionality of pre-trained model
as per the task of classification on the BreakHis and IDC datasets. This study also tries to apply the
transfer learning approach for the designed model to another similar classification task.

Keywords: breast cancer detection; magnification dependent; histopathology; BreakHis; IDC; Xcep-
tion model; ResNet50 model; EfficientNetB0; 40×

1. Introduction

Breast cancer is one of the most predominant types of malignancy seen in the world-
wide population of woman. Early diagnosis, prognosis, and correct treatment of breast
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cancer can improve patients’ life expectancy. According to a fact sheet by World Health
Organization (WHO), in 2020 around 2.3 million women were diagnosed with breast cancer,
and there were approximately 685,000 deaths globally due to this disease. Breast cancer is
one of the most prevalent kinds of cancer, causing around 10.7% of deaths among all major
cancer types in 2020 [1].

Due to digitalization, there has been a tremendous advancement in the types of modali-
ties used for screening of breast cancer. The most common modalities used for breast cancer
screening are mammography, magnetic resonance imaging, breast ultrasound, positron
emission tomography, and histopathological analysis of breast tissue [2]. Mammography
is X-ray imaging of human breasts and is usually prescribed when a suspicious mass in
the breast is suspected as a result of a physical examination of breasts. Breast ultrasound
is a non-invasive method for breast screening. It is usually helpful in the case of dense
breast tissues. Breast magnetic resonance imaging also takes several images and usually is
prescribed along with other diagnostic tests such as mammography or ultrasound. Breast
cancer is also detected by positron emission tomography (PET) examination. PET is an
imaging test that uses radio-active substance for the detection and localization of cancer-
ous growth of cells. It is seen that the initial screening method, as mammography helps
to find breast cancer at an early stage [3,4]. Magnetic resonance imaging is also one of
the important screening modalities for breast cancer early detection. Magnetic resonance
imaging (MRI) screening shows higher sensitivity for breast cancer with genetics [5].

Even though mammography is the most common technique for the initial screening
of breast cancer, it has certain drawbacks such as low sensitivity in the case of dense breast
analysis and low specificity [6]. Hence, morphological analysis of hematoxylin and eosin-
stained (H&E-stained) breast tissue is the gold standard for breast malignancy detection
with a very high confidence level [2]. Breast cancer arises due to the uncontrollable growth
of breast cells. It starts when ductal–lobular cells inside the breast glands grow abnormally.
There are two basic types of breast cancers: ductal carcinoma in situ (DCIS) and invasive
carcinoma. When the cancerous growth is confined within the ductal–lobular structure
of the breast, it is called ductal carcinoma in situ (DCIS). When these cells of DCIS break
through the ductal–lobular system and invade the rest of the breast parenchyma, then it is
called invasive breast cancer.

Machine learning-based computer-aided diagnosis is becoming popular in breast
cancer screening as these techniques promise new knowledge insights with near-human
performance. Pure machine learning-based systems involving traditional classifiers used for
diagnostic applications comprise various stages such as data preprocessing, image enhance-
ments, segmentation, feature engineering, and then classification. With the tremendous
research and advancements in deep learning and computer vision, neural network-based
systems are predominantly designed for diagnostic workflows. The tedious task of feature
engineering is automatically performed by neural network architecture in a deep learning
model. In deep learning, a more advanced trend called transfer learning dominates the
field of artificial intelligence (AI) research. The pre-trained architectures of deep learning
models are used in the transfer learning method to save the training time and cost of
design. Breast cancer biopsy images consist of many essential features which are used as
a basis for disease diagnosis by expert histopathologists. These features include nuclear
pleomorphism, i.e., how distinctively different the shapes and sizes of nuclei are in tubule
formation and metastasis information. In supervised machine learning, a labeled dataset
is shown to the machine learning model during training. The machine learning model’s
learning algorithm then adjusts the model’s parameters such that it learns from the dataset.
Once training is completed, completely unknown testing data is shown to the model to
classify the unseen information correctly. Artificial intelligence-based studies aimed to help
in breast cancer diagnostic workflows, and not only comprise malignancy detection but
also of the detection of breast cancer grade, intrinsic molecular subtype, lymph node status,
and metastasis occurrence. Breast cancer consists of various subtypes according to the
origin of occurrence. The grade of breast cancer depicts aggressiveness of the disease. The



Computation 2023, 11, 59 3 of 17

intrinsic molecular subtype depends on the presence of hormones or proteins on the cancer
cell surface. Intrinsic molecular subtype identification is a crucial prognostic evaluator in
cancer treatment [7].

