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Abstract: This paper reviews advanced modeling and analysis techniques useful in the description,
design, and optimization of mechanical energy harvesting systems based on the collection of energy
from vibration sources. The added value of the present contribution is to demonstrate the benefits
of the exploitation of advanced techniques, most often inherited from other fields of physics and
engineering, to improve the performance of such systems. The review is focused on the modeling
techniques that apply to the entire energy source/mechanical oscillator/transducer/electrical load
chain, describing mechanical–electrical analogies to represent the collective behavior as the cascade
of equivalent electrical two-ports, introducing matching networks enhancing the energy transfer
to the load, and discussing the main numerical techniques in the frequency and time domains
that can be used to analyze linear and nonlinear harvesters, both in the case of deterministic and
stochastic excitations.

Keywords: energy harvesting; piezoelectric energy harvester; nonlinear dynamical systems; equiva-
lent circuits; impedance matching; power efficiency; nonlinear resonance

1. Introduction

The importance of power supply cannot be overstated, especially with reference to
Internet of Things (IoT) applications that, nowadays, find their backbone in the deployment
of a large number of electronic systems [1]. The current projections assume a growth
from the current number of installed IoT devices, estimated to be more than 14 billion,
to double this in the second half of the 2020–2030 decade [2]. The very definition of an
IoT device is widely general. However, great importance is undoubtedly focused on
wireless-connected technologies [3], involving most varied elements (called nodes), such
as computers, printers, handheld communication devices, network appliances and smart
systems in general. Irrespective of the specific function, each node must be powered, which
is a fundamental issue normally tackled by employing wired power supply or batteries. A
battery is effective in the case of relatively large and man-handled devices; however, it may
become unpractical for miniaturized systems, such as wireless connected sensors (and, in
some cases, actuators). In fact, for such nodes the relative size and weight requirements
associated to batteries may be too large for the device specifications, not to mention the
often difficult physical access, which, in turn, is mandatory in cases of battery maintenance
or substitution.

On the other hand, the dispersed nodes can often be designed to require relatively
low power, along with a short distance among themselves as a byproduct of their large
number. This means that extracting the required energy from the environment may not
only be theoretically possible, but also the ideal solution [4]. Energy harvesting refers to
a wide range of technological solutions enabling the collection of energy available from
the environment and its conversion to electrical form, so as to enable an IoT node power
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supply either directly or by interposing a buffer battery. Candidate ambient energy sources
are quite varied, from mechanical vibrations to electromagnetic radiation, and thermal
gradients [5–9].

Ambient mechanical vibrations are a particularly promising source for energy harvest-
ing [5], because they are widespread, they have relatively high power density, and they can
be easily converted into usable electrical power exploiting different physical conversion
and transduction mechanisms [10].

From the modeling point of view, the mechanical system collecting vibrations can
be represented as a forced system characterized by an autonomous oscillating behaviour
(namely, by an oscillator), and transferring the harvested mechanical energy to a transduc-
tion stage that performs the conversion to the electrical domain.

There are many excellent reviews of energy harvesting technologies and applications,
most of them devoted to the harvesting device experimental characterization. Without
pretending to be complete. Comprehensive reviews of energy harvesting with piezoelectric
materials can be found in [11–14]. The problem of harvesting kinetic energy at low and high
frequencies for wireless applications is reviewed in [8], whereas the problem of broadband
energy harvesting is reviewed in [15]. Piezoelectric and electromagnetic technologies for
energy harvesting are discussed in [16–18]. Excellent reviews on the role of nonlinearity
can be found in [19–21]. The very important area of applications to implantable medical
devices is discussed in [22]. Finally, interesting overviews of solutions to increase the power
performance and efficiency of energy harvesters are presented in [23,24].

This paper takes a different perspective. The attention is centered on the harvesting
device modeling and methods of analysis, because these aspects provide the foundation for
a more systematic approach to the design and optimization of energy harvesting systems.
In particular, the focus is on the exploitation of methods from nonlinear dynamics, circuit
theory and stochastic analysis to the description of the harvester, which inherently requires a
multi-physics representation, as the mechanical and electrical domains, and their interfaces
through the energy transduction stage, are all entangled in the device operation. A detailed
description of the mechanical part, often carried out through advanced numerical (e.g.,
finite elements-based) methods [25–27] is, thus, avoided. The first part of this contribution
reviews the modeling techniques, along with the corresponding challenges, exploited for
the description of each stage of the mechanical harvester setup. The second part is devoted
to the mathematical methods for the analysis and design of energy harvesters for ambient
mechanical vibrations, with particular attention to nonlinear systems. The stochastic
techniques enabling the description of the random mechanical vibrations constituting the
harvester energy source are discussed in Section 2. The equations of the mechanical system
implementing the vibration energy collection (for both the piezoelectric and electromagnetic
transducer cases) are presented, and it is shown how an equivalent circuit, representing the
entire system dynamics, can be constructed making use of mechanical–electrical analogies.
The main advantage of the equivalent circuit description lies in the possible exploitation of
well-known load matching techniques, well developed in several electronic circuit areas,
to improve, and, in perspective, to maximize, the energy collection efficiency. The final
part of Section 2 is devoted to the treatment of nonlinearity in mechanical harvesters,
pointing out the major modeling challenges and opportunities. In Section 3 the main
analysis approaches, both in the time and in the frequency domains are described. A brief
review of frequency domain methods for linear systems is presented, together with an
efficient implementation of frequency domain techniques for nonlinear systems, namely
the Harmonic Balance technique. The averaging technique for nonlinear systems with
periodic or random perturbation is presented next. The last part of Section 3 is dedicated
to numerical integration methods, as they represent a fundamental tool for simulation
and design, especially in the case of nonlinear systems. Particular attention is given to the
intricacies of numerical integration schemes for stochastic differential equations. Finally,
Section 4 is devoted to conclusions.
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2. Modeling

In this section, the modeling of energy harvesting systems is reviewed. The first prob-
lem consists in giving an accurate, yet mathematically tractable, description of mechanical
vibrations. The governing equations for two of the most widely used architectures for
harvesting vibrational energy, piezoelectric and electromagnetic energy harvesters, are
derived. The use of equivalent circuits and the application of load matching solutions
to increase the harvested power and power efficiency is presented. Finally, the role of
nonlinearities in the governing equation is briefly discussed.

2.1. Modeling Ambient Mechanical Vibrations

The energy of ambient vibrations is typically dispersed over a wide frequency range,
making efficient exploitation a challenging task. However, if most of the energy is concen-
trated in a relatively narrow frequency interval, the force acting on the energy harvester
due to ambient vibrations can be modeled as a simple harmonic excitation [28–31],

fm(t) = A cos(ωt) (1)

where A and ω are the vibration amplitude and frequency, respectively. A major advantage
of assuming a single harmonic excitation, is that the theory of periodically driven oscillators,
both linear and nonlinear, is well developed. Ad hoc sophisticated techniques exist for
their analysis, both in the time and the frequency domains [32–35].

Real world vibrations are random in nature, thus, suggesting that they should be
modeled as stochastic process. Therefore, it is appropriate to recall some basic concepts
about stochastic processes and stochastic calculus.

Let (Ω,F , P) be a probability space, where Ω is the sample space (e.g., the set of all
possible outcomes of a given experiment), F = (Ft)t≥0 is a filtration (e.g., the σ-algebra
of all the events), and P is a probability measure (a real function P : F → [0, 1] such that
P(∅) = 0 and P(Ω = 1) [36,37]. A real valued random variable ξ : Ω 7→ R is a measurable
function from the sample space Ω to the measurable space R, and a vector valued stochastic
process Xt : Ω 7→ Rd is a vector of random variables parametrized by t ∈ T. The parameter
space T is usually the half-line [0,+∞]. Alternatively, the stochastic process can be thought
of as the function Xt : Ω× T 7→ Rd.

