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Abstract: In this paper, we study a model that enhances our understanding of cytokine-influenced
HIV-1 infection. The impact of adaptive immune response (cytotoxic T lymphocytes (CTLs) and
antibodies) and time delay on HIV-1 infection is included. The model takes into account two types
of distributional delays, (i) the delay in the HIV-1 infection of CD4+T cells and (ii) the maturation
delay of new virions. We first investigated the fundamental characteristics of the system, then found
the system’s equilibria. We derived five threshold parameters, <i, i = 0, 1, . . . , 4, which completely
determine the existence and stability of the equilibria. The Lyapunov method was used to prove
the global asymptotic stability for all equilibria. We illustrate the theoretical results by performing
numerical simulations. We also performed a sensitivity analysis on the basic reproduction number
<0 and identified the most-sensitive parameters. We found that pyroptosis contributes to the number
<0, and then, neglecting it will make <0 underevaluated. Necrosulfonamide and highly active
antiretroviral drug therapy (HAART) can be effective in preventing pyroptosis and at reducing viral
replication. Further, it was also found that increasing time delays can effectively decrease <0 and,
then, inhibit HIV-1 replication. Furthermore, it is shown that both CTLs and antibody immune
responses have no effect on <0, while this can result in less HIV-1 infection.

Keywords: HIV-1 infection; cytokine-enhanced; adaptive immunity; delay; Lyapunov method;
global stability

1. Introduction

In the early 1980s, human immunodeficiency virus type-1 (HIV-1) was discovered.
Since then, the virus has spread throughout the world and is considered one of the most-
serious public health, social, and economic challenges in the world. The World Health
Organization reported that, at the end of 2022, there were about 39-million people living
with HIV-1 in the world [1]. The virus targets the immune system, especially CD4+T cells,
which play an essential role in the immune system response to viruses. Acquired immune
deficiency syndrome (AIDS) is the most-advanced stage of the disease. Untreated HIV-1-
infected patients usually spend many years before reaching the AIDS stage. During this
period, the CD4+T cell count declines slowly and reaches below 200 cells/mm3 [2].

During the last few decades, scientists and researchers from all fields have united their
massive efforts to study and understand the mechanism between HIV-1 and target cells.
The experimental evaluation of the interactions between HIV-1, CD4+T cells, and other
immune cells can be difficult and expensive. Mathematical modeling can be very useful in
understanding the dynamic behavior of HIV-1 in the host. This also helps in understanding
the effectiveness of medications, whether individually or in combination. Nowak and
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Bangham [3] constructed a basic model for within-host HIV-1 dynamics. The model
describes the interaction of three populations, uninfected CD4+T cells, infected CD4+T
cells, and free HIV-1 particles, as:

Uninfected CD4+T cells:
dU(t)

dt
= ω︸︷︷︸

Production of uninfected CD4+T cells

− δUU(t)︸ ︷︷ ︸
Death

− $1U(t)V(t)︸ ︷︷ ︸
HIV-1 infectious transmission

, (1)

Infected cells:
dI(t)

dt
= $1U(t)V(t)︸ ︷︷ ︸

HIV-1 infectious transmission

− δI I(t)︸ ︷︷ ︸
Death

, (2)

Free HIV-1 particles:
dV(t)

dt
= αI(t)︸ ︷︷ ︸

Production of HIV-1

− δVV(t)︸ ︷︷ ︸
Death

, (3)

where U(t), I(t), and V(t) are the concentrations of uninfected CD4+T cells, infected
CD4+T cells, and free HIV-1 particles, at time t, respectively. This model does not consider
the immune system reaction to viral infection. However, immune response has an effective
role in resisting and fighting viruses that attack the human body.

Cytotoxic T lymphocytes (CTLs) and B cells are two main players in adaptive immune
reaction. CTLs kill cells infected by HIV-1, while B cells generate antibodies to attack and
neutralize viruses. By considering the role of humoral immunity, Model (1)–(3) becomes [3]:

dU(t)
dt

= ω− δUU(t)− $1U(t)V(t),

dI(t)
dt

= $1U(t)V(t)− δI I(t),

dV(t)
dt

= αI(t)− δVV(t)− ψA(t)V(t),

dA(t)
dt

= ξA(t)V(t)− δA A(t),

where A(t) is the concentration of antibodies at time t. The terms ξ AV, δA A, and ψAV
represent, respectively, the rates of the stimulation of antibodies, the death of antibodies,
and the neutralization of HIV-1 by antibodies. The model was developed in several papers
(see, e.g., [4–10]).

The role of CTL immunity was modeled in [3] as:

dU(t)
dt

= ω− δUU(t)− $1U(t)V(t),

dI(t)
dt

= $1U(t)V(t)− δI I(t)− βI(t)T(t),

dV(t)
dt

= αI(t)− δVV(t),

dT(t)
dt

= σI(t)T(t)− δTT(t),

where T(t) is the concentration of CTLs at time t. The terms σIT, δTT, and βIT represent,
respectively, the rates of stimulation of CTLs, the death of CTLs, and the killing of infected
cells by CTLs. The model was revisited in several papers (see, e.g., [11–17]).

It is known that the infection of CD4+T cells with HIV-1 and the mechanism of their
death are complex processes and are still under study. Apoptosis and pyroptosis are two
main patterns of CD4+T cell death [18,19]. Apoptosis is a form of programmed cell death
mediated by the action of the enzyme caspase-3 [20]. Pyroptosis is a programmed and
highly inflammatory form of cell death mediated by caspase-1. It was reported that 5%
of CD4+T cell death is caused by apoptosis, while 95% of CD4+T cell death is caused
by pyroptosis [20]. During the infection, when HIV-1 enters the CD4+T cells that are
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unlicensed to viral infection, this induces pyroptosis and the secretion of inflammatory
cytokines such as IL-1β by activating the caspase-1 pathway. Inflammatory cytokines lead
to more CD4+T cell death and attract more CD4+T cells to the inflamed sites (cytokine-
enhanced HIV-1 infection) [20].

Wang et al. [2] formulated HIV-1 infection models by incorporating the effect of py-
roptosis. Recently, cytokine-enhanced viral infection models were developed and analyzed
by considering reaction–diffusion [21–25] and age structure [26]. Jiang and Zhang [19]
studied the global stability of a viral infection model with inflammatory cytokines and
discrete-time delays. Zhang et al. [27] developed the following viral infection model with
inflammatory cytokines, discrete-time delays, and CTL immune response:

dU(t)
dt

= ω− δUU(t)− $1U(t)V(t)− $2U(t)C(t), (4)

dI(t)
dt

= e−γ1ν1 [$1U(t− ν1)V(t− ν1) + $2U(t− ν1)C(t− ν1)]

− (λ1 + δI)I(t)− βI(t)T(t), (5)

dC(t)
dt

= λ2 I(t)− δCC(t), (6)

dV(t)
dt

= αe−γ2ν2 I(t− ν2)− δVV(t), (7)

dT(t)
dt

= σI(t− ν3)T(t− ν3)− δTT(t), (8)

where C(t) represents the concentration of inflammatory cytokines at time t. The term
$2UC denotes the cytokine-enhanced viral infection rate. The death rate of infected CD4+T
cells due to pyroptosis is λ1 I. The production and death rates of the inflammatory cytokines
are denoted by λ2 I and δCC, respectively. Parameters ν1, ν2, and ν3 denote the intracellular
delay, viral replication delay, and immune response delay, respectively.

Both CTL and antibody immune responses play very important roles in controlling
viral infections. A viral infection model with both CTL and antibody immune responses
was studied in [28]. Then, the model was extended in several works (see, e.g., [29–32]).
In these papers, the role of pyroptosis was not considered. We note that Model (4)–(8)
does not take into account the role of humoral immune response against HIV-1 infection.
Moreover, the model includes constant time delays.

Our aim in this paper was to develop a cytokine-enhanced HIV-1 dynamics model by
considering (i) the roles of both humoral and CTL immune responses and (i) distributed-
time delays, which are general, then discrete-time delays. We first looked into the funda-
mental characteristics of the DDEs, then we found all equilibria and discuss their existence
and global stability. We used the Lyapunov method to prove the global asymptotic stability
of all equilibria. Numerical simulations were used to demonstrate the theoretical findings.
Finally, the obtained results are discussed.

2. Model Development

We formulated a six-dimensional system of DDEs as follows:

dU(t)
dt

= ω− δUU(t)− $1U(t)V(t)− $2U(t)C(t), (9)

dI(t)
dt

=
∫ κ1

0
z1(ν)e−γ1νU(t− ν)($1V(t− ν) + $2C(t− ν))dν

− (λ1 + δI)I(t)− βI(t)T(t), (10)

dC(t)
dt

= λ2 I(t)− δCC(t), (11)
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dV(t)
dt

= α
∫ κ2

0
z2(ν)e−γ2ν I(t− ν)dν− δVV(t)− ψA(t)V(t), (12)

dT(t)
dt

= σI(t)T(t)− δTT(t), (13)

dA(t)
dt

= ξ A(t)V(t)− δA A(t). (14)

Two distributed time delays were included, which describe the lag between the viral parti-
cle’s initial interaction with CD4+T and the maturation of the new virions. The factorz1(ν)e−γ1ν

represents the probability that uninfected CD4+T cells contacted by virus particles at time (t− ν)
survived time units and become infected at time t. The factor z2(ν)e−γ2ν denotes the proba-
bility of new immature virions at time (t− ν) lost ν time units and become mature at time t.
Here, γi, i = 1, 2 are positive constants. Parameter ν is random and taken from a probability
distribution function zi(ν) over the time interval [0, κi], i = 1, 2, where κi is the upperlimit of
this delay period.

The function zi(ν), i = 1, 2, satisfies

zi(ν) > 0,
∫ κi

0
zi(ν)dν = 1 and

∫ κi

0
zi(ν)e−uνdν < ∞, i = 1, 2,

where u > 0. Let us denote the following:

Ḡi(ν) = zi(ν)e−γiν, Gi =
∫ κi

0
Ḡi(ν)dν,

Therefore, 0 < Gi ≤ 1, i = 1, 2. The initial conditions of System (9)–(14) are given by:

U(θ) = v1(θ), I(θ) = v2(θ), C(θ) = v3(θ), V(θ) = v4(θ), T(θ) = v5(θ),

A(θ) = v6(θ), vj(θ) ≥ 0, θ ∈ [−κ̂, 0], j = 1, 2, . . . , 6, (15)

where κ̂ = max{κ1, κ2}, vj(θ) ∈ C([−κ̂, 0],R≥0), j = 1, 2, . . . , 6, and C is the Banach space of
continuous functions mapping the interval [−κ̂, 0] into R≥0 with norm∥∥vj

∥∥ = sup−κ̂≤θ≤0

∣∣vj(θ)
∣∣ for vj ∈ C. Therefore, System (9)–(14) with the initial condi-

tions (15) when the fundamental theory of functional differential equations is applied has a
single solution [33].

