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Abstract: This research aims to formulate and analyze two mathematical models describing the
within-host dynamics of human immunodeficiency virus type-1 (HIV-1) in case of impaired humoral
immunity. These models consist of five compartments, including healthy CD4+T cells, (HIV-1)-
latently infected cells, (HIV-1)-actively infected cells, HIV-1 particles, and B-cells. We make the
assumption that healthy cells can become infected when exposed to: (i) HIV-1 particles resulting
from viral infection (VI), (ii) (HIV-1)-latently infected cells due to latent cellular infection (CI), and
(iii) (HIV-1)-actively infected cells due to active CI. In the second model, we introduce distributed
time-delays. For each of these systems, we demonstrate the non-negativity and boundedness of the so-
lutions, calculate the basic reproductive number, identify all possible equilibrium states, and establish
the global asymptotic stability of these equilibria. We employ the Lyapunov method in combination
with LaSalle’s invariance principle to investigate the global stability of these equilibrium points.
Theoretical findings are subsequently validated through numerical simulations. Additionally, we
explore the impact of B-cell impairment, time-delays, and CI on HIV-1 dynamics. Our results indicate
that weakened immunity significantly contributes to disease progression. Furthermore, the presence
of time-delays can markedly decrease the basic reproductive number, thereby suppressing HIV-1
replication. Conversely, the existence of latent CI spread increases the basic reproductive number, in-
tensifying the progression of HIV-1. Consequently, neglecting latent CI spread in the HIV-1 dynamics
model can lead to an underestimation of the basic reproductive number, potentially resulting in
inaccurate or insufficient drug therapies for eradicating HIV-1 from the body. These findings offer
valuable insights that can enhance the understanding of HIV-1 dynamics within a host.

Keywords: HIV-1; cellular infection; latently infected cells; immune impairment; global stability;
distributed delays; Lyapunov function

MSC: 34D20; 34D23; 37N25; 92B05

1. Introduction

Human immunodeficiency virus type-1 (HIV-1), a retrovirus, targets CD4+T cells,
a pivotal component of the immune system. In a healthy individual, the concentration of
CD4+T cells is typically around 1000 cells/mm3. However, following infection, a gradual
decline in CD4+T cell count sets in, and this decrease may persist for years. Whenever
the concentration of these cells falls below 200 cells/mm3, the individual is diagnosed
with Acquired Immune Deficiency Syndrome (AIDS) as indicated by [1]. According to
the World Health Organization’s report at the close of 2022, approximately 39 million
individuals were living with HIV-1 worldwide [2]. The adaptive immune response has
an effective role in resisting and fighting viruses that attack the human body. B-cells
and cytotoxic T lymphocytes (CTLs) represent two crucial components of the adaptive
immune response. B-cells produce antibodies to counteract HIV-1 particles, while CTLs
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eliminate cells that have been infected by HIV-1. The assessment of interactions between
HIV-1 and both target cells and immune cells can incur significant experimental costs.
Consequently, mathematical modeling of HIV-1 infection has become an indispensable
tool for comprehending the dynamic behavior of HIV-1 particles and their interactions
with target cells and immune cells. The virus dynamics model under the effect of humoral
immunity, was introduced in [3] as follows:

Healthy CD4+T cells:
dF(t)

dt
= ψ︸︷︷︸

Production of healthy cells

− ρF(t)︸ ︷︷ ︸
Natural death

− ϕF(t)K(t)︸ ︷︷ ︸
Infectious transmission

, (1)

(HIV-1)-actively infected cells:
dG(t)

dt
= ϕF(t)K(t)︸ ︷︷ ︸

Infectious transmission

− θG(t)︸ ︷︷ ︸
Natural death

, (2)

Free HIV-1 particles:
dK(t)

dt
= µG(t)︸ ︷︷ ︸

Burst size

− κK(t)︸ ︷︷ ︸
Natural death

− σU(t)K(t)︸ ︷︷ ︸
Neutralization of HIV-1

, (3)

B-cells:
dU(t)

dt
= νK(t)U(t)︸ ︷︷ ︸

B-cell stimulation

− γU(t)︸ ︷︷ ︸
Natural death

, (4)

where, F(t), G(t), K(t), and U(t) represent the concentrations of healthy CD4+T cells,
(HIV-1)-actively infected cells, free HIV-1 particles, and B-cells at time t. The parameters
ψ, ϕ, µ, σ, and ν correspond to the production rate of healthy CD4+T cells, incidence
(infection) rate, generation rate of HIV-1 from infected cells, neutralization rate of HIV-
1 by B-cells, and stimulation rate of the B-cells, respectively. The death rate constants
for the four compartments F, G, K, and U are denoted by ρ, θ, κ, and γ, respectively.
In this model, it is assumed that HIV-1 particles attack and infect healthy CD4+T cells.
Once the healthy CD4+T cells become infected, they begin to produce numerous HIV-1
particles. Simultaneously, the B-cells become activated and produce specific antibodies to
neutralize the HIV-1 particles. Several extensions were made on this model by involving
(i) (HIV-1)-latently infected cells [4], (ii) time-delay [5–7], (iii) diffusion [8,9], and (iv) age
structure [10–12]. The B-cell dynamics can be written as:

dU(t)
dt

= Θ(K(t), U(t))− γU(t),

where Θ(K, U) is stimulation of the B-cells. The literature has considered various special
forms of Θ(K, U), including:

Form-1. One of the special forms of Θ(K, U) is the self-regulating humoral response,
represented as Θ(K, U) = ω, where ω > 0 as discussed in [13].

