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Abstract: Water is a valuable, necessary and unfortunately rare commodity in both developing and
developed countries all over the world. It is undoubtedly the most important natural resource on
the planet and constitutes an essential nutrient for human health. Geo-environmental pollution can
be caused by many different types of waste, such as municipal solid, industrial, agricultural (e.g.,
pesticides and fertilisers), medical, etc., making the water unsuitable for use by any living being.
Therefore, finding efficient methods to automate checking of water suitability is of great importance.
In the context of this research work, we leveraged a supervised learning approach in order to design
as accurate as possible predictive models from a labelled training dataset for the identification of
water suitability, either for consumption or other uses. We assume a set of physiochemical and
microbiological parameters as input features that help represent the water’s status and determine
its suitability class (namely safe or nonsafe). From a methodological perspective, the problem is
treated as a binary classification task, and the machine learning models’ performance (such as Naive
Bayes–NB, Logistic Regression–LR, k Nearest Neighbours–kNN, tree-based classifiers and ensemble
techniques) is evaluated with and without the application of class balancing (i.e., use or nonuse
of Synthetic Minority Oversampling Technique–SMOTE), comparing them in terms of Accuracy,
Recall, Precision and Area Under the Curve (AUC). In our demonstration, results show that the
Stacking classification model after SMOTE with 10-fold cross-validation outperforms the others with
an Accuracy and Recall of 98.1%, Precision of 100% and an AUC equal to 99.9%. In conclusion, in
this article, a framework is presented that can support the researchers’ efforts toward water quality
prediction using machine learning (ML).

Keywords: water quality; sustainability; environmental impact; data analysis; machine learning;
classification; prediction

1. Introduction

Water has been characterized as a source of life by the World Health Organisation. It
covers 70% of the Earth’s surface, 50–60% of human weight and 90% of our cells. World
Water Day [1] was established in 1992 by the United Nations and is celebrated annually on
March 22 to raise public awareness of the importance of drinking water and the sustainable
management of water resources [2,3].

While water is an essential nutrient for human health, easy access to it makes us take it
for granted, so we do not realise the importance of proper hydration. According to experts,
water ranks second as a source of oxygen, which is essential for life, since the human body
is made up of 2/3 of water. A person can survive for several days without food but only
a few days without water. It is the main component of the human body and plays an
important role in all stages of human development [2,4].

In addition, water is necessary to regulate body temperature, keeping it cool through
sweat. Water cleanses the body of toxins and unnecessary substances and is an important
component of the blood, as it transfers nutrients and oxygen to and from all cells. It also
provides a moist environment for all tissues of the body and is the main component of
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saliva and mucous membranes that lubricate the membranes that activate our digestive
system starting from the mouth. Finally, it helps maintain a healthy weight [4,5].

In case the water level in the body decreases, there are mechanisms that reduce the
loss of water through the kidneys, which have the ability to collect urine, thus reducing the
loss of water from them. However, there are situations in which the water balance becomes
negative, and then, unfortunately, there is a risk of dehydration, which is life-threatening.
Severe dehydration poses a problem with blood pressure, as it drops dangerously and
blood circulation is reduced, resulting in poor oxygenation of tissues and not supplying
tissues and organs with the necessary nutrients. In this case, there is intense dizziness, loss
of consciousness, tachycardia and renal failure, while death can occur [6,7].

Water is a key component of an ecosystem. The natural environment and the organisms
that live in it are the links of a food chain that is directly dependent on water. When a link
in the food chain is broken, problems will arise, with the final recipient being humans, who
are at the top of the food pyramid [8,9].

During the last decades, there has been an increase in environmental pollution from
human activities. Water quality is directly affected by discharges, such as from factories
or sewage treatment plants. It can also be affected by pollution from diffuse sources, such
as nutrients and pesticides from agricultural activities and pollutants released into the
air by industry, which then fall to land and sea. The urban wastewater and commercial
activity within the urban fabric contribute to the greatest extent to the pollution of water
resources [10,11].

