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Abstract: This article is devoted to methods of processing random processes. This task becomes
particularly relevant in cases where the random process is broadband and non-stationary; then,
the measurement of a random process can be associated with an assessment of its probabilistic
characteristics. Very often, a non-stationary broadband random process is represented by a single
implementation with a priori uncertainty about the type of distribution function. Such random
processes occur in information and measuring communication systems in which information is
transmitted at a real-time pace (for example, radio telemetry systems in spacecraft). The use of
methods of traditional mathematical statistics, for example, maximum likelihood methods, to de-
termine probability characteristics in this case is not possible. In addition, the on-board computing
systems of spacecraft operate under conditions of restrictions on mass-dimensional characteristics
and energy consumption. Therefore, there is a need to apply accelerated methods of processing
measured random processes. This article discusses a method of processing non-stationary broadband
random processes based on the use of non-parametric methods of decision theory. An algorithm for
dividing the observation interval into stationary intervals using non-parametric Kendall’s statistics is
considered, as are methods for estimating probabilistic characteristics on the stationary interval using
ordinal statistics. This article presents the results of statistical modeling using the Mathcad program.

Keywords: random process; non-parametric statistics; Kendall’s statistics; ordinal statistics; stationary
interval; probability characteristics

1. Introduction

This article is devoted to the processing of non-stationary broadband signals in radio
communication systems, such as the radio telemetry systems of spacecraft (RTSSs). RTSSs
have features that distinguish them from other radio communication systems [1–4]. The first
feature of RTSSs is that the signals measured by the on-board system must be transmitted to
Earth at a real-time rate. This feature is due to the fact that the measured parameters must
be monitored on Earth in real time in order to be able to make operational management
decisions in case of any emergency situations. Examples of such parameters are the
temperature and pressure in the combustion chamber of a space rocket. These parameters
are converted into electrical signals and transmitted via communication channels to Earth in
real time. If the change in these parameters in time does not occur as it should, appropriate
decisions are made on Earth. For example, the engines can be disconnected from the
fuel supply so that the space complex does not catch fire. The second feature of RTSSs is
that the measured parameters (in our case, temperature and pressure in the combustion
chamber) are, as a rule, a non-stationary broadband (rapidly changing) random process
(NSBRP). Such a process is always represented by a single implementation in conditions of
a priori uncertainty about the form of the distribution function (this is especially true if the
change in the measured parameter does not occur normally, i.e., in emergency mode). The
third feature of RTSSs is the restriction on the mass-dimensional characteristics and power
consumption of the on-board computing systems (CSs). These features of RTSSs require
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special algorithms for processing the measured parameters. For example, it is impossible to
process rapidly changing (broadband) signals using the traditional cyclic sampling method
followed by the use of classical data compression methods [5,6]. This is due to the fact that,
due to the high frequency of signal changes, there is a large load on the communication
channel, the bandwidth of which is always limited [7,8]. In addition, a large load will be
exerted in this case on the on-board CS, the speed and memory capacity of which are always
limited due to restrictions on mass-dimensional characteristics and power consumption. If
we take into account that the number of measured sources of information can be several
tens or even hundreds [9], then it becomes clear that the load on both the communication
channel and the CS of an RTSS will be very large.

Therefore, when processing fast-changing (broadband) signals in RTSSs, as a rule, they
are limited to calculating probabilistic characteristics and transmitting them via communica-
tion channels to Earth. This approach to the processing of non-stationary broadband signals
allows, on the one hand, to bring the volume of transmitted data in line with the bandwidth
of the communication channel and, on the other hand, to reduce the requirements for the
performance of on-board CSs. At the same time, the amount of information received will
be sufficient to make a correct judgment about the measured process. Methods of classical
mathematical statistics are used to calculate the probabilistic characteristics of random
processes (RPs). But, in this case, they turn out to be completely unsuitable for the follow-
ing reasons: Firstly, to calculate the mean and variance, a priori knowledge of the type of
distribution function of the measured RP is necessary. For example, well-known maximum
likelihood methods are effective only for a Gaussian RP and are not effective for other
distributions. They turn out to be completely ineffective if the type of distribution function
is not known a priori. Secondly, to apply the methods of traditional mathematical statistics,
an ensemble of implementations is required (in theory, at least 1000 implementations; in
practice, more than 100). Thirdly, the apparatus of mathematical statistics is designed
for stationary random processes (SRPs) and cannot be applied if the random process is
non-stationary. In our case, we are dealing with a single implementation of an NSBRP.

Thus, in order to process NSBRPs represented by a single implementation under
conditions of a priori uncertainty about the form of the distribution function, it is necessary
to use other methods. At the same time, the measured RP should be described by an
additive–multiplicative model of the following type:

y(t) = F(t) + X(t), (1)

where F(t) is the non-stationary average of the measured random process, and X(t) is the
SRP (Figure 1).

In the figure, y (blue ) is a measured non-stationary random process represented by
a single implementation; F(t) is the non-stationary average of the measured process; and
x(t) (black) is a stationary random process.