A straightforward method to generate stationary stochastic processes, dating back to
the seminal work of Rice [38], is to consider a linear combination of periodic functions

X(t) =
n

∑
k=1

σk(Ak cos(ωkt) + Bk sin(ωkt)) (2)

where σk are constants, and Ak, Bk are Gaussian distributed, uncorrelated random vari-
ables, with zero expectation value and unit variance. Different criteria have been proposed
for the selection of the angular frequencies ωk [39]. To guarantee that the process is not
periodic, it is sufficient that ωm/ωn is not rational, for at least one pair m, n ∈ N (From the
implementation point of view, this condition is never satisfied, as the finite precision of
digital computers implies that ratio ωm/ωn is always rational. For practical purposes, how-
ever, it is sufficient to consider a large enough value for m/n). Accordingly, the stochastic
process (2) shows zero expectation and the following, stationary auto-correlation function:

R(t1, t2) = E[X(t1)X(t2)] =
n

∑
k=1

σ2
k cos(ωk(t1 − t2)) (3)

where E[·] denotes the expectation operator. By the Wiener–Khinchin theorem, the corre-
sponding power spectral density is the Fourier transform of the auto-correlation function [36],
that reads

S(ω) =
n

∑
k=1

σ2
k

2
(δ(ω−ωk) + δ(ω + ωk)) (4)



Computation 2023, 11, 45 4 of 28

where δ(·) is the Dirac delta function, leading to a representation of the vibration forcing
term as a superposition of harmonic components characterized by the frequency set {ωk},
k = 1, . . . , n.

The above ideas can be made more rigorous through stochastic expansions and the
Karhunen–Loeve representation theorem [40,41]. In the Karhunen–Loeve expansion, a
scalar, centered stochastic process Xt is represented on a finite interval t ∈ [a, b] via a
sequence of independent simple random variables, according to:

X(t) =
+∞

∑
i=1

√
λi ξi ui(t) (5)

where {ξi} is a set of mutually uncorrelated random variables to be determined, and {λi},
{ui(t)}, are the sets of eigenvalues and deterministic orthonormal eigenfunctions of the
eigenvalue problem [40,41]:

∫ b

a
R(t1, t2) ui(t2) dt2 = λi ui(t1), t1 ∈ [a, b] (6)

For example, the scalar Wiener process W(t), characterized by zero mean E[W(t)] = 0,
correlation R(t1, t2) = E[W(t1)W(t2)] = min(t1, t2), and normal distribution centered at
zero, can be represented on the finite time domain t ∈ [0, 1] by

W(t) =
√

2
+∞

∑
i=1

ξi
sin(λit)

λi
(7)

where λi = (i− 1/2)π, and {ξi} are independent normally distributed random variables
with zero mean and unit variance, ξi ∼ N (0, 1), where symbol ∼means “distributed as”.
Obviously, for computational purposes, the sum has to be truncated to a suitable number
Nmax of basis functions. Figure 1 shows the approximation of a Wiener process obtained
from (7) with different numbers of basis functions. To date, this approach is fundamental
in uncertainty quantification problems [42,43].

Figure 1. Karhunen–Loeve representation of a Wiener process on the interval t ∈ [0, 1], calculated
with different numbers Nmax of basis functions.

An alternative approach for modeling random vibrations is to apply stochastic calculus
and the theory of stochastic differential equations (SDEs) [36,37]. A d-dimensional system
of SDEs driven by the one-dimensional Wiener process Wt is (Standard notation used in
probability is adopted: Capital letters denote random variables, lower case letters denote
their possible values. Furthermore, the independent variable (t in this case) is represented
at the subscript).

dXt = a(Xt)dt + B(Xt)dWt (8)
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where the vector valued functions a : Rd 7→ Rd, B : Rd 7→ Rd, are called the drift and diffu-
sion terms, respectively. They are measurable functions satisfying a global Lipschitz and a
linear growth condition, to enforce the existence and uniqueness solution theorem [37]. If
function B(Xt) is constant, then the noise is said to be un-modulated or additive; otherwise,
it is called modulated or multiplicative.

If vibrational energy is distributed over a sufficiently broad spectral interval, ambient
vibrations can be modeled by white Gaussian noise, the “formal” derivative of the Wiener
process Wt. Clearly, a truly white noise process is a physically unrealistic idealization, as the
indefinitely flat power spectrum assumption would imply an infinite power content. As a
matter of fact, the energy of ambient mechanical vibrations is, in many cases, concentrated
at low frequencies. Thus, a low-pass filtered white Gaussian noise can be considered a more
realistic model for parasitic vibrations [44,45]. Consider the low-pass filter circuit shown
in Figure 2, where the voltage source is a white Gaussian noise process: vin(t) = dWt/dt.
Let τ = R f C f be the time constant of the circuit. The output voltage vout(t) is the solution
of the Itô SDE (Since the noise is un-modulated (additive), the SDE can be interpreted as
either Stratonovich or Itô without any ambiguity [36,37].)

dvout

dt
= − 1

τ
vout +

dWt

dt
(9)

The voltage vout(t), solution of (9), is called Ornstein–Uhlenbeck process (OUP). It is
characterized by the expectation

E[vout(t)] = vout(0) e−t/τ (10)

where vout(0) is a deterministic initial condition, and by the stationary time correla-
tion function

ROUP(t, t + s) = E[vout(t)vout(t + s)] =
1

2τ
e−|s|/τ (11)

By the Wiener–Khinchin theorem [36], the power spectral density (PSD) is the Fourier
transform of the correlation function, so that the PSD for a white Gaussian noise is constant
over all frequencies. For the OUP vout(t) we have

SOUP(ω) =
1

1 + τ2ω2 (12)

i.e., a Lorentzian spectrum.

+
−

R

Cvin(t) vout(t)

+

−

Figure 2. Low-pass filter circuit to generate an Ornstein–Uhlenbeck process.

2.2. Modeling Vibration Energy Harvester Architectures

The typical energy harvester for ambient mechanical vibrations is composed of an
oscillating structure, responsible for capturing vibrational kinetic energy, and a transducer
that converts kinetic energy into usable electrical power. The oscillating structure can be
a spring, a membrane or a cantilever beam, connected to an inertial mass to enhance the
oscillation amplitude [12,16–18,46–49]. Assuming that the mass of the structure is negligible
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with respect to the inertial mass, and that the motion occurs at least approximately in a
straight line, the equation of motion for the mechanical part reads

mẍ + U′(x) + γẋ = fm(t)− ftr(t) (13)

where m is the inertial mass, x is the displacement with respect to the rest position, the dot
denotes the derivative with respect to time, U(x) is an energy (elastic) potential, symbol ′

denotes derivative with respect to the argument (in this case, position x), and γ is a damping
constant. On the right hand side, fm(t) is the external force describing ambient vibrations,
while ftr(t) are the forces exerted by the transducer responsible for the mechanical to
electrical power conversion.

2.2.1. Piezoelectric Harvesters

Piezoelectric transducers rely upon piezoelectric materials to convert mechanical
stress and strain induced by oscillations into electrical power. Piezoelectric transducers
offer good efficiency, they are relatively cheap and, more importantly, they are easy to
miniaturize [50].

The governing equations for a piezoelectric transducer can be derived from the char-
acteristic equations of piezoelectric materials [12,51,52]

Sij =sE
ijkl Tkl + dkij Ek (14a)

Di =dikl Tkl + εT
ik Ek (14b)

linking the mechanical strain Sij (rank two tensor) and the dielectric charge displacement
Di (rank one tensor) to the mechanical stress Tkl (rank two tensor) and the electric field Ek
(rank one tensor). The linear transformation is defined by:

• the compliance tensor sE, defined for a constant electric field as the strain generated
per unit stress;

• the tensor d of piezoelectric charge constants
• the absolute permittivity εT , namely the dielectric displacement per unit electric field

for constant stress [12]

Equation (14) provides a link among microscopic, local (i.e., space-dependent) physical
variables, while an effective modeling of the piezoelectric material calls for the derivation of
a lumped description, that can be obtained through spatial integration of the local variables.
For a single degree of freedom (DOF) mechanical system (the usual approximation) char-
acterized by the scalar spatial displacement x, the lumped equations for the piezoelectric
material in quasi-static conditions read

ftr(t) = α e(t) (15a)

q(t) = α x(t)− Cpz e(t) (15b)

where ftr(t) is the force exerted by the transducer, α is the electro-mechanical coupling
factor (in N/V or As/m), Cpz is the electrical capacitance of the piezoelectric layer, q(t) is
the electrical charge, and e(t) is the output voltage of the piezoelectric transducer.