This work is focused on comparing the performances of deep convolutional neural
network models which use the backbone of pre-trained architectures. Binary classification
is conducted on histopathological images having a magnification factor of 40×. These
biopsy images are taken from the publicly available BreakHis breast cancer dataset and
IDC (Invasive ductal carcinoma) dataset. The best model with good evaluation parameters
is chosen as the final classification model. Comparative analysis between the three classi-
fication models is also presented. Pre-trained models trained on the ImageNet challenge
dataset are used for this study as the backbone of a deep convolutional neural network.
Custom layers are added to pre-trained models. The backbone network finds important
lower-order features in the histopathology images, while the custom layers are responsible
for finding higher-order abstract features leading to the task of binary classification. As
these histopathology images are rotation and scale invariant; data augmentation is used
to increase the size of the dataset. Two different datasets, namely BreakHis and IDC are
considered for this work. The flowchart of the proposed work is given in Figure 1. As
evident from the flowchart, the BreakHis 40× image dataset is first augmented using
several image transforms such as rotation, flipping, and scaling. The enhanced models are
trained, validated, and tested on the BreakHis dataset. Depending on the best accuracy,
the enhanced customized pre-trained Xception model is finalized for the classification task.
The weights learned during BreakHis learning are stored for the Xception model. The same
enhanced Xception model with BreakHis weights is used for tuning on the IDC dataset.

40X Subset of BreakHis
Histopathology  dataset 

Resizing images to
224 × 224 pixels and

Image Data
augmentation

Training Enhanced pre-
trained models 

Evaluation based on
performance metrics 

Testing on BreakHis 40X
dataset 

Saving Weights of best
model(Enhanced
Xception model)

Subset of IDC dataset
for invasive carcinoma

detection

Resizing images to
224 × 224 pixels and

Image Data
augmentation

Training on IDC dataset Testing on IDC dataset 

Use enhanced Xception
model with weights

obtained while training
on BreakHis 

Evaluation based on
performance metrics 

Transfer Learning

Figure 1. Flowchart of the proposed work.

The contributions of this study are summarized below.

• Rescaling and augmentation of the BreakHis 40× dataset using Keras functionality.
• Customization of pre-trained models, namely EfficientNetB0, ResNet50, and Xception,

by removing the last fully connected layers and appending series of convolution as
well as max pooling layers along with flattening and dense connections.

• Experimenting on the BreakHis 40× dataset by using enhanced pre-trained models
for binary classification task of cancer detection.
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• Using previously trained weights during tuning on the BreakHis dataset of the best
model (customized Xception) to train, test, and validate a subset of the IDC dataset.
Thus, this validates the potential of the Xception model trained on the BreakHis dataset
to perform another similar task of invasive carcinoma detection.

• Importing of weights also exhibits ability of enhanced Xception model to transfer
learn from the BreakHis dataset to IDC dataset

The rest of the article is arranged as follows. Section 2 describes similar work per-
formed in breast cancer diagnosis using publicly available datasets. The methodology
of the convolutional deep learning technique used for this binary classification problem
is discussed in Section 3. In Section 4, experiments, results, and analyses are presented.
Finally, the paper is concluded in Section 5.

2. Related Work

Deep learning systems ease the diagnostic classification task as deep neural networks
automatically find features and patterns in the given dataset. Along with the availability
of good hardware processing architectures such as graphics processing units (GPU) and
tensor processing units (TPU), different open-source programming frameworks such as
Tensorflow-enabled Keras and PyTorch are also responsible for the trend in using deep
learning for classification problems. In addition to these programming frameworks, pre-
trained architectures of deep neural nets such as visual geometry group (VGG), AlexNet,
inception, ResNet, Xception, and several other models are also available for use in a deep
computer vision model.

A recurrent, residual neural network was used for semantic segmentation of medical
images [8]. In one of the studies, an improved version of U-Net-based architecture called
IRU-Net was used to segment images of patients’ tissue slides. This IRU-Net method,
which was designed to detect the presence of bacteria and immune cells in tissue images,
used several scaled layers of residual blocks, inception blocks, and skipped connections [9].
A multilevel semantic adaptation method was used for diverse modalities for a few-shot
segmentation on cardiac image sequences. The method proved effective even under limited
labels for the dataset [10].