To obtain an estimate of F(t), various methods of optimal filtering (for example, a
Kalman–Bewsey filter) can be used. However, to build a filtering algorithm, a priori
knowledge of the distribution function type and spectral density of the process is necessary.
In addition, filtration methods do not allow obtaining estimates of other probabilistic
characteristics of the stationary component. Such a setting of the task may be sufficient
in cases where only information about the average value of F(t) is needed, but for the
purposes of complete processing, it is necessary to obtain information about the random
component of the X(t) process.
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Various methods of mathematical statistics based on regression analysis and time
series analysis [10] could be used to analyze RPs. But to use these methods, it is required
that the entire time series be known in advance. Only in this case can the characteristic
equations of the autoregressive time series model be solved and their roots found. We are
considering a non-stationary random process (NSRP) that is formed at the rate of data
receipt. In other words, at each moment of time, only those samples of the measured process
that are received at this moment in time and at previous moments of time are available
for analysis. The entire time series becomes known only at the end of the processing of an
RP. This is the specificity of the RP under consideration. For this reason, the methods of
processing RPs used in various fields, such as, for example, finance and climatology [11],
cannot be used.

In such cases, it is possible to construct algorithms for estimating the probabilistic
characteristics of an NSRP using non-parametric statistics [12–14].
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It is known [15,16] that the non-parametric statistics (NPS) call some function of a
random variable with an unknown probability distribution. This function itself has a
known distribution, the properties of which in some way characterize the properties of an
unknown distribution of the original random variable. Knowing the distribution of NPS,
we can use it to formulate and test different hypotheses about the properties of unknown
distributions (for example, their symmetry, stationarity, and so on).

2. Non-Parametric Statistics and Their Use for Processing Random Processes

Consider the most common NPS.
Let Y = {y1, y2, . . . yn} be a vector of sample values from the process y(t), obtained by

sampling it in time in an interval of ∆t with ∆t > τk, where τk is the correlation interval of
the process. Let us determine the sign function of observations in the form

sign y =

{
1, y ≥ 0
−1, y < 0

(2)

We introduce a unit jump function or a positive sign vector

u(y) =
{

1, y ≥ 0
0, y < 0

(3)

related to the sign function by the relation

2u(y) = sign(y) + 1.

Functions (2) and (3) are called sign statistics or elementary inversions, and the vector

U(y) = {u1 (y), u2(y), . . . , un(y)},

composed of sign statistics, is called a sign vector.
The distribution of sign statistics is binomial, with parameter n equal to the sample size:

Pn(u = i) = Ci
n piqn−i. (4)

The mean and variance of sign statistics are defined as Mu = np and Du = npq, re-
spectively. The parameter p of this distribution is the probability of sign statistics appearing
in a single test.

If we rearrange the Y sample items in ascending order:

Y= {y(1), y(2), . . . . . . y(n)}, (5)

where y(k) ≤ y(j) for k < j, then we obtain a vector called the vector of ordinal statistics,
and its elements y(k) are ordinal statistics. When replacing the elements of the sample y(k)

with their ranks Rk, where Rk = K is the ordinal number of the element y(k) in the ranked
series, we obtain the vector R(y) = {R1,R2, . . . , Rn}, called the rank vector. If we need to
have both information about the rank R of the sample value and its ordinal number i in the
original sample, then we can enter the designation Ri, which means that R is the rank of
the i-th observation in the sample. It is believed that n is known and fixed.

Consider the nature of specific problems solved using non-parametric methods. First
of all, this task of estimating unknown distributions, which differs from the problem of
approximating an unknown distribution by known functions, is considered in ordinary
statistics. In a non-parametric formulation, this problem can be formulated as an estimate
of the difference between an unknown distribution and a given class of distributions. If it is
necessary to specify these differences, the task of estimating the parameters of distributions
is formulated. In this case, not the parameter itself is evaluated, but the parameter of the
difference between distributions within a given non-parametric class. Another category
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of non-parametric problems is testing non-parametric hypotheses. In any non-parametric
hypothesis testing problem consisting of two competing hypotheses, the alternative is
always non-parametric, and the null hypothesis can be either simple or non-parametric.
The difference between hypotheses is not related to a specific type of distribution function,
since one of the hypotheses has a class of unknown distributions. The essence of the
procedure is that, based on the original sample, it is necessary to attach an algorithm, the
result of which will be a decision on the truth of one of the hypotheses.

Consider, for example, the procedure for generating decision rules to test the symmetry
hypothesis of the distribution of some random variable y (Figure 2), using sign statistics
(Function (3)) for this.
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In the figure, f (y/H) and F(y/H) are the probability density function and the dis-
tribution function of a symmetric distribution; f

(
y/H

)
and F

(
y/H

)
are the probability

density function and the distribution function of a non-symmetric distribution.
Take the character counter function into consideration:

z =
n

∑
i=1

ui(yi)

which has a binomial distribution according to Formula (3).
As can be seen from Figure 2, for the symmetrical distribution, P = 0.5; and for the

asymmetrical distribution, P 6= 0.5. In other words, the curve of the distribution function
F(y/H) intersects the ordinate axis at point 0.5, and the curve of the distribution function
F
(
y/H

)
intersects the ordinate axis at point unequal to 0.5 (lower than 0.5).

We introduce the null hypothesis about the symmetry of the distribution:

H : f (y) = f (−y), P = 0.5

and an alternative hypothesis about asymmetry of the distribution:

H : f (y) 6= f (−y), P 6= 0.5.

Given that with sample volumes of n > 20, the binomial distribution is well approxi-
mated by the Gaussian distribution, the decisive rule on the Neyman–Pearson criterion
can be written as follows: if Z > C1, the data are true to the alternative hypothesis; if
Z < C1, the data are true to the null hypothesis. At the same time, C1 is the threshold of the
decisive rule:

C1 =
Zα

2
√

n +
n
2
− 1. (6)
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The value of the threshold of the decisive rule is selected from the following condition,
which can be found in [17,18]:

α = 1− F

[
C1 + 1− n

2√
n

2

]
. (7)

Here, α is a Gaussian distribution parameter called the significance level (in the
literature, this parameter is often called the probability of error of the first kind, or the
“probability of false alarm”), and n, as already noted, is the sample size.