Form-2. Linear humoral response, Θ(K, U) = φK, where φ > 0 as cited in [14–16].
Form-3. Another form of Θ(K, U) is akin to a predator-prey interaction in the humoral

response, expressed as Θ(K, U) = νKU, where ν > 0 as documented in several
references including [5–7,13–15].

Form-4. A combination of Form-1, Form-2, and Form-3 for Θ(K, U) is represented as
Θ(K, U) = ω + φK + νKU, as described in [13].

Form-5. The saturated humoral expansion is characterized by Θ(K, U) = νKU
v+U , where

v > 0, as discussed in [10,12].

Model (1)–(4) assumes that HIV-1 infection occurs exclusively through viral infection
(VI) contact. However, extensive research findings have indicated an alternative route
wherein HIV-1 can be directly transmitted from an infected CD4+T cell to a healthy CD4+T
cell, facilitated by the formation of virological synapses [17–22]. This mode of infection,
known as cellular infection (CI), exerts a profound impact on HIV-1 transmission, poten-
tially being 100–1000 times more rapid than VI dissemination [23]. Previous investigations
have delved into viral infection systems that encompass CI and humoral immunity, with no-
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table studies found in [16,24,25]. In the papers [16,24,25], it was postulated that the presence
of antigens solely stimulates the humoral immune response while disregarding any impair-
ment in humoral immunity. According to a report in [26], HIV-1 has the potential to induce
impairment in B-cells. When accounting for impaired humoral immunity, the population
dynamics of B-cells can be described as shown in various references, including [27,28].

dU(t)
dt

= φK(t)− γU(t)− εU(t)K(t),

where, φK is stimulation of B-cells and εUK is the B-cells impairment and φ and ε are constants.
In [27,28], the CI was not considered. Recently, Elaiw and Alshehaiween [29] and

Elaiw et al. [30] introduced and analyzed virus dynamics models with impaired humoral
immunity and CI. The models presented in [29,30] did not take into account the presence
of (HIV-1)-latently infected cells. However, Miao et al. in [31] introduced viral infec-
tion models that incorporated humoral immunity, (HIV-1)-latently infected cells, and CI.
Additionally, in the studies [32,33], the global stability of viral models was investigated,
considering factors such as CI, multi-stages of infected cells, and adaptive immunity. In the
works [31–33], it was assumed that CI solely resulted from the activities of (HIV-1)-actively
infected cells. However, it was reported in [34] that (HIV-1)-latently infected cells can
also participate in infecting healthy CD4+T cells through the CI mechanism. Furthermore,
in papers such as [35–38], various virus dynamics models were developed with the consid-
eration that both (HIV-1)-latently and (HIV-1)-actively infected cells contribute to the CI
mechanism. However, it’s important to note that these papers did not account for humoral
immune impairment.

The objective of this study is to introduce two within-host HIV-1 models that incorpo-
rate (HIV-1)-latently infected cells, humoral immune impairment, and the mechanism of
CI. In these models, both (HIV-1)-latently infected and (HIV-1)-actively infected cells are
considered contributors to CI. The second model further extends the analysis by incorpo-
rating three types of distributed time-delays. We perform a comprehensive analysis of both
models, including establishing non-negativity and boundedness of solutions, calculating
the basic reproductive number, identifying equilibria, assessing global stability, conducting
numerical simulations, and engaging in a detailed discussion of the obtained results.

2. Model Incorporating Impaired Humoral Immunity and CI
2.1. Description of the System

We introduce an HIV-1 model that incorporates impaired humoral immunity, consider-
ing the infection of healthy CD4+T cells upon contact with HIV-1 particles, (HIV-1)-latently
infected cells, or (HIV-1)-actively infected cells. The model is presented as follows:

dF(t)
dt = ψ− ρF(t)− ϕ1F(t)K(t)− ϕ2F(t)Q(t)− ϕ3F(t)G(t),

dQ(t)
dt = ϕ1F(t)K(t) + ϕ2F(t)Q(t) + ϕ3F(t)G(t)− (ξ + ϑ)Q(t),

dG(t)
dt = ξQ(t)− θG(t),

dK(t)
dt = µG(t)− κK(t)− σU(t)K(t),

dU(t)
dt = φK(t)− γU(t)− εU(t)K(t),

(5)

where Q(t), denotes the concentration of (HIV-1)-latently infected cells at time t. (HIV-1)-
latently infected cells are activated at rate ξQ and die at rate ϑQ. In this context, ϕ1FK,
ϕ2FQ, and ϕ3FG represent the infection rates via HIV-1 particles (VI), (HIV-1)-latently
infected cells (CI), and (HIV-1)-actively infected cells (CI), respectively. It is important to
note that all these parameters are positive.
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2.2. Main Basic Properties
2.2.1. Maintaining Non-Negativity and Boundedness in the Solutions

Lemma 1. Consider the system (5), there exist positive constants τi > 0, i = 1, 2, 3, such that
the set

Ω =
{
(F, Q, G, K, U) ∈ R5

≥0 : 0 ≤ F(t), Q(t), G(t) ≤ τ1, 0 ≤ K(t) ≤ τ2, 0 ≤ U(t) ≤ τ3

}
is positively invariant.

