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Abstract: We present results from ab initio, self-consistent calculations of electronic, transport, and
bulk properties of cubic magnesium silicide (Mg2Si). We employed a local density approximation
(LDA) potential to perform the computation, following the Bagayoko, Zhao, and Williams (BZW)
method, as improved by Ekuma and Franklin (BZW-EF). The BZW-EF method guarantees the
attainment of the ground state as well as the avoidance of over-complete basis sets. The ground
state electronic energies, total and partial densities of states, effective masses, and the bulk modulus
are investigated. As per the calculated band structures, cubic Mg2Si has an indirect band gap of
0.896 eV, from Γ to X, for the room temperature experimental lattice constant of 6.338 Å. This is in
reasonable agreement with the experimental value of 0.8 eV, unlike previous ab initio DFT results of
0.5 eV or less. The predicted zero temperature band gap of 0.965 eV, from Γ to X, is obtained for the
computationally determined equilibrium lattice constant of 6.218 Å. The calculated value of the bulk
modulus of Mg2Si is 58.58 GPa, in excellent agreement with the experimental value of 57.03 ± 2 GPa.

Keywords: density functional theory (DFT); second DFT theorem; band gap; density of states;
effective masses; bulk modulus

1. Introduction and Motivation

Magnesium silicide (Mg2Si) has a face-centered cubic (FCC) antifluorite structure [1,2]
with a room temperature lattice constant of 6.338 Å [3]. The compound is of particular
interest to experimentalists and theorists because it crystallizes in the antifluorite structure,
with only one molecular unit per primitive cell, unlike Zinc-blende or diamond structures.
Mg2Si has received much attention as a potential high-performance thermoelectric mate-
rial. As a result, the electrical, optical, and thermal properties of the material have been
studied [1,3–6]. Mg2Si is an alternative solar cell material, as reported by Kato et al. [7]. It is
also reported by Scouler [1] to show a high absorption coefficient of 3 × 105 cm−1 at 2.5 eV.
Experimental measurements on the compound show that the material has a narrow, indirect
band gap. Several experimental studies of Mg2Si have been carried out through Raman
scattering [8], electro-reflectance measurements [9], reflectivity spectra [10], photo-emission
spectroscopy [11], infrared reflectivity spectroscopy [12], and X-ray diffraction [13] in order
to determine its physical properties and related parameters.

Heller and Danielson [14] measured the resistivity and Hall coefficient of Mg2Si single
crystal and reported an indirect energy gap of 0.8 eV. Winkler [15] experimentally examined
the semiconducting properties of polycrystalline n-type Mg2Si. His results include an
indirect band gap of 0.77 eV. An infrared absorption spectrum experiment of n-type Mg2Si
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single crystal, carried out by Koenig et al. [16], obtained a 0.4 eV indirect band gap. The
large difference between this value and the ones above, which are in general agreement,
leads us to note that long tails of absorption spectra are known to result in significant
uncertainties in the determination of band gaps. The accepted experimental gaps for the
material are from 0.65 eV to 0.80 eV. Table 1 shows various experimental band gaps reported
for Mg2Si.

Table 1. Experimental measurements of the band gap of Mg2Si.

Measurement Method Band Gap (eV)

Resistivity and Hall effect Measurement 0.78 a indirect

Polycrystalline sample 0.77 b indirect

Reflectance measurement samples cleaved from boules 0.65 c indirect

Hall coefficient measurement for Mg2Si single crystal 0.80 d indirect
[a] Ref [3] [b] Ref [15] [c] Ref [17] [d] Ref [14].

Numerous theoretical studies of Mg2Si have been performed. Some of them utilized
ab-initio LDA or GGA potential in first-principles calculations.

Corkill et al. [18] investigated the structural and electronic properties of Mg2Si, uti-
lizing the ab-initio pseudopotential approach within a local density approximation (LDA)
potential. They reported an indirect band gap of 0.118 eV. Premlata and Sankar [18], using
ab-initio density functional theory within the generalized gradient approximation (GGA),
reported an indirect band gap of 0.42 eV. The density functional theory perturbation cal-
culations of Boulet et al. [19] found an indirect band gap of 0.21 eV, from Γ-X. Imai [20]
performed calculations of electronic proprieties and densities of states of Mg2Si, using the
pseudopotential method, and reported an indirect band gap of 0.28 eV.