Such a decisive rule is unbiased only for P > 0.5. At P < 0.5, the decisive rule Z < C2
turns out to be unbiased, where the threshold

C2 =
Z1−α

2
√

n +
n
2
− 1. (8)

In this case, the probabilities of error of the second kind (signal skipping) are deter-
mined from the following relationships:

β1 = F
[

Zα/2 −
√

n(p− 0.5)
√

pq

]
; (9)

β2 = F
[

Z1−α/2 −
√

n(p− 0.5)
√

pq

]
, (10)

which are described in [19].
With small volumes of observations (n < 20), the value of the α significance level can

be determined according to the Bernoulli distribution

α = P(y > C1|H ) =
n

∑
m=C1

Cm
n 0.5m0.5n−m, (11)

where the value of the C1 threshold is determined. The error amount of the second kind in
this case will be determined from the relation

β1 = P
(
y > C1

∣∣H ) = m=C1

∑
m=0

Cm
n pm(1− p)n−m, (12)

if the distribution parameter P > 0.5. In the same case, when P < 0.5, the amount of the
error of the second kind should be defined as

β2 = P
(
y > C2

∣∣H ) = n

∑
m=C2

Cm
n pm(1− p)n−m. (13)

Percentage points as well as distributions of various modifications of variable (11) can
be found in [20].

3. Division of the Observation Interval into Stationarity Intervals Using
Kendall’s Statistics

We consider the possibility of using non-parametric methods of decision theory to
estimate the probabilistic characteristics of the NSRP described by model (1) (Figure 1).
By probability characteristics, we mean the mean value, variance (standard deviation),
distribution function, and correlation function. Recall that a random process represented
by a single implementation is considered in conditions of a priori uncertainty about the
type of distribution function. To estimate the probabilistic characteristics of such an RP, it is
advisable to first identify a non-stationary average F(t) (obtain an estimate of the average
value) and then obtain estimates of other probabilistic characteristics of component X(t).



Computation 2023, 11, 219 7 of 18

To increase the accuracy of the separation of the non-stationary component of the
random process, it is desirable to divide the entire observation interval into stationary
intervals, the length and number of which are determined by the type of non-stationary
component F(t) and the probabilistic characteristics of stationary component X(t). To
divide the observation interval into stationary intervals, we will use Kendall’s statistics,
which are well known in the literature [15]:

T2=
n−1

∑
i=1

n

∑
k=i+1

u(yi , yk) (14)

where

u(yi, yk) =

{
1, yi ≥ yk
0, yi < yk

and are called sign statistics or elementary inversions. Here, yi and yk are the values of
the measured process obtained by sampling with a sampling interval of ∆t. The sampling
interval in this case is selected based on the statistical independence of the two adjacent
sample values yi and yi+1, that is, ∆t ≥ τk, where τk is the correlation interval of the
random process. The selection of the sampling interval is a separate task that needs to
be solved.

Using Kendall’s statistics makes it quite easy to divide the time series of observations
y(t) by the finite number of stationary intervals with a given probability P = 1− α by pa-
rameters such as the average value m[y(t)] and variance D[y(t)]. Here, α is the probability
that the interval is not stationary. In the Russian literature, α is commonly referred to as “the
probability of a false alarm” or “the level of significance”. The division procedure consists of
calculating the current values T2 and the permissible limits T2

min[i; 1− α/2] and T2
max[i; α/2]

and checking the stationarity condition by the Neyman–Pearson criterion [21–23]:

T2
min < T2

i ≤ T2
max. (15)

The distribution of the Kendall variable for sample sizes n > 10 differs little from the
Gaussian distribution [19].

The values of the permissible limits of the decision rule thresholds can be determined
from the relations

T2
min = M

[
T2
]
− xα/2

√
D[T2], (16)

T2
max = M

[
T2
]
+ xα/2

√
D[T2], (17)

where xα/2 is the percentage point of the Gaussian distribution.
To calculate T2

min and T2
max, it is necessary to know the average value and variance

of Kendall’s statistics. The formulas for calculating the mean and variance of Kendall’s
statistics are known to the author, but they are know-how and therefore not given in this
article. The value of the percentage point is taken for the Gaussian distribution, since the
binomial distribution is well approximated by the Gaussian distribution.

Kendall’s statistics are symmetrical around their mathematical expectation since they
are indifferent to how elementary inversions are obtained, whether it is by fulfilling the
inequality yi < yj or yj < yi for j = i + 1, i + 2, i + 3 . . . . This fact means that, in many
practical applications, a reverse procedure can be used, which gives tangible advantages in
efficiency and other indicators.