Figure 3 shows the representation of the piezoelectric transducer as an electromechan-
ical two-port network, with mechanical quantities at the input (left port) and electrical
quantities at the output (right port), and closed on an electrical load.

The lumped parameter model (15) implies that the same coupling constant α is used
for both mechanical-to-electrical and electrical-to-mechanical conversion. Consequently,
dissipation in the mechanical part is accounted for by the damping coefficient γ. The
piezoelectric transducer is assumed to be a lossless two port element, that transfers energy
from the mechanical part to the electrical load, and vice-versa. Such a model has been
extensively used in literature [21,31,53–56].
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ftr(t)

ẋ(t)

e(t)

q̇(t)

+

− lo
a
d

Figure 3. Piezoelectric transducer as an electromechanical two-port closed on an electrical load. At
the left port are mechanical quantities: velocity ẋ and force ftr(t). At the right port are electrical
quantities: current q̇ and voltage e(t).

2.2.2. Electromagnetic Induction Harvesters

Electromagnetic energy harvesters exploit magnetic induction to convert mechanical
power into electrical power. The oscillating structure is typically composed of a magnet,
either connected to a vibrating support through springs or suspended by a magnetic field
generated by other magnets, and placed inside a coil [57–60]. Vibrations of the support
produce oscillations of the suspended magnet, inducing a current in the surrounding coil
through Faraday’s law.

The transducer force corresponds to a transversal component of the electromagnetic
Lorentz force, generated by the current induced in the coil

FL = I
∮

B× ds (16)

where I is the induced current, ds is the differential length vector along the inductor coil,
and B is the magnetic field. Application of Kirchhoff voltage law yields

LC İ + vo + ve = 0 (17)

where LC is the inductance of the generator coil, vo is the voltage across the load and ve is
the electromotive force, given by

ve = −
d
dt

∫
S

B · n dA (18)

where n is the transversal unit vector for the coil cross-section S. For a N turn induction
coil the Lorentz force and the electromotive force are then given by [58]

FL = 2πrc

(
N

∑
j=1

Brj

)
I ve = −2πrc

(
N

∑
j=1

Brj

)
ẋ (19)

Here, rc is the radius of the generating coil and Brj is the radial magnetic field at location x
of coil j. The magnetic field can be evaluated exploiting standard methods, such as finite
or boundary element techniques. In general, the electro-mechanical coupling coefficient
BL(x) = 2πrc

(
∑N

j=1 Brj

)
depends on the position of the magnet. A great simplification is

obtained by assuming small oscillations of the magnet, thus approximating BL(x) with its
value when the spring is at the rest position [58].

2.3. Equivalent Circuit Models

The use of electrical to mechanical analogies can be traced back to the very beginning
of studies of electro-mechanical phenomena, when they were used to describe the relatively
novel electrical phenomena in terms of better understood mechanical problems. As the
understanding of electrical phenomena progressed, and especially after the development
of lumped parameter circuit models, the use of the analogies was reversed, as it was
realized that many problems in mechanics can be described by equivalent circuits, and
that concepts and methods of electrical network theory can be applied for their solution.
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Today, equivalent circuits are commonly used to describe multi-domain structures [61–63],
biological systems [64] and even quantum mechanical phenomena [65,66].

The term equivalent refers to a circuit that retains all the characteristics of a given
system and, in particular, that is described by the same set of state equations. Equivalent
circuits for energy harvesters are conveniently derived replacing mechanical variables, like
force, velocity and so on, with electrical quantities, like voltage, current, etc., as summarized
in Table 1.

Table 1. Mechanical-electrical analogy.

Mechanical Electrical

Force, f Voltage, v
Displacement, x Charge, q
Momentum mẋ Flux linkage, ϕ

Mass, m Inductance L
Compliance, k−1 Capacity, C

Damping, γ Resistance, R

Using mechanical to electrical analogies, Equations (13) and (14) or (13)–(17) can be
rewritten in terms of electrical quantities. Interpreting the resulting equations as Kirch-
hoff voltage and current laws, the equivalent circuits shown in Figures 4 and 5 can be
obtained, respectively.

+
−

+
−

R
C

L

vin(t) α e
α i

Cpz +

−
e

cantilever

i

beam

ambient

vibrations

piezoelectric

transducer

load

+

−
vo

Figure 4. Equivalent circuit for a piezoelectric energy harvester. The generator vin(t) in the circuit
corresponds to the external force fm(t).

+
−

+
−

R
C

L

vin(t)
BL I BL i

+

−
vo

i

magnet− spring coil

+
−

LC

I

Load

ambient

vibrations

Figure 5. Equivalent circuit for an electromagnetic energy harvester. The generator vin(t) in the
circuit corresponds to the external force fm(t).

2.4. Load Modeling

In circuit theory, a load is any circuit element that absorbs power from the rest of the
circuit. In energy harvesting applications, the load is commonly modeled as a resistor (see
Figure 6a).

For the piezoelectric harvester, application of Ohm law gives q̇(t) = Ge(t) (G = 1/R
is the load conductance). The governing equations for a piezoelectric energy harvester with
resistive load are obtained rewriting (13) as a system of first order differential equations,
and using (15), thereby obtaining:
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ẋ =y (20a)

ẏ =− 1
m

U′(x)− γ

m
y− α

m
e +

1
m

fm(t) (20b)

ė =
α

Cpz
y− G

Cpz
e (20c)

Similarly, the governing equations for an electromagnetic energy harvester are ob-
tained from (13), and (17)–(19)

ẋ =y (21a)

ẏ =− 1
m

U′(x)− γ

m
y− BL

m
I +

1
m

fm(t) (21b)

İ =
BL
LC

y− G
LC

I (21c)

It is clear that (20) and (21) are completely equivalent. Therefore, for the sake of simplicity,
hereinafter only piezoelectric energy harvesters shall be considered.

As mentioned in Section 2.3, one of the main advantages of using equivalent circuits,
is the inheritance of concepts and methods from circuit theory. In particular, the maximum
average power transfer theorem states that, in an AC circuit, maximum power is transferred
from the source to the load if the impedance of the latter is the complex conjugate of the
source impedance. Consider the circuits in Figures 4 and 5. A resistive load can match the
circuit impedance, defined at the left of the load if, and only if, the harvester is working
at the resonant frequency. Otherwise, including the case of a multi-frequency source, the
harvested power drops significantly because of the impedance mismatch.

In vibration energy harvesting, impedance mismatch is a limiting key factor, because
ambient vibrations have relatively low frequencies, variable from few tens to few hundred
Hz, whereas the electrical domain has a higher resonant frequency, thus resulting in a
significant impedance mismatch. Several works have suggested that power factor correction
can be applied to improve the performances of energy harvesters [31,55,56]. Power factor
correction is a standard method of electrical engineering, that permits increasing the
average power absorbed by the load, and reducing the lag between the voltage across and
the current through the load. For a piezoelectric energy harvester, given the capacitive
reactance of piezoelectric transducers, power factor correction is obtained by inserting an
inductive element in parallel with the resistive load, as shown in Figure 6b. Conversely, for
an electromagnetic energy harvester, the inductive reactance of the coil can be compensated
for by connecting a capacitor in series with the resistive load.

An alternative solution, proposed in [45,67], amounts to interposing an impedance
matching network between the transducer and the load, as shown in Figure 6c. The
matching network not only quenches the impedance mismatch, but it can also be designed
to resonate at a chosen frequency, not necessarily coincident with the resonant frequency
of the energy harvester. This characteristic is very useful when the resonant frequency
of the energy harvester and the frequency where vibration energy is concentrated are far
apart [67].

There are many different types of matching networks, which differ in the number of
electrical components and their interconnections. The simplest matching stage is the L-
network, composed of two reactive components (inductor and capacitor), arranged to form
an L shaped structure. In total, eight different arrangements for the L-network are possible.
Figure 6 shows one of the possible setups, known as the low-pass L-matching network,
that is well suited for piezoelectric energy harvesters [45,67]. The matching network is
low-pass because at very low frequencies the inductor is equivalent to a short circuit (and
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the capacitor, to an open circuit). This is a particularly desirable feature because, in general,
most of the energy of ambient mechanical vibrations is concentrated at low frequencies.

