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Abstract: The Kronecker algebra K is the path algebra induced by the quiver with two parallel
arrows, one source and one sink (i.e., a quiver with two vertices and two arrows going in the same
direction). Modules over K are said to be Kronecker modules. The classification of these modules can
be obtained by solving a well-known tame matrix problem. Such a classification deals with solving
systems of differential equations of the form Ax = Bx′, where A and B are m× n, F-matrices with
F an algebraically closed field. On the other hand, researching the Yang–Baxter equation (YBE) is
a topic of great interest in several science fields. It has allowed advances in physics, knot theory,
quantum computing, cryptography, quantum groups, non-associative algebras, Hopf algebras, etc. It
is worth noting that giving a complete classification of the YBE solutions is still an open problem.
This paper proves that some indecomposable modules over K called pre-injective Kronecker modules
give rise to some algebraic structures called skew braces which allow the solutions of the YBE. Since
preprojective Kronecker modules categorize some integer sequences via some appropriated snake
graphs, we prove that such modules are automatic and that they induce the automatic sequences of
continued fractions.

Keywords: automatic sequence; brace; Kronecker module; matrix problem; path algebra; Yang–Baxter
equation

MSC: 11B85; 16T25; 16G30; 16G60

1. Introduction

An automorphism R over a vector space V is a solution of the Yang–Baxter equation,
if it satisfies the following identity (1) known as the braided equation, i.e.,

(R⊗ idV) ◦ (idV ⊗ R) ◦ (R⊗ idV) = (idV ⊗ R) ◦ (R⊗ idV) ◦ (idV ⊗ R) (1)

is satisfied on V ⊗V ⊗V.
Equation (1) was introduced in 1967 by Yang in two short papers written with the

purpose of generalizing previous works on theoretical physics. Shortly afterwards, Baxter
introduced such an equation in a paper regarding statistical mechanics. It is worth noting
that giving a complete classification of the YBE solutions remains an open problem [1,2].

YBE research is a trending topic in several fields of mathematics. Its investigation
has influenced areas such as Hopf algebras, quantum computing, cryptography, knot
theory, non-associative algebras, etc. For instance, Civino et al. [3] used the cryptanalysis
of substitution–permutation networks to give a non-degenerate involutive set-theoretical
solutions of the YBE via some algebraic structures named braces. YBE was used by
Chen [4] to generate braiding quantum gates helpful in topological quantum computing
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and Kauffman et al. [5] proved that the solutions of the YBE give rise to universal gates in a
quantum computer.

It is worth pointing out that Nichita et al. [6–8] introduced the Yang–Baxter operators
of the form RA

δ,κ,ε : A⊗A→ A⊗A, such that x⊗ y 7→ δxy⊗ 1 + κ1⊗ xy− εx⊗ y, where
for a field F, A is a unitary associative F-algebra. Furthermore,

• κ 6= 0 if δ = ε 6= 0;
• δ 6= 0 if κ = ε 6= 0;
• ε 6= 0 if δ = κ = 0.

In particular, RA
δ,κ,ε gives the universal quantum gate

1 0 0 0
0 0 1 0
0 1 1 0
0 0 0 −1


Nichita [7] defined another Yang–Baxter operator, which generate identities in Jordan

algebras after appropriated specializations.
On the other hand, the representation theory of the Kronecker algebra is a subject

of great interest in the matrix problem theory. Kronecker and Weierstrass found out the
indecomposable modules associated with this algebra by solving the following matrix
problem over an algebraically closed field F [9–11]. In this case, we denote by M = (X, Y),
RM

i , CX
j , CY

k a matrix M (called Kronecker matrix) consisting of two matrix blocks X and
Y with the same size, the ith row of the matrix M, and the jth (kth) column of the matrix
block X (Y).

Kronecker Problem

Finding the canonical Jordan forms of matrices of type M with respect to the following
transformations:

1. Row permutations;
2. Additions of the form fhRM

h + fiRM
i , with fh, fi 6= 0, fh, fi ∈ F;

3. Simultaneous column permutations of CX
j and CX

k within the matrix block X, and CY
j

and CY
k within the matrix block Y;

4. Multiplications of the form f (CX
j , CY

j ) = ( f CX
j , f CY

j ), where 0 6= f ∈ F.

If the Kronecker matrices M = (A, B) and M′ = (A′, B′) can be transformed one into
the other by means of elementary transformations, then they are said to be equivalent or
isomorphic as Kronecker modules.

Recently, Espinosa [12] found new invariants associated with preprojective and pre-
injective Kronecker modules (i.e., non-regular Kronecker modules) in their investigations
regarding the categorization of real sequences in the sense of Ringel et al. [13,14]. So-called
Kronecker snake graphs are examples of such invariants. This paper proves that some
snake graphs arising from pre-injective Kronecker modules (called helices or pre-injective
Kronecker snake graphs) induce skew braces. In other words, we prove that appropriated
snake graphs associated with indecomposable Kronecker modules induce the solutions
of YBE.

Automaticity associated with different algebraic structures is a widely studied topic.
The seminal work by Turing regarding the classification of numbers is perhaps one of
the most remarkable works regarding this subject [15]. He classified real numbers as
computable or uncomputable. Accordingly, computable numbers are real numbers whose
k-adic expansion (k ≥ 2) can be produced by a Turing machine. It is worth noting that
automata are one of the most basic computation models, and that if a sequence a = (an)n≥0
is generated by a k-automaton, then the sequence a is said to be automatic [16,17].