To be classified as potable, water is required to meet certain specifications based on its
quality characteristics. In this way, the basis is given to the substances contained in the wa-
ter, and the concentration limits must be observed so that the water can be consumed safely.
This can be achieved either by physicochemical water testing, where pH, conductivity,
total solids, suspended solids, total hardness, total alkalinity, bicarbonates, carbonates and
chlorides are tested, by microbiological water testing that checks for coliform bacteria, es-
cherichia coli and enterococci or by analysis of trace elements and pollutants, where a check
is made for nitrites, nitrates, phosphates, ammonia, potassium, disinfectants, fluorides,
hydrogen sulphide, hydrogen cyanide, phenols and selected heavy metals [12–14].

In recent years, actions have been taken by organised international bodies and gov-
ernments to reduce the reckless use of water and protect and promote public health by
minimising the sources of water pollution, making it appropriate for consumption [15]. In
a changing environment, the need for efficient management and safe provision of drinking
water [16] has increased researchers’ attempts to develop appropriate tools for continuous
water monitoring to sustain its quality. This process is known as water qualification. The
water quality index (WQI) constitutes a simple but still efficient qualification approach that
scientists represent and calculate as a weighted combination of several features’ values [17].
The water quality’s rating may be based on the relative importance of each parameter–
feature of the WQI and may be calculated in various ways, such as the inverse proportion
of recommended standard rules for each parameter. By thresholding the measured data,
the related level of suitability, which helps decision-makers to interpret and indicate if
water is appropriate for daily use and consumption, can be estimated.

Traditional methods are time-consuming, as they require an expert to decide on the
basis of the measured data. Nowadays, water quality measuring has benefited from
the advances in Information and Communication Technologies (ICTs). More specifically,
wireless sensor networks and smart monitoring systems using Internet-of-Things (IoT)
technology have ensured the availability of various big sensor data, while the fields of
Artificial Intelligence (AI) and Machine Learning (ML) have provided scientists with
efficient methods for accurate data collection, advanced processing and analytics [18]. In
the relevant literature, the water qualification problem is tackled as either a time series
prediction of water quality parameters [19] or a classification task [20] based on WQI values
in order to assign a class label to an undetermined water sample.
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The scope of this research work is to present an automated process by adopting data-
driven approaches founded on high-accuracy ML classifiers for the design of water quality
prediction models. According to the WHO guidelines for the computation of water quality,
a wide list of parameters (physicochemical, microbiological and heavy metals) can be
included; thus, the features of ML models depend on the potential sources of contamination
and how they can be controlled. The wider the range of features (namely data sources) used
(so as to avoid overfitting), the more accurate the results of the classification process will be.
Note that we do not emphasise data collection but training models for an as accurate as
possible water quality prediction using a public dataset with already labelled data.

The research question that the current study attempts to answer is if water under
specific features (namely variables that have the potential to have adverse effects on human
health) is safe for consumption/use or not. To answer this question, we formulate a binary
classification problem, where the water quality class was derived on the basis of the WHO
standards applied to the involved features (chemical and biological), and thus in the WQI.
However, the nature and form of drinking-water standards may vary among countries and
regions. The main contributions of this research article are the following:

• A data preprocessing step that exploits the SMOTE is performed. In this way, we create
a balanced dataset and, thus, we can design efficient classification models unbiased to
the safe or nonsafe classes.

• A features analysis is made, which includes: (i) a statistical description of the numeric
features and (ii) order of importance evaluation by employing three different methods.

• A comparative evaluation of numerous ML classification models, namely probabilistic,
distance-based, tree-based and Ensemble Learning is performed. For the purpose of
this study, NB, LR, Artificial Neural Network (ANN), kNN, Rotation Forest (RotF),
AdaBoostM1, Random Forest (RF), Stacking, Voting and Bagging are selected in order
to develop the intended model with the highest accuracy and discrimination ability
after SMOTE with 10-fold cross-validation.