The reversibility of the procedure can be used to divide time series into stationary
intervals, at which the line of current values of T2 is sequentially reflected from permissible
boundaries. In this case, it is necessary to constantly take into account the moments
of transition of the sign function u(y) to the opposite value, that is, to fix the reflection
points of total inversions from permissible boundaries. As in previous cases, non-stationary
measurement data are divided into stationary at some intervals, the statistical characteristics
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of which are constant but not equal to each other. Consider the method of reflected
inversions in more detail (Figure 3).
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According to incoming samples y1, y2, . . . yn of the measured series, y(t) calculates
the function u

(
yi, yj

)
from which Kendall’s statistics are determined. Valid bounds T2

max
and T2

min are defined for a given significance level α. In addition to the methods described
above, a comparison between T2

i and both T2
max and T2

min is conducted, as a result of which
there can be two outcomes:

1. Inequality (15) is performed, and the process does not leave the field of stationarity;
2. Inequality (15) is broken, and the process leaves the field of stationarity.
The point corresponding to the moment of crossing line T2

i from one of the permissible
boundaries is fixed, and the sign function u

(
yi, yj

)
is “flipped” to the opposite value, as a

result of which a fracture point is formed on line T2
i and the calculation process is repeated.

When the second of the permissible boundaries is reached, the function u
(
yi, yj

)
is flipped

again while fixing the fracture point on line T2
i . Thus, line T2

i is inside the stationary area
all the time and is consistently reflected from the permissible boundary lines.

After determining the stationarity intervals, the probabilistic characteristics of
the measured NSRP are evaluated. Evaluations are carried out at each stationarity
interval separately.

In the figure, ∆ti are the intervals of stationarity; nist is the number of samples at each
interval of stationarity; G0 is the region of stationarity; and T2

min and T2
max are the boundary

values of the region of stationarity black dotted lines—variable T2
i .
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4. Evaluation of Probabilistic Characteristics of a Random Process Using Ordinal and
Rank Statistics

The simplification of estimates of probabilistic characteristics is possible when using
ordinal statistics (OS) of a ranked series when ranking the data obtained on the stationarity
interval in decreasing or increasing order:

x(1) ≤ x(2) ≤ · · · ≤ x(R) ≤ · · · ≤ x(N) (18)

In a number of works [24,25], studies of errors in estimating probabilistic characteristics
by ordinal statistics were carried out. However, these works were limited to the study of a
stationary stochastic process, while obtaining estimates of probabilistic characteristics from
samples of a non-stationary stochastic process is of particular interest.

The application of ordinal statisticians allows for the use of simple enough procedures
for the average estimation based on central ordinal statistics (COS), ranked beside [26,27].

∼
m11 = x(c);

∼
m12 = x(c+1);

∼
m21 =

1
2

(
x(c−1) + x(c)

)
;

∼
m22 =

1
2

(
x(c) + x(c+1)

)
;
∼
m2j =

1
2

(
x(c) + x(c+j)

)
;

∼
m31 =

1
3

(
x(c−1) + x(c) + x(c+1)

)
.

There are estimates based on the truncation ranked series

∼
m41 =

1
N − 2

N−2

∑
i=2

x(i),

∼
m4j =

1
N − j

N−j

∑
i=j

x(i);

and also using extreme ordinal statistics:

∼
m51 =

1
2

(
x(N) + x(1)

)
;
∼
m52 =

1
2

(
x(N−1) + x(2)

)
;

∼
m5j =

1
2

(
x(N−j+1) + x(j)

)
.

The estimations using various combinations of enumerated estimations can be synthe-
sized as follows:

∼
m61 =

1
2

(
x(K1) + x(K2)

)
,

K1 = E[0.73 N], K2 = E[0.27 N];

∼
m62 =

1
2

(
x(K1) + x(K2)

)
,

K1 = E[0.75 N], K2 = E[0.25 N];

∼
m71 = ν1x(K1);

∼
m72 = ν1x(K1) + ν2x(K2);

∼
m7j = ν1x(K1) + ν2x(K2) + · · ·+ νjx(Kj), j� N;



Computation 2023, 11, 219 10 of 18

∼
m81 = ν12(x (K1) + x(K2) );

∼
m82 = ν12

(
x(K1) + x(K2)

)
+ ν34

(
x(K3) + x(K4)

)
;

∼
m8j = ν12

(
x(K1) + x(K2)

)
+ · · ·+ νij(x (Ki) + x(Kj) );

The most optimal procedure for estimating the mean is an estimate based on the COS
of the ranked series [28,29]:

∼
m11 = x(c); (19)

Obviously, central ordinal statistics are the easiest to implement. In Figure 4, the
comparative analysis of computing costs (memory size S and average calculation time
T) of various modes of estimation of the mean is shown (where S (

∼
m0 ) and T (

∼
m0 ) are

the memory size and the average calculation time when using the maximum likelihood
estimate). The minimum costs, apparently, have estimations of an aspect m̃11 .

Computation 2023, 11, x FOR PEER REVIEW 10 of 19 
 

 

𝑚 = 𝜈 𝑥( ); 𝑚 = 𝜈 𝑥( ) + 𝜈 𝑥( ); 𝑚 = 𝜈 𝑥( ) + 𝜈 𝑥( ) + ⋯ + 𝜈 𝑥( ), 𝑗 ≪ 𝑁; 𝑚 = 𝜈 (𝑥( ) + 𝑥( )); 𝑚 = 𝜈 𝑥( ) + 𝑥( ) + 𝜈 𝑥( ) + 𝑥( ) ; 𝑚 = 𝜈 𝑥( ) + 𝑥( ) + ⋯ + 𝜈 (𝑥( ) + 𝑥( )); 
The most optimal procedure for estimating the mean is an estimate based on the COS 

of the ranked series [28,29]: 𝑚 = 𝑥( ); (19)

Obviously, central ordinal statistics are the easiest to implement. In Figure 4, the 
comparative analysis of computing costs (memory size 𝑆 and average calculation time 𝑇) of various modes of estimation of the mean is shown (where 𝑆(𝑚 ) and 𝑇(𝑚 ) are 
the memory size and the average calculation time when using the maximum likelihood 
estimate). The minimum costs, apparently, have estimations of an aspect 

11
~m . 