R

q̇(t)

+

−

e(t)
electro

(a)

RL

q̇(t)

+

−

e(t)

(b)

Lpf
vo

iL

io

+

−
RL

q̇(t) = iL

+

−

e(t)

(c)

vo

io

+

−

LS

CP
mechanical
transducer

electro
mechanical
transducer

electro
mechanical
transducer

Figure 6. Different types of load. (a) Resistive load. (b) Power-factor corrected load for a piezoelectric
energy harvester. (c) Low-pass, L-matching network.

Figure 7 shows an example, taken from [67], of the benefits of the application of a
matching network. The figure represents the average output power as a function of the
forcing frequency for a cantilever beam piezoelectric energy harvester. Blue crosses are the
results with a resistive load, while black diamonds refer to the use of a matching network,
demonstrating an about 80% increase of the power transferred to the load.

Figure 7. Average output power vs. forcing frequency for a nonlinear cantilever beam piezoelectric
harvester [67]. Blue crosses are for the resistive load; black diamonds are for the matched load.

2.5. Nonlinear Harvester Modeling

Irrespective of the working principle, energy harvesters operate as resonators. For
a linear harvester and harmonic external excitation with fixed frequency, maximum en-
ergy is transferred from the environment to the electric load tuning one of the harvester
modal frequencies, usually the first, to be equal, or at least as close as possible, to the
excitation frequency.

Working close to the resonance maximizes the oscillation amplitude, but it entails a
limited operating band. In fact, linear harvesters are designed as high Q-factor resonators,
with amplitude response rapidly decreasing around the resonance peak. Manufacturing
tolerances, parameter inaccuracies and excitation variations, in general, all contribute to
de-tuning the resonator, further reducing the already limited energy output.

The limited band issue becomes fundamental if one considers that ambient vibrations
are more realistically described as random process, often non-stationary, either with a wide
frequency spectra, or with a dominant frequency that changes with time [21]. Therefore,
tuning the resonator becomes unfeasible, significantly dampening the performances of
linear harvesters.

To tackle the problem, linear harvesters with tunable response have been proposed [68–72].
In particular, mechanical filters made by cascade connected inertial masses were considered
in [69]. In [71,72], the authors proposed mechanical systems with self adjustable resonance
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frequency, achieved by an inertial mass free to slide along the oscillating beam. The moving
mass settles to a position such that the resonant frequency of the cantilever beam matches
the frequency of the external forcing.

An alternative solution amounts to including nonlinearities in the system, as a means to
broaden the response of the resonator. Nonlinearity may arise as a consequence of material
properties, for example taking into account the nonlinear strain deflection relationships
due to large deformations, or from a nonlinear electro-mechanical coupling mechanism,
as in the nonlinear constitutive relationships of piezoelectricity [73]. The benefit of these
nonlinearities is to produce a “bending” of the amplitude response introducing a hysteretic
behaviour, trading off the efficiency at the resonant frequency for a larger bandwidth, as
illustrated in Figure 8. Figure 9 shows an example of the hysteretic behaviour typical of
nonlinear harvesters as obtained by applying the harmonic balance analysis technique
described in Section 3.2. Data represent the root mean square value of the output voltage
for the nonlinear cantilever beam piezoelectric energy harvester in [67], subject to a periodic
forcing, vs. the input vibration frequency. Blue crosses, blue × and red pentagrams are for
the resistive load. Black squares, black circles and red diamonds are for the matched load.
Blue and black markers refer to stable limit cycles, red markers are for unstable limit cycles.

frequency
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f requency
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e

Hardening behavior Softening behavior

ωSN1
ωSN2

Figure 8. (Left) Typical amplitude response of a linear resonator (black) versus nonlinear resonator
(blue–red) with an hardening spring. Blue and red lines correspond to amplitude of attractive (stable)
and saddle (unstable) oscillations, respectively. (Right) Amplitude response of a nonlinear resonator
with a softening spring.

Figure 9. Root mean square value of the output voltage vs. forcing frequency for a nonlinear
cantilever beam piezoelectric harvester [67]. Blue crosses, blue × and red pentagrams are for the
resistive load. Black squares, black circles and red diamonds are for the matched load. Blue and black
markers refer to stable limit cycles, red markers are for unstable limit cycles.

Nonlinearity can also be intentionally introduced by design, with the obvious advan-
tage of controlling the degree and magnitude of the nonlinearity itself. For instance, a soft-
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ening spring behaviour can be introduced, through application of electrostatic potential [74]
or smart magnet positioning [75]. The softening spring effect is analogous to what is de-
scribed above: to produce a bending of the resonant curve with consequent hysteresis and,
thus, bandwidth enlargement. The only difference is that the resonant frequency is shifted
toward lower values, as shown in the right part of Figure 8, which may be preferable in
energy harvesting low frequency applications [76].

In piezoelectric cantilever-based energy harvesters, the most common solution consists
of using a magnetic material as the inertial mass, and in placing another magnet on a fixed
support right in front, with polarities opposed to those of the tip magnet, to create a biased
inverted pendulum and a magnetic repulsive force [19]. A schematic representation is given
in Figure 10. Assuming again a single degree of freedom description, when the distance
between the magnets is large enough, the cantilever beam behaves as a linear oscillator.
The system is subject to a quadratic elastic potential, and, in the absence of external forcing,
it exhibits a single equilibrium point corresponding to the vertical rest position.

Inertial
magnet

Clamped
end

support
V ibrating

P iezoelectric
layer

Cantilever
beam

Tip
magnet

lo
a
d

Figure 10. Schematic representation of a cantilever beam bi-stable piezoelectric energy harvester.

Conversely, when the distance between the two magnets is small enough, the system
is subject to a nonlinear elastic force. Magnetic repulsion forces the beam to the left or
to the right of the vertical position. The unforced system exhibits bi-stability, with two
stable equilibrium points, each with its own basin of attraction, separated by an unstable
saddle, corresponding to the vertical rest position. For small external forcing, the beam
oscillates either around the left or the right equilibrium position (see Figure 11, on the left),
depending on the initial condition. For small amplitude oscillations, the system can still
be described in terms of a linear oscillator, with a resonant frequency higher than in the
previous case [19], and the stationary distribution shows two well separated peaks located
around the stable equilibrium points (Figure 11, right).

If the magnitude of the external forcing is increased, oscillations around each of
two equilibrium points are alternated by large excursions from one basin of attraction
to the other, as shown in the left part of Figure 12. Correspondingly, the two peaks in
the stationary distribution merge and partially overlap. The irregular large excursions
correspond to oscillations with larger amplitudes, that induce higher deformation of the
beam collecting more energy. For high noise intensity, the system exhibits more and more
frequent excursions from the basin of attraction of one equilibrium to the other, with
a motion that resembles a random wandering around the unstable saddle, as depicted
in Figure 13, left. In correspondence, the merging of the two peaks of the stationary
distribution is more pronounced, so as to take the shape a multivariate normal distribution
(Figure 13, right).
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Figure 11. (Left) Time behaviour for the mechanical position of a bi-stable piezoelectric energy
harvester for small noise intensity. (Right) Marginal probability stationary distribution for the
mechanical variables for small noise intensity.

Figure 12. Same as Figure 11 for medium noise intensity.

Figure 13. Same as Figure 11 for high noise intensity. The noise intensity is chosen so that the two
peaks can still be distinguished.

The figures were obtained through numerical integration of the SDEs for a bi-stable
energy harvester with cubic nonlinearity and resistive load, subject to a random force
modeled as white Gaussian noise. The equations were integrated numerically using
the Euler–Maruyama numerical integration scheme, see Section 3.4. For the stationary
distributions, the probability to find the system in the state (x + dx, y + dy) is estimated as
the number of samples in that interval, divided by the total number of samples.

The idea to exploit multi-stability was further developed and generalized, introducing
tri-stable [77–79] and, more generally, multi-stable energy harvesters [80–85]. In [77] it
was shown that a tri-stable arrangement passes easily through potential wells, generating
higher energy output over a wider range of frequency with respect to a bi-stable setup with
a deeper potential well. In [79], a tri-stable system was designed, with multiple magnets
and springs, exploiting a rotatable magnet–spring oscillating system. It was shown that
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such a solution not only reduced the potential energy barrier and the threshold of snap-
through, but also broadened the bandwidth of inter-well motion. In [80], an ingenious
setup, where the inertial mass on the top of a cantilever beam is connected to a support
through three springs, was proposed. The resulting structure exhibits four steady state
responses and dozens of primary resonance modes. Another interesting design, composed
of a moving magnet connected to the supports by two linear springs and surrounded by
four fixed small magnets was proposed in [84]. The common denominator of these works
was the introduction of structures designed to produce a nonlinear elastic potential U(x)
that exhibits three or more minima. In this way, hops among the different wells correspond
to oscillations of larger amplitude, producing enhanced mechanical strain and, thus, more
electrical power.