According to Shallit et al. [17], automatic sequences have strong relationships with
number theory. These interactions allow many results in transcendence theory to be proven
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with positive characteristics. In particular, Adamczewski et al. [18] proved that Liouville
numbers cannot be generated by a finite automaton, thus answering a conjecture proposed
by Shallit [16].

Relationships between the theory of the representation of algebras and the automata
theory were given by Rees [19], who proved that strings and bands (associated with
indecomposable modules over monomial algebras) can be generated by an automaton.
In this paper, it is proven that the preprojective Kronecker modules give rise to some
automatic categories and that the sequences of some continued fractions associated with
such modules are automatic.

1.1. Motivations

Since their introduction, Kronecker modules have been a source of a plethora of
applications in diverse science fields [10,11]. Particularly, these have been used to solve
differential equations [20]. The generalizations of the Kronecker matrix problem give rise to
the well-known Krawtchouk matrices with applications in quantum computing, statistics,
combinatorics, coding theory, probability, etc. [21]. On the other hand, relationships
between automata theory, the number theory, and the theory of representation of algebras
is a topic of great interest among many mathematicians [16,17].

It is worth noting that the categorization of integer sequences in the sense of Ringel
et al. [13,14] allows interpreting numbers in sequences as the invariants of objects of a given
category (for instance, modules over path algebras or quiver representations). Automatic
sequences give rise to automatic objects in these categories. This paper proves that integer
sequences categorized by preprojective Kronecker modules are automatic.

Investigations regarding YBE have influenced the research in knot theory, quantum
computing, quantum mechanics, Hopf algebras, cryptography, etc. [3,6–8]. This paper
proves that pre-injective Kronecker modules give rise to the skew braces used to generate
the solutions of the YBE.

1.2. Contributions

The main results of this paper are Theorem 5, Corollary 2, and Theorem 6. These are
illustrated as the targets of red arrows in Figure 1, which shows how the different theories
are related to each other to obtain our results. We use the acronyms AT, Cr, KM, Lm, Sect,
SGT, Th, and YBE for automata theory, corollary, Kronecker modules, lemma, section, snake
graph theory, theorem and Yang–Baxter equation, respectively.

Theorem 5 proves that the categories of type 〈P1, . . . , Pt〉 generated by a finite number
of preprojective Kronecker modules are automatic. Corollary 2 proves that some sequences
of continued fractions (arising from the preprojective Kronecker modules) are automatic.
Theorem 6 proves that pre-injective Kronecker modules give rise to skew braces which,
according to Vendramin et al. [22], generate solutions of the YBE.

The organization of this paper is as follows: the main definitions and notations are
given in Section 2; we reiterate the definitions and notations regarding YBE in Section 2; the
snake graphs are shown in Section 3; the Kronecker modules are elaborated in Section 4;
and the automatic sequences and automatic categories are discussed in Sections 4.2 and 4.3.
Finally, we present the main results in Section 5 and the concluding remarks are given in
Section 6.
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YBE (Section 2)

��

SGT (Section 3)

��

AT (Section 4.2)

��
Theorem 2 (Theorem 13.1.1 [17])

��
Theorem 3 (Theorem 13.1.5 [17])

��
Lemma 1 (Theorem 3.1 [22])

��

KM (Section 4)

��

Theorem 4 (Theorem 13.1.7 [17])

xx
Theorem 5

��
Corollary 2

��
Theorem 6

Figure 1. The main results presented in this paper (targets of red arrows) allow a connection to be
established between YBE theory, the representation theory of the Kronecker algebra, the automata
theory, and the snake graph theory. We use the acronyms AT, Cr, KM, Lm, Sect, SGT, Th, and YBE for
automata theory, corollary, Kronecker modules, lemma, section, snake graph theory, theorem, and
Yang–Baxter equation, respectively.

2. Preliminaries

This section recalls some basic definitions and results regarding YBE, braces, and
Kronecker modules, which are helpful for a better understanding of this paper.

Yang–Baxter Equation and Its Solutions

This section makes a brief introduction to some of the methods used to solve the
YBE [6–8,23–27].

Drinfeld [28] proposed that the set-theoretical YBE be solved. Solutions of these kinds
of equations are given by quadratic sets, which are pairs of the form (X, r), where X is a
set and r : X × X → X × X is a bijective map that satisfies the corresponding braided
Equation (2).

(r× idX) ◦ (idX × r) ◦ (r× idX) = (idX × r) ◦ (r× idX) ◦ (idX × r) (2)

meaning that a solution (X, r) written as r(x, y) = (σx(y), τy(x)), for all (x, y) ∈ X × X is
said to be non-degenerate, provided that σx and τx are bijective maps for any x ∈ X. It is
involutive if r2 = idX×X [24].

One of the best approaches to solve the non-degenerate involutive set-theoretical
solutions of the YBE was introduced by Rump [25,26], who define some algebraic structures
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called braces. According to Cedó, Jespers and Oknińiski [23], a left brace is an Abelian
group (A,+) endowed with another group structure, defined by a rule (a, b) 7→ ab that
satisfies the compatibility conditions for all a, b, c ∈ A.

a(b + c) + a = ab + ac (3)

Right braces are defined in the same fashion. In such a case, the compatibility condition
has the form a + a(b + c) = ab + ac.