• For the models’ evaluation, we considered the performance metrics Accuracy, Recall,
Precision and AUC. Moreover, AUC ROC curves are also captured and presented.

• Finally, from various aspects, the performance analysis revealed that the Stacking
classification model after SMOTE with 10-fold cross-validation outperforms the others,
and thus it constitutes the proposition of this study.

Based on the above points, the potential readers have the chance to see from a prac-
tical perspective the application of ML in the field of water sustainability, which has an
essential impact on human life, and understand the superiority of the SMOTE technique
and Ensemble Learning in order to train efficient models.

The rest of the paper is structured as follows. In Section 2, we capture related works
on the prediction of water quality using ML techniques and models. Then, in Section 3, we
describe the dataset we relied on and analyse the methodology we followed. In addition,
in Section 4, we discuss and evaluate the research experimental results. Finally, conclusions
and future directions are mentioned in Section 5.

2. Related Works

This section provides a brief discussion of recent works on the subject under consider-
ation. Machine Learning techniques and a variety of well-known algorithms have been
applied in order to capture with high accuracy the quality of water.

Firstly, the proposed methodology in [21] employs four input parameters (temperature,
turbidity, pH and total dissolved solids). Gradient Boosting, with a learning rate of 0.1
and polynomial regression of second degree, was the most efficient predictor of the water
quality index, having a mean absolute error of 1.9642 and 2.7273, respectively. However,
MultiLayer Perceptron (MLP), with a configuration of (3, 7), was the most efficient classifier
for the water quality prediction, with an accuracy of 0.8507.

Moreover, the paper in [22] proposes the use of enhanced Wavelet De-noising Tech-
niques using Neuro-Fuzzy Inference Systems (WDT-ANFIS). Dual scenarios were pre-
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sented: Scenario 1 was designed to confirm prediction models for water quality parameters
at each station according to 12 input parameters, whereas Scenario 2 was designed to
confirm prediction models for water quality parameters according to 12 input parameters,
as well as the parametric values from prior upstream stations. In comparisons between the
two scenarios, the second achieved higher accuracy in terms of simulating the patterns and
magnitudes for every water quality parameter at every station.

Furthermore, in [23], four algorithms, namely RF, M5P, Random Tree (RT) and Reduced
Error Pruning Tree (RepTree), and 12 hybrid data-mining algorithms (combinations of
standalone with Bagging, CV Parameter Selection (CVPS) and Randomisable Filtered
Classification) were used to create the Iran water quality index (IRWQIsc) predictions.
Hybrid Bagging–Random Forest outperformed the other models (R2 = 0.941, RMSE = 2.71,
MAE ∼= 1.87, NSE = 0.941 and PBIAS = 0.500).

In addition, the basic models of the two hybrid ones in [24] are Extreme Gradient
Boosting and RF, which, respectively, introduce an advanced data denoising technique–
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). The
results show that the prediction stability of CEEMDAN–Random Forest and CEEMDAN–
Extreme Gradient Boosting is higher than other benchmark models for short-term water
quality prediction.

The authors in [25], utilised an ANN in order to develop a novel application to predict
water quality resilience to simplify resilience evaluation. The Fuzzy Analytic Hierarchy
Process method is used to rank water basins based on their level of resilience and to identify
the ones that demand prompt restoration strategies.

Similarly, in [26], water quality was evaluated via the detection of anomalies occurring
in time series data. For this purpose, the performance of several models, such as LR,
Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), ANN, Deep Neural
Network (DNN), Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)
is assessed using the F1 score metric. The best F1 score is achieved using the SVM model.

Moreover, the authors in [27] predicted water quality components of the Tireh River
using well-known models, including ANN, Group Method of Data Handling (GMDH) and
SVM. The best performance was related to the SVM.