3. Analysis

The models of energy harvesting systems introduced in Section 2 can be classified
into two categories: linear and nonlinear. Furthermore, each class can be further divided
into deterministic (periodically forced) or stochastic. The methods and techniques for
their analysis are those of dynamical systems theory. Dynamical systems form a very rich
research area, that in the last few decades has witnessed an explosive growth, thanks to
the rapidly developing topics of nonlinear dynamics, bifurcations, chaos, and complex
systems in general. A comprehensive review of the concepts and methods of dynamical
system theory is far beyond the scope of the present paper. Here, only some methods
that have been successfully applied to the analysis of vibration energy harvesting systems
are discussed.

3.1. Frequency Domain Methods for Linear Systems

Frequency domain techniques are classical tools for the analysis of both linear and
nonlinear circuits and systems. If mechanical vibrations are modeled by the simple har-
monic signal (1), then the voltage source in the AC circuit in Figure 4 can be conveniently
described by its phasor F̂m(ω), a complex number including amplitude and phase. Using
phasor analysis, the output voltage reads

V̂o(ω) = H(ω) F̂m(ω) (22)

where V̂o(ω) is the phasor of the output voltages, and H(ω) is the AC circuit’s transfer
function (possibly including the power-factor correction network or the matching stage in
Figure 6). The average input and output powers read

Pin =
1
2

Re[Yin(ω)] |F̂m(ω)|2 (23a)

Pout =
1
2

G |H(ω)|2|F̂m(ω)|2 (23b)

where Re[·] denotes the real part, and Yin(ω) is the circuit input admittance. The power
efficiency is

η =
Pout

Pin
= G

|H(ω)|2
Re[Yin(ω)]

(24)

The extension to multi-periodic inputs is straightforward. Using mechanical to electri-
cal analogies, a mechanical force, such as those represented by (2) or (5), is replaced by a
set of series-connected voltage sources, as illustrated in Figure 14. The output voltage can
be computed applying the superposition principle, considering one source at a time. The
output voltage phasor is found using (22), where the transfer function is calculated at each
frequency ωk. Interestingly, because frequencies are all different, both the input and the
output powers are decomposed as the sum of the contributions of each source.
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Vin,2 cos(ω2t + θ2), V

Vin,n cos(ωnt + θn), V

+
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Figure 14. Equivalent electrical two terminal element representation for a multi-periodic input.

Frequency domain techniques can also be applied to a fully stochastic input. In this
case, the energy harvester is interpreted as a linear time invariant system (LTI) subject to a
random input x(t) [45]. The input–output relation for LTI systems is

y(t) =
∫ +∞

−∞
x(t− r)h(r) dr = h(t) ∗ x(t) (25)

where h(t) is the impulse response, y(t) is the system output, and symbol ∗ denotes the
convolution product. The autocorrelation function Ryy(τ) of the output variable y(t) is [36]

Ryy(τ) = E[y(t)y(t− τ)] =
∫ +∞

−∞

∫ +∞

−∞
h(r) h(s)Rxx(τ + r− s) dsdr (26)

Taking the Fourier transform, the input–output relationship for power spectral densities
is obtained

SY(ω) = |H(ω)|2 SX(ω) (27)

where H(ω) = Ŷ(ω)/X̂(ω) is the system’s transfer function, Ŷ(ω), X̂(ω) are the Fourier
transforms of output and input, respectively, and SX(ω) is the power spectral density of
the input, e.g., the random vibrations. The average power absorbed by the load, calculated
using Parseval theorem is

Pout = G E[v2
out(t)] = G

∫ +∞

0
SY(ω) dω (28)

and can be easily calculated substituting (27) and calculating the integral.
The main technical difficulty in the application of frequency domain analysis is the

need to calculate the transfer function H(ω). Finding H(ω) may become cumbersome for
complex structures, where one or more matching networks or other linear two ports, are
connected at the transducer output port. However, as shown in [45], an energy harvester
can be represented by cascade-connected electro-mechanical two-ports. As a result, the
transfer function can be easily calculated from the overall transmission matrix that, in turn,
is evaluated as the matrix product of the partial transmission matrices of each two-port. The
approach is particularly well suited to dealing with the case of colored noise, that requires
some kind of “preprocessing” of the white Gaussian noise. For example, in the case of the
Ornstein–Uhlenbeck process, it is sufficient to include an additional two-port, the low pass
filter, in front of the electro-mechanical two-port chain that describes the harvester.

3.2. Frequency Domain Methods for Nonlinear Systems: Harmonic Balance

There are many scientific applications, ranging at least from electrical and microwave
engineering to mechanical systems, wherein the main interest lies in the determination of
periodic or quasi-periodic solutions of dynamical systems, and the full computation of the
solution transient can be discarded altogether. In the frequency domain, this task can be
accomplished exploiting the Harmonic Balance (HB) numerical technique. In its essence,
HB transforms the differential equations describing the system dynamics into an algebraic
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system, the unknowns of which are the coefficients of the Fourier series representing the
steady-state solution (In autonomous systems, where a time shifted solution is still a valid
solution, one of the coefficients can be chosen arbitrarily, while the frequency is unknown.
The total number of unknowns for the HB technique remains the same for both autonomous
and non-autonomous systems.) [86,87].

For the sake of simplicity, the case of strictly periodic solutions is considered first, and
the notation is introduced considering a scalar differential equation like

dx
dt

= f (x) + s(t) (29)

where x(t) is a real, scalar unknown, f (x) is a scalar nonlinear function regular enough
to allow for a unique solution of (29) once a proper initial condition is defined, and s(t)
is a periodic (period equal to T), scalar forcing term. In these conditions, a T periodic
solution xs(t) of (29) exists. Due to periodicity, xs(t) can be represented in the time domain
by means of a trigonometric Fourier series

xs(t) = x̂(c)
s,0 +

+∞

∑
h=1

[
x̂(c)

s,h cos(hωt) + x̂(s)
s,h sin(hωt)

]
(30)

where x̂(c)
s,h and x̂(s)

s,h are, respectively, the cosine and sine amplitudes associated to the h-th
harmonic at (angular) frequency ω = 2π/T. The series is here truncated selecting a finite
value for the maximum order NH, a choice entailing an obvious trade-off between accuracy
and numerical efficiency. As the amplitudes are real, the truncated Fourier representation
is fully defined by 2NH + 1 real coefficients.

The coefficients of the Fourier development can be traced back to integrals imple-
menting the projection of xs(t) on the corresponding harmonic. However a more efficient
numerical evaluation can be derived by means of the following approach. Let us discretize
the [0, T] fundamental period into a set of 2NH + 1 time samples tk (k = 1, . . . , 2NH + 1).
The time samples of xs(t) are then collected into vector x̆ = [x(t1), x(t2), . . . , x(t2NH+1)]

T

(where T denotes the transpose), which is, in turn, in a one-to-one linear relation with the
collection of the harmonic amplitudes x̂s = [x̂(c)

s,0, x̂(c)
s,1, x̂(s)

s,1, . . . , x̂(c)
s,NH

, x̂(s)
s,NH

]T expressed by
means of the invertible matrix Γ−1, providing the representation of the discrete Fourier
transform (DFT)

x̆ = Γ−1x̂⇐⇒ x̂ = Γx̆. (31)

Assuming equally spaced time samples, it is possible to express tk = kT/(2NH + 1)
(k = 1, . . . , 2NH + 1) so that the explicit expression for the DFT operator becomes

Γ−1 =


1 γc

1,1 γs
1,1 . . . γc

1,NH
γs

1,NH
1 γc

2,1 γs
2,1 . . . γc

2,NH
γs

2,NH
...

...
...

...
...