Proof. To address the nonnegativity of solutions, from system (5) we have

dF
dt
|F=0= ψ > 0,

dQ
dt
|Q=0= ϕ1FK + ϕ3FG ≥ 0, for all F, K, G ≥ 0,

dG
dt
|G=0= ξQ ≥ 0, for all Q ≥ 0,

dK
dt
|K=0= µG ≥ 0, for all G ≥ 0,

dU
dt
|U=0= φK ≥ 0, for all K ≥ 0.

Hence, (F(t), Q(t), G(t), K(t), U(t)) ∈ R5
≥0, for all t ≥ 0 when (F(0), Q(0), G(0), K(0),

U(0)) ∈ R5
≥0. Let

Υ(t) = F(t) + Q(t) + G(t) +
θ

2µ
K(t) +

θκ

4µφ
U(t).

Then, we have

dΥ(t)
dt

=
dF(t)

dt
+

dQ(t)
dt

+
dG(t)

dt
+

θ

2µ

dK(t)
dt

+
θκ

4µφ

dU(t)
dt

= ψ− ρF(t)− ϑQ(t)− θ

2
G(t)− θκ

4µ
K(t)−

(
θσ

2µ
+

θκε

4µφ

)
U(t)K(t)− θκγ

4µφ
U(t)

≤ ψ− ρF(t)− ϑQ(t)− θ

2
G(t)− θκ

4µ
K(t)− θκγ

4µφ
U(t)

≤ ψ− η

(
F(t) + Q(t) + G(t) +

θ

2µ
K(t) +

θκ

4µφ
U(t)

)
= ψ− ηΥ(t),

where η = min
{

ρ, ϑ, θ
2 , κ

2 , γ
}

. Hence,

Υ(t) ≤ e−ηt
(

Υ(0)− ψ

η

)
+

ψ

η
.

This yields 0 ≤ Υ(t) ≤ τ1 if Υ(0) ≤ τ1, where τ1 =
ψ

η
.

Given that all state variables are non-negative, 0 ≤ F(t), Q(t), G(t) ≤ τ1, 0 ≤ K(t) ≤ τ2,

and 0 ≤ U(t) ≤ τ3, for all t ≥ 0 if F(0) + Q(0) + G(0) +
θ

2µ
K(0) +

θκ

4µφ
U(0) ≤ τ1, where

τ2 =
2µτ1

θ
and τ3 =

4µφτ1

θκ
. Hence, F(t), Q(t), G(t), K(t), and U(t) are all bounded,

indicating that Ω is a positively invariant and compact set with respect to the system (5).
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2.2.2. Analysis of Reproductive Numbers and Equilibrium Points

Lemma 2. There exists a basic reproductive number <0 = F0(ϕ1µξ+ϕ2κθ+ϕ3ξκ)
(ξ+ϑ)κθ

for system (5),
such that

(i) the system always has an infection-free equilibrium point ΞQ0, and
(ii) if <0 > 1, the system also has an infected equilibrium point ΞQ1.

Proof. It is evident that system (5) invariably possesses an infection-free equilibrium

denoted as ΞQ0 = (F0, 0, 0, 0, 0), where F0 =
ψ

ρ
. In the subsequent analysis, we will employ

the next-generation matrix method proposed by Driessche and Watmough [39] to compute
the basic reproductive number for system (5). Considering the infected compartments in
model (5), arranged as (Q, G, K), the nonlinear terms involving the new infection Γ̂1 and
the outflow term ∆̂1 are represented by the following matrices:

Γ̂1 =

 ϕ1FK + ϕ2FQ + ϕ3FG
0
0

, ∆̂1 =

 (ξ + ϑ)Q
−ξQ + θ G

−µG + κK + σUK

.

We calculate the derivatives of Γ̂1 and ∆̂1 at the equilibrium ΞQ0, resulting in the following
matrices:

Γ1 =

 ϕ2F0 ϕ3F0 ϕ1F0
0 0 0
0 0 0

, ∆1 =

 ξ + ϑ 0 0
−ξ θ 0
0 −µ κ

.

The next-generation matrix takes the following form:

Γ1∆−1
1 =


F0(ϕ1µξ+ϕ2κθ+ϕ3ξκ)

(ξ+ϑ)κθ
F0(ϕ1µ+ϕ3κ)

κθ
ϕ1F0

κ

0 0 0
0 0 0

.

The basic reproductive number <0 is defined as the spectral radius of the matrix Γ1∆−1
1

and is calculated as follows:

<0 =
F0(ϕ1µξ + ϕ2κθ + ϕ3ξκ)

(ξ + ϑ)κθ
= <01 +<02 +<03, (6)

where
<01 =

F0µξϕ1

κθ(ξ + ϑ)
, <02 =

F0 ϕ2

ξ + ϑ
, <03 =

F0ξϕ3

θ(ξ + ϑ)
.