3. Biologically Realistic Domain

Proposition 1. All solutions of System (9)–(14) with the initial conditions (15) are nonnegative
and ultimately bounded.

Proof. From Equations (9)–(14), we have dU
dt |U=0= ω > 0, and hence, U(t) > 0 for all

t ≥ 0. For all t ∈ [0, κ̂], we have

I(t) = v2(0)e−
∫ t

0 [(λ1+δI)+βT(θ)]dθ

+
∫ t

0
e−
∫ t

η [(λ1+δI)+βT(θ)]dθ
∫ κ1

0
Ḡ1(ν)U(η − ν)[$1V(η − ν) + $2C(η − ν)]dνdη ≥ 0,

C(t) = v3(0)e−δCt + λ2

∫ t

0
e−δC(t−η) I(η)dη ≥ 0,

V(t) = v4(0)e−
∫ t

0 (δV+ψA(θ))dθ + α
∫ t

0
e−
∫ t

η (δV+ψA(θ))dθ
∫ κ2

0
Ḡ2(ν)I(η − ν)dνdη ≥ 0,

T(t) = v5(0)e−
∫ t

0 (δT−σI(θ))dθ ≥ 0,

A(t) = v6(0)e−
∫ t

0 (δA−ξV(θ))dθ ≥ 0.
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Thus, by a recursive argument, we obtain (U(t), I(t), C(t), V(t), T(t), A(t)) ∈ R6
≥0 for all

t ≥ 0. Next, we show the ultimate boundedness of the model’s solutions. Equation (9)
implies that lim supt→∞ U(t) ≤ ω

δU
. Further, we let

Ω1(t) =
∫ κ1

0
Ḡ1(ν)U(t− ν)dν + I(t) +

β

σ
T(t).

Then, we obtain
dΩ1(t)

dt
=
∫ κ1

0
Ḡ1(ν)(ω− δUU(t− ν)− $1U(t− ν)V(t− ν)− $2U(t− ν)C(t− ν))dν

+
∫ κ1

0
Ḡ1(ν)U(t− ν)[$1V(t− ν) + $2C(t− ν)]dν− (λ1 + δI)I(t)− βI(t)T(t)

+ βI(t)T(t)− βδT
σ

T(t)

= ω
∫ κ1

0
Ḡ1(ν)dν−

∫ κ1

0
Ḡ1(ν)δUU(t− ν)dν− (λ1 + δI)I(t)− βδT

σ
T(t)

≤ ω− ρ1Ω1(t),

where ρ1 = min{δU , λ1 + δI , δT}. Hence, lim supt→∞ Ω1(t) ≤ L1, where L1 = ω
ρ1

. There-

fore, we can obtain that lim supt→∞ I(t) ≤ L1 and lim supt→∞ T(t) ≤ σ

β
L1, then from

Equations (11), Ċ(t) = λ2 I(t) − δCC(t) ≤ λ2L1 − δCC(t), then lim supt→∞ C(t) ≤ L2,
where L2 = λ2L1

δC
. Moreover, let Ω2(t) = V(t) + ψ

ξ A(t). Then,

dΩ2(t)
dt

= α
∫ κ2

0
Ḡ2(ν)I(t− ν)dν− δVV(t)− ψA(t)V(t)− ψ

ξ
(ξ A(t)V(t)− δA A(t))

= α
∫ κ2

0
Ḡ2(ν)I(t− ν)dν− δVV(t)− δAψ

ξ
A(t)

≤ αL1 − ρ2Ω2(t),

where ρ2 = min{δV , δA}. Hence, lim supt→∞ Ω2(t) ≤ L3, where L3 = αL1
ρ2

. Therefore, we

can obtain that lim supt→∞ V(t) ≤ L3 and lim supt→∞ A(t) ≤ ξ

ψ
L3.

Based on Proposition 1, one can establish that

Ξ =
{
(U(t), I(t), C(t), V(t), T(t), A(t)) ∈ C6

≥0 : ‖U(t)‖ ≤ L1, ‖I(t)‖ ≤ L1,

‖T(t)‖ ≤ σ

β
L1, ‖V(t)‖ ≤ L3, ‖C(t)‖ ≤ L2, ‖A(t)‖ ≤ ξ

ψ
L3

}
,

is positively invariant with respect to System (9)–(14).

4. Equilibria

This section finds the equilibria of System (9)–(14) and identifies the prerequisites for
their existence. Any equilibrium satisfies the following:

0 = ω− δUU − $1UV − $2UC, (16)

0 = G1U($1V + $2C)− (λ1 + δI)I − βIT, (17)

0 = λ2 I − δCC, (18)

0 = αG2 I − δVV − ψAV, (19)

0 = σIT − δTT, (20)

0 = ξAV − δA A. (21)
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Equation (21) admits two solutions A = 0 and V = δA
ξ .

Let us first consider the case when A = 0, and from Equations (16)–(20), we obtain
three equilibria in the system:
(I) Uninfected equilibrium, EP0 = (U0, 0, 0, 0, 0, 0), where U0 = ω

δU
.

(II) Chronic infection equilibrium with inactive immune response EP1 = (U1, I1, C1, V1, 0, 0),
where

U1 =
δVδC(λ1 + δI)

G1($1δCαG2 + $2λ2δV)
=

U0

<0
, I1 =

δC
λ2

C1,

C1 =
λ2δVδU

$2λ2δV + $1δCαG2
(<0 − 1), V1 =

δUδCαG2

$2λ2δV + $1δCαG2
(<0 − 1), (22)

where <0 is the basic reproduction number defined as:

<0 =
ωG1($1δCαG2 + $2λ2δV)

δUδVδC(λ1 + δI)
=

U0$1αG1G2

δV(λ1 + δI)
+

U0$2λ2G1

δC(λ1 + δI)
= <01 +<02.

It follows that EP1 exists if <0 > 1, and obviously, <01 represents the contribution of viral
infections to <0, whereas <02 represents the contribution of inflammatory cytokines to <0.
(III) Chronic infection equilibrium with only CTL immunity EP2 = (U2, I2, C2, V2, T2, 0),
where

U2 =
σωδVδC

σδUδVδC + δTδC$1αG2 + λ2$2δVδT
,

I2 =
δT
σ

, C2 =
λ2δT
σδC

, V2 =
αδTG2

δVσ
,

T2 =
δT(λ1 + δI)(δC$1αG2 + δVλ2$2)

β(δUδVδCσ + δTδC$1αG2 + δVδTλ2$2)
(<1 − 1),

where

<1 =
σδUδVδC(<0 − 1)

δT(δC$1αG2 + δVλ2$2)
.

The ratio <1 is the CTL immunity activation number. Then, the equilibrium point EP2
exists when <1 > 1. The CTL-mediated immune response is triggered or not depending on
the value of the parameter <1.

Let us consider the case when V = δA
ξ . Then, from Equations (16)–(20), we obtain two equi-

libria.
(IV) Chronic infection equilibrium with only humoral immunity EP3 = (U3, I3, C3, V3, 0, A3),
where

U3 =
ωξ

δUξ + δA$1 + $2ξC3
, I3 =

δC
λ2

C3, V3 =
δA
ξ

, A3 =
δV
ψ

(
δCαξG2C3

δAδVλ2
− 1
)

,

and C3 satisfies the following equation:

QC2
3 + WC3 + E = 0, (23)

where

Q = δC$2ξ(λ1 + δI),

W = δC(λ1 + δI)(δUξ + δA$1)−ω$2ξλ2G1,

E = −ω$1δAλ2G1. (24)
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Since Q > 0 and E < 0, then W2 − 4QE > 0, and the equation has two different real roots.
The positive root is

C3 =
−W +

√
W2 − 4QE

2Q
. (25)

It follows that, if δCαξG2C3
δAδV λ2

> 1, then I3 > 0, U3 > 0 and A3 > 0. Define the humoral
immunity activation number as:

<2 =
δCαξG2C3

δAδVλ2
.

Thus, A3 = δV
ψ (<2 − 1). The humoral immune response is triggered or not based on the

parameter <2. Hence, EP3 exists when <2 > 1.
(V) Chronic infection equilibrium with both CTL and humoral immunities,
EP4 = (U4, I4, C4, V4, T4, A4), where

U4 =
δCωσξ

δUδCσξ + δCδA$1σ + δT$2ξλ2
, I4 =

δT
σ

, C4 =
δTλ2

δCσ
, V4 =

δA
ξ

,

T4 =
λ1 + δI

β
(<4 − 1), A4 =

δV
ψ
(<3 − 1), (26)

where <3 and <4 represent the humoral immunity competitive number and CTL immunity
competitive number, respectively, and they are given as follows:

<3 =
δTξαG2

δVδAσ
, <4 =

σωG1(δCδA$1σ + δT$2ξλ2)

δT(λ1 + δI)(δUδCσξ + δCδA$1σ + δT$2ξλ2)
.

Whether the CTL-mediated and antibody immune responses are induced is deter-
mined by the parameters <3 and <4. Note that EP4 exists when <3 > 1 and <4 > 1.

5. Global Stability

By creating Lyapunov functionals using the technique described in [34,35], we inves-
tigate the global asymptotic stability of all equilibria. Define χ(θ) = θ − 1− ln(θ). De-
note (U, I, C, V, T, A) = (U(t), I(t), C(t), V(t), T(t), A(t)) and (Uν, Iν, Cν, Vν) = (U(t− ν),
I(t− ν), C(t− ν), V(t− ν)). Define a Lyapunov functional candidate Φi(U, I, C, V, T, A),
and let ∆′i be the largest invariant subset of

∆i =

{
(U, I, C, V, T, A) :

dΦi
dt

= 0
}

, i = 0, 1, . . . , 4.

Theorem 1. If <0 ≤ 1, then EP0 (U0, 0, 0, 0, 0, 0) is globally asymptotically stable (G.A.S).