Note that, if X is finite, then an involutive solution of the braided equation is right
non-degenerate if and only if it is left non-degenerate. It is worth noticing that the non-
degenerate involutive set-theoretical solutions of the YBE were given by Etingof et al.
and Gateva-Ivanova and Van den Bergh [29,30] by associating a group G(X, r) with the
solution (X, r) [23]. Afterwards, Ballester-Bolinches et al. [27] used the Cayley graph of
some subgroups G(X, r) (of the symmetric group on X denoted SymX) associated with the
solutions (X, r) of the YBE to define the left braces.

For a ∈ G, we define ρa, λa ∈ SymG by

ρa(b) = ba− a,

λa(b) = ab− a.
(4)

Rump proved the following result.

Lemma 1 (Lemma 4.1, [23], Propositions 2 and 3 [25]). Let G be a left brace. The following
properties hold.

1. aλ−1
a (b) = bλ−1

b (a);
2. λaλ

λ−1
a (b) = λbλ

λ−1
b (a);

3. The map r : G× G → G× G defined by r(x, y) = (λx(y), λ−1
λx(y)

(x)) is a non-degenerate
involutive set-theoretical solution of the YBE.

We remind that Vendramin and Guarnieri [22] introduced the notion of skew brace.
According to them, a skew left brace A is a group (written multiplicatively) with an
additional group structure given by (a, b) 7→ a ◦ b such that

a ◦ (bc) = (a ◦ b)a−1(a ◦ c) (5)

holds for all a, b, c ∈ A, where a−1 denotes the inverse of a with respect to the group
structure given by (a, b) 7→ ab.

Left braces are examples of skew braces.
The following results describes the non-degenerate involutive set-theoretical solutions

of the YBE in terms of skew braces.

Theorem 1 (Theorem 3.1. [22]). Let A be a skew left brace. Then, rA : A × A → A × A,
rA(a, b) = (λa(b), λ−1

λa(b)
((a ◦ b)−1a(a ◦ b))) is a non-degenerate solution of the YBE. Further-

more, rA is involutive if and only if ab = ba for all a, b ∈ A.

3. Snake Graphs

Snake graphs are finite-connected planar graphs consisting of uniform adjacent square
tiles. Two consecutive tiles Ti and Ti+1 are cemented by gluing either the northern edge
of Ti with the southern edge of Ti+1 or the eastern edge of Ti with the western edge of
Ti+1 [31–33].

A snake graph is said to be horizontal straight (vertical straight) if the gluing process is
only applied to the eastern–western edges (northern–southern) of its tiles. Any snake graph
G is a union of a finite number of straight snake graphs G1, . . . ,Gk, if |Gi| = ni, then we write
S = S f (n1, n2, . . . , nk). Figure 2 shows an example of the snake graph S f (4, 4, 2, 2, 4, 2, 6).
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S =

Figure 2. Snake graph of type S f (4, 4, 2, 2, 4, 2, 6).

According to Schiffler et al. [31–33], if a snake graph S consists of tiles T1, T2, . . . , Tk.
Then, there is an associated sequence of functions Sk = { f1, f2, . . . , fk}, such that fi : Ti =
{ew, es, ee, en} → {+,−}, fi(ew) = fi(en) ∈ {+,−}, fi(ew) 6= fi(es) = fi(ee) ∈ {+,−},
where ew, es, ee, en denote the west, south, east, and north edges of tile Ti, respectively.

Note that the values of fi given by the internal edges, f1(es), fk(y), y ∈ {ee, en}, and
tiles T1, T2, . . . , Tk completely determine the snake graph S. For instance, if fi(ew) = +,
then fi(en) = +, and fi(ee) = fi(es) = −. Figure 3 shows an example of a sequence Sk
associated with the snake graph G f (4, 4, 2, 2, 4, 2, 6).

S =

−

− + −
−

+

−

−

−
− + −

−
− + − + −

−

Figure 3. A sequence Sk associated with the snake graph S f (4, 4, 2, 2, 4, 2, 6).

A positive finite continued fraction is a function

[g1, g2, . . . , gn] = g1 +
1

g2 +
1

g3+
1

g4+
1

...+ 1
gn

(6)

on n variables g1, g2, . . . , gn, gi ∈ Z≥1.
Positive continued fractions are determined by their convergents denoted by [g1, g2, . . . , gm],

1 ≤ m ≤ n. Note that n is finite if and only if the continued fraction gives a rational number
denoted by [g1, g2, . . . , gn].

Schiffler et al. [31–33] proved that there is a bijective correspondence between the set of
positive continued fractions and the set of snake graphs via sequence Sk. They denoted by
S[g1, g2, . . . , gn] the unique snake graph defined by the continued fraction [g1, g2, . . . , gn].
As an example, the snake graph of the continued fraction [2, 1, 2, 1, 4, 1, 3, 1, 1, 1, 2] is
G f (4, 4, 2, 2, 4, 2, 6) = G[2, 1, 2, 1, 4, 1, 3, 1, 1, 1, 2], as shown in Figure 3.

4. The Kronecker Problem

This section describes the solutions to the Kronecker problem formulated in the
introduction. Snake graphs are invariants associated with such solutions.

The Kronecker problem was solved by Weierstrass in 1867 for some particular cases
and by Kronecker in 1890 for the complex numbers field case. Solutions to this problem are
classified as regular or non-regular (preprojective or pre-injective) [9–11].
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Solutions to the Kronecker problem correspond to the indecomposable modules over

the algebra Λ =

(
F F2

0 F

)
, where F is a field and the multiplication is given by the

formula (
f11 f12
0 f22

)(
g11 g12
0 g22

)
=

(
f11g11 f11g12 + f12g22

0 f22g22

)
(7)

Finite dimensional right Λ-modules are called Kronecker modules, and every such a

module can be identified with a quadruple L = L1

k1→→
k2

L2, where L1 and L2 are the vector

spaces L
(

1 0
0 0

)
, L
(

0 0
0 1

)
, k1 and k2 are linear maps defined by k1(x) = x

(
0 i
0 0

)
,

k2(x) = x
(

0 j
0 0

)
, for x ∈ L1, and {i, j} is the standard basis of F2.