The parameter <0 holds significant clinical relevance, as it determines whether the HIV-1
infection will become chronic or not. In this context, <01, <02, and<03 represent the average
numbers of secondary infected cells resulting from contacts with HIV-1 particles, latently
infected cells, and actively infected cells, respectively. To identify additional equilibria
apart from ΞQ0, we consider (F, Q, G, K, U) as any equilibrium satisfying the following
algebraic equations:

ψ− ρF− ϕ1FK− ϕ2FQ− ϕ3FG = 0, (7)

ϕ1FK + ϕ2FQ + ϕ3FG− (ξ + ϑ)Q = 0, (8)

ξQ− θG = 0, (9)

µG− κK− σUK = 0, (10)

φK− γU − εUK = 0. (11)
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From Equations (9) and (11), we get

Q =
θG
ξ

, U =
φK

γ + εK
. (12)

Upon substitution of Equation (12) into Equation (10), the result is as follows:

G =
γκK + (σφ + κε)K2

µ(γ + εK)
. (13)

Upon substitution of Equation (13) into Equation (12), the result is as follows:

Q =
θ
(
γκK + (σφ + κε)K2)

ξµ(γ + εK)
. (14)

From Equations (7) and (8), we get

ψ− ρF = (ξ + ϑ)Q. (15)

Upon substitution of Equation (14) into Equation (15), the result is as follows:

F =
1
ρ

(
ψ−

θ(ξ + ϑ)
(
γκK + (σφ + κε)K2)
ξµ(γ + εK)

)
. (16)

Upon substitution of Equations (13), (14) and (16) into Equation (8), the result is as follows:

K

ρµ2ξ2(γ + εK)2

(
AK3 + BK2 + CK + D

)
= 0, (17)

where

A = θ(ξ + ϑ)(σφ + εκ)(εξµϕ1 + (σφ + εκ)(θϕ2 + ξϕ3)),

B = µξϕ1

(
γθ(ξ + ϑ)(σφ + 2εκ)− ψµξε2

)
+ (σφ + εκ)(εµρξθ(ξ + ϑ)− (ψεµξ − 2γκθ(ξ + ϑ))(θϕ2 + ξϕ3)),

C = γ(ρµξθ(ξ + ϑ)(σφ + 2εκ) + µξϕ1(γκθ(ξ + ϑ)− 2ψεµξ)

−
(

ψµξ(σφ + 2εκ)− γθκ2(ξ + ϑ)
)
(θϕ2 + ξϕ3)

)
,

D = µρκξθγ2(ξ + ϑ)(1−<0),

where <0 is given by Equation (6). From Equation (17), we have

1. If K = 0, then from Equations (12)–(14) and (16) the infection-free equilibrium ΞQ0
is obtained.

2. If K 6= 0, we have the equation AK3 + BK2 + CK + D = 0. In this scenario, let us
introduce a function Ψ(K) defined on the interval [0, ∞) as:

Ψ(K) = AK3 + BK2 + CK + D.

Then

Ψ(0) = µρκξθγ2(ξ + ϑ)(1−<0) < 0, if <0 > 1,

lim
K→∞

Ψ(K) = ∞.
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As a result, the function Ψ possesses a positive real root denoted as K1. Consequently,
by substituting Equations (13) and (14) into Equation (7), we obtain:

F1 =
ψ

ρ + ϕ1K1 + ϕ2Q1 + ϕ3G1
,

where

Q1 =
θ
(
γκK1 + (σφ + κε)K2

1
)

ξµ(γ + εK1)
, G1 =

γκK1 + (σφ + κε)K2
1

µ(γ + εK1)
, U1 =

φK1

γ + εK1
.

The existence of the infected equilibrium ΞQ1 = (F1, Q1, G1, K1, U1) is evident when
<0 > 1.

2.2.3. The Analysis of the Stability of the Equilibria Ξ Q0 and ΞQ1

Theorem 1. If <0 < 1, then the equilibrium ΞQ0 of system (5) is locally asymptotically stable
(L.A.S), and it becomes unstable when <0 > 1.

Proof. In accordance with the study proposed by Willems [40], the local asymptotic
stability of the equilibrium ΞQ0 can be ascertained by examining the eigenvalues of its
associated Jacobian matrix, which is presented as follows:

J =


−ρ− ϕ1K− ϕ2Q− ϕ3G −ϕ2F −ϕ3F −ϕ1F 0

ϕ1K + ϕ2Q + ϕ3G ϕ2F− (ϑ + ξ) ϕ3F ϕ1F 0
0 ξ −θ 0 0
0 0 µ −(κ + σU) −σK
0 0 0 φ− εU −(γ + εK)

. (18)

At the infection-free equilibrium point ΞQ0 the Jacobian matrix becomes

JΞQ0 =


−ρ −ϕ2F0 −ϕ3F0 −ϕ1F0 0
0 ϕ2F0 − (ϑ + ξ) ϕ3F0 ϕ1F0 0
0 ξ −θ 0 0
0 0 µ −κ 0
0 0 0 φ −γ