Proof. Construct Φ0(U, I, C, V, T, A) as:

Φ0 = U0χ

(
U
U0

)
+

1
G1

I +
$2U0

δC
C +

$1U0

δV
V +

β

σG1
T +

$1U0ψ

ξδV
A

+
1
G1

∫ κ1

0
Ḡ1(ν)

∫ t

t−ν
U(θ)($1V(θ) + $2C(θ))dθdν

+
$1U0α

δV

∫ κ2

0
Ḡ2(ν)

∫ t

t−ν
I(θ)dθdν.
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Clearly, Φ0(U, I, C, V, T, A) > 0 for all U, I, C, V, T, A > 0 and Φ0 = 0 at EP0. Calculate
dΦ0
dt along the solutions of model (9)–(14) as follows:

dΦ0

dt
=

(
1− U0

U

)
(ω− δUU − $1UV − $2UC)

+
1
G1

(∫ κ1

0
Ḡ1(ν)Uν($1Vν + $2Cν)dν− (λ1 + δI)I − βIT

)
+

$2U0

δC
(λ2 I − δCC) +

β

σG1
(σIT − δTT)

+
$1U0

δV

(
α
∫ κ2

0
Ḡ2(ν)Iνdν− δVV − ψAV

)
+

$1U0ψ

ξδV
(ξ AV − δA A) +

1
G1

∫ κ1

0
Ḡ1(ν)U($1V + $2C)dν

− 1
G1

∫ κ1

0
Ḡ1(ν)Uν($1Vν + $2Cν)dν +

$1U0α

δV

∫ κ2

0
Ḡ2(ν)(I − Iν)dν

=

(
1− U0

U

)
(ω− δUU) +

(
$1U0αG2

δV
+

$2U0

δC
λ2 −

1
G1

(λ1 + δI)

)
I

− β

σG1
δTT − $1U0ψ

ξδV
δA A, (27)

Substituting ω = δUU0 and collecting the terms of Equation (27), we obtain

dΦ0

dt
= −δU

(U −U0)
2

U
+

(λ1 + δI)

G1

(
$1U0αG2G1δC + $2U0λ2G1δV

δCδV(λ1 + δI)
− 1
)

I − βδT
σG1

T − $1U0ψδA
ξδV

A

= −δU
(U −U0)

2

U
+

(λ1 + δI)

G1
(<0 − 1)I − βδT

σG1
T − $1U0ψδA

ξδV
A.

If <0 ≤ 1, then dΦ0
dt ≤ 0 for all U, I, C, V, T, A > 0. Moreover, dΦ0

dt = 0 when U = U0, I = 0,
T = 0, and A = 0. The solutions of Model (9)–(14) converge to ∆′0, where U = U0, I = 0,
T = 0, and A = 0 [36]. Equation (9) becomes

0 =
dU
dt

= ω− δUU0 − $1U0V(t)− $2U0C(t), for all t.

Using U0 = ω
δU

, we obtain

0 = $1V(t) + $2C(t), for all t,

which leads to V(t) = C(t) = 0 for all t, and hence, ∆′0 = {EP0}. LaSalle’s invariance
principle (L.I.P.) reveals that EP0 is G.A.S [37].

We need to the following equalities:

ln
(

UνVν

UV

)
= ln

(
IiUνVν

IUiVi

)
+ ln

(
Ui
U

)
+ ln

(
IVi
IiV

)
,

ln
(

Iν

I

)
= ln

(
IνVi
IiV

)
+ ln

(
IiV
IVi

)
, (28)

ln
(

UνCν

UC

)
= ln

(
Ui
U

)
+ ln

(
ICi
IiC

)
+ ln

(
IiUνCν

IUiCi

)
, i = 1, 2, 3, 4.
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in addition to

$1UiVi
G1

∫ κ1

0
Ḡ1(ν) ln

(
UνVν

UV

)
dν +

$1UiVi
G2

∫ κ2

0
Ḡ2(ν) ln

(
Iν

I

)
dν

=
$1UiVi
G1

∫ κ1

0
Ḡ1(ν)

(
ln
(

IiUνVν

IUiVi

)
+ ln

(
Ui
U

)
+ ln

(
IVi
IiV

))
dν

+
$1UiVi
G2

∫ κ2

0
Ḡ2(ν)

(
ln
(

IνVi
IiV

)
+ ln

(
IiV
IVi

))
dν

=
$1UiVi
G1

∫ κ1

0
Ḡ1(ν)

(
ln
(

IiUνVν

IUiVi

)
+ ln

(
Ui
U

))
dν

+
$1UiVi
G2

∫ κ2

0
Ḡ2(ν) ln

(
IνVi
IiV

)
dν. (29)

Lemma 1. If <2 ≤ 1, then V1 ≤ V4.

Proof. Let <2 ≤ 1; hence δCαξG2C3
δAδV λ2

≤ 1, where C3 is given by Equation (25)

C3 ≤
δAδVλ2

δCαξG2
=⇒ −W +

√
W2 − 4QE

2Q
≤ δAδVλ2

δCαξG2

=⇒
√

W2 − 4QE ≤ WδCαξG2 + 2QδAδVλ2

δCαξG2

=⇒W2 − 4QE ≤
(

WδCαξG2 + 2QδAδVλ2

δCαξG2

)2

=⇒W2 − 4QE−
(

WδCαξG2 + 2QδAδVλ2

δCαξG2

)2
≤ 0

Using Equations (22), (24), and (26), we obtain

4δVδAλ2ξ$2(δI + λ1)
2(G2αδC$1 + δVλ2$2)

G2
2 α2 (V1 −V4) ≤ 0

Hence, V1 ≤ V4.

Theorem 2. If <0 > 1, <1 ≤ 1, and <2 ≤ 1, then EP1 is G.A.S.

Proof. Define Φ1(U, I, C, V, T, A) as:

Φ1 = U1χ

(
U
U1

)
+

1
G1

I1χ

(
I
I1

)
+

$2U1C1

δC
χ

(
C
C1

)
+

$1U1V1

δV
χ

(
V
V1

)
+

β

σG1
T +

$1U1ψ

δVξ
A

+
$1U1V1

G1

∫ κ1

0
Ḡ1(ν)

∫ t

t−ν
χ

(
U(θ)V(θ)

U1V1

)
dθdν +

$2U1C1

G1

∫ κ1

0
Ḡ1(ν)

∫ t

t−ν
χ

(
U(θ)C(θ)

U1C1

)
dθdν

+
α$1U1 I1

δV

∫ κ2

0
Ḡ2(ν)

∫ t

t−ν
χ

(
I(θ)
I1

)
dθdν.
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We calculate dΦ1
dt as:

dΦ1

dt
=

(
1− U1

U

)
(ω− δUU − $1UV − $2UC) +

1
G1

(
1− I1

I

)
×
(∫ κ1

0
Ḡ1(ν)Uν($1Vν + $2Cν)dν− (λ1 + δI)I − βIT

)
+

$2U1

δC

(
1− C1

C

)
(λ2 I − δCC) +

$1U1

δV

(
1− V1

V

)
×
(

α
∫ κ2

0
Ḡ2(ν)Iνdν− δVV − ψAV

)
+

β

σG1
(σIT − δTT) +

$1U1ψ

δVξ
(ξ AV − δA A)

+
$1U1V1

G1

∫ κ1

0
Ḡ1(ν)

(
UV

U1V1
− UνVν

U1V1
+ ln

(
UνVν

UV

))
dν

+
$2U1C1

G1

∫ κ1

0
Ḡ1(ν)

(
UC

U1C1
− UνCν

U1C1
+ ln

(
UνCν

UC

))
dν

+
α$1U1 I1

δV

∫ κ2

0
Ḡ2(ν)

(
I
I1
− Iν

I1
+ ln

(
Iν

I

))
dν, (30)

Summing the terms of Equation (30), we obtain

dΦ1

dt
=

(
1− U1

U

)
(ω− δUU) + $1U1V + $2U1C− 1

G1

I1

I

∫ κ1

0
Ḡ1(ν)$1UνVνdν

− 1
G1

I1

I

∫ κ1

0
Ḡ1(ν)$2UνCνdν− 1

G1

(
1− I1

I

)
(λ1 + δI)I

+
1
G1

βI1T +
$2U1

δC

(
1− C1

C

)
λ2 I − $2U1

(
1− C1

C

)
C

− α$1U1

δV

V1

V

∫ κ2

0
Ḡ2(ν)Iνdν− $1U1

(
1− V1

V

)
V +

ψ$1U1V1

δV
A

− βδT
σG1

T − $1U1δAψ

δVξ
A +

$1U1V1

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνVν

UV

)
dν

+
$2U1C1

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνCν

UC

)
dν +

α$1U1 I1

δV

∫ κ2

0
Ḡ2(ν)

I
I1

dν

+
α$1U1 I1

δV

∫ κ2

0
Ḡ2(ν) ln

(
Iν

I

)
dν. (31)

Using the following conditions for EP1:

ω = δUU1 + $1U1V1 + $2U1C1,
(λ1 + δI)I1

G1
= $1U1V1 + $2U1C1,

C1

I1
=

λ2

δC
,

I1

V1
=

δV
αG2

,

we obtain
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dΦ1

dt
=

(
1− U1

U

)
(δUU1 − δUU) + $1U1V1 + $2U1C1 −

U1

U
$1U1V1 −

U1

U
$2U1C1

+ $1U1V1
V
V1

+ $2U1C1
C
C1
− $1U1V1

G1

∫ κ1

0
Ḡ1(ν)

I1UνVν

IU1V1
dν

− $2U1C1

G1

∫ κ1

0
Ḡ1(ν)

I1UνCν

IU1C1
dν + $1U1V1 + $2U1C1

− $2U1C1
IC1

I1C
− $2U1C1

C
C1

+ $2U1C1 −
$1U1V1

G2

∫ κ2

0
Ḡ2(ν)

IνV1

I1V
dν

− $1U1V + $1U1V1 +

(
βI1

G1
− βδT

σG1

)
T +

(
ψ$1U1V1

δV
− $1U1δAψ

δVξ

)
A

+
$1U1V1

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνVν

UV

)
dν +

$2U1C1

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνCν

UC

)
dν

+
$1U1V1

G2

∫ κ2

0
Ḡ2(ν) ln

(
Iν

I

)
dν. (32)

Using the equalities (28) and (29) for i = 1, we obtain

dΦ1

dt
= −δU

(U −U1)
2

U
− $1U1V1

G1

∫ κ1

0
Ḡ1(ν)

(
U1

U
− 1− ln

(
U1

U

))
dν

− $1U1V1

G1

∫ κ1

0
Ḡ1(ν)

(
I1UνVν

IU1V1
− 1− ln

(
I1UνVν

IU1V1

))
dν

− $1U1V1

G2

∫ κ2

0
Ḡ2(ν)