Finally, the main purpose of the current study is to present a general methodology
for water quality prediction by leveraging supervised learning models. The adopted
methodology is irrespective of what features are used to capture the water status. The class
variable is the water quality index with two possible states “safe” and “nonsafe”. We do
not emphasise dataset engineering but the investigation of several classification schemes
using single classifiers (such as SVM, NB, RF, etc) and Ensemble Learning (Voting, Stacking
and Bagging). We consider an adequate set of labelled data with which a list of models
is trained and tested (after the application of class balancing) to identify the one with the
highest performance metrics.

3. Materials and Methods
3.1. Dataset Description

Our research work was based on a publicly available dataset [28]. The present dataset
contains 7986 instances, and the percentage of measurements that expresses whether the
water is suitable is 11.4% (910 instances). Finally, the number of features as input to the ML
models is 20, and the target class (safe) is described as follows:

• Aluminium (Al) [29]: This feature captures the amount of aluminium in one litre of
water (mg/L).

• Ammonia (NH3) [30]: This feature denotes the amount of ammonia in one litre of
water (mg/L).

• Arsenic (As) [31]: This feature stands for the amount of arsenic in one litre of water
(µg/L).

• Barium (Ba) [32]: This feature captures the amount of barium in one litre of water
(mg/L).



Computation 2023, 11, 16 5 of 14

• Cadmium (Cd) [33]: This feature records the amount of cadmium in one litre of water
(mg/L).

• Chloramine (NH2Cl) [34]: This feature captures the amount of chloramine in one litre
of water (mg/L).

• Chromium (Cr) [35]: This feature shows the amount of chromium in one litre of water
(mg/L).

• Copper (Cu) [36]: This feature records the amount of copper in one litre of water
(mg/L).

• Fluoride (F) [37]: This feature captures the amount of fluoride in one litre of water
(mg/L).

• Bacteria [38]: This feature shows the number of bacteria in one litre of water.
• Viruses [39]: This feature captures the number of viruses in one litre of water.
• Lead (Pb) [40]: This feature denotes the amount of lead in one litre of water (µg/L).
• Nitrates (NO3−) [41]: This feature captures the number of nitrates in one litre of water

(mg/L).
• Nitrites (NO2−) [42]: This feature shows the number of nitrites in one litre of water

(mg/L).
• Mercury (Hg) [43]: This feature captures the amount of mercury in one litre of water

(mg/L).
• Perchlorate (ClO4−) [44]: This feature captures the amount of perchlorate in one litre

of water (mg/L).
• Radium (Ra) [45]: This feature captures the amount of radium in one litre of water

(pCi/L).
• Selenium (Se) [46]: This feature captures the amount of selenium in one litre of water

(µg/L).
• Silver (Ag) [47]: This feature captures the amount of silver in one litre of water (µg/L).
• Uranium (U) [48]: This feature captures the amount of uranium in one litre of water

(mcg/L).
• Safe: This feature captures whether the water is safe for consumption or not.

All the attributes are numerical, except for the target class (safe), which is nominal.

3.2. Proposed Methodology

In this subsection, we focus on data preprocessing, feature analysis i.e., statisti-
cal description and their importance evaluation, and selection of ML models for water
suitability assessment.

3.2.1. Data Preprocessing

As for the current dataset, the nonuniform class distribution of the “safe” and “nonsafe”
instances was tackled by employing SMOTE [49]. SMOTE uses a 5-NN classifier in order to
create synthetic data [50] on the minority class, i.e., “safe”, which is oversampled such that
the instances in two classes are equally distributed (i.e., 50–50%). After the implementation
of SMOTE, the number of instances is 14,152. Now, the dataset is balanced, and the class
label includes 7076 safe and 7076 nonsafe instances.

3.2.2. Features Analysis

In Table 1, we present the statistical characteristics of the numeric features, namely,
minimum, maximum, mean and standard deviation in the balanced data.