 
Figure 4. Comparative analysis of computing costs of an estimation. 𝑆—memory size; 𝑇—average 
calculation time; 𝑆(𝑚 ) and 𝑇(𝑚 )—the memory size and the average calculation time when using 
the maximum likelihood estimate. 

When measuring variance, it is advisable to use the same ranked series of the ordinal 
statistics as when estimating the mean. At the same time, it is best to estimate not the 
variance of the process itself but the standard deviation. To estimate the standard 
deviation in non-parametric statistics, the simplest range functions span )1()(1 xxW

N
−=  

and under the scope )()1( jjn
xxWj −=

+−   are used, using the extreme of the order 

statistics ranked series: 𝜎 = 𝜈 𝑥( ) − 𝑥( ) , 𝜎 = 𝜈 𝑥( ) − 𝑥( ) . 
It is also possible to use the estimations: 𝜎 = 𝜈 𝑥( ) − 𝑥( ) , 

Figure 4. Comparative analysis of computing costs of an estimation. S—memory size; T—average
calculation time; S (

∼
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the maximum likelihood estimate.

When measuring variance, it is advisable to use the same ranked series of the ordinal
statistics as when estimating the mean. At the same time, it is best to estimate not the
variance of the process itself but the standard deviation. To estimate the standard deviation
in non-parametric statistics, the simplest range functions span W1 = x

(N)
− x

(1) and under
the scope Wj = x

(n−j+1) − x
(j) are used, using the extreme of the order statistics ranked series:

∼
σ11 = ν

(
x(N) − x(1)

)
,

∼
σ12 = ν

(
x(N−1) − x(2)

)
.

It is also possible to use the estimations:

∼
σ3j = ν

(
x(K1) − x(K2)

)
,

where, for σ31, K1 = E[0.75 N], K2 = E[0.25 N]; and, for σ32, K1 = E[0.73 N], K2 = E[0.27 N].
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As in the case of estimating the mean, different combinations of the central order
statistics and extreme order statistics (EOS) are possible:

∼
σ4j = ν

(
x(c+j) − x(c−j)

)
, j = 1÷ 4.

The coefficient ν can be assigned from a wide range; however, the most effective factor
values are as follows:

ν = 1; ...1/2; ...1/3; ...1/4;

The optimal estimate of the variance is an estimate of the type

∼
σ11 = ν

(
X(N) − X(1)

)
. (20)

The optimal estimation conditions can be written in the following form [27,28]:

∼
σopt =

∼
σ11 = ν

(
X(N) − X(1)

)
,
{

ν = 1
3 , N < 15

ν = 1
4 , N ≥ 15

(21)

The ranked series of the ordinal statistics can be used to estimate the distribution
function F(x) and the probability density function f (x). In this case, it is enough to estimate
one of them and indirectly obtain an estimate of the other by differentiating the distribution
function F(x) or integrating the probability density function f (x). As for the method of
transmission of the telemetry data, it is better to evaluate the distribution function F(x)
due to the greater complexity of the implementation of methods for estimating f (x) and
the better noise immunity of transmission F(x). Therefore, the consideration of methods of
distribution function estimation should be paid more attention.

The classic definition of the distribution function as the probability of the event
(x(t) < x) allows us to write the following relation:

∼
F0(x) = Prob(x(t) < x) =

Nx

N
=

1
N ∑ c(x− xi),

where Prob(. . .) means probability; N is the sample size; Nx is the number of samples of the
process x(t) not exceeding the value of x; and c(x− xi) is the comparison function.

c(x− xi) =

{
1, x ≥ xi
0, x < xi

The statistical relationship between the sample value and its rank allows us to write
the following approximate value:

∼
F1(x) =

∼
F1

(
x(R)

)
=

R
N + 1

A modification of this method, based on fixation as a quantile rather than an order
statistic x(R) of rank R, involves a linear combination of Q-order statistics x(R) of rank R:

xQ
(R) =

Q

∑
q=1

Aqx(q)

which allows us to generate the following estimates:

∼
F2

(
1
2

(
x(R−1) + x(R)

))
=

R
N + 1

;

∼
F3

(
1
2

(
x(R) + x(R+1)

))
=

R
N + 1

;
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∼
F4

(
1
3

(
x(R−1) + x(R) + x(R+1)

))
=

R
N + 1

.

At these estimations, in the capacity of a quantile magnitude, the average of two or
three ordinal statisticians is fixed.

Another method for estimating a cumulative distribution function is based on the
evaluation of a non-parametric tolerant interval (L2-L1), where L1 and L2 represent the
tolerance limits at a level γ that are 100 β-percent independent of the distribution F(x)
and satisfy

Prob
{(

F(L2)
− F(L1)

)
≥ β

}
= γ.

If we suppose L1 = x(R) and L2 = x(S), where R < S, the tolerant interval [x(R), x(S)] is
equal to the sum of elementary shares from R-th to S-th, i.e.,

Prob[(F(x
(R)
−x

(S)
) ≥ β] = γ = N!

(S−R−1)!(N−S+R)! ×
1∫

β

ZS−R−1(1−Z)n−S−R
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𝑅

𝑁 + 1
, (22) 

where 𝑅 is the rank or rank statistics (number in the ranked row) of element 𝑥(𝑅). 