(
IνV1

I1V
− 1− ln

(
IνV1

I1V

))
dν

− $2U1C1

G1

∫ κ1

0
Ḡ1(ν)

(
U1

U
− 1− ln

(
U1

U

))
dν

− $2U1C1

G1

∫ κ1

0
Ḡ1(ν)

(
IC1

I1C
− 1− ln

(
IC1

I1C

))
dν

− $2U1C1

G1

∫ κ1

0
Ḡ1(ν)

(
I1UνCν

IU1C1
− 1− ln

(
I1UνCν

IU1C1

))
dν

+

(
βI1

G1
− βδT

σG1

)
T +

ψ$1U1

δV
(V1 −V4)A. (33)

But,(
βI1

G1
− βδT

σG1

)
=

βδT
σG1

(
σI1

δT
− 1
)
=

βδT
σG1

(
σδUδVδC(<0 − 1)

δT(δC$1αG2 + δVλ2$2)
− 1
)
=

βδT
σG1

(<1 − 1),

Therefore, Equation (33) becomes

dΦ1

dt
= −δU

(U −U1)
2

U
− $1U1V1

G1

∫ κ1

0
Ḡ1(ν)χ

(
U1

U

)
dν

− $1U1V1

G1

∫ κ1

0
Ḡ1(ν)χ

(
I1UνVν

IU1V1

)
dν− $1U1V1

G2

∫ κ2

0
Ḡ2(ν)χ

(
IνV1

I1V

)
dνdν

− $2U1C1

G1

∫ κ1

0
Ḡ1(ν)χ

(
U1

U

)
dν− $2U1C1

G1

∫ κ1

0
Ḡ1(ν)χ

(
IC1

I1C

)
dν

− $2U1C1

G1

∫ κ1

0
Ḡ1(ν)χ

(
I1UνCν

IU1C1

)
dν

+
βδT
σG1

(<1 − 1)T +
ψ$1U1

δV
(V1 −V4)A.
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Using Lemma 1 and since V1 ≤ V4, <0 > 1, <1 ≤ 1, and <2 ≤ 1, then dΦ1
dt ≤ 0 for all

U, I, C, V, T, A > 0. Moreover, dΦ1
dt = 0 when U = U1, I = I1, T = 0 and A = 0. The

solutions of Model (9)-(14) converge to ∆′1, where U = U1, I = I1, T = 0, and A = 0 and

I1UνVν

IU1V1
=

IνV1

I1V
=

I1UνCν

IU1C1
= 1, for all t ∈ [0, κ̂]. (34)

Since U(t) = U1 and I(t) = I1, then from (34), V(t) = V1 and C(t) = C1 for all t, and hence,
∆′1 = {EP1}. The L.I.P. reveals that EP1 is G.A.S.

Theorem 3. If <1 > 1 and <3 ≤ 1, then EP2 is G.A.S.

Proof. Consider a function Φ2(U, I, C, V, T, A) as:

Φ2 = U2χ

(
U
U2

)
+

1
G1

I2χ

(
I
I2

)
+

$2U2C2

δC
χ

(
C
C2

)
+

$1U2V2

δV
χ

(
V
V2

)
+

βT2

σG1
χ

(
T
T2

)
+

$1U2ψ

δVξ
A

+
$1U2V2

G1

∫ κ1

0
Ḡ1(ν)

∫ t

t−ν
χ

(
U(θ)V(θ)

U2V2

)
dθdν +

$2U2C2

G1

∫ κ1

0
Ḡ1(ν)

∫ t

t−ν
χ

(
U(θ)C(θ)

U2C2

)
dθdν

+
α$1U2 I2

δV

∫ κ2

0
Ḡ2(ν)

∫ t

t−ν
χ

(
I(θ)
I2

)
dθdν.

We calculate dΦ2
dt as:

dΦ2

dt
=

(
1− U2

U

)
(ω− δUU − $1UV − $2UC) +

1
G1

(
1− I2

I

)
×
(∫ κ1

0
Ḡ1(ν)Uν($1Vν + $2Cν)dν− (λ1 + δI)I − βIT

)
+

$2U2

δC

(
1− C2

C

)
(λ2 I − δCC) +

$1U2

δV

(
1− V2

V

)
×
(

α
∫ κ2

0
Ḡ2(ν)Iνdν− δVV − ψAV

)
+

β

σG1

(
1− T2

T

)
(σIT − δTT) +

$1U2ψ

δVξ
(ξ AV − δA A)

+
$1U2V2

G1

∫ κ1

0
Ḡ1(ν)

(
UV

U2V2
− UνVν

U2V2
+ ln

(
UνVν

UV

))
dν

+
$2U2C2

G1

∫ κ1

0
Ḡ1(ν)

(
UC

U2C2
− UνCν

U2C2
+ ln

(
UνCν

UC

))
dν

+
α$1U2 I2

δV

∫ κ2

0
Ḡ2(ν)

(
I
I2
− Iν

I2
+ ln

(
Iν

I

))
dν. (35)
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Collecting the terms of Equation (35), we obtain

dΦ2

dt
=

(
1− U2

U

)
(ω− δUU)− 1

G1

I2

I

∫ κ1

0
Ḡ1(ν)$1UνVνdν

− 1
G1

I2

I

∫ κ1

0
Ḡ1(ν)$2UνCνdν− 1

G1
(λ1 + δI)I

+
1
G1

(λ1 + δI)I2 +
1
G1

βI2T +
$2U2

δC
λ2 I − $2U2

δC

C2

C
λ2 I + $2U2C2

− $1U2

δV

V2

V
α
∫ κ2

0
Ḡ2(ν)Iνdν + $1U2V2 +

$1U2

δV
ψAV2

− β

G1
IT2 −

β

σG1
δTT +

β

σG1
δTT2 −

$1U2ψ

δVξ
δA A

+
$1U2V2

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνVν

UV

)
dν +

$2U2C2

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνCν

UC

)
dν

+
α$1U2 I2

δV

∫ κ2

0
Ḡ2(ν)

I
I2

dν +
α$1U2 I2

δV

∫ κ2

0
Ḡ2(ν) ln

(
Iν

I

)
dν, (36)

Using the following conditions for steady state EP2:

ω = δUU2 + $1U2V2 + $2U2C2,

(λ1 + δI)I2 = G1($1U2V2 + $2U2C2)− βI2T2,
C2

I2
=

λ2

δC
,

V2

I2
=

αG2

δV
, I2 =

δT
σ

,

then we obtain

dΦ2

dt
=

(
1− U2

U

)
(δUU2 − δUU) +

(
1− U2

U

)
$1U2V2 +

(
1− U2

U

)
$2U2C2

− $1U2V2

G1

∫ κ1

0
Ḡ1(ν)

I2UνVν

IU2V2
dν− $2U2C2

G1

∫ κ1

0
Ḡ1(ν)

I2UνCν

IU2C2
dν

+ ($1U2V2 + $2U2C2)−
βδT
σG1

T2 +
β

G1
IT2 − $2U2C2

C2 I
CI2

+ $2U2C2 −
$1U2V2

G2

∫ κ2

0
Ḡ2(ν)

V2 Iν

VI2
dν + $1U2V2 −

β

G1
IT2

− βδT
σG1

T +
βδT
σG1

T2 +
βδT
σG1

T +

(
$1U2ψV2

δV
− $1U2ψδA

δVξ

)
A

+
$1U2V2

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνVν

UV

)
dν +

$2U2C2

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνCν

UC

)
dν

+
$1U2V2

G2

∫ κ2

0
Ḡ2(ν) ln

(
Iν

I

)
dν, (37)
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Utilizing Equalities (28) and (29) for i = 2, we obtain

dΦ2

dt
= −δU

(U −U2)
2

U
− $1U2V2

G1

∫ κ1

0
Ḡ1(ν)

(
U2

U
− 1− ln

(
U2

U

))
dν

− $1U2V2

G2

∫ κ2

0
Ḡ2(ν)

(
V2 Iν

VI2
− 1− ln

(
V2 Iν

VI2

))
dν

− $1U2V2

G1

∫ κ1

0
Ḡ1(ν)

(
I2UνVν

IU2V2
− 1− ln

(
I2UνVν

IU2V2

))
dν

− $2U2C2

G1

∫ κ1

0
Ḡ1(ν)

(
U2

U
− 1− ln

(
U2

U

))
dν

− $2U2C2

G1

∫ κ1

0
Ḡ1(ν)

(
C2 I
CI2
− 1− ln

(
C2 I
CI2

))
dν

− $2U2C2

G1

∫ κ1

0
Ḡ1(ν)

(
I2UνCν

IU2C2
− 1− ln

(
I2UνCν

IU2C2

))
dν

+
$1U2ψδA

δVξ

(
ξV2

δA
− 1
)

A. (38)

Equation (38) can be rewritten as follows

dΦ2

dt
= −δU

(U −U2)
2

U
− $1U2V2

G1

∫ κ1

0
Ḡ1χ

(
U2

U

)
dν

− $1U2V2

G2

∫ κ2

0
Ḡ2(ν)χ

(
V2 Iν

VI2

)
dν− $1U2V2

G1

∫ κ1

0
Ḡ1(ν)χ

(
I2UνVν

IU2V2

)
dν

− $2U2C2

G1

∫ κ1

0
Ḡ1(ν)χ

(
U2

U

)
dν− $2U2C2

G1

∫ κ1

0
Ḡ1(ν)χ

(
C2 I
CI2

)
dν

− $2U2C2

G1

∫ κ1

0
Ḡ1(ν)χ

(
I2UνCν

IU2C2

)
dν +

$1U2ψδA
δVξ

(<3 − 1)A.

If <1 > 1 and <3 ≤ 1, then dΦ2
dt ≤ 0 for all U, I, C, V, T, A > 0. Moreover, dΦ2

dt = 0 when
U = U2, I = I2, V = V2, C = C2, and A = 0. The solutions of Model (9)–(14) converge to
∆′2, where U = U2, I = I2, V = V2, C = C2, A = 0, and

V2 Iν

VI2
=

I2UνVν

IU2V2
=

I2UνCν

IU2C2
= 1, for all t ∈ [0, κ̂]. (39)

From Equation (10),

0 =
dI
dt

= G1U2($1V2 + $2C2)− (λ1 + δI)I2 − βI2T(t) =⇒ T(t) = T2, for all t.

Hence, ∆
′
2 = {EP2}, and from the L.I.P., we obtain that EP2 is G.A.S.