MRI and near infrared spectral tomography-related wearable system was designed
and developed in one of the research studies [11]. In dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) imaging, various features were extracted using different
machine learning methods in some of the research studies [12].

In 2016, Spanhol constructed a benchmark dataset of hematoxylin and eosin (H&E)-
stained histopathological images for breast cancer which were extracted using fine needle
aspiration cytology (FNAC) procedure. Various feature extractors such as local phase quan-
tization (LPQ), local binary pattern (LBP), and completed local binary pattern (CLBP) were
used to obtain textural and morphometric features from H&E-stained images. Performance
comparison of various classifiers was made for this task [13]. Classification of H&E-stained
histopathological images was performed with features extracted from the graph run length
matrix (GRLM) and gray level co-occurrence matrix (GLCM). A predictive breast cancer
diagnostic model based on a modified weight assignment technique was developed [14].
Contrast limited adaptive histogram equalization method was used for contrast improve-
ment along with several classifiers on the BreakHis dataset [15]. DNA repair deficiency
(DRD) status was found from histopathology images by one of the researchers by making
use of deep learning [16]. One of the researchers used several pre-trained architectures of
convolutional neural networks in parallel and aggregated the results for detecting breast
cancer using histopathology images with Vahadane transform for stain normalization [17].
In one magnification-dependent breast cancer binary classification study, the researcher
used the transfer learning model using AlexNet [18]. An anomaly detection mechanism
using a generative adversarial network is performed to find mislabeled patches of the
BreakHis dataset. DenseNet121 is used for binary classification after that [19]. A deep
convolutional neural network(CNN) model is used in [20–22] to classify histopathology
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images. Color normalization and data augmentation techniques are applied to H&E-stained
histopathology slides in order to perform breast cancer classification. Fully trained and fine-
tuned versions of VGG architectures were used for the task [23]. Tumor and healthy regions
are segmented in one of the research studies, which used CNN for area-based annotation
procedure on histopathology images [24]. The deep convolutional neural network was also
designed for finding the status of cancer metastasis in lymph nodes [25,26]. Breast cancer is
detected using dual-modality images such as ultrasound and histopathology in one of the
studies [27]. Using transfer learned multi-head self-attention, one of the studies performed
multi-class classification on the BreakHis dataset [28]. Breast cancer histopathology images
are classified into four classes as normal, begin, in situ carcinoma, and invasive carcinoma
in one research study using parallel combination of convolutional neural network(CNN)
and recurrent neural network(RNN) [29]. GoogleNet-based hybrid CNN module was used
with bagging strategy to classify breast cancer [30]. DenseNet-161 and ResNet-50 models
were used for invasive carcinoma detection in IDC (invasive ductal carcinoma) dataset
along with validation on the BreakHis dataset [31]. Deep learning architecture named
DKS-DoubleU-Net was used to segment tubules in the breast tissue in H&E-stained images
on BRACS dataset [32]. In one more research work, binary and multiclass classification
on BreakHis dataset is performed using customized pre-trained models of DenseNet and
ResNet networks. In this study, the researchers are able to attend maximum accuracy of 100
percent for binary classification task on 40X magnification factor [33]. In the proposed re-
search work accuracy obtained is 93.33% on BreakHis 40× dataset. However, the proposed
model is again trained on a new dataset called IDC. The IDC dataset consists of altogether
different information from BreakHis dataset as IDC focuses on invasive ductal carcinoma
cases. The model is again fine tuned on IDC dataset by just keeping the weights obtained
during BreakHis training constant. Instead of using random weights or ImageNet weights,
we have used previously trained weights (BreakHis weights). Thus, the proposed model is
also able to learn new patterns in different dataset. Thus, this study tries to apply transfer
learning concept. This transfer learning approach improves training and testing timing
requirements and ensure generalization and robustness of the CNN model.

Deep CNN using the ResNet model was used for the binary classification of breast
histopathology images. This method also used Wavelets of packet decomposition and
histogram of oriented gradients [34]. Several multiple instance learning algorithms with the
deep convolutional neural network experimented on the BreakHis dataset [35]. Fusion of
different deep learning models has been tested on the BreakHis and ICIAR 2018 datasets in
one of the research studies [36]. A fully automated pipeline using deep learning architecture
for breast cancer analysis is presented in one of the research studies [37]. Transfer learning-
based deep neural network was used for the breast cancer classification task in one more
research study [38]. Spatial features are extracted using CapsuleNet for the breast cancer
classification task in some research studies [39,40]. Color deconvolution and transformer
architecture are used for histopathological image analysis in one of the research studies [41].
A pure transformer is used as a backbone to extract global features for histopathological
image classification [42].