. (19)

For matrix (19), the characteristic equation
∣∣JΞQ0 − xI5

∣∣ = 0 is solved as (x + γ)(x + ρ)Y(x) =
0, where x is the eigenvalue, I5 is the identity matrix and

Y(x) = x3 + m2x2 + m1x + m0, (20)

and

m0 = κθ(ξ + ϑ)(1−<0) > 0,

m1 = κθ + κ(ξ + ϑ)(1−<02) + θ(ξ + ϑ)(1− (<02 +<03)) > 0,

m2 = κ + θ + (ξ + ϑ)(1−<02) > 0,

m1m2 −m0 =
ψµξϕ1

ρ
+ (θ + (ξ + ϑ)(1−<02))(κ(κ + θ) + κ(ξ + ϑ)(1−<02)

+ θ(ξ + ϑ)(1− (<02 +<03))) > 0,

where <0 < 1.
The Jacobian matrix JΞQ0 is evidently characterized by two negative eigenvalues, −γ

and −ρ. The remaining eigenvalues are determined as the solutions to the cubic equation
presented in (20). Applying the Routh-Hurwitz criteria [40], it is apparent that all roots
of Equation (20) possess negative real parts. Consequently, the infection-free equilibrium
ΞQ0 is locally asymptotically stable (L.A.S) when <0 < 1. Conversely, if <0 > 1, we have
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m0 < 0, implying that Equation (20) must have at least one positive real root. Hence,
the equilibrium ΞQ0 becomes unstable when <0 > 1.

In the upcoming theorems, we will delve into the global stability of the equilibria. The con-
struction of Lyapunov function is formulated following the method demonstrated in [41]. We
defined H(z) = z− 1− ln(z) and denote (F, Q, G, K, U) = (F(t), Q(t), G(t), K(t), U(t)).

Theorem 2. For system (5), if <0 < 1, then ΞQ0 is globally asymptotically stable (G.A.S).

Proof. Let’s consider a candidate Lyapunov function

Θ0 = F0H
(

F
F0

)
+ Q +

(ξ + ϑ)(1−<02)

ξ
G +

θ(ξ + ϑ)(1− (<02 +<03))

ξµ
K +

θκ(ξ + ϑ)(1−<0)

φξµ
U.

Clearly, Θ0(F, Q, G, K, U) > 0 for all F, Q, G, K, U > 0, and Θ0(F0, 0, 0, 0, 0) = 0. Com-
puting dΘ0

dt along with the solutions of model (5), we get

dΘ0

dt
=

(
1− F0

F

)
dF
dt

+
dQ
dt

+
(ξ + ϑ)(1−<02)

ξ

dG
dt

+
θ(ξ + ϑ)(1− (<02 +<03))

ξµ

dK
dt

+
θκ(ξ + ϑ)(1−<0)

φξµ

dU
dt

=

(
1− F0

F

)
(ψ− ρF− ϕ1FK− ϕ2FQ− ϕ3FG) + ϕ1FK + ϕ2FQ + ϕ3FG− (ξ + ϑ)Q

+
(ξ + ϑ)(1−<02)

ξ
(ξQ− θG) +

θ(ξ + ϑ)(1− (<02 +<03))

ξµ
(µG− κK− σUK)

+
θκ(ξ + ϑ)(1−<0)

φξµ
(φK− γU − εUK)

=

(
1− F0

F

)
(ψ− ρF) + (ϕ2F0 − (ξ + ϑ) + (ξ + ϑ)(1−<02))Q

+

(
ϕ3F0 −

θ(ξ + ϑ)(1−<02)

ξ
+

θ(ξ + ϑ)(1− (<02 +<03))

ξ

)
G

+

(
ϕ1F0 −

θκ(ξ + ϑ)(1− (<02 +<03))

ξµ
+

θκ(ξ + ϑ)(1−<0)

ξµ

)
K

− γθκ(ξ + ϑ)(1−<0)

φξµ
U − θ(ξ + ϑ)

φξµ
(φσ(1− (<02 +<03)) + εκ(1−<0))UK.

After performing a direct calculation and utilizing the value F0 = ψ/ρ, we acquire:

dΘ0

dt
=

(
1− F0

F

)
(ρF0 − ρF)− γθκ(ξ + ϑ)(1−<0)

φξµ
U

− θ(ξ + ϑ)

φξµ
(φσ(1− (<02 +<03)) + εκ(1−<0))UK

= −ρ(F− F0)
2

F
− γθκ(ξ + ϑ)(1−<0)

φξµ
U

− θ(ξ + ϑ)

φξµ
(φσ(1− (<02 +<03)) + εκ(1−<0))UK.

Clearly, dΘ0
dt ≤ 0 when <0 < 1 and dΘ0

dt = 0 when F = F0 and K = U = 0. Let Φ0 ={
(F, Q, G, K, U) : dΘ0

dt = 0
}

, and considering the largest invariant subset of Φ0 as Φ
′
0. Hence,
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all solutions converge to: Φ
′
0 [42]. In Φ

′
0, all elements satisfy F(t) = F0 and K(t) = U(t) = 0.