Other previous calculations of the band gap of Mg2Si are shown in Table 2. As per
the content of this table, six previous calculations with an ab-initio LDA potential have
produced indirect band gaps ranging from 0.11 eV to 0.53 eV. Seven previous ab-initio
GGA calculations found band gap values between 0.19 eV and 0.42 eV. The generally
accepted experimental band gap of Mg2Si is approximately between 0.65 eV and 0.80 eV.
The table also shows a result from DFT calculations using a hybrid functional, and one
from a Green function and dressed Coulomb approximation (GWA) calculations. We do not
discuss the GW result, however, given that DFT is a totally different theory than GW. As
for the hybrid functional result, it agrees with experiment, even though hybrid functional
calculations have no predictive capabilities, given that their results depend on the values of
the parameters employed in their construction.

Table 2. Previous calculated band gaps of Mg2Si, mostly obtained with ab initio LDA or GGA potentials.

Computational Method Potentials Band gap, Eg (eV)

Empirical pseudopotential LDA 0.118 h (indirect)

Projector augmented plane wave (PAW) LDA 0.12 i (indirect)

Crystal potential of muffin tin LDA 0.2 j (indirect)

Pseudopotential description LDA 0.277 k (indirect)

Empirical pseudopotential method LDA 0.53 l (indirect)

Empirical pseudopotential LDA 0.49 m (indirect)

Plane wave pseudopotential GGA 0.256 n (indirect)

Norm-conserving pseudopotential GGA 0.21 o (indirect)

Linear augmented plane wave GGA 0,19 p (indirect)

Plane wave pseudopotential GGA 0.42 q (indirect)
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Table 2. Cont.

Computational Method Potentials Band gap, Eg (eV)

Norm-conserving pseudopotential GGA 0.21 r (indirect)

Pseudopotential approach GGA 0.27 s (direct)

Pseudopotential method GGA 0.2261 t (indirect)

Projector augmented plane wave (PAW) GW 0.65 u (indirect)

Hybrid-functional and quasi-particle GW DFT-PBE, GW
0.817 v (indirect)

2.685 v (direct)
[h] Ref [17] [i] Ref [21] [j] Ref [22] [k] Ref [20] [l] Ref [23] [m] Ref [24] [n] Ref [25] [o] Ref [19] [p] Ref [26] [q] Ref [18] [r]

Ref [19] [s] Ref [27] [t] Ref [28] [u] Ref [21] [v] Ref [29].

The previous ab-initio DFT results, in Table 2, are uniformly much smaller than the
accepted experimental gap. This fact is a central motivation for our work. Additionally, an
accurate theoretical description of electronic and related properties of the material could
lead to the exploration of novel practical applications. A support for our motivation consists
of the fact that previous applications of our computational methods have provided accurate
descriptions and predictions of proprieties of semiconductors.

2. Computational Method

The computational details that permit the replication of this study follow. Mg2Si
crystallizes into a stable face-centered cubic (FCC) antifluorite (anti-CaF2-type cF12) struc-
ture [2] (space group: O5

h − Fm3m, No. 225), with the two magnesium (Mg) atoms located
at ± (1/4, 1/4, 1/4), and one silicon (Si) atom located at (0, 0, 0) Wyckoff positions. In
this work, we performed first-principles full-potential DFT calculations for the electronic
properties of Mg2Si, using the room temperature experimental lattice constant of 6.338 Å [2].
We employed the linear combination of atomic orbitals (LCAO) formalism in this work.
We utilized a computational package based on density functional theory (DFT), devel-
oped at the Ames Laboratory of the United States Department of Energy (DOE), Ames,
Iowa [30,31]. The LCAO formalism was implemented following the Bagayoko, Zhao, and
Williams (BZW) method [32–34], as enhanced by Ekuma and Franklin (BZW-EF) [35–39].