Moreover, in Table 2, we present the dataset features’ importance concerning the “safe”
class. Three methods are considered to apply feature ranking. The former exploits Pearson
Correlation Coefficient (CC) [51] and the latter the Gain Ratio (GR) method. Additionally,
the Random Forest classifier is utilised to assign a ranking score.
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Table 1. Statistical Description of the Numerical Features.

Feature Min Max Mean ± Stdv

aluminium 0 5.05 1.162 ± 1.446
cadmium 0 0.13 0.032 ± 0.034
chloramine 0 8.68 2.749 ± 2.536
chromium 0 0.9 0.304 ± 0.265
arsenic 0 1.05 0.123 ± 0.214
viruses 0 1 0.28 ± 0.346
silver 0 0.5 0.166 ± 0.141
barium 0 4.94 1.693 ± 1.156
uranium 0 0.09 0.042 ± 0.025
perchlorate 0 60.01 18.034 ± 16.397
nitrates 0 19.83 9.32 ± 5.522
radium 0 7.99 3.092 ± 2.233
nitrites 0 2.93 1.355 ± 0.508
mercury 0 0.01 0.005 ± 0.003
selenium 0 0.1 0.049 ± 0.027
copper 0 2 0.829 ± 0.607
bacteria 0 1 0.309 ± 0.305
ammonia 0 29.84 14.045 ± 8.717
lead 0 0.2 0.099 ± 0.054
fluoride 0 1.5 0.773 ± 0.403

Table 2. Measure of Features’ Importance with Three Different Methods: Correlation Coefficient,
Gain Ratio and Random Forest.

Pearson Correlation Coefficient Gain Ratio Random Forest

Feature Rank Feature Rank Feature Rank

aluminium 0.44842 aluminium 0.14809 cadmium 0.46
cadmium 0.42867 cadmium 0.13597 chromium 0.439
chloramine 0.29334 uranium 0.12884 aluminium 0.433
chromium 0.28024 selenium 0.12718 arsenic 0.421
arsenic 0.23094 mercury 0.12579 nitrites 0.417
viruses 0.17795 arsenic 0.11269 fluoride 0.417
silver 0.16577 viruses 0.1003 lead 0.414
barium 0.14402 silver 0.09952 viruses 0.414
uranium 0.13252 chromium 0.09493 copper 0.414
perchlorate 0.12497 chloramine 0.08406 silver 0.408
nitrates 0.11617 nitrites 0.0744 barium 0.401
radium 0.10245 bacteria 0.07052 uranium 0.396
nitrites 0.06979 copper 0.06093 selenium 0.388
mercury 0.06801 perchlorate 0.0483 bacteria 0.384
selenium 0.05586 fluoride 0.0426 mercury 0.382
copper 0.0485 lead 0.03587 chloramine 0.382
bacteria 0.04449 barium 0.03404 radium 0.372
ammonia 0.03705 radium 0.02803 nitrates 0.249
lead 0.00842 nitrates 0.01322 perchlorate 0.227
fluoride 0.00494 ammonia 0.00413 ammonia 0.181

The Pearson correlation score is used to infer the strength of the association between
the class and a feature. We observe a moderate correlation of 0.44842 and 0.42867 between
the “safe” class and aluminium and cadmium, respectively. A low association of 0.29334 and
0.28024 is shown to have the “safe” class with chloramine and chromium, correspondingly.
Moreover, a weak association is shown to have the “safe” class with viruses, silver, barium,
etc. Moreover, negligible correlation is observed with the rest of the features, where the
rank is lower than 0.1 and close to 0.

Random Forest calculates the importance of a feature based on the purity index. Its
importance increases with the increase in this index in leaves. It is applied in each tree,
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averaged among all the trees and normalised such that the sum of the importance scores
is equal to 1 [52]. The Gain Ratio [53,54] evaluates the worth of an attribute x according
to the formula GR(c, x) = H(c)−H(c|x)

H(x) , where H(c|x), H(c) and H(x) are the entropy of
the c class, the conditional entropy of the class given an attribute and the entropy of the
feature x.