1 γc
2NH+1,1 γs

2NH+1,1 . . . γc
2NH+1,NH

γs
2NH+1,NH

 (32)

where γc and γs are given by:

γc
p,q = cos(qωtp) = cos

(
q2πp

2NH + 1

)
γs

p,q = sin(qωtp) = sin
(

q2πp
2NH + 1

)
. (33)

Notice that Γ−1 is independent of the period T (or, equivalently, of ω), as a consequence of
the chosen time samples.

From (30), one immediately derives

dxs

dt
= ẋs(t) = 0 +

NH

∑
h=1

[
(−hω)x̂(c)

s,h sin(hωt) + hωx̂(s)
s,h cos(hωt)

]
, (34)
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the harmonic amplitudes of the first derivative of xs(t) take the form of a linear transforma-
tion of x̂s

ˆ̇xs = Γ ˘̇xs = Ωx̂s (35)

where Ω is the representation of the derivative operator in the Fourier domain, namely the
tri-diagonal matrix

Ω = ω



0 0 0 0 0 . . . 0 0
0 0 1 0 0 . . . 0 0
0 −1 0 0 0 . . . 0 0
0 0 0 0 2 . . . 0 0
0 0 0 −2 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0 NH
0 0 0 0 0 . . . −NH 0


. (36)

Finally, the instantaneous function ys(t) = f (xs(t)) is considered and it is represented
in the frequency domain. Let f̆ be the collection of the time samples of f (xs(t)), so that

ŷs = Γy̆s = Γf̆(x̆s) = Γf̆(Γ−1x̂s). (37)

It is now possible to convert (29) into an algebraic equation involving the harmonic
components of xs(t). Time-sampling (29), and taking into account (31), (35) and (37), the fol-
lowing algebraic system of 2NH + 1 real nonlinear equations in the 2NH + 1 real unknowns
x̂s is found:

Ωx̂s = Γf̆(Γ−1x̂s) + ŝ (38)

where ŝ is the frequency domain representation of the T-periodic forcing term.
Let us consider now the vector generalization of (29)

ẋ(t) = f(x) + s(t) (39)

where x, f, s are real vectors of size n (and s(t) is T periodic). Equations (31) and (35) are
easily generalized by sampling each component xi(t) (i = 1, . . . , n) of x(t) into a 2NH + 1
vector of time samples x̆i, and then collecting all these vectors into a vector x̆ of size
n(2NH + 1) according to x̆ = [x̆T

1 , x̆T
2 , . . . , x̆T

n ]
T. Collecting the corresponding harmonic

amplitudes x̂i (i = 1, . . . , n) into a vector x̂ = [x̂T
1 , x̂T

2 , . . . , x̂T
n ]

T, Equations (31) and (35) can
be generalized into

x̆ = Γ−1
n x̂ ˆ̇x = Ωnx̂. (40)

where Γn and Ωn are two block diagonal square matrices of size n(2NH + 1) built repeating
n times matrices Γ and Ω on the diagonal, respectively

Γn =



Γ 0 0 . . . 0 0
0 Γ 0 . . . 0 0
0 0 Γ . . . 0 0
...

...
...

...
...

0 0 0 . . . Γ 0
0 0 0 . . . 0 Γ


Ωn =



Ω 0 0 . . . 0 0
0 Ω 0 . . . 0 0
0 0 Ω . . . 0 0
...

...
...

...
...

0 0 0 . . . Ω 0
0 0 0 . . . 0 Ω


. (41)

Let us now apply this to (39). Time-sampling and DFT transformation yields

Ωnx̂s = f̂(Γ−1
n x̂s) + ŝ (42)

where f̂ represents the collection of harmonic amplitudes for the T periodic function f(x(t)),
i.e., f̂ = Γn f̆.
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Algebraic system (42) can be solved numerically exploiting the Newton algorithm.
Once the periodic solution xs(t) is found, other properties may be studied still in the
frequency domain, such as, for instance, the assessment of its stability [35,88–90].

3.3. Stochastic Analysis: Averaging Techniques

Averaging techniques and perturbation methods are powerful techniques for the
analysis of both deterministic and stochastic nonlinear dynamical systems. Therefore,
it is not surprising that they have been applied to the analysis of energy harvesting
systems [31,53,91,92].

3.3.1. Periodically Forced Nonlinear Oscillators and Averaging

Periodically forced nonlinear oscillators are a classical topic in nonlinear dynam-
ics, perturbation methods and averaging techniques are particularly useful for their
analysis [32,33]. For the sake of simplicity, let us consider a single-DOF system (Exten-
sion to systems with more DOFs is possible, but not straightforward, see for example [31].)

ẍ + ω2
0x = ε(A cos(ωt)− δẋ− γx3) (43)

that can be interpreted as the (nonlinear) model for the mechanical part of an energy
harvester, where the influence of the electro-mechanical coupling is negligible. Let us
introduce the invertible coordinate transformation (Variable v used here should not be
confused with a voltage.)

[
u
v

]
=

 cos(ωt) − 1
ω

sin(ωt)

− sin(ωt) − 1
ω

cos(ωt)

[ x
ẋ

]
(44)

In the rotating reference frame, the unforced system is stationary. Taking the time deriva-
tives gives

u̇ =− 1
ω

(
ẍ + ω2x

)
sin(ωt) (45a)

v̇ =− 1
ω

(
ẍ + ω2x

)
cos(ωt) (45b)

Introducing the frequency mismatch Ω = (ω2
0 −ω2)/ε, and using (43) yields

u̇ = − ε

ω

(
A cos(ωt)− δẋ− γx3 −Ωx

)
sin(ωt) (46a)

v̇ = − ε

ω

(
A cos(ωt)− δẋ− γx3 −Ωx

)
cos(ωt) (46b)

Inverting (44) and substituting into (46), gives a system of non autonomous ordinary
differential equations for the unknown functions u and v. For small values of ε, these
equations can be averaged, integrating the right hand sides from 0 to T = 2π/ω while
holding u and v constant. With some abuse of notation, the same symbols shall be used to
denote the averaged quantities. The following autonomous system is obtained:

u̇ = − ε

2ω

(
δ ω u +

3
4

γ(u2 + v2)v + Ωv
)

(47a)

v̇ = − ε

2ω

(
A + δ ω v− 3

4
γ(u2 + v2)u−Ωu

)
(47b)
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Introducing the polar coordinates

r =
√

u2 + v2 ϕ = arctan
u
v

(48)

it is straightforward finding the differential equations

ṙ = − ε

2ω
(A sin ϕ + δ ω r) (49a)

ϕ̇ =
ε

2ω

(
Ω +

3
4

γ r2 − A
r

cos ϕ

)
(49b)

The equilibrium points (r, ϕ) of (49) correspond to the limit cycles of (43). Setting the left
hand sides equal to zero, squaring and summing, it is found that the equilibrium points are
among the roots of the polynomial

p(r) =
9

16
γ2r6 +

3
2

γ Ω r4 +
(

Ω2 + δ2ω2
)

r2 − A2 (50)

The stability of the limit cycles is determined calculating the eigenvalues of the Jaco-
bian matrix

J =
ε

2ω

(
−δω −Ωr− 3γr3/4

9γr/4 + Ω/r −δω

)
(51)

The blue and red lines in Figure 8, show the typical frequency response for a nonlinear
oscillator. Consider the case of a stiffening elastic beam (on the left). For the case of a
softening beam, the behaviour as the frequency is varied is simply reversed. For small
values of the forcing frequency, the nonlinear oscillator exhibits a unique stable periodic
solution, whose amplitude increases as the forcing frequency is increased. At the critical
value ωSN1 , a saddle node of limit cycles bifurcation occurs. Two new periodic solutions
emerge, one is asymptotically stable, while the other is unstable of saddle type. Increasing
the frequency further the two, initially coincident limit cycles, separate. At the second
critical value ωSN2 , the unstable limit cycle collides with the original stable one, and the
two solutions vanish through a second limit cycle saddle node bifurcation. For ω > ωSN2 ,
the small amplitude stable limit cycle remains the unique periodic solution. The amplitude
response of a linear oscillator is also shown for reference (black line) in Figure 8. With
respect to its linear counterpart, the nonlinear oscillator offers a lower maximum oscillation
amplitude, but, thanks to the hysteretic response, the amplitude is altogether higher on a
wider frequency band.