Subsequently, the fourth equation in system (5) yields

0 =
dK(t)

dt
= µG(t) =⇒ G(t) = 0, for all t.

Furthermore, the first equation in system (5) results in

0 =
dF(t)

dt
= ψ− ρF0 − ϕ2F0Q(t) =⇒ Q(t) = 0, for all t.

Therefore, Φ
′
0 = {(F, Q, G, K, U) ∈ Φ0 : F = F0, Q = G = K = U = 0} = {ΞQ0}. Hence,

we conclude that ΞQ0 is G.A.S whenever <0 < 1 based on LaSalle’s invariance principle
(L.I.P) [42].

Theorem 3. If <0 > 1, the equilibrium ΞQ1 of the system (5) is G.A.S.

Proof. We consider the function Θ1(F, Q, G, K, U) given by Equation (21) as:

Θ1 = F1H
(

F
F1

)
+ Q1H

(
Q
Q1

)
+

F1(ϕ1µ + ϕ3(κ + σU1))G1

θ(κ + σU1)
H
(

G
G1

)
+

ϕ1F1K1

κ + σU1
H
(

K
K1

)
(21)

+
σϕ1F1

2(κ + σU1)(φ− εU1)
(U −U1)

2.

Equilibrium condition Equation (11) guarantees that φ− εU1 =
γU1

K1
> 0. Clearly, Θ1 is

positive definite. Calculating dΘ1
dt :

dΘ1

dt
=

(
1− F1

F

)
dF
dt

+

(
1− Q1

Q

)
dQ
dt

+
F1(ϕ1µ + ϕ3(κ + σU1))

θ(κ + σU1)

(
1− G1

G

)
dG
dt

+
ϕ1F1

κ + σU1

(
1− K1

K

)
dK
dt

+
σϕ1F1

(κ + σU1)(φ− εU1)
(U −U1)

dU
dt

=

(
1− F1

F

)
(ψ− ρF− ϕ1FK− ϕ2FQ− ϕ3FG) +

(
1− Q1

Q

)
(ϕ1FK + ϕ2FQ + ϕ3FG− (ξ + ϑ)Q)

+
F1(ϕ1µ + ϕ3(κ + σU1))

θ(κ + σU1)

(
1− G1

G

)
(ξQ− θG) +

ϕ1F1

κ + σU1

(
1− K1

K

)
(µG− κK− σUK)

+
σϕ1F1

(κ + σU1)(φ− εU1)
(U −U1)(φK− γU − εUK)

=

(
1− F1

F

)
(ψ− ρF) +

(
ϕ2F1 − (ξ + ϑ) +

ξF1(ϕ1µ + ϕ3(κ + σU1))

θ(κ + σU1)

)
Q + ϕ1F1K

+

(
ϕ3F1 −

F1(ϕ1µ + ϕ3(κ + σU1))

κ + σU1
+

µϕ1F1

κ + σU1

)
G− (ϕ1FK + ϕ2FQ + ϕ3FG)

Q1

Q

+ (ξ + ϑ)Q1 −
ξF1(ϕ1µ + ϕ3(κ + σU1))

θ(κ + σU1)

QG1

G
+

F1(ϕ1µ + ϕ3(κ + σU1))G1

κ + σU1

− µϕ1F1

κ + σU1

GK1

K
− κϕ1F1

κ + σU1
(K− K1)−

σϕ1F1

κ + σU1
U(K− K1)

+
σϕ1F1

(κ + σU1)(φ− εU1)
(U −U1)(φK− γU − εUK). (22)
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Using the following equilibrium conditions for ΞQ1

ψ = ρF1 + ϕ1F1K1 + ϕ2F1Q1 + ϕ3F1G1,

ϕ1F1K1 + ϕ2F1Q1 + ϕ3F1G1 = (ξ + ϑ)Q1,

Q1 =
θG1

ξ
=⇒ G1 =

ξQ1

θ
,

G1 =
(κ + σU1)K1

µ
, Q1 =

θ(κ + σU1)K1

ξµ
,

φK1 = γU1 + εU1K1,

we get

ϕ1F1K1 + ϕ3F1G1 =
F1(ϕ1µ + ϕ3(κ + σU1))K1

µ
=

ξF1(ϕ1µ + ϕ3(κ + σU1))Q1

θ(κ + σU1)
,(

ϕ2F1 − (ξ + ϑ) +
ξF1(ϕ1µ + ϕ3(κ + σU1))

θ(κ + σU1)

)
Q1 = 0,(

ϕ3F1 −
F1(ϕ1µ + ϕ3(κ + σU1))

κ + σU1
+

µϕ1F1

κ + σU1

)
G1 = 0.