We see that each method has derived a different ranking order, and there are scores
close to zero, which shows that these features may not contribute to the models’ perfor-
mance enhancement. However, all features are considered for the models’ training, since
they are important risk factors for water quality prediction.

3.3. Machine Learning Models

In this study, for the topic under consideration, several ML models were employed
to identify which one performs better than the rest by evaluating their prediction perfor-
mance. More specifically, we focused on NB [55], which is a probabilistic classifier. From
ensemble ML algorithms [56], Bagging [57], RotF built upon decision trees [58], RF [59],
AdaBoostM1 [60], Voting [61] and Stacking [62] were exploited. Finally, a simple ANN
Network (i.e., MLP) [63], LR [64] and kNN [65], a distance-based classifier, were evaluated.

4. Results and Discussion
4.1. Experiments Setup

We based the evaluation of our ML models on the Waikato Environment for Knowl-
edge Analysis (Weka) [66], which is free software developed at the University of Waikato,
New Zealand. This tool offers a library of various models for classification, clustering,
prediction, preprocessing and visualisation. In addition, the experiments were performed
on a computer system with the following specifications: 11th generation Intel(R) Core(TM)
i7-1165G7 @ 2.80GHz, RAM 16GB, Windows 11 Home, 64-bit OS and x64 processor. For our
experiment results, 10-fold cross-validation was applied in order to measure the models’
efficiency in the balanced dataset of 14,152 instances after SMOTE. Finally, in Table 3, we
illustrate the optimal parameter settings of the ML models that we experimented with and,
in Figure 1, we capture how the Voting and Stacking ensembles achieve the classification of
an uncategorized instance.

Table 3. Machine Learning Models’ Settings.

Models Parameters Models Parameters

NB use kernel estimator: False
use supervised discretization: True RotF

classifier: RF
number of groups: True

projection filter: PrincipalComponents

LR ridge = 10−8

use conjugate gradient descent: True
AdaBoostM1

classifier: RF
resume: True

use resampling : True

MLP
learning rate = 0.1
momentum = 0.2

training time = 200
Stacking classifiers: RF and NB

meta classifier: LR

kNN

k = 3
search algorithm: LinearNNSearch

with Euclidean
cross-validate = True

Voting
classifiers: RF and NB

combination rule: average
of probabilities

RF
break ties radomly: True

numIterations = 500
store out of bag predictions: True

Bagging
classifiers: RF

print classifiers: True
store out of bag predictions: True
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Random
Forest Naive Bayes

Training Data

predicted 
class

predicted 
class

Metaclassifier: Logistic
Regression

Test
instance

Predicted class

Random
Forest Naive Bayes

Training Data

class 1: p11 
class 2: p12 

class 1: p21 
class 2: p22

Soft Voting: 
class 1: P1 = (p11 + p21)/2 
class 2: P2 = (p12 + p22)/2 

Test
instance

Predicted class 
P1 > P2: class 1 
P1 < P2: class 2 

Voting Stacking

Figure 1. An overview of the Voting and Stacking ensemble schemes.

4.2. Evaluation

In the context of the ML models’ evaluation, we consider Accuracy, Recall, Preci-
sion and Area Under Curve (AUC), which are commonly used metrics in the relevant
literature [67].

Accuracy summarises the performance of the classification task and measures the
number of correctly predicted instances out of all the data instances. Moreover, Recall is an
appropriate metric to identify the errors of a model and how accurately the model identifies
the true “safe” and “nonsafe” instances, respectively. Precision indicates the proportion of
positive (either “safe” or “nonsafe”) identifications that was actually correct. Precision is a
measure of quality, while Recall is a measure of quantity. The aforementioned metrics are
defined as follows:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

Accuracy =
TN + TP

TN + TP + FN + FP
(1)

where TP, TN, FP and FN stand for True Positive, True Negative, False Positive and False
Negative, respectively. Finally, AUC values were recorded in order to evaluate the models’
efficiency. They vary between zero and one and are leveraged to identify the ML model
with the best performance in distinguishing “safe” from “nonsafe” instances.