=

= 1− Iβ(S− R, N − S + R + 1) =
S−R−1

∑
i=1

(
N
i

)βi(1− β)N−i.

Thus, γ is a function of arguments N, S − R, and β. There is some minimum value
Nmin, to which, in each specific case, a certain combination of R and S corresponds. It is
possible to determine 1

2 N(N − 1) tolerant intervals with various γ levels, among which
N/2 and N(N − 1)/2 (depending on whether N is even or odd) will be symmetric. To
ensure the symmetry of a rank, it should be connected to a condition:

S = N − R + 1.

Then, for an estimation of the cumulative distribution function F5(x) in points x(R)
and x(S) with a confidence coefficient γ, it is possible to accept the following magnitudes:

F5

(
x(R)

)
=

1− β(R, S)
2

,

F5

(
x(R)

)
=

1 + β(R, S)
2

.

Thus, by changing value R from 1 to N/2 and computing matching values S, it is
possible to gain estimation F5(x) in N points.

One more mode of non-parametric estimation, F6(x), can be generated from the
definition of a non-parametric confidence interval [x(R), x(R+K)] for a quantile xp level p.
The confidence level γ is determined from a relation:

γ = Prob
(∼

F6

(
x(R)

))
≤ p ≤

∼
F6

(
x(R+K)

)
= Ip(R, N − K + 1)− Ip(R + K, N − R− K + 1),

where Ip(n, m) is Pearson’s incomplete beta function:

Ip(n, m) =
Γ(n + m)

Γ(n) ∗ Γ(m)

∫ P

0
xn−1(1− x)m−1dx.

And the probability [gamma] that the quantile xp will appear between the ordinal
statistics x(R) and x(R+K) does not depend on an aspect of the initial distribution F(x).
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The statistical relationship between the sampled value and its rank allows us to write
the following approximate value [28,29]:

∼
F1 =

∼
F1(x(R)) =

R
N + 1

, (22)

where R is the rank or rank statistics (number in the ranked row) of element x(R).
A ranked series of ordinal statistics can also be used to estimate the correlation function

of an RP.
To evaluate the correlation function in real time, the most interesting options are fairly

simple rank and sign non-parametric methods of estimation [26], in particular the methods
of Spearman ρsp and Kendall ρk:

ρsp(j) = 1− Ksp(N)
N

∑
i=1

P2
R j ); (23)

ρk(j) = Kk(N)
N−1

∑
i=1

Ri − 1. (24)

Here, PR is the difference between elements xi and x(i+j); Ksp(N) is Spearman’s con-
stant (at N = const Ksp = 6/

(
N3 − N

)
); Ri is the rank of the i-th element xi; Kk(N) is

Kendall’s constant (at N = const, Kk = 4/
(

N2 − N
)
). The procedures for estimating the cor-

relation function according to the above formulas allow a significant simplification due to
the table setting of coefficients Ksp(N) and Kk(N) and the value P2

R(j) in the microcomputer
ROM (at a fixed interval of local stationarity).

5. Results of Computer Modeling

An analysis of the errors in estimates of the probability characteristics of a random
process using the method of reflected inversions was carried out using the method of
statistical modeling on a PC using Mathcad.

Consider a random function with a Gaussian distribution.
A random process, white noise xt, is generated (a vector of N random numbers having

a Gaussian distribution):
xt = rnorm(N, µ, σ).

A signal (trend) of the form

Ft = 5
(

1− e(−0.01t)
)

was superimposed on a random function.
As a result, an NSRP of the form

yt = xt + Ft

was generated.
Figure 5 shows an example of a simulation.
In the figure, the simulated random process yt is shown in red, the trend Ft is shown

in blue, and the average estimate calculated by Formula (19) is shown in black.
In the figure, we have four stationary sections with a length of 9 samples, 35 samples,

and 57 and 59 reports, respectively.
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The estimation of the distribution function (red; the Mathcad program designates
this graph as ΦZ) and its comparison with the given one (blue; the Mathcad program
designates this graph as ΦP) are shown in Figure 6.
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Unfortunately, with this approach, it is not possible to obtain estimates of the corre-
lation function, since obtaining the above estimates is associated with the requirement of
statistical independence between the counts. Thus, an estimate of the correlation function
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must be obtained separately from estimates of the other probabilistic characteristics of
the RP.

To evaluate the correlation function, an RP with a correlation function of the following
form was modeled:

Rx = σ2·exp(−α|τ|).

Figure 7 shows the estimate of the correlation function (red; the Mathcad program
designates this graph as ΦZ) compared to the given (blue; the Mathcad program designates
this graph as KΦ). The correlation function was evaluated using Formula (24).
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The random functions with the following distribution function were also used
for modeling:

rexp (N, r)—generates vector N of random numbers that have an exponential distribu-
tion; r > 0—distribution parameter (e.g., r = 0.9);

runif (N, a, b)—generates vector N of random numbers having a uniform distribution
in which b and a are boundary points of the interval; a < b (e.g., a = −1, b = 1);

rt (N, d)—Student’s distribution, where N is the number of random numbers, d is the
distribution parameter, and d > 0.

The results of statistical modeling showed that the method is quite effective. Modeling
was carried out for various types of trends: exponential, oscillatory, and linear. Also, the
parameters of the algorithms varied, including the signal-to-noise ratio (the ratio of the
trend amplitude to the dispersion of the random component), the sampling interval, and
the value of the α significance level. The error in the estimate of the average value, as a rule,
does not exceed 7%, and the variance and distribution function, 10%. Errors in correlation
function estimates do not exceed 18%, which is an acceptable result for data processing
purposes, for example, in the radio telemetry systems of spacecraft [30,31].