We employed the local density approximation (LDA) potential of Ceperley and
Alder [40] as parameterized by Vosko et al. [41]. As per the BZW-EF method, our self-
consistent calculations began with a small basis set that can account for all the electrons
in the system under study. Hence, this selected basis set is not smaller than the mini-
mum basis set. The radial parts of the atomic wave functions were expanded in terms
of Gaussian functions. The s and p orbitals for the cation Mg1+ were described with
22 even-tempered Gaussian functions with respective minimum and maximum exponents
0.34333 and 0.40013 × 105 for the atomic potential and 0.17830 and 0.11000 × 106 for the
atomic wave functions. The self-consistent calculations for Mg1+ led to the total, core, and
valence charges of 11.0000, 1.9999, and 9.0000, respectively. For Si2- the s and p orbitals were
also described with 22 even-tempered Gaussian functions with respective minimum and
maximum Gaussian exponents of 0.22100 and 0.58500 × 106, for the atomic potential, and
0.13557 and 0.44000 × 106, for the atomic functions. These Gaussian exponents led to the
convergence of the atomic calculations with the total, core, and valence charges of 16.0003,
2.0003, and 13.9999, respectively. In the self-consistent iterative calculations, a mesh of 60 k
points with proper weights in the irreducible Brillouin zone was used. The convergence
for a given self-consistent calculation was reached after 60 iterations, when the difference
between the potentials from two consecutive iterations was less than 2.0 × 10−4 Hartree.
Further, for the self-consistent calculations of the electronic band structures, we used a total
of 81 k points in the Brillouin zone.

Our ab initio, self-consistent calculations with the BZW-EF method began with a
small basis set which was large enough to accommodate all the electrons in Mg2Si. The
first self-consistent iterations, for Calculation I, were performed with this basis set. After
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augmenting the basis set of Calculation I with one orbital, we carried out self-consistent
Calculation II. Then, we compared the occupied energies of Calculation I and Calculation II,
graphically and numerically, with the Fermi energy set to zero. This comparison revealed
that some occupied energies from Calculation II were lower than their corresponding
values from Calculation I. This lowering of occupied energies shows that the basis set of
Calculation I was not adequate for describing the true ground state of Mg2Si. With no
certainty that Calculation II produced the ground state energies, we augmented its basis
set by one orbital to perform Calculation III. Again, we compared the occupied energies
from Calculations II and III. We continued this process until we found three consecutive
calculations that produced the same occupied energies. These three calculations are the
rigorous criterion that the occupied energies have reached their absolute minima, i.e.,
the ground state. Our verifiable attainment of the ground state, following a generalized
minimization of the energy, is required by the second DFT theorem [38]. The first of these
three consecutive calculations, with the smallest basis set, is the one providing the true
DFT description of the material. The basis set of this calculations is called the optimal
basis set. When self-consistency is reached with the optimal basis set, the resulting charge
density is that of the ground state. The lowering of eigenvalues as the size of the basis
set increases stems from the Rayleigh theorem for eigenvalues [37–39]. A crucial point
consists of the fact that basis sets that are larger than the optimal one, and that contain the
optimal one, lead to the same occupied energies, the same charge density, and the same
Hamiltonian upon reaching self-consistency. Due to the differences in the sizes of the basis
sets, some unoccupied energies are lowered by larger basis sets while the occupied energies
do not change from their values obtained with the optimal basis set. Consequently, any
unoccupied eigenvalue obtained with a large basis set containing the optimal one, and that
is lower than its corresponding value produced with the optimal basis set, does not belong
to the spectrum of the Hamiltonian, a unique functional of the charge density [37]. We
note here that the referenced lowering of some unoccupied energies, while the occupied
ones are unchanged, can explain the widespread underestimation of band gaps by DFT
calculations that do not perform a generalized minimization as required by DFT. In the EF
enhancement of the BZW method, orbitals are added as follows: for a principal quantum
number n, the p, d, and f orbitals are added, if they were occupied in the neutral system,
before the spherically symmetric s orbital. This counterintuitive approach recognizes the
inherent polarization of the valence electrons shared by two or more ionic sites.