Apart from the binary or multi-class classification of breast cancer according to its
subtypes, deep learning techniques are also used in grade detection and intrinsic subtype
classification of breast cancer. In one of the recent studies, a deep learning model named
DeepGrade was used to find grades of breast cancer from whole slide images. The prog-
nostic evaluation of patients depending on their histology grades was also carried out [43].
In one more study, faster region convolutional neural network and deep convolutional
neural network were used for mitotic activity detection [44]. Intrinsic molecular subtypes
of breast cancer are leading diagnostic factors for precision therapy. Depending on whether
breast cancer cells show the presence of estrogen hormone, progesterone hormone, or
HER2(Human Epidermal Growth factor Receptor2) protein, there are various subtypes
of breast cancer. These are called intrinsic or molecular subtypes of breast cancer. The
hormonal status of histopathology images is found by one study which utilizes deep



Computation 2023, 11, 59 6 of 17

learning techniques on different datasets [45]. A generative adversarial network for stain
normalization and deep learning framework for intrinsic molecular subtyping of breast
tissue was used in one more research study [46]. One group of researchers used deep CNN
and region of interest-based annotations on whole slide images to predict HER2 positivity
in breast cancer tissue [47]. Deep learning was used in one of the works to find the status
of various genomic bookmarks [48]. A deep learning image-based classifier was developed
to predict intrinsic subtypes of breast cancer, and survival analysis was also conducted [49].
Even though there is much research in breast cancer detection, there is a need to conduct
more studies on multi-centric data. This multi-centric data from different institutions or
using different datasets can guarantee the generalization of underlying architectures and
the possibility of real-life use for improving clinical outcomes. Hence, this research study
tries to use network models on two different datasets for a similar type of breast cancer
classification task.

3. Materials and Methods: For Breast Cancer Detection

The proposed classification algorithm uses the Keras library on top of the TensorFlow
environment. The Tensor processing unit with extended RAM facilities is used from the
Google Colab PRO environment. In the proposed work, the Xception model, which is
already pre-trained on the ImageNet dataset, is used for low-level, deep feature extraction
on H&E-stained breast histopathology images with a magnification factor of 40×. The
other two pre-trained models were used for performance comparison. The output of the
backbone Xception network is connected to custom CNN layers. These custom layers are
responsible for higher-level feature abstraction and classification. The motivation behind
using pre-trained models as a backbone is that they had shown successful outputs for the
ImageNet challenge. Pre-trained models of the ImageNet challenge are already trained on
millions of images. Furthermore, hence, they have weights already trained for one of the
image-related computer vision application problems. The bottom layers of the pre-trained
network are used as they are. The top layers are changed. The last fully connected layers of
pre-trained CNN, which are specific to the ImageNet classification task, are removed, and
custom CNN layers are appended to the pre-trained model.

3.1. Datasets

Two different datasets, namely the BreakHis and IDC (invasive ductal carcinoma) were
used for experimental analysis in this study. The final network trained on the BreakHis
dataset with 40× zoom images also exhibited transfer learning capabilities, wherein the
same model was used for fine-tuning and testing on a different IDC dataset. In a real-life
scenario, for histopathologists analyzing H&E-stained slides on the computer screen, the
magnification option proves beneficial as they can zoom in or out of the digitized slides to
make inferences about the disease. However, for neural networks, we can provide slides of
the same magnification factor as micro-level features can easily be extracted by controlling
kernel sizes in the convolution process.