In the context of this research work, plenty of Machine Learning models, such as
NB, LR, ANN, kNN and Ensemble Learning (RotF, AdaBoostM1, RF, Stacking, Voting,
and Bagging) were evaluated in terms of Accuracy, Precision, Recall and AUC in order to
determine the model with the best predictive performance. The performance outcomes of
the employed models are illustrated under two different cases, before and after applying the
SMOTE technique. To validate their performance on unseen data, 10-fold cross-validation
was applied. We adopted this method in order to estimate how the model is expected to
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perform when used to make predictions on data not used during the training stage. This
method randomly divides the set into 10 groups, or folds, of approximately uniform size.
The first fold is treated as a test/validation set, and the remaining nine folds are used to fit
each one of the selected models. The process is repeated until all folds are used as a test set,
and their average performance is considered.

Observing Table 4, we see that NB and 3NN are the most favoured models in terms
of Precision and Recall, respectively. Moreover, NB and all ensemble models except for
Bagging attained Precision equal to the upper limit of 1. Moreover, LR is the second model
in the list that considerably improved its Precision from 0.553 to 1. Focusing on the Recall
metric, LR and 3NN achieved similar low performances in the “No SMOTE” case, while,
after class balancing, they speeded up their recall 2.35 and 2.92 times, correspondingly.
RotF and MLP are the next models that improved their performance by 1.85 and 1.4 times,
respectively. Accuracy and AUC are the metrics that benefited less than the other two
metrics due to class balancing.

Table 4. Performance Evaluation before and after SMOTE.

Accuracy Precision Recall AUC

NO SMOTE SMOTE NO SMOTE SMOTE NO SMOTE SMOTE NO SMOTE SMOTE

NB 0.819 0.927 0.358 1 0.745 0.854 0.838 0.978
LR 0.907 0.798 0.692 0.805 0.335 0.787 0.861 0.879
MLP 0.944 0.924 0.807 0.914 0.669 0.937 0.882 0.972
3NN 0.893 0.886 0.553 0.822 0.334 0.978 0.767 0.937
RF 0.965 0.970 0.920 0.963 0.757 0.978 0.986 0.996
RotF 0.938 0.953 0.891 0.943 0.520 0.964 0.966 0.992
AdaBoostM1 0.965 0.970 0.925 0.963 0.751 0.977 0.985 0.996
Stacking 0.967 0.981 0.886 1 0.816 0.981 0.979 0.999
Bagging 0.962 0.968 0.932 0.962 0.723 0.974 0.986 0.996
Voting 0.919 0.929 0.624 1 0.736 0.861 0.948 0.980

LR fits a line to separate the space exactly into two regions and predicts the class of
an unknown input feature vector. RotF and RF are based on a decision tree exploiting all
features, and thus essentially prevail, with a performance gap depending on the evaluation
metric. RF is a robust model, as it combines the output of multiple decision trees to come
up with a final prediction, achieving higher accuracy than all versions of decision trees.
Analysing the Ensemble Learning methods, they all perform similarly, since they use the
same well-behaved estimators as base classifiers (RF and AdaBoostM1). In particular,
the Bagging process applies random sampling with replacement in the initial dataset,
independent and parallel training of AdaBoostM1 learners and, finally, simple averages
of the outputs of single classifiers. Voting (specifically soft) averages the outcomes of
two different base models, RF and AdaBoostM1, which are trained independently in the
same data, while Stacking trains a metaclassifier with the outputs of the single classifiers.
Among them, Stacking shows a bit lower results, since it combines the outcomes of RF and
AdaBoosM1 into a weaker LR classifier.