3. Results

We list below, in Table 3, orbitals involved in the description of the valence states of
Mg1+ and Si2- in columns two and three, respectively. A superscript of zero signifies that
the concerned orbital is empty. The total number of wave functions (with the number of
orbitals for Mg1+counted twice for Mg2Si), and the obtained bandgaps from Γ to X and
from Γ to K, for each calculation are also listed. As per the BZW-EF method, in going from
one calculation to the next, one orbital is added to the basis set of the former. We see the
progressive increase in the size of the basis set from one calculation to the next.

The generalized minimization of the occupied energies requires the described succes-
sive calculations. The calculations stopped at VIII because Calculations VI, VII, and VIII
produced identical occupied energies. Figures 1–3 illustrate the referenced minimization.
It is clearly visible in Figure 1 that the occupied bands from Calculation III, as a whole,
are lower than those from Calculation II. Figure 2 shows that the occupied energies from
Calculation V, as a whole, are slightly lower than those from Calculation IV. In contrast,
the occupied energies of Calculations VI and VII are identical, as seen in Figure 3. The
expression “as a whole” underscores the fact that the movement (i.e., lowered or not) of
individual bands is not the focus, as it is the sum of all the occupied energies that represents
the energy content of the Hamiltonian.
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Table 3. This table shows the successive additions of one orbital, from a calculation to the next, in
performing density functional theory (DFT) studies of cubic Mg2Si, following the BZW-EF method.
We utilized a local density approximation (LDA) potential and a room temperature experimental
lattice constant of 6.338 Å. The indirect bandgap of Mg2Si in its natural, stable phase (cF12) is 0.896 eV.

Cal. No. Orbitals for the Valence
States of Mg1+

Orbitals for the Valence
States of Si2-

No. of Wave
Functions

Band Gap
(Γ–X)
in eV

Band Gap
(Γ–L)
in eV

I 2s2 2p6 3s1 2s2 2p6 3s2 3p4 36 0.3448 1.4000

II 2s2 2p6 3s1 3p0 2s2 2p6 3s2 3p4 48 1.1532 1.6275

III 2s2 2p6 3s1 3p0 2s2 2p6 3s2 3p4 4p0 54 0.9717 1.5560

IV 2s2 2p6 3s1 3p0 4p0 2s2 2p6 3s2 3p4 4p0 66 0.9949 1.5639

V 2s2 2p6 3s1 3p0 4p0 2s2 2p6 3s2 3p4 4p0 4s0 68 0.9434 1.5317

VI 2s2 2p6 3s1 3p0 4p0 4s0 2s2 2p6 3s2 3p4 4p0 4s0 72 0.8961 1.5219

VII 2s2 2p6 3s1 3p0 4p0 4s0 2s2 2p6 3s2 3p4 4p0 4s0 5p0 78 0.9040 1.5285

VIII 2s2 2p6 3s1 3p0 4p0 4s0 5p0 2s2 2p6 3s2 3p4 4p0 4s0 5p0 90 0.9048 1.5271
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Figure 1. Electronic energy bands of cubic Mg2Si from Calculation II (solid lines) and Calculation
III (dotted lines), upon setting the Fermi level to zero; this level is indicated by the horizontal
dashed-dotted line.
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Figure 2. Electronic energy bands of cubic Mg2Si from Calculation IV (solid lines) and Calculation V
(dotted lines), upon setting the Fermi level to zero; this level is indicated by the horizontal dashed-
dotted line.