3.1.1. BreakHis Histopathological Image Dataset

BreakHis dataset consists of a total of 7909 breast histopathology images. These are
images of patches extracted from whole slide tissue images. The dataset consists of tissue
images of four different magnification factors, which are 40X, 100X, 200X, and 400X. In this
study, 40X zoom images are considered for evaluating CNN architecture. Besides labeling
images as benign or malignant, the dataset also gives information about other histological
subtypes of breast cancer. The class imbalance problem is seen in the BreakHis dataset,
where one class sample outnumbers others. For the 40X magnification factor, there are
652 benign and 1370 malignant samples in the BreakHis dataset [13].
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3.1.2. IDC Breast Histopathological Image Dataset

The invasive ductal carcinoma (IDC) dataset has breast cancer histopathology images
in the form of patches of dimension 50 × 50 pixels. These patches contain two categories,
namely IDC positive images and IDC negative images. There are a total of 277,524 images,
out of which 78,786 images are IDC +ve, and 198,738 images are IDC −ve. All these patches
are of 40X magnification factor. A subset of the IDC dataset is taken in this study. As this a
huge dataset exhibiting class imbalance, 10,000 samples of each category are considered in
the proposed work [50].

3.2. Image Rescaling and Augmentation

The original image size of histopathology images in the BreakHis dataset is
700 × 460 pixels. All images with the 40X magnification are resized to 224 × 224 pix-
els. Most of the medical datasets consisting of histopathology images suffer due to limited
number of training samples. To strengthen the dataset, more images are added to the 40X
BreakHis dataset using various image transforms. Histopathology images being tissue
images, are rotation invariant and shift invariant. The image transform operations include
horizontal and vertical flips of the image, rotation of the image, zooming operation, etc.
Augmented images are generated on the fly during training time. Hence, no separate mem-
ory storage is required for augmented images, resulting in better memory management.
Different image transforms for the data augmentation method are shown in Figure 2.

(a) (b) (c)
Figure 2. Rotation and flipping of H&E-stained tissue images. (a) Original H&E-stained tissue image.
(b) Rotated tissue image. (c) Flipped tissue image.

3.3. Architecture of Proposed CNN Model

In this work, experimentation is carried out with three different pre-trained deep
models as the backbone. Out of EfficientNetB0, ResNet50, and Xception, the Xception
model gave the best accuracy. To increase the model’s accuracy and extract higher-level
features in histopathological images, custom layers in the form of three convolutional and
three max-pooling layers are added to the pre-trained framework. The Xception model’s
weights are initialized to the ImageNet weights. Custom convolutional layers have a
uniform kernel size of 3 × 3 with ReLu activation function blocks. ReLu activation function
is chosen as it provides constant gradient which minimizes the vanishing gradient problem.
The flattening operation converts the obtained feature map into a single-dimensional vector.
Dropout is used to help reduction in overfitting, and batch normalization is used as a
regularization technique. The final sigmoid activation function gives output in terms of
class probability in the range from 0 to 1. Then, the whole CNN architecture consisting of a
pre-trained model(except the top fully connected layers) and custom layers is trained on an
augmented BreakHis dataset with the 40X magnification factor. Thus, custom CNN model
layers are added on the top of the backbone Xception model. The backbone Xception model
works as a potential feature extractor here. The proposed architecture is given in Figure 3.

Loss objective function used in this case is binary cross-entropy loss. During the
backward pass or backpropagation pass of the neural network derivative of loss with
respect to different weights is found using the chain rule. Trainable parameters of the
network, meaning the weights and the biases, are updated during backpropagation.
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Convolution 2D layer, 3 × 3 kernel, ReLu activation

Pre-trained Xception CNN model as a backbone

Convolution 2D layer, 3 × 3 kernel, ReLu activation

MaxPooling 2D layer, 2 × 2  pool size

Convolution 2D layer, 3 × 3 kernel, ReLu activation

MaxPooling 2D layer, 2 × 2  pool size

Flattening layer

MaxPooling 2D layer, 2 × 2  pool size

Dense layer with sigmoid activation function for
Malignancy detection

Dropout(20 %) and Batch normalization

Figure 3. Architecture of proposed CNN network.

In CNNs an optimizer is also used for the optimization of trainable parameters of the
network to minimize the cost objective function. In this study, the optimizer used is Adam
optimizer as it gave better accuracy than other counterparts such as Stochastic gradient
descent, RMSProp, AdaDelta, etc. The learning rate decides the convergence time for the
model. Two learning rates were tried for this algorithm as 0.001 and 0.0001. The best suited
learning rate is kept at 0.0001. The loss function used is binary cross_entropy. The cost
function of binary cross_entropy has two main terms, which consist of actual labels and
network predictions. This loss calculation is performed over a minibatch of a dataset.