The category of Kronecker modules is categorically equivalent to the category of
Kronecker matrices, so indecomposable Kronecker modules can be determined by solving
the Kronecker matrix problem described in the introduction of this paper. Two Kronecker
matrices M = (A, B) and M′ = (A′, B′) are said to be equivalent (or isomorphic as
Kronecker modules) if one can be obtained from the other via matrix transformations.

It is worth noting that the Auslander–Reiten quiver associated with the Kronecker
algebra Λ has three components, which are the preprojective component containing all the
indecomposable projective modules; the pre-injective component containing all the indecom-
posable injective modules; and the regular component. We let (n + 1, n) ((n, n + 1)) denote
a preprojective Kronecker module (pre-injective Kronecker module) whose associated
Kronecker matrix has n + 1 (n) rows and n (n + 1) columns. The following matrices II (III)
show the standard form of the canonical pre-injective (preprojective) Kronecker modules.

II = III∗ =



1 0 . . . . . . 0 | 0 1 0 . . . 0 0
0 1 . . . . . . 0 | 0 0 1 . . . 0 0
0 0 1 . . . 0 | 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

. . .
...

0 0 . . . 1 0 | 0 0
. . . . . . 0 1

 (8)

III = II∗ =



0 0 . . . . . . 0 | 1 0 . . . . . . 0 0
1 0 . . . . . . 0 | 0 1 . . . . . . 0 0
0 1 . . . . . . 0 | 0 0 1 . . . 0 0
...

. . . . . .
...

...
...

...
...

. . .
...

...

0 0 . . . 1 0 | 0 0
. . . . . . 0 1

0 0 0 . . . 1 | 0 0 . . . . . . 0 0


(9)

Each non-regular indecomposable Kronecker module M = (A, B) has an associated
finite set of directed graphs (directed paths) called helices by Espinosa [12]. To construct
such graphs, the 1’s in the canonical non-regular Kronecker modules are called pivoting
vertices or pivoting entries. Then, the helices are constructed by connecting with hori-
zontal and vertical arrows alternatively two-element sets of entries. For instance, the sets
(a1, b1), (b1, b2), (b2, a2), . . . with ai ∈ A, bj ∈ B, a1 ∈ RA

1 are connected first with a horizon-
tal arrow then with a vertical arrow, and so on. In this case, the entries b1, a2, b3, a4, . . . are
pivoting entries and the process (of constructing the helix) ends once the helix has visited
all the rows of the matrix M. The reader is referred to [9,12] for a more detailed description
of a helix construction.

In [9], Espinosa et al. proved that the number of helices associated with the prepro-
jective Kronecker module (n + 1, n) is hp

n = n!d n
2 e, and they used this result to categorize

the integer sequence A052558 in the sense of Ringel and Fahr [13,14]. They also noted that
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each helix is given by a word Wp of the form ABBAABB . . . defined by the way that the
helix visits the entries of the matrix M. Figure 4 is an example of a helix given by the word
ABBAABBA.

a1,1 a1,2 //a1,3 a1,4

��

a1,5 a1,6

a2,1 a2,2 a2,3 a2,4 // a2,5 a2,6 RB

a3,1 // a3,2

OO

a3,3 a3,4 a3,5 a3,6

a4,1

OO

a4,2oo a4,3 a4,4 a4,5 a4,6 RA

Figure 4. Helix defined by the word WP = ABBAABBA. Numbers ai,j denote the pivoting entries.

Figure 5 shows examples of the helices associated with the indecomposable pre-
injective Kronecker module (2, 3).

1 0 0 0 1 0oo

0 1 0 //0 0 1

OO

1 0 0 //0 1

��

0

0 1 0 0 0oo 1

Figure 5. Helices associated with the pre-injective Kronecker module (2, 3).

Note that each helix defines a snake graph; in such a case, the first horizontal arrow
induced a horizontal straight snake graph whose tiles are given by the entries occurring
from a1 to b1, the first vertical straight snake graph is given by the entries from b1 to b2
and so on. Henceforth, we assumed that the helices associated with preprojective and
pre-injective Kronecker modules are snake graphs.

4.1. Automatic Sequences and Automatic Categories

A deterministic finite automaton (DFA) [17] is defined as a 5-tuple

M = (Q, Σ, δ, q0, F) (10)

where

• Q is a finite set of states;
• Σ is the finite input alphabet;
• δ : Q× Σ→ Q is the transition function;
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• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of accepting states.

If the empty word ε ∈ Σ, then δ(q, ε) = q for all q ∈ Q. Furthermore, for all q ∈ Q,
x ∈ Σ∗, and a ∈ Σ. It holds that

δ(q, xa) = δ(δ(q, x), a). (11)

The language L(M) accepted by M is defined in such a way that

L(M) = {w ∈ Σ∗ | δ(q0, w) ∈ F}. (12)

A state q of a DFA is said to be reachable if there exists x ∈ Σ∗ such that δ(q0, x) = q,
and it is unreachable otherwise [16–18].