Theorem 4. <2 > 1 and <4 ≤ 1, then EP3 is G.A.S.
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Proof. Define Φ3(U, I, C, V, T, A) as:

Φ3 = U3χ

(
U
U3

)
+

1
G1

I3χ

(
I
I3

)
+

$2U3C3

δC
χ

(
C
C3

)
+

$1U3V3

δV + ψA3
χ

(
V
V3

)
+

β

σG1
T

+
$1U3ψ

(δV + ψA3)ξ
A3χ

(
A
A3

)
+

$1U3V3

G1

∫ κ1

0
Ḡ1(ν)

∫ t

t−ν
χ

(
U(θ)V(θ)

U3V3

)
dθdν

+
$2U3C3

G1

∫ κ1

0
Ḡ1(ν)

∫ t

t−ν
χ

(
U(θ)C(θ)

U3C3

)
dθdν

+
α$1U3 I3

δV + ψA3

∫ κ2

0
Ḡ2(ν)

∫ t

t−ν
χ

(
I(θ)
I3

)
dθdν.

We find dΦ3
dt as:

dΦ3

dt
=

(
1− U3

U

)
(ω− δUU − $1UV − $2UC) +

1
G1

(
1− I3

I

)
×
(∫ κ1

0
Ḡ1(ν)Uν($1Vν + $2Cν)dν− (λ1 + δI)I − βIT

)
+

$2U3

δC

(
1− C3

C

)
(λ2 I − δCC) +

$1U3

δV + ψA3

(
1− V3

V

)
×
(

α
∫ κ2

0
Ḡ2(ν)Iνdν− δVV − ψAV

)
+

β

σG1
(σIT − δTT) +

$1U3ψ

(δV + ψA3)ξ

(
1− A3

A

)
(ξ AV − δA A)

+
$1U3V3

G1

∫ κ1

0
Ḡ1(ν)

(
UV

U3V3
− UνVν

U3V3
+ ln

(
UνVν

UV

))
dν

+
$2U3C3

G1

∫ κ1

0
Ḡ1(ν)

(
UC

U3C3
− UνCν

U3C3
+ ln

(
UνCν

UC

))
dν

+
α$1U3 I3

δV + ψA3

∫ κ2

0
Ḡ2(ν)

(
I
I3
− Iν

I3
+ ln

(
(I − ν)

I

))
dν. (40)

Collecting the terms of Equation (40) yields

dΦ3

dt
=

(
1− U3

U

)
(ω− δUU) + $1U3V − 1

G1

I3

I

∫ κ1

0
Ḡ1(ν)$1UνVνdν

− 1
G1

I3

I

∫ κ1

0
Ḡ1(ν)$2UνCνdν− 1

G1
(λ1 + δI)I +

1
G1

(λ1 + δI)I3

+
1
G1

βI3T +
$2U3

δC
λ2 I − $2U3

δC

C3

C
λ2 I + $2U3C3 −

$1U3

δV + ψA3

V3

V
α
∫ κ2

0
Ḡ2(ν)Iνdν

− $1U3

δV + ψA3
δVV +

$1U3

δV + ψA3
δVV3 +

$1U3

δV + ψA3
ψAV3 −

β

σG1
δTT − $1U3ψ

δV + ψA3
A3V

− $1U3ψ

(δV + ψA3)ξ
δA A +

$1U3ψ

(δV + ψA3)ξ
δA A3 +

$1U3V3

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνVν

UV

)
dν

+
$2U3C3

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνCν

UC

)
dν +

α$1U3 I3

δV + ψA3

∫ κ2

0
Ḡ2(ν)

I
I3

dν

+
α$1U3 I3

δV + ψA3

∫ κ2

0
Ḡ2(ν) ln

(
Iν

I

)
dν. (41)

Using the following conditions for EP3:
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ω = δUU3 + $1U3V3 + $2U3C3,
(λ1 + δI)I3

G1
= $1U3V3 + $2U3C3,

C3

I3
=

λ2

δC
, V3 =

δA
ξ

, δV + ψA3 =
αG2 I3

V3
,

we obtain

dΦ3

dt
=

(
1− U3

U

)
(δUU3 − δUU) + $1U3V3

(
1− U3

U

)
+ $2U3C3

(
1− U3

U

)
+ $1U3V − $1U3V3

G1

∫ κ1

0
Ḡ1(ν)

I3UνVν

IU3V3
dν− $2U3C3

G1

∫ κ1

0
Ḡ1(ν)

I3UνCν

IU3C3
dν

− ($1U3V3 + $2U3C3)
I
I3

+ $1U3V3 + $2U3C3 +
1
G1

βI3T + $2U3C3
I
I3

− $2U3C3
IC3

I3C
+ $2U3C3 −

$1U3V3

αG2 I3

V3

V
α
∫ κ2

0
Ḡ2(ν)Iνdν

− $1U3

δV + ψA3
δVV +

$1U3

δV + ψA3
δVV3 +

$1U3

δV + ψA3
ψAV3 −

β

σG1
δTT

− $1U3ψ

δV + ψA3
A3V − $1U3ψ

δV + ψA3
V3 A +

$1U3ψ

δV + ψA3
V3 A3

+
$1U3V3

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνVν

UV

)
dν +

$2U3C3

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνCν

UC

)
dν

+
$1U3V3

G2

∫ κ2

0
Ḡ2(ν)

I
I3

dν +
$1U3V3

G2

∫ κ2

0
Ḡ2(ν) ln

(
Iν

I

)
dν. (42)

Using the equalities (28) and (29) in the case of i = 3, we obtain

dΦ3

dt
= −δU

(U −U3)
2

U
− $1U3V3

G1

∫ κ1

0
Ḡ1(ν)

(
U3

U
− 1− ln

(
U3

U

))
dν

− $1U3V3

G1

∫ κ1

0
Ḡ1(ν)

(
I3UνVν

IU3V3
− 1− ln

(
I3UνVν

IU3V3

))
dν

− $1U3V3

G2

∫ κ2

0
Ḡ2(ν)

(
V3 Iν

VI3
− 1− ln

(
V3 Iν

VI3

))
dν

− $2U3C3

G1

∫ κ1

0
Ḡ1(ν)

(
U3

U
− 1− ln

(
U3

U

))
dν

− $2U3C3

G1

∫ κ1

0
Ḡ1(ν)

(
I3UνCν

IU3C3
− 1− ln

(
I3UνCν

IU3C3

))
dν

− $2U3C3

G1

∫ κ1

0
Ḡ1(ν)

(
IC3

I3C
− 1− ln

(
IC3

I3C

))
dν +

β

G1

(
I3 −

δT
σ

)
T. (43)

Equation (43) can be rewritten as follows:

dΦ3

dt
= −δU

(U −U3)
2

U
− $1U3V3

G1

∫ κ1

0
Ḡ1χ

(
U3

U

)
dν

− $1U3V3

G1

∫ κ1

0
Ḡ1(ν)χ

(
I3UνVν

IU3V3

)
dν− $1U3V3

G2

∫ κ2

0
Ḡ2(ν)χ

(
V3 Iν

VI3

)
dν

− $2U3C3

G1

∫ κ1

0
Ḡ1(ν)χ

(
U3

U

)
dν− $2U3C3

G1

∫ κ1

0
Ḡ1(ν)χ

(
I3UνCν

IU3C3

)
dν

− $2U3C3

G1

∫ κ1

0
Ḡ1(ν)χ

(
IC3

I3C

)
dν +

β

G1
(I3 − I4)T. (44)
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If <4 ≤ 1, then EP4 does not exist since T4 = λ1+δI
β (<4 − 1) ≤ 0. Thus,

dT(t)
dt

= σ

(
I(t)− δT

σ

)
T(t) ≤ 0 =⇒ dT(t)

dt
= σ(I3 − I4)T(t) ≤ 0 for all T > 0,

which implies that I3 ≤ I4. So, dΦ3
dt ≤ 0 for all U, I, C, V, T, A > 0. Moreover, dΦ3

dt = 0 when
U = U3, I = I3, C = C3, and T = 0. The solutions of Model (9)–(14) converge to ∆′3. The
elements of ∆′3 satisfy U = U3, I = I3, C = C3, and

I3UνVν

IU3V3
=

V3 Iν

VI3
=

I3UνCν

IU3C3
= 1, for all t ∈ [0, κ̂] (45)

and

0 =
dV(t)

dt
= αG2 I3 − δVV3 − ψA(t)V3 =⇒ A(t) = A3, for all t.

This yields that ∆
′
3 = {EP3}, and from the L.I.P., we obtain that EP3 is G.A.S.

Theorem 5. If <3 > 1 and <4 > 1, then EP4 is G.A.S.

Proof. Define Φ4(U, I, C, V, T, A) as:

Φ4 = U4χ

(
U
U4

)
+

1
G1

I4χ

(
I
I4

)
+

$2U4C4

δC
χ

(
C
C4

)
+

$1U4V4

δV + ψA4
χ

(
V
V4

)
+

β

σG1
T4χ

(
T
T4

)
+

$1U4ψ

(δV + ψA4)ξ
A4χ

(
A
A4

)
+

$1U4V4

G1

∫ κ1

0
Ḡ1(ν)

∫ t

t−ν
χ

(
U(θ)V(θ)

U4V4

)
dθdν

+
$2U4C4

G1

∫ κ1

0
Ḡ1(ν)

∫ t

t−ν
χ

(
U(θ)C(θ)

U4C4

)
dθdν

+
α$1U4 I4

δV + ψA4

∫ κ2

0
Ḡ2(ν)

∫ t

t−ν
χ

(
I(θ)
I4

)
dθdν.