Thus, applying the best estimates of Formulas (19), (20) and (22)–(24) allows the
same ranked series of ordinal statistics to be used to estimate such different probabilistic
characteristics of the RP as the mean, variance, distribution function, and correlation
function. This fact is very important since it allows, firstly, to significantly reduce the
computational cost of obtaining these estimates, and secondly, to obtain almost complete
information about the measured process in one dimension.
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Of particular interest is the formation of output streams of compressed data obtained
in accordance with expression (19) and their connection to the communication channel.
Some aspects of this problem are covered, for example, in [32].

6. Conclusions

This article discusses how to evaluate the probabilistic characteristics of transient
broadband random processes. Very often, a feature of RPs is that they are represented by a
single implementation under conditions of a priori uncertainty about the type of distribu-
tion function. Since the use of traditional methods of mathematical statistics to calculate the
probabilistic characteristics of such RPs is not possible, the use of non-parametric methods
of decision theory has been proposed. The essence of the proposed methods consists in
using Kendall’s non-parametric statistics to divide the entire measurement interval into
stationarity intervals, followed by calculating probability characteristics at each stationarity
interval. By probability characteristics, we mean the mean value, variance (standard devia-
tion), distribution function, and correlation function. To calculate probability characteristics,
the ordinal and rank statistics (19)–(24) of the ranked series are used, which are very easy
to calculate. It is important to keep in mind that the same ranked series is used to calculate
all probability characteristics (except the correlation function). This leads to a significant
reduction in computational costs since the ranking procedure is applied only once and the
entire set of necessary probabilistic characteristics is calculated.

This article presents the results of computer modeling. An analysis of the errors
in estimates of the probability characteristics of a random process using the method of
reflected inversions was carried out using the method of statistical modeling on a PC
using Mathcad. Random processes with various distribution functions, such as Gaussian
distribution, exponential distribution, Student’s distribution, and uniform distribution,
were studied in the simulation. The function Ft = 5 (1− e(−0.01t) ) was investigated as a
trend. To evaluate the correlation function, an RP with a correlation function of the form
Rx = σ2· exp(−α|τ|) was modeled.

The author plans to conduct further research aimed at improving the efficiency of the
developed algorithms. In particular, the algorithm for dividing the observation interval into
stationarity intervals can, according to the author, be improved by using the procedure for
resetting both the statistics T2 and the boundary values T2

min and T2
max to zero values after

determining each stationarity interval. As a result of using such a procedure, according to
the author, the accuracy of determining stationarity intervals will increase. Thus, in the
future, it will be necessary to conduct computer modeling with a new algorithm.
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References
1. Nazarov, A.V.; Kozyrev, G.I.; Shitov, I.V.; Obruchenkov, V.P.; Drevin, A.V.; Kruskin, V.B.; Kudryakov, S.G.; Petrov, A.I.; Sokolov,

S.M.; Yakimov, V.L.; et al. Modern Telemetry in Theory and Practice. Training Course; Science and Technology: St. Petersburg, Russia,
2007; 667p. (In Russian)

2. Andreev, V.P.; Volovich, N.V.; Glebov, V.M.; Dorskiy, P.I.; Dubinkin, I.M.; Karavai, M.P.; Kosobokov, V.N.; Syrov, A.S. Design and
Testing of On-Board Control Systems: Textbook; MAI-PRINT Publishing House: Moscow, Russia, 2011; 344p. (In Russian)

3. Brovkin, A.G.; Burdygov, B.G.; Gordiyko, S.V.; Goryachev, A.F.; Zavedeev, A.I.; Kamaldinova, R.A.; Kozlov, A.I.; Komin, V.I.;
Lunyakov, S.V.; Mishihin, V.V.; et al. Onboard Spacecraft Control Systems: Textbook; MAI-PRINT Publishing House: Moscow, Russia,
2010; 304p. (In Russian)

4. Andreev, V.P.; Bonk, R.I.; Brovkin, A.G.; Syrov, A.S. Upper Stage Control System: Textbook; MAI-PRINT Publishing House: Moscow,
Russia, 2010; 272p. (In Russian)

5. Salamon, D. Compression of Data, Images and a Sound; A Technosphere: Moscow, Russia, 2004; 368p. (In Russian)
6. Ivanov, V.G.; Lomonosov, U.B.; Lyubarsky, M.G. Analysis and classification of methods of compression of the information. Bull.

NTU HPI Themat. Issue Inf. Sci. Model. 2008, 49, 78–86. (In Russian) [CrossRef]
7. Gorchakovskiy, A.A.; Evstratko, V.V.; Mishurov, A.V.; Panko, S.P.; Ryabushkin, S.A.; Sukhtin, V.V.; Shatrov, V.A. Tasks and their

solutions in the process of developing control and measurement systems of spacecraft. Res. Sci. City 2015, 14, 6–9. (In Russian)
8. Dudko, B.P. Space Radio Engineering Systems: Textbook; Publishing House of Tomsk State University of Control Systems and Radio

Electronics: Tomsk, Russia, 2012; 291p. (In Russian)
9. Nekrasov, M.V. Development of concepts for creating a multithreaded telemetry information processing system in military flight

control centers. In Materials of the Scientific and Technical Conference of Young Specialists. Section of Spacecraft and Systems Design and
Control; Research of the Science City: Zheleznogorsk, Russia, 2008; pp. 103–108. (In Russian)

10. Dahlhaus, R. Locally stationary processes. In Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2012; Volume 30, pp.
351–413. Available online: http://arxiv.org/abs/1109.4174v2 (accessed on 27 October 2023).

11. Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters;
Springer International Publishing: Cham, Switzerland, 2015; pp. 729–749. [CrossRef]

12. Corder, G.W.; Foreman, D.I. Nonparametric Statistics. A Step-by-Step Approach; Wiley & Sons: Hoboken, NJ, USA, 2014; p. 267.
13. Bagdonavicius, V.; Kruopis, J.; Nikulin, M.S. Non-Parametric Tests for Complete Data; ISTE & WILEY: London, UK; Hoboken, NJ,

USA, 2011; 321p.
14. Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013; 848p.
15. Tarasenko, F.P. Nonparametric Statistics; Tomsk University Publishing House: Tomsk, Russia, 1976; 294p.
16. Efromovich, S. On shrinking minimax convergence in nonparametric statistics. J. Nonparametric Stat. 2014, 26, 555–573. (In Russian)

[CrossRef]
17. Belous, A.I.; Solodukha, V.A.; Shvedov, S.V. Space Electronics; A Technosphere: Moscow, Russia, 2015; 488p.
18. Routledge, S.S. Means of Collecting Information; Collecting Information: London, UK, 2007; pp. 51–55. (In Russian) [CrossRef]
19. Zörnig, P. Functions of random variables. In Probability Theory and Statistical Applications; De Cruyter: Berlin, Germany; Boston,

MA, USA, 2016; pp. 73–82. [CrossRef]
20. Levin, B.R. Theoretical Foundations of Statistical Radio Engineering; Soviet Radio: Moscow, Russia, 1968; 512p. (In Russian)
21. Hsiao, C.; Zhou, Q. Incidental Parameters, Initial Conditions and Sample Size in Statistical Inference for Dynamic Panel Data

Models. In SSRN Electronic Journal; Elsevier BV: Amsterdam, The Netherlands, 2018; p. 53. [CrossRef]
22. Hajek, J.; Sidak, Z.; Sen, P. Elementary theory of rank tests. In Theory of Rank Tests; Elsevier: Amsterdam, The Netherlands, 1999;

pp. 35–93. [CrossRef]
23. Borodin, A.N. Random Processes. Textbook; Lan: St. Petersburg, Russia, 2013; 640p. (In Russian)
24. Spagnolini, U. Random Processes and Linear Systems. Statistical Signal Processing in Engineering; John Wiley & Sons, Ltd.: Hoboken,

NJ, USA, 2017; pp. 63–82. [CrossRef]
25. Ivanov, V.G.; Lyubarskiy, M.G.; Lomonosov, J.V. Compression of Text Image Based on Selection of Characters and Their

Classification. J. Autom. Inf. Sci. Bull. NTU KhPI 2010, 42, 46–57. (In Russian) [CrossRef]
26. David, G. Ordinal Statistics; Science: Moscow, Russia, 1979; 336p. (In Russian)
27. Stommel, M.; Dontje, K.J. Nonparametric/Ordinal Statistics. Statistics for Advanced Practice Nurses and Health Professionals; Springer

Publishing Company: Berlin/Heidelberg, Germany, 2014; 352p. [CrossRef]

https://doi.org/10.1615/jautomatinfscien.v42.i11.50
http://arxiv.org/abs/1109.4174v2
https://doi.org/10.1007/s40710-015-0105-3
https://doi.org/10.1080/10485252.2014.931394
https://doi.org/10.4324/9780080490694-16
https://doi.org/10.1515/9783110402711-007
https://doi.org/10.2139/ssrn.3162356
https://doi.org/10.1016/b978-012642350-1/50021-7
https://doi.org/10.1002/9781119294016.ch4
https://doi.org/10.1615/JAutomatInfScien.v42.i11.50
https://doi.org/10.1891/9780826198259.0015


Computation 2023, 11, 219 18 of 18

28. Yesmagambetov, B.-B.S.; Inkov, A.M. Fast changing processes in radiotelemetry systems of space vehicles. J. Syst. Eng. Electron.
2015, 26, 941–945.

29. Yesmagambetov, B.-B.S. Statistical Data Processing in Radio Telemetry Systems; Bulletin of N. Bauman Moscow State Technical
University: Moscow, Russia, 2015; pp. 13–21. (In Russian)

30. Krejcar, O. Modern Telemetry; InTech: Rijeka, Croatia, 2011; 600p. [CrossRef]
31. Stacey, D. Aeronautical Radio Communication Systems and Networks; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008. [CrossRef]
32. Yesmagambetov, B.-B.; Mussabekov, A.; Alymov, N.; Apsemetov, A.; Balabekova, M.; Kayumov, K.; Arystanbayev, K.; Iman-

bayeva, A. Determination of Characteristics of Associative Storage Devices in Radio Telemetry Systems with Data Compression.
Computation 2023, 11, 111. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5772/910
https://doi.org/10.1002/9780470035108
https://doi.org/10.3390/computation11060111

	Introduction 
	Non-Parametric Statistics and Their Use for Processing Random Processes 
	Division of the Observation Interval into Stationarity Intervals Using Kendall’s Statistics 
	Evaluation of Probabilistic Characteristics of a Random Process Using Ordinal and Rank Statistics 
	Results of Computer Modeling 
	Conclusions 
	References