A DFA can be represented by a directed graph, a letter indicates the new state of
the machine if the given letter is read. By convention, the initial state is drawn with an
unlabeled arrow entering the state, and accepting states are drawn with double circles. For
instance, let us consider the automaton A for which

• Q = {q0, q1, q2},
• Σ = {0, 1}∗,
• δ(q0, 0) = q1, δ(q0, 1) = q0, δ(q1, 0) = q2, δ(q1, 1) = q0, δ(q2, 0) = δ(q2, 1) = q2.
• F = {q0, q1}.

The following Figure 6 shows the graphical representation of the automaton A, which
accepts all strings over {0, 1} that do not contain two consecutive 0s.

// q0

0

''

1

JJ
q1

1

gg

0

'' q2

0,1

RR

Figure 6. Example of an automaton.

4.2. Automatic Sequences

According to Shallit et al. [17], research on automatic sequences dates back to the 1960s
with Büchi’s work [34], who attempted to prove that the set of powers of an integer n ≥ 2
is k-automatic if and only if n and k are multiplicatively dependent. They also reiterate
that Cobham [35] was the first to study k-automatic sequences systematically and that
Deshouillers coined the term automatic sequence in 1979.

A DFA with output (DFAO) is a DFA M with two additional parameters ∆ and τ, such
that ∆ is the output alphabet and τ : Q→ ∆ is the output function. This machine induces a
function fM : Σ∗ → ∆ such that fM(w) = τ(δ(q0, w)). fM is said to be a finite-state function.

Note that, if M = (Q, Σ, δ, q0, ∆, τ), is a DFAO then the set {w ∈ Σ∗ | τ(δ(q0, w)) = d}
is a regular language.

A sequence (an)n≥0 over a finite alphabet ∆ is k-automatic if there is a k-DFAO,
M = (Q, Σk, δ, q0, ∆, τ), such that an = τ(δ(q0, w)) for all n ≥ 0 and all w with [w]k = n,
i.e., Σk the set {0, 1, 2, . . . , k− 1} and [w]k = ∑

1≤i≤t
aikt−i if w = a1a2 . . . at ∈ Σ∗ [17].

Let (k, b) be integers ≥ 2. Let r be a real number, and suppose that r = a0 + ∑
i≥1

aib−i

for i ≥ 0 and 0 ≤ ai < b. Then, r is said to be (k, b)-automatic if the sequence of digits
(ai)i≥0 is a k-automatic sequence. We let L(k, b) denote the set of all (k, b)-automatic reals.

The Baum–Sweet sequence a = (an)n≥0 = 110110010100100110010 . . . is an example
of an automatic sequence (see Figure 7).
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// A/1 1 //

0
��

B/1

0
''

1
��

C/0

0

gg
1 // D/0

0,1
��

Figure 7. 2-DFAO generating the Baum–Sweet sequence. X/j means that the output associated with
the state X is j [17].

The sequence (Cn)n≥0 = 0, 1, 2, 1, 2, 2, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, . . . is 2-automatic. It coin-
cides with the sequence of Catalan numbers modulo 4.

A subset S ⊆ N is k-automatic if there exists a regular language L ⊆ Σ∗k such that
S = [L]k = {[w]k ∈ w ∈ L}.

The following results regard automatic sequences.

Theorem 2 (Theorem 13.1.1, [17]). If r is a rational number, then r ∈ L(k, b); for all k, b ≥ 2,
i.e., r is a (k, b)-automatic real number.

Theorem 3 (Theorem 13.1.5, [17]). If r, s ∈ L(k, b) then r + s ∈ L(k, b).

Corollary 1 (Theorem 13.1.7, [17]). The set L(k, b) constitutes a vector space over the rational
numbers.

Theorem 4 (Theorem 14.6.2, [17]). The sequence ((n
m) mod d)m,n≥0 is k-automatic if and only

if the integers d and k are powers of the same prime number p. In this case, the sequence is
pj-automatic for any j ≥ 0.

It is worth pointing out that the class of k-automatic sets is closed under union,
intersection complement, and set addition.

4.3. Automatic Categories

Let C be a Krull–Schmidt category whose indecomposable objects are automatic sets
(i.e., they can be obtained as outputs of a DFA or a DFAO), then C is said to be an automatic
category. Particularly, suppose a k-automatic sequence g of real numbers is categorized (in
the sense of Ringel and Fahr [13,14]) by the indecomposable objects of the category C. In
that case, it is said to be an k-automatic category with respect to the sequence g. For instance,
Rees [19] proved that the string and band modules associated with a monomial algebra are
automatic. To do that, she built an automaton that recognizes strings. It is worth pointing
out that a unique band is associated with the Kronecker algebra. We recall that a sequence
of letters (arrows) s = anan−1 . . . a2a1 associated with a monomial algebra Λ = FQ/I is a
string (of length n) if the following conditions hold:

1. t(aj) = s(aj+1), for all 1 ≤ j ≤ n;
2. aj 6= a−1

j , note that t(aj) = s(a−1
j ), s(aj) = t(a−1

j );

3. For all 1 ≤ i < i + k ≤ n, neither the sequence aj+k . . . aj nor the sequence u−1
j . . . u−1

j+k
is contained in I.

A string b of length n ≥ 1 is cyclic if s(b) = t(b). If additionally, there is no string s

such that the m-fold concatenation ss . . . s equals b. Then, b is a primitive cyclic string. If
a primitive cyclic string b = bn . . . b1 is such that bm 6= 0 for all m ≥ 1 and b1 is also an
inverse letter whilst bn is a direct letter, then b is a band.