Calculate dΦ4
dt as:

dΦ4

dt
=

(
1− U4

U

)
(ω− δUU − $1UV − $2UC) +

1
G1

(
1− I4

I

)
×
(∫ κ1

0
Ḡ1(ν)Uν($1Vν + $2Cν)dν− (λ1 + δI)I − βIT

)
+

$2U4

δC

(
1− C4

C

)
(λ2 I − δCC) +

$1U4

δV + ψA4

(
1− V4

V

)
×
(

α
∫ κ2

0
Ḡ2(ν)Iνdν− δVV − ψAV

)
+

β

σG1

(
1− T4

T

)
× (σIT − δTT) +

$1U4ψ

(δV + ψA4)ξ

(
1− A4

A

)
(ξAV − δA A)

+
$1U4V4

G1

∫ κ1

0
Ḡ1(ν)

(
UV

U4V4
− UνVν

U4V4
+ ln

(
UνVν

UV

))
dν

+
$2U4C4

G1

∫ κ1

0
Ḡ1(ν)

(
UC

U4C4
− UνCν

U4C4
+ ln

(
UνCν

UC

))
dν

+
α$1U4 I4

δV + ψA4

∫ κ2

0
Ḡ2(ν)

(
I
I4
− Iν

I4
+ ln

(
Iν

I

))
dν. (46)
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Collecting the terms of Equation (46) yields

dΦ4

dt
=

(
1− U4

U

)
(ω− δUU) + $1U4V − 1

G1

I4

I

∫ κ1

0
Ḡ1(ν)Uν$1Vνdν

− 1
G1

I4

I

∫ κ1

0
Ḡ1(ν)Uν$2Cνdν− 1

G1
(λ1 + δI)I

+
1
G1

(λ1 + δI)I4 +
1
G1

βI4T +
$2U4

δC
λ2 I − $2U4

δC

C4

C
λ2 I

+ $2U4C4 −
$1U4

δV + ψA4

V4

V
α
∫ κ2

0
Ḡ2(ν)Iνdν

− $1U4

δV + ψA4
δVV +

$1U4

δV + ψA4
δVV4 +

$1U4

δV + ψA4
ψAV4

− β

G1
IT4 −

β

σG1
δTT +

β

σG1
δTT4 −

$1U4ψ

δV + ψA4
A4V

− $1U4ψ

(δV + ψA4)ξ
δA A +

$1U4ψ

(δV + ψA4)ξ
δA A4

+
$1U4V4

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνVν

UV

)
dν

+
$2U4C4

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνCν

UC

)
dν

+
α$1U4 I4

δV + ψA4

∫ κ2

0
Ḡ2(ν)

I
I4

dν

+
α$1U4 I4

δV + ψA4

∫ κ2

0
Ḡ2(ν) ln

(
Iν

I

)
dν,

Using the following conditions for EP4:

ω = δUU4 + $1U4V4 + $2U4C4,
(λ1 + δI)I4

G1
+

βI4T4

G1
= $1U4V4 + $2U4C4,

C4

I4
=

λ2

δC
, V4 =

δA
ξ

, δV + ψA4 =
αG2 I4

V4
, I4 =

δT
σ

,

we obtain

dΦ4

dt
=

(
1− U4

U

)
(δUU4 − δUU) + $1U4V4

(
1− U4

U

)
+ $2U4C4

(
1− U4

U

)
+ $1U4V

− $1U4V4

G1

∫ κ1

0
Ḡ1(ν)

I4UνVν

IU4V4
dν− $2U4C4

G1

∫ κ1

0
Ḡ1(ν)

I4UνCν

IU4C4
dν

−
(

$1U4V4 + $2U4C4 −
βI4T4

G1

)
I
I4

+ $1U4V4 + $2U4C4 −
βI4T4

G1
+

1
G1

βI4T

+ $2U4C4
I
I4
− $2U4C4

IC4

I4C
+ $2U4C4 −

$1U4V4

G1

∫ κ2

0
Ḡ2(ν)

V4 Iν

VI4
dν

− $1U4

δV + ψA4
δVV +

$1U4

δV + ψA4
δVV4 +

$1U4

δV + ψA4
ψAV4 −

β

G1
IT4 −

β

G1
I4T

+
β

G1
I4T4 −

$1U4ψ

δV + ψA4
A4V − $1U4ψ

δV + ψA4
V4 A +

$1U4ψ

δV + ψA4
V4 A4

+
$1U4V4

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνVν

UV

)
dν +

$2U4C4

G1

∫ κ1

0
Ḡ1(ν) ln

(
UνCν

UC

)
dν

+
$1U4V4

G2

∫ κ2

0
Ḡ2(ν)

I
I4

dν +
$1U4V4

G2

∫ κ2

0
Ḡ2(ν) ln

(
Iν

I

)
dν.
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Equalities (28) and (29) in the case of i = 4 yield

dΦ4

dt
= −δU

(U −U4)
2

U
− $1U4V4

G1

∫ κ1

0
Ḡ1(ν)

(
U4

U
− 1− ln

(
U4

U

))
dν

− $1U4V4

G1

∫ κ1

0
Ḡ1(ν)

(
I4UνVν

IU4V4
− 1− ln

(
I4UνVν

IU4V4

))
dν

− $1U4V4

G2

∫ κ2

0
Ḡ2(ν)

(
V4 Iν

VI4
− 1− ln

(
V4 Iν

VI4

))
dν

− $2U4C4

G1

∫ κ1

0
Ḡ1(ν)

(
U4

U
− 1− ln

(
U4

U

))
dν

− $2U4C4

G1

∫ κ1

0
Ḡ1(ν)

(
I4UνCν

IU4C4
− 1− ln

(
I4UνCν

IU4C4

))
dν

− $2U4C4

G1

∫ κ1

0
Ḡ1(ν)

(
IC4

I4C
− 1− ln

(
IC4

I4C

))
dν. (47)

Equation (47) can be rewritten as follows:

dΦ4

dt
= −δU

(U −U4)
2

U
− $1U4V4

G1

∫ κ1

0
Ḡ1(ν)χ

(
U4

U

)
dν

− $1U4V4

G1

∫ κ1

0
Ḡ1(ν)χ

(
I4UνVν

IU4V4

)
dν

− $1U4V4

G2

∫ κ2

0
Ḡ2(ν)χ

(
V4 Iν

VI4

)
dν

− $2U4C4

G1

∫ κ1

0
Ḡ1(ν)χ

(
U4

U

)
dν

− $2U4C4

G1

∫ κ1

0
Ḡ1(ν)χ

(
I4UνCν

IU4C4

)
dν

− $2U4C4

G1

∫ κ1

0
Ḡ1(ν)χ

(
IC4

I4C

)
dν.

If <3 > 1 and <4 > 1, then dΦ4
dt ≤ 0 for all U, I, C, V, T, A > 0. Moreover, dΦ4

dt = 0 when
U = U4, I = I4, C = C4, and V = V4. The solutions of System (9)–(14) converge to ∆′4 with
elements that satisfy U = U4, I = I4, C = C4, and V = V4, such that

I4UνVν

IU4V4
=

V4 Iν

VI4
=

I4UνCν

IU4C4
= 1, for all t ∈ [0, κ̂], (48)

and

0 =
dI
dt

= G1U4($1V4 + $2C4)− (λ1 + δI)I4 − βI4T(t) =⇒ T(t) = T4, for all t,

0 =
dV
dt

= αG2 I4 − δVV4 − ψA(t)V4 =⇒ A(t) = A4, for all t.

This yields that ∆′4 = {EP4}. The L.I.P. reveals that EP4 is G.A.S.

Now, we summarize the conditions of the existence and global stability of the sys-
tem’s equilibria; see Table 1. These conditions completely depend on the five threshold
parameters <i, i = 0, 1, 2, 3, 4.
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Table 1. Conditions of the existence and global stability of equilibria.

Equilibrium Point Existence Conditions Global Stability Conditions

EP0 = (U0, 0, 0, 0, 0, 0, 0) None <0 ≤ 1
EP1 = (U1, I1, C1, V1, 0, 0) <0 > 1 <0 > 1, <1 ≤ 1 and <2 ≤ 1

EP2 = (U2, I2, C2, V2, T2, 0) <1 > 1 <1 > 1 and <3 ≤ 1

EP3 = (U2, I2, C2, V2, 0, A2) <2 > 1 <2 > 1 and <4 ≤ 1

EP4 = (U2, I2, C2, V2, T2, A2) <3 > 1 and <4 > 1 <3 > 1 and <4 > 1

6. Comparison Results

In this section, we address the effect of inflammatory cytokines on the HIV-1 dynamics.
We considered the administration of two types of treatments as follows:

(i) Reverse transcriptase inhibitor (RTI), which prevents the virus from infecting the cell [11];
(ii) Necrosulfonamide, which is a direct chemical inhibitor to inhibit pyroptotic cell

death [24,38].

Let ε1 ∈ [0, 1] and ε2 ∈ [0, 1] be the efficacies of RTI and necrosulfonamide, respectively.
Model (9)–(14) under the effect of these treatments becomes:

dU
dt

= ω− δUU − (1− ε1)$1UV − (1− ε2)$2UC, (49)

dI
dt

=
∫ κ1

0
Ḡ1(ν)Uν[(1− ε1)$1Vν + (1− ε2)$2Cν]dν

− (λ1 + δI)I − βIT, (50)
dC
dt

= λ2 I − δCC, (51)

dV
dt

= α
∫ κ2

0
Ḡ2(ν)Iνdν− δVV − ψAV, (52)

dT
dt

= σIT − δTT, (53)

dA
dt

= ξAV − δA A. (54)

The basic reproduction number of System (49)–(54) is given by:

<0 =
(1− ε1)U0$1αG1G2

δV(λ1 + δI)
+

(1− ε2)U0$2λ2G1

δC(λ1 + δI)
.

We considered ε = ε1 = ε2, then we obtain

<ε
0 = (1− ε)

[
U0$1αG1G2

δV(λ1 + δI)
+

U0$2λ2G1

δC(λ1 + δI)

]
= (1− ε)<0.

Now, we evaluated the drug efficacy ε that makes <ε
0 ≤ 1 and stabilizes the EP0 of

System (49)–(54) as:

1 ≥ ε ≥ ε̃min = max
{

0, 1− 1
<0

}
. (55)
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When we ignore the inflammatory cytokines in Model (49)–(54), we obtain

dU
dt

= ω− δUU − (1− ε)$1UV, (56)

dI
dt

= (1− ε)$1

∫ κ1

0
Ḡ1(ν)UνVνdν− δI I − βIT, (57)

dV
dt

= α
∫ κ2

0
Ḡ2(ν)Iνdν− δVV − ψAV, (58)

dT
dt

= σIT − δTT, (59)

dA
dt

= ξ AV − δA A, (60)

and the basic reproductive number of Model (56)–(60) is given by

<̂ε
0 = (1− ε)

U0$1αG1G2

δVδI
= (1− ε)<̂0

We determine the drug efficacy ε that makes <̂ε
0 ≤ 1 and stabilizes the EP0 of

System (56)–(60) as:

1 ≥ ε ≥ ε̂min = max
{

0, 1− 1
<̂0

}
. (61)

Clearly, <̂0 < <0; thus, the basic reproduction number of an HIV-1 model that ignores the
role of inflammatory cytokines will be underevaluated. Comparing Equations (55) and (61),
we obtain that ε̂min ≤ ε̃min. Therefore, if we apply drugs with efficacy ε such that
ε̂min ≤ ε < ε̃min, this guarantees that <̂ε

0 ≤ 1, and then, the EP0 of System (56)–(60)
is G.A.S.; however, <ε

0 > 1, and then, the EP0 of System (49)–(54) is unstable. Consequently,
the treatment efficacy determined by the basic reproduction number <̂ε

0 is lower than what
is necessary to eradicate the infection. Therefore, our proposed model is more relevant in
describing the HIV-1 dynamics than the models presented in [28].