Let us focus on the SMOTE case. From the experimental results, we see that our
proposed models show very good performance. The Voting classifier, which has as base
classifiers the RF and the AdaBoostM1, outperforms the other models, with an Accuracy,
Precision and Recall of 92.9%, 100% and 86.1%, respectively, and an AUC equal to 98%.
Similar high results are presented by the classifiers AdaBoostM1 and Bagging, where the
latter utilises as base classifier the AdaBoostM1, with an Accuracy, Precision and Recall of
(97%, 96.8%), (96.3%, 96.2%) and (99.85%, 99.86%) and an AUC equal to 99.6%. The Stacking
classifier, which has as base classifiers the RF and the AdaBoostM1, and as a metaclassifier
the LR, achieved an Accuracy, Precision and Recall of 98.1%, 100% and 98.1% and an AUC
equal to 99.9%. Regarding the AUC, the Stacking classifier prevails over the rest, with a
performance of 99.9%. RF, AdaBoostM1 and Bagging perform the same, with 99.6%.
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An important aspect of the study is the illustration of the AUC ROC curves. More
specifically, in Figures 2 and 3, we plot the ROC curve of the proposed ML models before
and after the application SMOTE, where it is shown that the performances of the Bagging,
Stacking, AdaBoostM1 and RF models are identical. The AUC ROC is a probability curve
that plots the True Positive Rate (TPR) or Recall against the False Positive Rate (FPR) at
various threshold values, while the AUC measures the ability of a classifier to distinguish
between classes (safe, nonsafe), summarising the ROC curve. From these curves, we
illustrate that the ensemble methods perform better since they decrease FPR and improve
the TPR at the same time. Hence, from AUC values and the corresponding ROC curves of
the ensemble models, it is expected that the distribution curves of the two class instances
will have small overlaps, which means that they tend to have an ideal separation ability
between safe and nonsafe classes. Moreover, from the recall metric, we observe that the
aforementioned models have high sensitivity in the correct identification of the instances’
class, e.g., that actually belong to the “safe” class. The performance improvement of
ensemble methods is also reflected in the rest of the measures.

In concluding the evaluation of our models, we have to note a limitation of this study.
The dataset [28] which we relied on is artificial. Hence, it did not come from a research
institute, which could give us richer information models with different characteristics
trained on real-world data. Nevertheless, it had many numerical features that led us to
high-accuracy results by applying ML models.

Figure 2. ML models AUC ROC vurve without SMOTE.
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Figure 3. ML models AUC ROC curve after SMOTE.

5. Conclusions

Water is undoubtedly a valuable and simultaneously rare commodity in both develop-
ing and developed countries all over the world. In recent years, actions have been taken by
organised international bodies and governments to reduce the reckless use of water and to
minimise the sources of water pollution, making it unfit for consumption or other uses.

Water quality prediction was the point of interest in this study. In order to achieve this,
a comparative evaluation of numerous ML classification models, such as NB, LR, ANN,
kNN, RotF and Ensemble Learning (RF, AdaBoostM1, Stacking, Voting and Bagging) was
made in order to develop the intended model with the highest accuracy and discrimination
ability after SMOTE with 10-fold cross-validation. The experiment results show that the
Stacking classification model after SMOTE with 10-fold cross-validation outperforms the
others with an Accuracy, Precision and Recall of 98.1%, 100% and 98.1%, respectively,
and an AUC equal to 99.9%. Furthermore, the AUC ROC curves constitute an important
illustration metric which reveals the high separation ability of the two class instances
(safe, nonsafe) that tree-based ensemble methods have, and thus prevail against the single
ones. All in all, ML methods constitute a challenging and alternative tool in the field of
water sustainability, which has attracted research interest due to its significant impact on
human life.

In future work, we aim to reconsider the water quality prediction methodology after
ROPE (Region of Practical Equivalence) analysis to test whether a feature is important for
water quality prediction and, second, to extend the ML framework through the use of Deep
Learning methods by applying LSTM algorithms and Convolutional Neural Networks
(CNN) and evaluate them using real-world data on the aforementioned metrics.
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