Given a Krull–Schmidt category C, a full subcategory L of C closed under direct sums
and direct summands (and isomorphisms) will be called an object class in C [10]. In such a
case, L is a Krull–Schmidt category, and is uniquely determined by the indecomposable
objects belonging to L. 〈M〉 is the smallest object class containing M. 〈M1, M2, . . . , Mt〉 is
the smallest object classes, comprising M1, . . . , Mt as elements.
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5. Main Results

This section gives the main results of this paper. Firstly, we prove that, for n > 1 fixed,
the category 〈(n + 1, n)〉 is automatic. In the last section, we introduce the skew brace
induced by the helices associated with pre-injective Kronecker modules.

5.1. Automaticity Associated with Kronecker Modules

The following result proves that preprojective Kronecker modules give rise to auto-
matic categories as a consequence of the Theorems 2–4 and Corollary 1.

Theorem 5. For t > 1 fixed, the category 〈(n + 1, n)〉2≤n≤t is automatic.

Proof. For 2 ≤ n ≤ t, each helix H(n,ai0 j0 ,pi1 j1
) (associated with the preprojective Kronecker

module (n + 1, n)) starting and ending at the vertices (ai0 j0 ∈ iA and pi1 j1 ∈ PA (PB) if n is
odd (even)) define a DFA (Q, Σ, δ, q0, F) such that

• The set of states Q is given by the entries of the preprojective Kronecker module
(n + 1, n). We assume that the helix starts in an entry ai0 j0 ∈ iA and ends in a vertex
pi1 j1 ∈ PX , X ∈ {A, B}.

• The language Σ = {A, B}∗ ∪ {ε}.
• The transition function δ : Σ×Q→ Q is given by the arrows in the helix H(n,ai0 j0 ,pi1 j1

).
We let H0 (H1) be the corresponding set of vertices (arrows), ωn = ABBAA . . . XXY,
and X, Y ∈ {A, B} denotes the word associated with the helix such that |ωn| = 2n + 2.

δ(w, x) =



ε, for any w ∈ Σ, x ∈ {ai0 j, bi0s | j 6= j0, 1 ≤ s ≤ n} or x ∈ (H0)
c.

pi1 j1 , if w = ωn = ABBAABB . . . XXY X, Y ∈ {A, B}, |ωn| = 2n.
s(Z), if w = ABB . . . XY ⊂ w′ = wZ = ABB . . . XYZ ⊂ ωn.
ε, if |w| > 2n + 2 or w is not a subword associated with the helix.
x, if w = ε.

• The initial state q0 = ai0 j0 .
• The set of final states F = {pi1 j1}.

Since, preprojective Kronecker modules can be obtained via the union of helices, which
are isomorphic as graphs.

Note that the automaton (Q, Σ, δ, q0, F) defined by the helix shown in Figure 4 is given
by the following identities:

1. Q = {pi,j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 6}.
2. Σ = {A, B}∗ ∪ {ε}.
3.

δ(AB, p4,2) = p4,1, δ(ABB, p4,1) = p3,1, δ(ABBA, p3,1) = p3,2,

δ(ABBAA, P3,2) = p1,2, δ(ABBAAB, p1,2) = p1,4,

δ(ABBAABB, p1,4) = p2,4, δ(ABBAABBA, p2,4) = p2,5

δ(w, ε) = w, for any w ∈ Σ,

δ(w, x) = ε, otherwise.

(13)

4. q0 = p4,2.
5. F = {p2,5}.

Let us now introduce the sequences of continued fractions g(n,k) such that, for n > 2
fixed and 2 ≤ q ≤ n, it holds that g(n,k) = [2, an1 , 2, an2 , 2, an3 , 3, an1 , 3, an4 , 3, an1 , . . . , 3, bn, 2],
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bn = an1 , an4 , where the sequences ani , 1 ≤ i ≤ 4 only consist of 1s and satisfy the following
conditions:

• |an1 | = n− 2.
• |an2 | = k− 3.
• |an3 | = n− k.
• |an4 | = n.
•

bn =

{
an1 , if n is odd,
an4 , if n is even.

Corollary 2. For n > 2 and 2 ≤ k ≤ n, the sequence g(n,k) is automatic.

Proof. For n > 2 and 2 ≤ k ≤ n, the fixed continued fraction

g(n,k) = [2, an1 , an2 , an3 , 3, an1 , 3, an4 , 3, an1 , . . . , 3, bn, 2] (14)

gives rise to a snake graph of the form

G = G f (|an1 |+ 3, |an2 |+ 3, |an3 |+ 3, 2, |an1 |+ 3, 2, |an4 |+ 3, 2, |an1 |+ 3, 2, . . . , 2, |bn|+ 3). (15)

Vertical straight snake graphs of length 2 appear as transitions of the form (1, 3).
Now, we fix a preprojective Kronecker module with the form (n + 1, n) and assume

that its entries ai,j determine tiles in such a way that the snake graph G corresponds to the
helix with vertices

a1,1; a1,n+1; ak,n+1; ak,k−1; ak−1,k−1; . . . ; ak−t,n+(k−t); ak−(t+1),n+(k−t); ak−(t+1),k−(t+2);
ak−(t+2),k−(t+2) , 1 ≤ t ≤ k− 2.