For all the eight calculations (I–VIII), the top of the valence band is located at the
Γ point, as expected for a cubic structure, while the bottom of the conduction band is at
the X point. Consequently, Mg2Si is an indirect band gap material. As illustrated above
in Figures 1–3, the occupied energies from Calculation VI have reached their absolute
minimum values, i.e., the ground state. This assertion rests on the fact that the occupied
energies from Calculation VIII are identical to those of VI and VII. The basis set for Calcu-
lation VI is the optimal basis set, i.e., the smallest basis set that leads to the ground state
charge density upon reaching self-consistency. There exists a potentially infinite number
of basis sets, obtained by augmenting the optimal basis set, and that lead to the ground
state of the material. However, depending on the orbitals utilized to augment the optimal
basis set, a given large basis set may lower some unoccupied energies from their values
obtained with the optimal basis set. Such spuriously lowered, unoccupied energies no
longer belong to the spectrum of the Hamiltonian, a unique functional of the ground state
charge density—according to the second corollary to the first DFT theorem [37,38]. The
calculated indirect band gap, obtained with the optimal basis set of Calculation VI, is
0.896 eV, from Γ to X points.
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Figure 3. Electronic band structure of cubic Mg2Si, obtained from Calculations VI (solid lines) and
VII (dotted lines), for a room temperature experimental lattice constant of 6.338 Å, using the BZW-EF
method. The Fermi level has been set to zero and its position is denoted by the horizontal dashed-
dotted line. The calculated band gap, as obtained with the optimal basis set of Calculation VI, is from
the Γ point to the X point, with a value of 0.896eV.

In Table 4, we list the calculated electronic energies of Mg2Si at some high-symmetry
points (Γ, X, K, and L) in the Brillouin zone. The listed energies are obtained from the
first-principles self-consistent calculations using the optimal basis set, i.e., in calculation VI.
The listed energies in Table 4 can be used in detailed comparisons with future experimental
measurements such as mid-IR infrared and X-ray spectroscopic measurements.

Figure 4 shows the total electronic density of states (DOS) obtained from the bands
produced using Calculation VI, with the optimal basis set, i.e., the basis set including the
atomic orbitals 2s2 2p6 3s1 3p0 4p0 4s0 for Mg+ and 2s2 2p6 3s2 3p4 4p0 4s0 for Si2−. The
embedded panel is the magnified DOS near the absorption edge, from −0.4 eV to 1.2 eV,
with a 20-fold magnification. From the table of energies at high-symmetry points, the
total width of the valence band is 9.295 eV. The width of the lowest laying valence band is
2.039 eV, while that of the group of upper valence bands is about 4.966 eV. Figure 5 shows
the partial densities of states (pDOS) for the Mg-s and p, and Si-s and p states, respectively,
derived from the ground state band structure in Figure 3. From the pDOS, it can be seen
that the valence band of Mg2Si is mainly dominated by the Si-p and Mg-p states, in the
vicinity of the Fermi level. The structure in the −7 eV to −9 eV is mainly from Si-s, with
relatively tiny contributions from the Mg-p and s states. The group of upper valence bands
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is formed by a hybridization of Si-p, Mg-p, and Mg-s, with much smaller contributions
from Si-s. The conduction bands, in the vicinity of the Fermi level, are mainly from a
hybridization of Mg-s and p states.

Table 4. Calculated eigenvalues (in eV) at high-symmetry points for cubic Mg2Si, as obtained from
Calculation VI, with the optimal basis. The room temperature experimental lattice constant is 6.338 Å.

L Point Γ Point X Point K Point

10.784 8.411 13.207 12.670

9.766 8.411 10.214 11.536

9.367 8.411 10.214 8.206

9.367 5.986 9.075 8.101

7.731 2.849 9.009 7.831

3.540 2.533 9.009 7.057

3.540 2.533 2.399 4.754

1.522 2.533 0.896 1.782

−0.866 0.000 −2.188 −1.834

−0.866 0.000 −2.188 −3.511

−4.879 0.000 −4.722 −4.278

−7.866 −9.295 −7.256 −7.292
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from Calculation VI. The vertical dashed line indicates the position of the Fermi level.