3.4. Enhanced Pre-Trained Models

EfficientNet models are depth, width, and resolution scaled networks. This scaling
is performed to obtain more detailed feature extraction. All these dimensions are scaled
up with a uniform ratio. The baseline EfficientNet model is EfficientNet B0. EfficientNet
is a family of models ranging from baseline models to several scaled-up versions. Thus,
EfficientNet provides multiple scaling for improving accuracy [51]. ResNet50 or Residual
Network 50 is the model which is also validated on the ImageNet large-scale visual recog-
nition challenge dataset. For ease of optimization and better performance, the residual
building blocks are included in ResNet models [52]. ResNet50 architecture consists of 50
such residual blocks. EfficientNet, ResNet, and Xception models are convolutional neural
networks with many properties such as parameter or weight sharing, location invariance,
etc., making them efficient for computer vision applications. Depth-wise separable convo-
lution is the prominent feature used in Xception architectures. It is an updated version of
inception architectures. In inception architecture, the convolutions are performed spatially
and over the input depth of the image. To reduce dimensions, in Xception architecture,
1 × 1 convolution blocks are run across the depth. In the standard practice of convolution
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operation, the application of filters across all input channels corresponding to colors and a
combination of these values is performed in a single execution step. Depth-wise separable
convolution divides this complete process into two parts depth-wise or channel-wise con-
volution and point-wise convolution. In-depth wise process, a convolution filter is applied
to a single input channel at a time. All output values of these separate kernels, which work
on a single channel, are stacked together, and then point-wise convolution is performed on
channel-wise outputs of filters [53].

3.5. Classifier Details

The proposed classifier used in this work for the breast cancer classification task
is enhanced pre-trained Xception CNN. The Xception CNN model trained on the Ima-
geNet dataset is used by excluding its final fully connected layers. Weight initialization
is performed based on ImageNet weights only. After removing the last layers, additional
convolutional and max pooling layers are added to the network, along with flattening and
dense layers. Since pre-trained models are generally trained on larger and generalized
datasets, adding custom layers help the modified models to adapt to specific tasks. Adding
custom layers also helps to train the models faster. Image sizes are rescaled to 224 × 224
pixels. For an enhanced pre-trained Xception model, drop-out and batch normalization are
used as regularization techniques. Batch normalization scales output feature values to the
next layer into a standard uniform scale. Batch normalization reduces internal covariance
shift to a significant extent and also helps weights to converge faster.

3.6. Training and Testing of Model

The time required for training the enhanced Xception model on the IDC dataset is 1 h
50 min, while the time taken for testing on the IDC dataset is 67 s.

The CNN architecture consisting of a pre-trained model stacked with custom CNN lay-
ers is trained on the 40X zoom images of the BreakHis dataset. A training, validation, and
testing split ratio of 70%, 15%, and 15% is maintained. The model is trained for 50 epochs.
Augmented images obtained from image transforms are used for training purpose. Itera-
tions are performed for a batch size of 16 images. Overfitting or high variance problems can
easily creep in for such deep architectures. Generally, neural nets trained on small datasets
tend to overfit. Techniques to address the problem of overfitting or underfitting neural
networks are called regularization techniques. To mitigate this overfitting issue, dropout
can be inserted after any hidden layer with a different dropout factor. A dropout ratio of
0.2 is used in this work. This dropout of 20% is used after the flatten layer. Adding a
dropout increases the performance of the neural network. Dropout makes some of the
activation outputs of hidden neurons in hidden layers as zero. The random deactivation of
neuron connections happens for every training cycle. However, the percentage of drop-
ping remains the same. Dropout ensures minimized biasing and help to prohibit neurons
from learning minute redundant details in training samples and thus eventually enhance
generalization capability.

To speed up the training process and to increase its performance and stability, regu-
larization in terms of batch normalization is used. The batch normalization process also
stabilizes the weight parameters of the network. In this process, the normalized output of
the previous layer is fed to the next layer. It is called batch normalization because, during
the training process, the layer’s inputs are normalized by using the current batch’s variance
and mean values. A batch normalization layer is added before the final dense layer.

Once the network is trained on the BreakHis dataset with an enhanced pre-trained
Xception model, the same model is used to for fine-tuning on another dataset called IDC. A
subset of the IDC dataset is used for this comparative analysis. The network is tuned and
tested for IDC with weights borrowed while training on the BreakHis dataset. This new
dataset considers ten thousand samples of IDC positive class and 10,000 samples of IDC
negative class.
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4. Experiments and Results

Among all the architectures, the Xception pre-trained model stacked with custom
CNN layers exhibited the highest accuracy of 93.33% on the augmented BreakHis dataset
for the 40X magnification factor. The same Xception pre-trained model stacked with custom
CNN layers gave an accuracy of 88.08% on the IDC dataset.