Sequence g(n,k) is generated by an automaton A = (Q, Σ, q0, F, Σ, δ) such that

1. Q = (n + 1, n) = {ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1}.
2. Σ = {A, B}∗ ∪ {ε}.
3. q0 = a1,1.
4. F = {a2,1, a2,n+2}.
5. The transition function δ : Σ×Q→ Q is defined in such a way that for 1 ≤ t ≤ k− 2,

it holds that

δ(w, x) =



a1,n+1, if w = AB, x = a1,1,
ak,n+1, if w = ABB, x = a1,n+1,
ak,k−1, if w = ABBA, x = ak,n+1,
ak−1,k−1, if w = ABBAA, x = ak,k−1,
ak−t,n+(k−t), if w = ABBAA . . . AAB, x = ak−t,k−t,
ak−(t+1),n+(k−t), if w = ABBAA . . . AABB, x = ak−t,n+(k−t),
ak−(t+1),k−(t+2), if w = ABBAA . . . AABBA, x = ak−(t+1),n+(k−t),
ak−(t+2),k−(t+2), if w = ABBAA . . . AABBAA, x = ak−(t+1),k−(t+2),
x, Otherwise.

In particular, δ(w, x) = x if |w| > 2k or |w| < 2k and w does not encode a subpath of a
helix associated with the sequence g(n,k), (Figure 8 shows an example of an automaton
that recognizes the sequence g(n,k)).
We note that the automaton A recognizes words of the form ABBAA . . . BBA or
ABBAA . . . AAB of length |w| = 2k, 2 ≤ k ≤ n.
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// q0
A // q1

B // q2
B // q3

A // q4
A // q5

B // q6
B // q7

A

hh
A // q8

A // q9

B

yy
. . .

Figure 8. Example of an automaton accepting the terms of the sequence g(n,k). q0 = a1,1, q1 = a1,n+1,
q2 = ak,n+1, and so on.

5.2. Skew Braces Associated with Kronecker Modules

The result presented in this section proves that helices associated with pre-injective
Kronecker modules give rise to skew braces. In this case, we assume that the matrix form
of such modules are given as in identities (8) and (9), i.e., a pre-injective module P can be
written as a matrix block P = [E | F], where E and F are n× n + 1 matrices.

We let (H(n,n+1), ◦) denote the set of helices associated with the pre-injective Kronecker
module (n, n + 1) endowed with an operation ◦ (multiplication). In such a case, each helix
h can be written in the form:

h =
(

ept1 qs1
fpt1 qs2

, fpt2 qs2
ept2 qs3

, ept3 qs3
fpt3 qs4

, . . . , lptn qsn lptn qsn+1

)
(16)

where starting vertices are entries in the null column of matrix E, the pti
′s visit all the rows

of the indecomposable, qs1 = n + 1, pti 6= ptj if i 6= j and l ∈ {e, f }.
◦ is defined in such a way that if h, h′ ∈ H(n,n+1) then

h =
(

ept1 qs1
fpt1 qs2

, fpt2 qs2
ept2 qs3

, ept3 qs3
fpt3 qs4

, · · · , lptn qsn lptn qsn+1

)
,

h′ =

(
e′p′t1 q′s1

f ′p′t1 q′s2
, f ′p′r2 q′s2

e′p′t2 q′s3
, e′p′t3 q′s3

f ′p′r3 q′s4
, · · · , l′p′tn q′sn

l′p′tn q′sn+1

) (17)

then

h ◦ h′ =
(

e′ptp′t1
qs1

f ′ptp′t1
qs1(∗)

, f ′ptp′r2
qs1(∗)

e′ptp′r2
qs2(∗)

, · · · , l′ptp′rn
qsn(∗)

l′prp′rn
qsn+1(∗)

)
(18)

with l′ ∈ {e, f } and ptp′tn
− qsn+1(∗) = p′tn

− qsn+1 or equivalently

qsn+1(∗) = ptp′tn
− p′tn + qsn+1.

It is possible to endow H(n,n+1) with another operation + (addition) by bearing in
mind that the map f(

ept1 qs1
fpt1 qs2

, fpt2 qs2
ept2 qs3

, ept3 qs3
fpt3 qs4

, · · · , lprn qsn lprn qsn+1

) f−→
( 1 2 3 ··· n

pt1 pt2 pt3 ··· ptn

)
de-

fines a bijection between H(n,n+1) and the symmetric set Sn. Henceforth, we assume
that the notation f−1(πh) = hπ ∈ H(n,n+1), if πh ∈ Sn.

+ is defined in such a way that, if h, h′ ∈ H(n,n+1), then h+ h′ = hπ2π1 if h = hπ1 and
h′ = hπ2 with π1, π2 ∈ Sn.

The following result proves that helices associated with pre-injective Kronecker mod-
ules induce a skew brace, thus constituting a solution of the Yang–Baxter equation according
to Lemma 1 and Theorem 1.

Theorem 6. For n > 1 fixed, the set of helices (H(n,n+1),+, ◦) endowed with the addition + and
multiplication ◦ as defined above is a skew brace.
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Proof. Firstly, we will prove that (H(n,n+1),+) and (H(n,n+1), ◦) are groups. To do that, it
suffices to note that, by definition, H(n,n+1) is closed under addition and multiplication.
Since it is easy to see that these operations are associative. We will focus on the description
of the corresponding units and inverses.