Therefore, Equation (22) will be represented in the following manner:

dΘ1

dt
=

(
1− F1

F

)
(ρF1 − ρF) + (ϕ1F1K1 + ϕ2F1Q1 + ϕ3F1G1)

(
1− F1

F

)
+ ϕ1F1K

− ϕ1F1K1
FKQ1

F1K1Q
− ϕ2F1Q1

F
F1
− ϕ3F1G1

FGQ1

F1G1Q
+ ϕ1F1K1

+ ϕ2F1Q1 + ϕ3F1G1 −
ξF1(ϕ1µ + ϕ3(κ + σU1))Q1

θ(κ + σU1)

QG1

Q1G
+ ϕ1F1K1

+ ϕ3F1G1 −
µϕ1F1G1

κ + σU1

GK1

G1K
− κϕ1F1

κ + σU1
(K− K1)−

σϕ1F1

κ + σU1
U(K− K1)

+
σϕ1F1

κ + σU1
U1(K− K1)−

σϕ1F1

κ + σU1
U1(K− K1)

+
σϕ1F1

(κ + σU1)(φ− εU1)
(U −U1)(φK− γU − εUK− φK1 + γU1 + εU1K1 + εU1K− εU1K)

= −ρ(F− F1)
2

F
+ (ϕ1F1K1 + ϕ2F1Q1 + ϕ3F1G1)

(
2− F1

F

)
+ ϕ1F1K− ϕ1F1K1

FKQ1

F1K1Q

− ϕ2F1Q1
F
F1
− ϕ3F1G1

FGQ1

F1G1Q
− (ϕ1F1K1 + ϕ3F1G1)

QG1

Q1G

+ ϕ1F1K1 + ϕ3F1G1 − ϕ1F1K1
GK1

G1K
− ϕ1F1(κ + σU1)

κ + σU1
(K− K1)

− σϕ1F1

κ + σU1
(U −U1)(K− K1) +

σϕ1F1(φ− εU1)

(κ + σU1)(φ− εU1)
(U −U1)(K− K1)

− σϕ1F1(γ + εK)
(κ + σU1)(φ− εU1)

(U −U1)
2

= −ρ(F− F1)
2

F
+ (ϕ1F1K1 + ϕ2F1Q1 + ϕ3F1G1)

(
2− F1

F

)
+ ϕ1F1K− ϕ1F1K1

FKQ1

F1K1Q

− ϕ2F1Q1
F
F1
− ϕ3F1G1

FGQ1

F1G1Q
− (ϕ1F1K1 + ϕ3F1G1)

QG1

Q1G

+ ϕ1F1K1 + ϕ3F1G1 − ϕ1F1K1
GK1

G1K
− ϕ1F1K1

(
K
K1
− 1
)

− σϕ1F1(γ + εK)
(κ + σU1)(φ− εU1)

(U −U1)
2
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= −ρ(F− F1)
2

F
+ (ϕ1F1K1 + ϕ2F1Q1 + ϕ3F1G1)

(
2− F1

F

)
+ ϕ1F1K− ϕ1F1K1

FKQ1

F1K1Q

− ϕ2F1Q1
F
F1
− ϕ3F1G1

FGQ1

F1G1Q
− (ϕ1F1K1 + ϕ3F1G1)

QG1

Q1G

+ 2ϕ1F1K1 + ϕ3F1G1 − ϕ1F1K1
GK1

G1K
− ϕ1F1K− σϕ1F1(γ + εK)

(κ + σU1)(φ− εU1)
(U −U1)

2

= −ρ(F− F1)
2

F
+ ϕ1F1K1

(
4− F1

F
− FKQ1

F1K1Q
− QG1

Q1G
− GK1

G1K

)
+ ϕ2F1Q1

(
2− F1

F
− F

F1

)
+ ϕ3F1G1

(
3− F1

F
− FGQ1

F1G1Q
− QG1

Q1G

)
− σϕ1F1(γ + εK)

(κ + σU1)(φ− εU1)
(U −U1)

2.

Thus

dΘ1

dt
= − (ρ + ϕ2Q1)(F− F1)

2

F
+ ϕ1F1K1

(
4− F1

F
− FKQ1

F1K1Q
− QG1

Q1G
− GK1

G1K

)
+ ϕ3F1G1

(
3− F1

F
− FGQ1

F1G1Q
− QG1

Q1G

)
− σϕ1F1(γ + εK)

(κ + σU1)(φ− εU1)
(U −U1)

2.

The AM-GM inequality tells us that

4 ≤ F1

F
+

FKQ1

F1K1Q
+

QG1

Q1G
+

GK1

G1K
,

3 ≤ F1

F
+

FGQ1

F1G1Q
+

QG1

Q1G
.

Hence, if <0 > 1, then dΘ1
dt ≤ 0 for all F, Q, G, K, U > 0. Also, dΘ1

dt = 0 when F = F1,
Q = Q1, G = G1, K = K1 and U = U1. Let Φ

′
1 be the largest invariant subset of Φ1 ={

(F, Q, G, K, U) : dΘ1
dt = 0

}
. Therefore, Φ

′
1 = {ΞQ1}. By applying L.I.P, we can conclude

that if <0 > 1, then the equilibrium ΞQ1 is G.A.S [42].