When we compared our proposed model with Model (4)–(8), we found that ours
contains five equilibria, while System (4)–(8) has only three equilibria. Moreover, (4)–(8)
includes a discrete-time delay, which is a special form of the distributed-time delay.

7. Numerical Simulations

In this section, we ran numerical simulations for the models (9)–(14) using a specific
form of the probability distribution function, such as:

zi(ν) = ς(ν− νi),

where ς(.) is the Dirac delta function and νi ∈ [0, ki], i = 1, 2 are constants. Let ki tend to
∞, then ∫ ∞

0
zj(θ)dθ = 1, Gj =

∫ ∞

0
ς(θ − νj) e−γjθdθ = e−γjνj , j = 1, 2.
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Model (9)–(14) then becomes:

dU
dt

= ω− δUU −U($1V + $2C), (62)

dI
dt

= e−γ1ν1Uν1($1Vν1 + $2Cν1)− (λ1 + δI)I − βIT, (63)

dC
dt

= λ2 I − δCC, (64)

dV
dt

= αe−γ2ν2 Iν2 − δVV − ψAV, (65)

dT
dt

= σIT − δTT, (66)

dA
dt

= ξ AV − δA A. (67)

For this model, the threshold parameters become

<0 =
ωe−γ1ν1($1δCαe−γ2ν2 + $2λ2δV)

δUδVδC(λ1 + δI)
, <1 =

σδUδVδC(<0 − 1)
δT(δC$1αe−γ2ν2 + δVλ2$2)

,

<2 =
δCαξe−γ2ν2 C3

δAδVλ2
, <3 =

δTξαe−γ2ν2

δVδAσ
, <4 =

σωe−γ1ν1(δCδA$1σ + δT$2ξλ2)

δT(λ1 + δI)(δUδCσξ + δCδA$1σ + δT$2ξλ2)
.

We fixed the values of some parameters, which were taken from the literature (see
Table 2). The others parameters were chosen just to perform the numerical simulation.

Table 2. Model parameters.

Parameter Value Source Parameter Value Source Parameter Value Source

ω 10 [39–41] β 0.001 [27] ψ 0.8 [42]

δU 0.01 [40,43,44] δC 0.1 [27] δT 0.32 [27]

λ1 0.1 [27] α 13 [27] δA 0.1 [42]

δI 0.75 [27] δV 0.3 [32] γ1 0.1 [45]

γ2 0.1 [46] λ2 0.1 Assumed

7.1. Sensitivity Analysis of <0 to the Parameters for Model (62)–(67)

Sensitivity analysis holds a crucial position within the realm of dynamic systems
research, particularly within the fields of ecology and epidemiology [47]. One pivotal
aspect of this research entails scrutinizing the sensitivity of model parameters. This involves
the calculation of specific sensitivity indices for each parameter, shedding light on their
contributions to the dynamics of diseases. This section delves into the sensitivity analysis of
various parameters concerning <0. In order to execute a sensitivity analysis, we calculated
the normalized forward sensitivity index of a variable using the following formula:

SEµ =
µ

<0

∂<0

∂µ
. (68)

This equation provides the sensitivity index of <0 concerning the parameter µ. In the
context of forward sensitivity analysis, we explored how the alterations of these parameters
influence the value of <0. This analytical approach allowed us to assess the sensitivity
of <0 to adjustments in each parameter, offering valuable insights into their respective
impacts on the system’s dynamics. When applying Relation (68) to all parameters of System
(62)–(67), the following outcomes are apparent:
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(i) The parameters with positive sensitivity indices include ω, $1, $2, λ2, and α, with

SEω = 1, SE$1 = SEα =
e−γ2ν2 α $1 δC

e−γ2ν2 α $1 δC + λ2 $2 δV
,

SE$2 = SE
λ2

=
λ2 $2 δV

e−γ2ν2 α $1 δC + λ2 $2δV
.

This implies that any increase or decrease in the values of those parameters directly
influences <0, leading to either an increase or a decrease in its value.

(ii) The parameters with negative sensitivity indices, signifying that an increase in their
values leads to a decrease in <0, include δU , γ1, ν1, λ1, δI , δC, γ2, ν2, and δV , as delin-
eated below:

SEδU = −1 SEγ1 = SEν1 = −γ1 ν1, SEλ1 = − λ1

λ1 + δI

SEδI = −
δI

λ1 + δI
, SEδC = − λ2 $2 δV

e−γ2ν2 α $1 δC + λ2 $2 δV

SEγ2 = SEν2 = − γ2 δC ν2 e−γ2ν2 α $1

e−γ2ν2 α $1 δC + λ2 $2 δV
, SEδV = − e−γ2ν2 α $1 δC

e−γ2ν2 α $1 δC + λ2 $2 δV

(iii) The parameters β, ψ, σ, δT , ξ, and δA have no impact on the value of <0.

When selecting ν1 = 3, ν2 = 2, $1 = 0.00018, $2 = 0.0038, σ = 0.03, and ξ = 0.0001,
the sensitivity indices for various model parameters, calculated using the formula (68), are
visualized in Figure 1 and summarized in Table 3. Examining Table 3, we observe that
a 10% increase or decrease in the values of ω, $1, $2, λ2, and α results in a corresponding
10%, 6.27%, 3.73%, 3.73%, and 6.269% increase or decrease in <0, respectively. Conversely,
a 10% increase in the values of δU , γ1, ν1, λ1, δI , δC, γ2, ν2, and δV leads to a reduction in <0
by 10%, 3%, 3%, 1.18%, 8.82%, 3.73%, 1.25%, 1.25%, and 6.27%, respectively.

Table 3. Sensitivity index of <0.

Parameter Sensitivity Index Parameter Sensitivity Index Parameter Sensitivity Index

ω 1 δI −882× 10−3 δV −627× 10−3

δU −1 β 0 ψ 0

$1 627× 10−3 λ2 373× 10−3 σ 0

$2 373× 10−3 δC −373× 10−3 δT 0

γ1 −0.3 α 627× 10−3 ξ 0

ν1 −0.3 γ2 −125× 10−3 δA 0

λ1 −118× 10−3 ν2 −125× 10−3

It is important to note that the correlation between time delay and <0 is inverse,
meaning that, as the time delay grows, <0 typically decreases, indicating a decreased
risk of infection. To recap, time delay is a pivotal factor in determining <0’s value and,
consequently, the generation of infected cells within epidemiological models. Extended
time delays are connected to diminished <0 values and a reduced number of infected cells,
while shorter time delays are associated with elevated <0 values and an increased count of
infected cells. Grasping this connection is crucial for evaluating the likelihood of infection
cases and formulating effective treatment strategies.
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Figure 1. Forward sensitivity analysis to assess the influence of the system’s (62)–(67) parameters on <0.

7.2. Stability of the Equilibria

In this subsection, we chose the delay parameters to be ν1 = 3 and ν2 = 2. We then
used numerical simulation to illustrate our results given in Theorems 1–5. To obtain the
numerical solutions of the model, we used the MATLAB’s dde23 solver. To illustrate the
global stability, we chose three different initial conditions as:

I.1: (U(θ), I(θ), C(θ), V(θ), T(θ), A(θ)) = (300, 9, 12, 8, 300, 4);
I.2: (U(θ), I(θ), C(θ), V(θ), T(θ), A(θ)) = (150, 6, 9, 7, 200, 3);
I.3: (U(θ), I(θ), C(θ), V(θ), T(θ), A(θ)) = (50, 3, 3, 4, 100, 1). θ ∈ [−3, 0].
We mention that, since we did not have real data, these initial values were chosen just

for numerical purposes.
Under the preceding beginning conditions, selecting the chosen values of $1, $2, σ,

and ξ resulted in the following scenarios:
Scenario 1 (stability of EP0): $1 = 0.00001, $2 = 0.001, σ = 0.001, and ξ = 0.001.

These values give <0 = 0.39 < 1. The numerical solutions eventually reach the equilibrium
EP0 = (1000, 0, 0, 0, 0, 0) (see Figure 2). The numerical results shown in Figure 2 agree with
the results of Theorem 1. This indicates that the HIV-1 particles ultimately are eradicated.
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Figure 2. The equilibrium point EP0 = (1000, 0, 0, 0, 0, 0) is G.A.S. whenever <0 ≤ 1. (a) Unin-
fected CD4+T cells; (b) infected CD4+T cells; (c) inflammatory cytokines; (d) free HIV-1; (e) CTLs;
(f) antibodies.

Scenario 2 (stability of EP1): $1 = 0.00018, $2 = 0.0038, σ = 0.03, and ξ = 0.0001. These
choices give <0 = 8.88 > 1, <1 = 0.73 < 1, and <2 = 0.29 < 1 and create the persistent
state of lacking immunity EP1 = (112.64, 7.73, 7.73, 274.38, 0, 0). Figure 3 illustrates the global
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stability of EP1, which is proven in Theorem 2. This indicates that the levels of infected cells
and viruses are small and insufficient to stimulate the adaptive immune response.
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Figure 3. The equilibrium point EP1 = (112.64, 7.73, 7.73, 274.39, 0, 0) is G.A.S. whenever <0 > 1,
<1 ≤ 1 and <2 ≤ 1. (a) Uninfected CD4+T cells; (b) infected CD4+T cells; (c) inflammatory cytokines;
(d) free HIV-1; (e) CTLs; (f) antibodies.