The transport properties of materials, including charge mobilities, require an accurate
and detailed knowledge of effective masses. In the vicinities of the conduction band
minimum and the valence band maxima at the Fermi level, the energy bands are fitted
with polynomials using both the least squares approximation and Lagrange/Hermite
interpolation polynomial scheme. At the extrema, the first derivatives of these polynomials
with respect to the electron/hole momentum are zero. The second derivatives lead to the
effective masses, in units of the electron mass (m0), as follows.

m0

m∗ =
m0

ђ2
∂2E(p)

∂p2
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As per the content of Table 5, calculations of electron effective masses have been
performed around the lowest conduction band at the X, L, and Γ points. The effective
masses of the light and the two heavy holes at the top of the valence band at Γ have been
calculated. These effective masses are shown in Table 5, for various directions, in units
of the mass of the electron (mo). The effective masses of heavy hole 1 and heavy hole 2
are equal, except in the (Γ-K)110 direction. Their difference in this direction is due to the
splitting of the bands in the (Γ-K)110 direction by the Coulomb crystal field. The calculated
electron effective mass for antifluorite Mg2Si at the Γ point is 0.418 mo in the Γ to L direction,
0.211 mo in the Γ to X direction, and 0.247 mo in the G to K direction. It is anisotropic.
The electron effective masses at the minimum of the conduction band at the X point are
essentially anisotropic, with a longitudinal electron effective mass of 19.707 mo in the X to
Γ direction, a transverse electron effective mass of 0.171 mo in the X to W direction, and
a value of 0.176 mo in the X to K direction. The electron effective masses at the lowest
conduction band at the L point are also essentially anisotropic, with a longitudinal electron
effective mass of 3.420 mo in the L to Γ direction, a transverse electron effective mass of
0.161 mo in the L to K direction, and one of 0.173 mo in the L to W direction. The value of
the heavy hole 1 effective mass is 0.838 mo in the Γ to L direction (Γ-L)111, 0.288 mo in the
Γ to X direction (Γ-X)100, and 0.516 mo in the Γ to K direction (Γ-K)110. The heavy hole 2
effective mass in the (Γ-K)110 direction is 0.327 mo. The effective masses of the light hole
are 0.106 mo in the (Γ-L)111 direction, 0.183 mo in the (Γ-X)100 direction, and 0.141 mo in
the (Γ-K)110 direction. We expect future experiments to corroborate our predictions in the
table below. When measurements are available, our findings generally agree with them, as
was the case for zb-InAs and zb-BeS [42,43] where our calculated effective masses for the
electron and for the holes are in agreement with the experiment.

Table 5. Calculated effective masses for antifluorite Mg2Si in units of free electron mass (mo). me

indicates an electron effective mass at the X, Γ and, L points; mhh and mlh represent the heavy and
light hole effective masses, respectively.

Types and Directions of Effective Masses Values of Effective Masses (mo)

me(Γ-L)111 0.418

me(Γ-X)100 0.211

me(Γ-K)110 0.247

me(X-Γ) Longitudinal 19.707

me(X-W) Transverse 0.171

me(X-K) Transverse 0.176

me(L-Γ) Longitudinal 3.420

me(L-K) Transverse 0.161

me(L-W) Transverse 0.173

mhh1(Γ-L)111 0.838

mhh1(Γ-X)100 0.288

mhh1(Γ-K)110 0.516

mhh2(Γ-K)110 0.327

mlh(Γ-L)111 0.106

mlh (Γ-X)100 0.183

mlh (Γ-K)110 0.141

Figure 6 exhibits the computed total energy as a function of the lattice constant.
The minimum total energy lies at a lattice constant of 6.218 Å, which is our computed
equilibrium lattice constant at zero Kelvin. The range of the lattice constant in which our
total energy values were obtained is 6.10 Å to 6.38 Å. Our calculation of the bulk modulus
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first entailed a least squares fitting of the total energy curve in the vicinity of its minimum.
The bulk modulus is obtained from the second derivative of this fit at the equilibrium lattice
constant, i.e., B = V d2E/dV2. We found 58.58 GPa. This value is in agreement with the
experimental finding [44] of 57.03 ± 2 GPa, while it is a little smaller than the theoretical
finding of Corkill and Cohen [17] of 59.2 GPa.
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As noted above, the minimum of the total energy curve is at 6.218 Å, which is the
predicted equilibrium lattice constant. With this lattice constant, we obtained 0.965 eV as
the zero-temperature band gap of Mg2Si.