The identity element 1n is a helix defined in the following fashion:

1n =

{
(e1n+1 f12, f22e22, e32 f34, · · · , lnn−1lnn+1) if n is odd
(e1n+1 f12, f22e22, e32 f34, · · · , lnnlnn) if n is even

(19)

Note that, 1n = he where e = idSn is the identity of the symmetry group Sn. The
multiplicative inverse of a helix

h =
(

ept1 qs1
fpt1 qs2

, fpt2 qs2
ept2 qs3

, ept3 qs3
fpt3 qs4

, . . . , lptn qsn lptn qsn+1

)
is a helix h−1 defined in such a way that

h−1 =

(
e′p′t1 q′s1

f ′p′t1 q′s2
, f ′p′t2 q′s2

e′p′t2 q′s3
, e′p′t3 q′s3

f ′p′t3 q′s4
, · · · , l′p′tn q′sn

l′p′tn q′sn+1

)
where ptp′ti

= i, for all 1 ≤ i ≤ n.

On the other hand, he = 0 provided that

he + h = he + hπ = hπe = hπ = h, for any h ∈ H(n,n+1) and some π ∈ Sn. (20)

For any h = hπ with π ∈ Sn, it holds that

hπ + hπ−1 = hππ−1 = he = h. (21)

Thus, −hπ = hπ−1 = −h.
Finally, we note that for all helices h, h′, h′′ ∈ H(n,n+1) with h = hπi , h′ = hπj ,

h′′ = hπk for some πi, πj, πk ∈ Sn, it holds that;

hπi + (hπj ◦ hπk ) = hπi + hπjπk = hπjπkπi = hπi + hπk + hπj .

(hπi + hπj) ◦ (h
−1
πi

) ◦ (hπi + hπk ) = hπjπi ◦ hπ−1
i
◦ hπkπi = h

πjπiπ
−1
i πkπi

= hπjπkπi .
(22)

Thus, (H(n,n+1),+◦) is a skew brace.

Remark 1. We note that some details included in the proof of Theorem 6 can be omitted, taking into
account that, according to Vendramin et al. [22], groups give rise to skew braces, also called almost
trivial skew braces by Koch et al. [36]. However, for the sake of clarity, we prove that (h(n,n+1),+, ◦)
satisfies all the properties that make it a skew brace.

5.3. Discussion

This paper provides new applications of the non-regular modules over the Kronecker
algebra. On the one hand, snake graphs associated with preprojective Kronecker modules
allow proving the automaticity of some continued fraction sequences. On the other hand,
snake graphs associated with pre-injective Kronecker modules give rise to particular classes
of skew braces that define the set-theoretical solutions of the Yang–Baxter equation (see
Lemma 1 and Theorem 1).

As an example, the following are the elements of (H(3,4),+, ◦), where h(i j k) de-

notes the helix associated with the permutation
(

1 2 3
i j k

)
, i, j, k ∈ {1, 2, 3} denoted(

i j k
)
;

h1 = h(1 2 3) = (e14 f12, f22e22, e32 f34)
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h2 = h(1 3 2) = (e14 f12, f32e33, e23 f23)

h3 = h(2 1 3) = (e24 f23, f13e11, e31 f34)

h4 = h(2 3 1) = (e24 f23, f33e33, e13 f12)

h5 = h(3 2 1) = (e34 f34, f24e22, e12 f12)

h6 = h(3 1 2) = (e34 f34, f14e11, e21 f23).

Some products

h1 ◦ h2 = (e14 f12, f22e22, e32 f34) ◦ (e14 f12, f32e33, e23 f23)

= (e14 f12, f32e33, e23 f23) = h2 = h1 + h2.

h3 ◦ h3 = (e24 f23, f13e11, e31 f34) ◦ (e24 f23, f13e11, e31 f34)

= (e14 f12, f22e22, e32 f34) = h1 = h3 + h3.

The Cayley table of (H3,4, ◦) appears as follows:

◦ h1 h2 h3 h4 h5 h6
h1 h1 h2 h3 h4 h5 h6
h2 h2 h1 h6 h5 h4 h3
h3 h3 h4 h1 h2 h6 h5
h4 h4 h3 h5 h6 h2 h1
h5 h5 h6 h4 h3 h1 h2
h6 h6 h5 h2 h1 h3 h4

The Cayley table of (H3,4,+) has the following shape:

+ h1 h2 h3 h4 h5 h6
h1 h1 h2 h3 h4 h5 h6
h2 h2 h1 h4 h3 h6 h5
h3 h3 h6 h1 h5 h4 h2
h4 h4 h5 h2 h6 h3 h1
h5 h5 h4 h6 h2 h1 h3
h6 h6 h3 h5 h1 h2 h4

6. Concluding Remarks

This paper explored new interactions between the representation theory of the Kronecker
algebra and studies dealing with the Yang–Baxter equation and automatic sequences. On the
one hand, it is proven that preprojective Kronecker modules are automatic in the sense that
a suitable automaton generates them. Actually, it is possible to conclude that Krull–Schmidt
categories generated by a finite number of preprojective Kronecker modules are automatic. This
result is obtained provided that any non-regular module over the Kronecker algebra has an
associated set of snake graphs, as such snake graphs allow one to prove that some sequences of
continued fractions are also automatic.

On the other hand, it is proven that the snake graphs associated with pre-injective Kro-
necker modules give rise to the solutions of the Yang–Baxter equation. To do that, such a set of
snake graphs is endowed with two non-commutative operations, making it a skew brace.

Future Work

The following are interesting tasks to carry out in the future.

1. To define automatic sequences based on invariants of indecomposable modules of different
Krull–Schmidt categories.
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2. To determine the braces via solutions of generalized matrix problems.
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