Scenario 3 (stability of EP2): $1 = 0.0001, $2 = 0.004, σ = 0.048, and ξ = 0.00039.
Using the data values in Table 2, we obtain <1 = 1.1086 > 1 and <3 = 0.92 < 1. The
numerical simulations showed that EP2 = (165.79, 6.67, 6.67, 236.52, 77.002, 0) is G.A.S. (see
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Figure 4). This observation agrees with the outcomes of Theorem 3. This suggests that the
CTL immune response is activated to remove infected cells without the need for antibodies.
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Figure 4. The equilibrium point EP2 = (165.78, 6.66, 6.66, 236.51, 77.003, 0) is G.A.S. whenever<2 > 1
and <3 ≤ 1. (a) Uninfected CD4+T cells; (b) infected CD4+T cells; (c) inflammatory cytokines;
(d) free HIV-1; (e) CTLs; (f) antibodies.
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Scenario 4 (stability of EP3): $1 = 0.0001, $2 = 0.004, σ = 0.04, and ξ = 0.012.
The values in Table 2 give <2 = 26.8028 > 1 and <4 = 0.84 < 1. The numerical solu-
tions plotted in Figure 5 converge to EP3 = (277.66, 6.30, 6.29, 8.33, 0, 9.68). We see that,
starting from any initial value, the concentration of the CTLs will go to zero, while all
other compartments eventually tend to be constant over time. This supports the result of
Theorem 4.
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Figure 5. The equilibrium point EP3 = (277.65, 6.29, 6.29, 8.34, 0, 9.67) is G.A.S. whenever <3 > 1
and <4 ≤ 1. (a) Uninfected CD4+T cells; (b) infected CD4+T cells; (c) inflammatory cytokines;
(d) free HIV-1; (e) CTLs; (f) antibodies.
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Scenario 5 (stability of EP4): $1 = 0.0007, $2 = 0.004, σ = 0.048, and ξ = 0.0016.
The values in Table 2 give <3 = 3.78 > 1 and <4 = 1.14 > 1. The numerical solutions
displayed in Figure 6 tend to EP4 = (124.35, 6.67, 6.67, 62.5, 123.04, 1.04). We observed that,
starting from any initial value, the concentrations of all compartments finally tend to be
constant as time goes on. Consequently, EP4 is G.A.S., and this agrees with the result
of Theorem 5. This case represents the patient livedwith HIV-1 and that the adaptive
immunity is active.

7.3. Effect of Time Delays on the HIV-1 Dynamics

In this part, we show the effect of time delay on the solutions of the system. We fixed
the values $1 = 0.0007, $2 = 0.004, σ = 0.048, and ξ = 0.0016. Let us take ν = ν1 = ν2, then
the basic reproduction number <0 becomes

<0 =
ωe−γ1ν($1δCαe−γ2ν + $2λ2δV)

δUδVδC(λ1 + δI)
.

We observed that <0 is a decreasing function of ν. Therefore, the stability of the
system we will change as ν changes. Since we are interested in the stabilization of the
uninfected equilibrium EP0, we computed the critical value of the delay νcr, which makes

<0 =
ωe−γ1νcr ($1δCαe−γ2νcr + $2λ2δV)

δUδVδC(λ1 + δI)
= 1. (69)

By solving Equation (69) numerically, we obtain νcr = 21.7173. Then, we have that if
ν ≥ 21.7173, then <0 ≤ 1 and EP0 is G.A.S., and the virus will be eradicated. Now, we study
the impact of delay parameter ν on the solutions of System (62)–(67) with initial values:
I.4: (U(θ), I(θ), C(θ), V(θ), T(θ), A(θ)) = (500, 5, 4, 40, 150, 1), where θ ∈ [−max{ν1, ν2}, 0].
Figure 7 demonstrates the impact of ν on the system’s solutions. We observed that, as ν
increases, the level of uninfected CD4+T cells will increase, while the levels of other
compartments will decrease.

Biologically, time delays play important roles in HIV-1 progression, which gives
some indications of how to control the infection. Sufficiently large time delays result in
slower HIV-1 development, and HIV-1 is controlled and may disappear. This may give an
indication of the possibility of creating new HIV-1 drugs that extend the delay time.

7.4. Effect of Immune Response on the HIV-1 Dynamics

In this part, we show the effect of immune response on the HIV-1 dynamics. We used
the parameters given in Table 2 and fixed the parameters $1 = 0.00018, $2 = 0.0038, ν1 = 3,
and ν2 = 2. We considered the following initial condition:
I.5: (U(θ), I(θ), C(θ), V(θ), T(θ), A(θ)) = (280, 4, 5, 15, 200, 4), where θ ∈ [−3, 0].
We varied the parameters σ and ξ as shown in Figure 8, which displays that, whenever
the activity of the immune response changes, the dynamic behavior of the virus changes.
We see that, when σ and ξ increase, the populations of uninfected CD4+T cell, CTLs, and
antibodies increase, whereas the populations of infected cells, inflammatory cytokines, and
free HIV-1 particles decrease.
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Figure 6. The equilibrium point EP4 = (124.35, 6.66, 6.66, 62.5, 123.04, 1.0441) is G.A.S. whenever
<3 > 1 and <4 > 1. (a) Uninfected CD4+T cells; (b) infected CD4+T cells; (c) inflammatory cytokines;
(d) free HIV-1; (e) CTLs; (f) antibodies.
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Figure 7. Influence of the delay parameter ν on the solutions of System (62)–(67). (a) Uninfected
CD4+T cells; (b) infected CD4+T cells; (c) inflammatory cytokines; (d) free HIV-1; (e) CTLs; (f) anti-
bodies.
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Figure 8. Influence of the immune response parameters σ and ξ on the solutions of System (62)–(67).
(a) Uninfected CD4+T cells; (b) infected CD4+T cells; (c) inflammatory cytokines; (d) free HIV-1;
(e) CTLs; (f) antibodies.
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8. Discussion

Recent research works have demonstrated that, during HIV-1 infection, pyroptosis is
associated with the release of inflammatory cytokines. This can attract more CD4+T cells
for infection and can lead to more CD4+T cell death. Understanding the dynamics of HIV-1
within the host under the influence of inflammatory cytokines is, thus, urgently needed.
In this paper, we developed a cytokine-enhanced HIV-1 dynamics model with adaptive
immunity and distributed delays. The model admits five equilibrium points as follows:

• The uninfected equilibrium, EP0, usually exists, and it is G.A.S. when <0 ≤ 1. In this
state, the number of HIV-1 particles eventually converges to 0. Different control plans
can be applied to make

<0 =
ωe−γ1ν1

δU

[
$1αe−γ2ν2

δV(λ1 + δI)
+

$2λ2

δC(λ1 + δI)

]
≤ 1.

These plans are, for example:

(i) Reducing both parameters $1 and $2. This may be achieved by applying two types
of treatments: RTI [11] and necrosulfonamide [38], with drug efficacies ε1 ∈ [0, 1] and
ε2 ∈ [0, 1], respectively. Thus, parameters $1 and $2 will be (1− ε1)$1 and (1− ε2)$2,
respectively. We note that the basic reproduction number <̂0 of a model that neglects
the role of inflammatory cytokines might be underevaluated. Due to this, the treatment
efficacy determined by this basic reproduction number is lower than what is necessary to
eradicate the infection. We note also that <0 does not depend on the humoral and CTL
parameters. Therefore, humoral and CTL immunities play the role of controlling the HIV-1
infection, but not in clearing it. Our proposed model under the effect of anti-viral drugs can
be considered as a nonlinear control system. Therefore, different control strategies can be
applied for the stabilization of the system around a desired equilibrium (see, e.g., [48–50]).

(ii) Enlarging the length of delay periods ν1 and ν2 [35]. This may be performed
if a new class of treatments is developed to prolong the delay periods and, then, inhibit
HIV-1 progression.

• The chronic infection equilibrium with inactive immune response, EP1, exists when
<0 > 1. Moreover, EP1 is G.A.S. when <0 > 1, <1 ≤ 1, and <2 ≤ 1. In this
situation, HIV-1 is present, but without any immune response. This can happen when
the populations of both HIV-1 and infected cells are insufficient to activate the immune
system’s reaction, i.e., V ≤ δA

ξ and I4 ≤ δT
σ .

• The chronic infection equilibrium with only CTL immunity, EP2, exists when
<1 > 1. Further, EP2 is G.A.S. when <1 > 1 and <3 ≤ 1. In this case, HIV-1 ex-
ists in the body under CTL immune response only. This can happen when the number
of viruses in the body becomes small and insufficient to activate the humoral immune
response, i.e., V ≤ δA

ξ .
• The chronic infection equilibrium with only humoral immunity, EP3, exists when

<2 > 1. Further, EP3 is G.A.S. when <2 > 1 and <4 ≤ 1. In this case, HIV-1 exists in
the body under humoral immune response only. This can happen when the number
of infected cells becomes small and insufficient to activate the CTL immune response,
i.e., I4 ≤ δT

σ .
• The chronic infection equilibrium with both CTL and humoral immunities,

EP4, exists and is G.A.S. when <3 > 1 and <4 > 1. In this case, HIV-1 infection
is chronic, where both humoral and CTL immune responses are activated.

The primary drawback of our study is that we were unable to estimate the values
of the model’s parameters using real data. The reasons are as follows: (i) There is still a
lack of real data on HIV-1 infection; (ii) it may not be very accurate to compare our results
with a small number of real studies; (iii) it is difficult to gather real data from patients who
are HIV-1 infected; (iv) conducting experiments to obtain real data is outside the purview
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of this paper. As a result, when real data become available, the theoretical conclusions
reached in this study need to be compared against empirical findings.

9. Conclusions

In this paper, we formulated an HIV-1 model to obtain insight into the HIV-1 dynamics,
taking the role of inflammatory cytokines into consideration. The effect of both humoral
and CTL immunities on HIV-1 infection was included. Two distributed time delays were
incorporated: (i) delay in the HIV-1 infection of uninfected CD4+T cells and (ii) delay
in the maturation of recently released HIV-1 virions. We first showed the fundamental
properties of the solutions, nonnegativity, and boundedness. Then, we established that
the model admits five equilibria: EPi, i = 0, 1, . . . , 4. We derived five threshold parameters,
<i, i = 0, 1, . . . , 4, which completely determine the existence and global stability of the
model’s equilibria. We used the Lyapunov method to prove the global asymptotic stability
for all equilibria. We solved the model numerically and presented the results graphically.
We found an agreement between the numerical and theoretical findings. A sensitivity
analysis was performed to establish how the values of the model’s parameters affect
the basic reproduction number <0. We discussed the effect of pyroptosis, time delays,
and adaptive immunity on the HIV-1 dynamics. We found that pyroptosis contributes to
the number <0, and then, neglecting it will make <0 underevaluated. Besides the highly
active antiretroviral drug therapies, which are usually used to inhibit viral replication,
necrosulfonamide can be used to inhibit pyroptosis. Further, it was found that, increasing
time delays can effectively decrease <0 and, then, inhibit HIV-1 replication. This may
indicate the development of new treatments that will prolong the delay. Furthermore, we
showed that both humoral and CTL immunities have no effect on <0, while this can result
in less HIV-1 infection.

Our model can be extended by including (i) the mobility of cells and viruses [51],
(ii) viral mutations [52], and (iii) stochastic interactions [53].
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