4. Discussion

Below, we compare our findings to those of previous density functional theory cal-
culations. Given the lack of predictive capability of calculations with ad hoc potentials,
as the results vary with the parameters employed in the construction of these potentials,
we focus below on ab-initio DFT calculations with local density approximation (LDA) or
generalized gradient approximation (GGA) potentials. The Green function and dressed
Coulomb approximation (GWA) is not a DFT theory. For this reason, we do not compare
our LDA results to GWA findings.

The six ab-initio LDA calculations in Table 1 led to band gaps between 0.118 eV and
0.53 eV. The seven ab-initio GGA computations produced gaps between 0.19 eV and 0.42 eV.
Clearly, these previous ab-initio DFT calculations seriously underestimated the measured
band gap around 0.8 eV. To the best of our knowledge, these calculations employed a single
basis set to perform self-consistency iterations to arrive at a stationary state assumed to
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be the ground state. As amply discussed by Bagayoko [38,39], a stationary state, obtained
with a single basis set, is one among an infinite number of such states. Hence, the chances
for it be the ground state are practically zero. In contrast to these previous calculations, our
DFT work entailed successive calculations with progressively augmented basis sets, up to
three consecutive calculations that produce the same occupied energies. By virtue of the
Rayleigh theorem for eigenvalues [37–39], as the size of the basis set is increased, a given
eigenvalue is either decreased or stays the same if it has reached its absolute minimum.
While the occupied energies from the three calculations are identical, there are differences
between their unoccupied energies. It is the first of the three calculations that produces the
DFT results for the material. The reasonable agreement between our calculated band gap
of 0.896 eV and the experimental finding of 0.8 eV stems from the fact that our calculations
employed the true ground state charge density, as required by the second DFT theorem. We
recall that the optimal basis set, upon reaching self-consistency, produces the ground state
charge density. Larger basis sets that contain the optimal basis set lead to the same occupied
energies as the optimal basis set; they also lower some unoccupied energies from their
values obtained with the optimal basis set. Needless to add, a lowering of the minimum of
the conduction band, while the occupied bands do not change, can explain the widespread
underestimation of band gaps by DFT calculations that do not perform the generalized
minimization of the energy as described here. This process not only leads to the ground
state, in a verifiable manner, but also avoids over-complete basis sets that can lead to the
noted spurious lowering of some unoccupied energies.

In general, a lowering of unoccupied bands results in a decrease in their degree
of flatness. A decrease in the degree of flatness around the conduction band minimum
clearly leads to a decrease in the electron effective masses. Hence, the above lowering
of unoccupied energies is a plausible explanation of the underestimation of the electron
effective masses in a way that is linked to the underestimation of the band gap.

5. Conclusions

In summary, first-principles self-consistent calculations of electronic, transport, and
bulk properties of cubic antifluorite magnesium silicide (Mg2Si), using a local density
approximation (LDA) potential and the Bagayoko, Zhao, and Williams (BZW) method, as
enhanced by Ekuma and Franklin (BZW-EF), have been performed. The BZW-EF method
strictly adheres to the necessary conditions of validity of DFT calculations; it guarantees
the verifiable attainment of the ground state and the avoidance of over-complete basis sets
that can spuriously lower unoccupied energies. The calculated band structures show that
Mg2Si has an indirect bandgap of 0.896 eV, from the Γ to X point. This value is in reasonable
agreement with experimental data and is different from previously reported DFT results,
which are uniformly smaller than the band gap of cubic Mg2Si. The calculated DOS and
effective masses of the hole and electron will hopefully be confirmed by future experimental
investigations on Mg2Si, as has been the case for several predictions of our group [38,39].
Our calculated bulk modulus value of 58.58 GPa is in excellent agreement with the experi-
mentally determined value of 57.03 ± 2 GPa. The results from our computations will aid in
the future design of optoelectronic devices.
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