3.3.2. Stochastic Averaging and Adiabatic Elimination

Stochastic averaging and adiabatic elimination are very powerful tools to obtain the
stationary distribution for systems with time scale separation between variables [93–99].
Both methods rely on the fact that the fast variables quickly relax to a stationary distribution.
As a matter of fact, they do so in such a short time that the slow variables do not change
significantly. This property is then used to define a projection operator that reduces the
dynamics to a sub-manifold, representing a system of averaged (or coarse grained) SDEs.

To illustrate the technique, consider the system of SDEs

dXt =a(Xt, Yy)dt + B(Xt, Yt)dWt (52a)

dYt =

(
1
ε2 c(Yt) +

1
ε

d(Xt, Yt)

)
dt +

1
ε

D(Yt)dWt (52b)
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where ε is a small parameter. For the sake of simplicity, a scalar fast variable y(t) is consid-
ered. Let u(x, y, t) = E[ f (x, y, t)] denote the expectation of a generic function f (x, y, t). The
Forward Kolmogorov Equation (FKE) associated to (52) is [37]

∂u(x, y, t)
∂t

=

(
Λ0 +

1
ε

Λ1 +
1
ε2 Λ2

)
u(x, y, t) (53)

where the operators on the right-hand-side are defined as

Λ0 u =
N

∑
i=1

ai(x, y, t)
∂u
∂xi

+
1
2

N

∑
i,j=1

(
B(x, y)BT(x, y)

)
ij

∂2u
∂xi∂xj

(54a)

Λ1 u =d(x, y)
∂u
∂y

(54b)

Λ2 u =c(y)
∂u
∂y

+
1
2

D2(y)
∂2u
∂y2 (54c)

For the solution of the FKE consider the ansatz u(x, y, t) = u0(x, y, t) + εu1(x, y, t) +
ε2u(x, y, t) + . . .. Substituting the ansatz into (53) and equating the same powers of ε yields

ε−2 : Λ2u0 =0 (55a)

ε−1 : Λ2u1 =−Λ1u0 (55b)

ε0 : Λ2u2 =
∂u0

∂t
−Λ1u1 −Λ0u0 (55c)

The first Equation (55a) of the hierarchy implies that u0 does not depend on y, i.e.,
u0 = u0(x, t). The remaining two equations are of the type Λ2un = bn. Fredholm al-
ternative theorem establishes that these equations are solvable, provided that a function
ψ exists such that ψ ∈ ker(Λ∗2), where Λ∗2 is the conjugate operator and ker denotes the
kernel, and that each bn is orthogonal to ker(Λ∗2). Taking into account (54c), Λ∗2ψ = 0
implies that ψ is the stationary distribution for the lowest order approximation of the fast
dynamics, e.g., ψ = ρst(y). Being orthogonal to ker(Λ∗2) means that (bn, ψ) = 0, where (·, ·)
denotes the inner product in the L2 Banach space. As a consequence, the orthogonality
condition implies that each term bn averages to zero with respect to y

(bn, ψ) =
∫
R

bn ρst(y)dy = E[bn]y (56)

where E[bn]y denotes expectation with respect to y. Since u0 is independent of y, (55b) is
solvable, with

u1(x, y, t) = −Λ−1
2 Λ1u0(x, t) (57)

Similarly, (55c) is solvable provided that

∂u0(x, t)
∂t

= E[Λ0]y u0(x, t)− E[Λ1Λ−1
2 Λ1]y u0(x, t) (58)

that corresponds to the FKE associated to a reduced SDE applying to the slow variables
x only.

As an example, consider again a single-DOF model

dx =y dt (59a)

dy =
(
−U′(x)− ρ y

)
dt + εdWt (59b)

In the absence of friction and noise (for ρ = ε = 0), the underlying system is Hamiltonian.
The governing equations can be rewritten in terms of the energy E = 1

2 y2 + U(x) and the
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angle θ(x, y) (The explicit expression for the angle θ depends on the specific form of the
potential U(x).) obtaining [92]

dE =

(
−ρ y2(E, θ) +

ε2

2

)
dt + ε y(E, θ) dWt (60a)

dθ =

(
Ω(E)− ρ y(E, θ)

∂θ

∂y
+

ε2

2
∂2θ

∂y2

)
dt + ε

∂θ

∂y
dWt (60b)

where Ω(E) = ∂θ
∂x y− ∂θ

∂y U′(x) is the energy dependent frequency of the underlying Hamil-

tonian systems. Introducing the scaled time τ = t/ε2 and using the time change theorem
for SDEs [37], the energy and the angle have the same distributions as the solutions of
the SDEs

dE =

(
− ρ

ε2 y(E, θ) +
1
2

)
dt + y(E, θ) dWt (61a)

dθ =

(
1
ε2 Ω(E)− ρ

ε2 y(E, θ)
∂θ

∂y
+

1
2

∂2θ

∂y2

)
dt +

∂θ

∂y
dWt (61b)

Assuming ρ = ε2 for simplicity, the operators of the FKE take the form:

Λ2 u0 =Ω(E)
∂u0

∂θ
(62a)

Λ0 u0 =

(
−y +

1
2

)
∂u0

∂E
+

(
y

∂θ

∂y
+

1
2

∂2θ

∂y2

)
∂u0

∂θ
+

1
2

y2 ∂2u0

∂E2 +
1
2

(
∂θ

∂y

)2 ∂2u0

∂θ2 (62b)

Equation (62a) implies that the lowest order stationary distribution is independent of
the angle, p̂st = p̂st(E). Imposing the normalization condition

∫ 2π
0 p̂st(E) dθ = 1 yields

p̂st = (2π)−1. This stationary distribution is used to average with respect to the fast angle
variable. Imposing periodic boundary conditions, a scalar averaged SDE for the energy
is obtained

dE =

(
−y2(E) +

1
2

)
dt + y(E) dWt (63)

where

y2(E) =
1

2π

∫ 2π

0
y2(E, θ) dθ (64a)

y(E) =
1

2π

∫ 2π

0
y(E, θ) dθ (64b)

A stationary solution for the reduced order Fokker–Planck equation associated to (63) can be
easily found, and the solution can be used to calculate the relevant expected quantities [92].

3.4. Numerical Analysis Methods

Numerical methods are often the unique way to obtain detailed information about
nonlinear dynamical systems, and, in particular, for the case of stochastic excitations.
There are many excellent references about numerical methods for stochastic differential
equations [100–105]. This section provides an overview of the main numerical techniques,
based on [106].

Numerical schemes for ODEs are recalled first. For the sake of simplicity, let us
consider the autonomous ODE system (Any non-autonomous system can be transformed
into autonomous, rewriting the time as an additional “puppet” variable, and increasing the
number of variables by one.)

dx(t)
dt

= f(x(t)) (65)
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Expanding x(t) in Taylor series

x(t) = x(t0) +
dx(t0)

dt
(t− t0) +

1
2!

d2x(t0)

dt2 (t− t0)
2 + . . .

= x(t0) + f(x(t0)) (t− t0) +
1
2!

∂f(x(t0))

∂x
f(x(t0)) (t− t0)

2 + . . . (66)

Setting t = t0 + ∆t and truncating the Taylor expansion to quadratic terms yields:

x(t0 + ∆t) = x(t0) + f(x(t0))∆t +
1
2

∂f(x(t0))

∂x
f(x(t0))∆t2 (67)

To avoid the explicit calculation of the Jacobian matrix ∂f(x(t0))/∂x, one can try the form

x(t0 + ∆t) = x(t0) + a f(x(t0))∆t + b f
(
x(t0) + c f(x(t0))∆t

)
∆t (68)

where a, b and c are constant to be determined, and the following approximation is made

f
(
x(t0) + c f(x(t0))∆t

)
≈ f(x(t0)) +

∂f(x(t0))

∂x
f(x(t0)∆t (69)

Comparing (67), (68) and (69), it is found that a + b = 1 and bc = 1/2. Thus the solution
to (65) can be approximated as

x̌(t0 + ∆t) = x(t0) +
1
2

f(x̃1 + f(x̃2))∆t (70)

where x̃1 = x(t0) and x̃2 = x(t0) + f(x̃1)∆t.
This algorithm is a two-stage method. Higher-order methods becomeincreasingly

complex with the number of terms. They are constructed evaluating the function f(x(t)) at
a number of points and weighting the terms. The Runge–Kutta method gives the following
approximation for the solution x(t) in the time interval t0 < t1 < . . . < tN = t:

x̌(tk+1) =x̌(tk) +
s

∑
i=1

αif(x̃i)∆t (71)

x̃i =x̌(tk) +
i−1

∑
j=1

Aijf(x̃j)∆t (72)

where the coefficients αi and Aij are given by the Butcher tableau [106]. At the lowest order,
the Runge–Kutta method gives the common forward Euler method

x̌(tk+1) = x̌(tk) + f(x̌(tk))∆t (73)