The deep CNN models are frequently evaluated based on the parameters such as
accuracy, recall, precision, and f1-score. The confusion matrix gives us parameters such as
true positive values (TP), true negative values (TN), false positive values (FP), and false
negative values (FN). True positives (TP) are the output values that are predicted by the
classifier as positive outputs and are originally positive. In breast cancer classification, this
corresponds to correctly diagnosed patients with breast cancer. These patients have breast
cancer and are also correctly diagnosed as cancer-positive patients. False positives (FP)
are the output values predicted by the classifier as positive outputs but are originally
negative. In the context of breast cancer diagnosis, these are the patients wrongly classified
as cancer-positive, whereas, in reality, these are cancer-free patients. True negatives (TN)
are output values classified by the deep learning framework as negative and originally
negative. These are correctly diagnosed cancer-free patients. False negatives (FN) are
output values classified by the network as negatives but are positives in reality. For breast
cancer diagnosis, this parameter is very sensitive because the patient having breast cancer
but diagnosed as breast cancer negative is represented by a false negative. The choice of
deep neural network architecture largely depends on a network providing a minimum
value of false negatives.

Accuracy is a critical performance evaluator. It is the ratio of correctly predicted
outputs of a deep neural network by a total number of samples. For symmetric datasets,
accuracy can provide a good measure for analyzing the performance of deep CNN. The
accuracy of deep CNN is given in Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Equation (2) represents precision which is a ratio of the correct positive predictions of
the network to the total positive predictions of the network.

Precision =
TP

TP + FP
(2)

The recall parameter for the evaluation is given in Equation (3). In deep learning-
assisted diagnostic tools, recall is a very sensitive evaluation measure as recall increases
with a decrease in the number of false negative cases.

Recall =
TP

TP + FN
(3)

The f1-score is given in Equation (4). F1-score, the harmonic mean of recall and
precision, gives a measure of the goodness of deep CNN model for the given dataset.

F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

The comparative results of performance parameters for different models are presented
in Table 1.

The classification output is in terms of 0 or 1 for benign and malignant patches of
BreakHis 40× dataset. For IDC dataset, the classification result is in terms of IDC or
non-IDC patch. The result of classification on BreakHis dataset is shown in Figure 4.
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Table 1. Custom CNN model evaluation parameters.

Backbone Pre-Trained
Model with Custom Layers

Accuracy on
Testing Data Precision Recall f1-Score

EfficientNetB0 with custom
CNN layers 89.67% 88.61% 89.32% 88.94%

ResNet50 with custom
CNN layers 90.66% 89.33% 88.87% 89.09%

Xception with custom
CNN layers 93.33% 92.20% 91.63% 91.91%

(a) (b)
Figure 4. Classification result on patches of BreakHis40× test dataset. (a) Classified as benign patch.
(b) Classified as malignant patch.

4.1. Confusion Matrices

The confusion matrix presentation shows an evaluation of the performance of the
machine learning classification model. It represents a number of actual predicted output
values against corresponding class labels. The heat-map representations of the confusion
matrices are shown in Figure 5. As it is evident from confusion matrices, the maximum
true positive value is given by CNN with Xception pre-trained model. The model with
the minimum number of false negative cases in cancer diagnostics is considered more
satisfactory. The false negative numbers are the number of patients who have breast cancer
but are diagnosed as cancer-free. This false negative value is minimum for the Xception-
based CNN model. Thus, CNN model with Xception as a backbone network performs
better in the context of cancer diagnostics.

Confusion Matrix for Evaluation on IDC Dataset

The enhanced pre-trained Xception model was also trained and tested on a sub-part of
the IDC (invasive ductal carcinoma) dataset. It consisted of 10,000 samples of each category,
namely benign and malignant. The confusion matrix of CNN with Xception as a backbone
for the IDC dataset is given in Figure 6.
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Figure 5. Parameters of confusion matrix for BreakHis40× dataset. (a) Confusion matrix for CNN
with EfficientNetB0 as backbone. (b) Confusion matrix for CNN with ResNet50 as backbone.
(c) Confusion matrix for CNN with Xception as backbone.
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Figure 6. Parameters of confusion matrix for IDC dataset.

4.2. Receiver Operating Characteristics

The performance of the classification model can be evaluated by using the area under
the receiver operating characteristics curve (AUC-ROC). There is a false positive rate on
the X-axis of this curve, and on the Y-axis, there is a true positive rate. Using the AUC-ROC
curve, the model’s performance can be evaluated on all possible threshold values. The
AUC-ROC curve for CNN using Xception as the pre-trained model is depicted in Figure 7.
It is seen that the curve occupies a large area and is inclined toward the true positive rate
parameter. The AUC value obtained for the proposed model is 0.9211.
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Figure 7. AUC-ROC curve for CNN using Xception model for BreakHis dataset

The AUC-ROC curve is also plotted for the IDC dataset in Figure 8. Again, CNN using
the Xception model as a backbone is considered for classification on the IDC dataset. The
AUC value obtained in this case is 88.07949.
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Figure 8. AUC-ROC curve for CNN using Xception model for IDC dataset.

4.3. Comparison with Other State of the Art Techniques

Other established methods are compared in Table 2 based on accuracy obtained on
40X magnification factor images of the BreakHis dataset. The study proposed in this article
is magnification-dependent breast cancer detection, which applies to a zoom factor of 40X
for breast histopathological images. Hence, comparative analysis involves comparing with
other studies based on their accuracy obtained on the 40X magnification factor.

Table 2. Comparison with other state of the art methods for binary classification of BreakHis 40×.

Strategy Used for Binary Classification Accuracy in Percentage

Multiple compact CNNs [54] 87.70%
Convolutional Neural network [55] 90.40%
Residual learning based CNN [56] 91.40%

Cubic SVM [57] 92.03%
Proposed Method of Xception with custom CNN layers 93.33%
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4.4. Discussion

All the hyperparameters of the models are tweaked manually based on the accuracy
criterion. The numbers of kernels in three custom convolutional layers are kept as 16, 32,
and 64, respectively, with a filter size of 3 × 3. All convolutional custom layers use the Relu
activation function. For all three CNN models, 50 epochs are used to fit the model with 50
steps per epoch on augmented training data. Adam is used as an optimizer with a learning
rate of 0.0001. The image batch size is kept at 16. The three enhanced pre-trained models
are compared based on accuracy for malignancy classification on the BreakHis dataset. The
enhanced Xception pre-trained model obtained the highest accuracy of 93.33% as compared
to the rest of the two models on the BreakHis classification task of malignancy detection.
Further, the same model with BreakHis weights is used for binary classification on the IDC
dataset. It achieved an accuracy of 88.08%.

5. Conclusions

In this study, an optimized CNN architectural framework for breast cancer histopathol-
ogy slide binary classification is evaluated. The significant contribution of this work is the
design, training, and testing of a custom CNN model, which uses the Xception pre-trained
model as a backbone. The proposed model is used for the binary classification of breast
malignancy. This deep learning approach consisting of stacking Xception architecture and
custom CNN layers provided satisfactory accuracy of 93.33% for the BreakHis dataset of
the 40× magnification factor. The data augmentation procedure is used to increase dataset
size and ensure faithful training. The other two deep CNNs, one with EfficientNetB0 as the
backbone and the other with ResNet50 as the backbone, were also evaluated for comparison
of performances. Skipped connections in the form of drop-out layers are used to enhance
the network’s generalization capability. Batch normalization is used to improve and stabi-
lize the overall training process. Another dataset called IDC was used to detect the presence
of invasive carcinoma using an enhanced Xception model. By keeping weights, the same as
tuned on the BreakHis dataset, the customized Xception CNN model is again fine-tuned
for the IDC dataset. Furthermore, binary classification of IDC vs. non-IDC is achieved. This
task achieved an accuracy of 88.08%. The use of a new dataset thus verifies the enhanced
pre-trained model’s generalization capability and transfer learning ability. Thus, such kind
of work can help histopathologists in the primary diagnosis of breast cancer. Deep learning
mechanisms developed for histopathological analysis work on patch-level data primarily.
This is because of the huge size of whole slide images, which makes them unsuitable for
deep convolutional neural networks. In the future, more sophisticated algorithms should
be developed to obtain a proper diagnosis on the patient level and whole slide image (WSI)
level histopathological image analysis.
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