The classic fourth order Runge–Kutta method gives the approximation

x̌(tk+1) =x̌(tk) +
1
6

(
f(x̃1) + 2f(x̃2) + 2f(x̃3) + f(x̃4)

)
∆t (74a)

x̃1 =x̌(tk) (74b)

x̃2 =x̌(tk) +
1
2

f(x̃1)∆t (74c)

x̃3 =x̌(tk) +
1
2

f(x̃2)∆t (74d)

x̃4 =x̌(tk) + f(x̃3)∆t (74e)

The methods above can be generalized to SDEs, replacing the Taylor series for ODEs
with the Itô-Taylor development in the stochastic case. The derivation is basically the same,
and thus it is not repeated here, except for the fact that time derivative computations are
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replaced by applications of the Itô formula. The interested reader is referred to [106] for
details. As before, the discussion is limited to the autonomous case. Consider the SDEs

dX(t) = f(X(t))dt + L(X(t))dW(t) (75)

where f(X(t)) is the drift vector, L(X(t)) is the diffusion matrix, and W(t) is a vector of
Wiener processes. Repeating the previous procedure, replacing Taylor with Itô-Taylor
series, leads to the form

X(t) = X(t0) + f(X(t0))∆t + L(X(t0))(W(t)−W(t0)) + R(t) (76)

where R(t) is a remainder consisting of higher-order multiple stochastic integrals involving
drift, diffusion, and their derivatives. Neglecting the remainder gives the simple Euler–
Maruyama (EM) algorithm, that represents the direct extension of the Euler method to SDEs

X̌(tk+1) = X̌(tk) + f(X̌(tk))∆t + L(X̌(tk)) (W(tk+1)−W(tk)) (77)

In fact, the EM method reduces to the Euler method for L(X(t)) = 0.
As a matter of fact, the EM solution matches the true solution more closely as ∆t is

decreased. A numerical integration method is said to have strong order of convergence
equal to γ if a constant K exists such that

E[|X(tM)− X̌(tM)|] ≤ K∆tγ (78)

for any fixed tM = m∆t ∈ [0, T] and ∆t sufficiently small. The strong order of convergence
measures the decay rate of the “mean of the error” decays as ∆t→ 0 [101]. A less demand-
ing alternative is to measure the rate of decay of the “error of the means”, namely, the order
of weak convergence. A method is said to have weak order of convergence equal to γ if
there exists a constant K such that for all functions p in some class

|E[p(X(tM))]− E[p(X̌(tM))]| ≤ K∆tγ (79)

for any fixed tM = m∆t ∈ [0, T] and ∆t sufficiently small [101]. The EM method has strong
order of convergence γ = 1/2 and weak order of convergence γ = 1 [103].

Taking into account additional terms in the remainder, leads to higher order methods,
such as the Milstein method. The Milstein method gives the following approximation for
the solution:

X̌(tk+1) =X̌(tk) + f(X̌(tk))∆t + L(X̌(tk))(W(tk+1)−W(tk))

+ ∑
j

[
∑

i

∂L(X̌(tk))

∂Xi
Lij(X̌(tk))

]
∆χjk (80)

where

∆χjk =
∫ tk+1

tk

∫ τ

tk

dWj(τ)dW(τ) (81)

The two main limitations in the application of the Milstein method are: (1) it requires the
explicit calculation of the derivatives of the diffusion matrix; (2) the solution of the iterated
integrals (81) is required. For additive noise, the diffusion matrix is constant L(x(t)) = L,
the derivatives of the diffusion matrix are null and the Milstein method coincides with the
EM method. For the iterated integral, a significant simplification is obtained in the scalar
case, where

∆χk =
∫ tk+1

tk

∫ τ

tk

dW(τ)dW(τ) =
1
2
(W(tk+1)−W(tk))

2 − ∆t (82)
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To avoid calculating the derivatives of the diffusion matrix, discrete time approxi-
mation may be used, leading to stochastic Runge-Kutta methods. The EM scheme can
be seen as the simplest stochastic Runge–Kutta method, in the same way as the Euler
method can be seen as the simplest Runge–Kutta scheme for ODEs. The higher-order
stochastic Runge–Kutta method can be derived replacing the derivatives in the Milstein
method with suitable finite differences. Unfortunately, the iterated Itô integrals occurring
in the remainder cannot be eliminated so easily, and stochastic versions of Runge–Kutta
methods cannot be derived as trivial extensions of the Runge–Kutta method for ODEs [107].
Similarly to the case for ODEs, the stochastic Runge–Kutta method with strong order 1
convergence can be formulated, where iterated integrals are avoided in the scheme and
only appear in the supporting values [105]. The resulting approximation is

X̌(tk+1) =X̌(tk) +
1
2

(
f(X̌(tk) + f

(
X̃(0)

2

))
∆t

+ ∑
n

(
Ln(X̌(tk))∆W(n)

k +

√
∆t
2

(
Ln

(
X̃(n)

2

)
− Ln

(
X̃(n)

3

)))
(83)

where ∆W(n)
k = W(n)(tk+1)−W(n)(tk), and the supporting values are

X̃(0)
2 =X(tk) + f(X(tk))∆t (84a)

X̃(n)
2 =X(tk) + f(X(tk))∆t + ∑

n
Ln(X(tk))

∆χ
(l,n)
k√
∆t

(84b)

X̃(n)
3 =X(tk) + f(X(tk))∆t−∑

n
Ln(X(tk))

∆χ
(l,n)
k√
∆t

(84c)

and

∆χ
(l,n)
k =

∫ tk+1

tk

∫ τ2

tk

dWl(τ1) dWn(τ2) (85)

When l = n the multiple Itô integrals can be rewritten as

∆χ
(n,n)
k =

1
2

((
∆W(n)

k

)2
− ∆t

)
(86)

To derive higher-order methods, more terms in the Itô–Taylor expansion must be con-
sidered, but the problem becomes rapidly impractical because of the number of functions
that must be evaluated and their complexity. In some special cases, such as systems with
symmetry or for additive noise, higher order methods are still feasible. Otherwise, methods
of higher order weak convergence should be considered, instead.

4. Conclusions

This paper presented a review on the modeling and analysis of energy harvesters
collecting mechanical energy in the form of vibrations, taking a different perspective with
respect to most other contributions. In fact, the focus is on the modeling techniques that
apply to the entire energy source/mechanical oscillator/transducer/electrical load chain,
pointing out how mechanical–electrical analogies can be effectively exploited to represent
the collective behaviour as the cascade of equivalent electrical two-ports. This represen-
tation, particularly effective in the case of linear elements, is the natural environment in
which enhancing the efficiency of the collected energy transfer to the load, by means of the
interposition of a properly designed matching network, can be introduced.

On the other hand, two other main issues are taken into account in this review: the
presence, intentional or deliberate, of nonlinearities in the mechanical part modeling or in
the transducer description, and the advanced analysis techniques required for a proper
description of the harvester, both analytical (or semi-analytical) and numerical. In the
frequency domain, the powerful numerical harmonic balance technique was discussed,
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after introducing the basic concepts in the linear case. In the time domain, after introducing
deterministic and stochastic averaging approaches, several numerical techniques well
suited for the analysis of nonlinear harvesting systems in the presence of deterministic or
random mechanical vibrations were discussed.

The main conclusion is, therefore, that the fast growing development of energy har-
vesting techniques has now reached a maturity level which permits leaving the starting,
although unavoidable, pre-requisite level of the purely technological development of the
mechanical energy collection system and of the transducer realization, to enter the stage
of collective design and optimization of the energy transfer to the load. This step can
definitely benefit from the exploitation of consolidated techniques available from other
fields, ranging from advanced mathematical description and treatment of the system, to
the interposition of matching networks enhancing the power transfer.
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