3. Modeling Hiv-1 with Distributed Delays
3.1. Description of the System

In the subsequent model, we incorporate the distributed time-delays in system (5) by
representing them as delay differential equations (DDEs):

dF(t)
dt = ψ− ρF(t)− ϕ1F(t)K(t)− ϕ2F(t)Q(t)− ϕ3F(t)G(t),

dQ(t)
dt =

∫ $1
0 T1(λ)e−α1λF(t− λ)(ϕ1K(t− λ) + ϕ2Q(t− λ)

+ϕ3G(t− λ))dλ− (ξ + ϑ)Q(t),
dG(t)

dt = ξ
∫ $2

0 T2(λ)e−α2λQ(t− λ)dλ− θG(t),
dK(t)

dt = µ
∫ $3

0 T3(λ)e−α3λG(t− λ)dλ− κK(t)− σU(t)K(t),
dU(t)

dt = φK(t)− γU(t)− εU(t)K(t).

(23)

Here, system (23) includes the following assumptions:

• Healthy cells, which are contacted by HIV-1 particles or infected cells at time t, become
(HIV-1)-latently infected cells, λ time units later. The recruitment of (HIV-1)-latently
infected cells at time t is given by the number of cells that were newly contacted at
time t− λ and are still alive at time t. Here, α1 is assumed to be a constant death rate
for contacted cells. Thus, the probability of surviving the time period from t− λ to t is
T1(λ)e−α1λ.

• (HIV-1)-latently infected cells, become (HIV-1)-actively infected cells, λ time units later.
The recruitment of (HIV-1)-actively infected cells at time t is given by the number of
cells that were newly being (HIV-1)-latently infected cells at time t− λ and are still
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alive at time t. Here, α2 is assumed to be a constant death rate for (HIV-1)-latently
infected cells. Thus, the probability of surviving the time period from t − λ to t
is T2(λ)e−α2λ.

• (HIV-1)-actively infected cells, produce new mature HIV-1 particles, λ time units later.
The recruitment of HIV-1 particles at time t is given by the number of cells that were
newly being (HIV-1)-actively infected cells at time t − λ and are still alive at time
t. Here, α3 is assumed to be a constant death rate for (HIV-1)-actively infected cells.
Thus, the probability of surviving the time period from t− λ to t is T3(λ)e−α3λ.

The delay parameter λ is obtained from a probability distribution function Ti(λ) over
the interval [0, $i], where $i is the upper limit of the delay period. The functions Ti(λ),
i = 1, 2, 3, satisfy the following conditions:

Ti(λ) > 0,
∫ $i

0 Ti(λ)dλ = 1, and
∫ $i

0 Ti(λ)e−βλdλ < ∞, where β > 0.

Let Λ̄i(λ) = Ti(λ)e−αiλ and Λi =
∫ $i

0 Λ̄i(λ)dλ, i = 1, 2, 3. Therefore, 0 < Λi ≤ 1, i = 1, 2, 3.
The initial conditions of system (23) are:{

F(r) = a1(r), Q(r) = a2(r), G(r) = a3(r), K(r) = a4(r), U(r) = a5(r),
aj(r) ≥ 0, j = 1, 2, ..., 5, r ∈ [−$, 0], $ = max{$1, $2, $3},

(24)

where aj(r) ∈ C([−$, 0],R≥0), j = 1, 2, ..., 5 and C = C([−$, 0],R≥0) is the Banach space of
continuous functions with norm

∥∥aj
∥∥ = sup

−$≤ζ≤0

∣∣aj(ζ)
∣∣ for all aj ∈ C. Therefore, system (23)

with initial conditions (24) has a unique solution [42,43]. The biological interpretations of
all the other parameters and variables are the same as those explained in Section 2.

3.2. Main Basic Properties
3.2.1. Maintaining Non-Negativity and Ultimate Boundedness in the Solutions

Lemma 3. For system (23), along with the initial conditions (24), there exists a positively invariant
compact set denoted by Ω̂, defined as follows:

Ω̂ = {(F, Q, G, K, U) ∈ C5
≥0 : ‖F(t)‖ ≤ τ̂1, ‖Q(t)‖ ≤ τ̂1, ‖G(t)‖ ≤ τ̂2, ‖K(t)‖ ≤ τ̂3, ‖U(t)‖ ≤ τ̂4}.

Proof. Since dF
dt

∣∣∣
F=0

= ψ > 0, we can conclude that F(t) > 0 for all t ≥ 0. Additionally,

the other equations in system (23) can be expressed as:

dQ(t)
dt

+ (ξ + ϑ)Q(t) =
∫ $1

0
Λ̄1(λ)F(t− λ)(ϕ1K(t− λ) + ϕ2Q(t− λ) + ϕ3G(t− λ))dλ

=⇒ Q(t) = a2(0)e−(ξ+ϑ)t +
∫ t

0
e−(ξ+ϑ)(t−κ)

∫ $1

0
Λ̄1(λ)F(κ − λ)(ϕ1K(κ − λ)

+ϕ2Q(κ − λ) + ϕ3G(κ − λ))dλdκ ≥ 0.

dG(t)
dt

+ θG(t) = ξ
∫ $2

0
Λ̄2(λ)Q(t− λ)dλ

=⇒ G(t) = a3(0)e−θt + ξ
∫ t

0
e−θ(t−κ)

∫ $2

0
Λ̄2(λ)Q(κ − λ)dλdκ ≥ 0.

dK(t)
dt

+ (κ + σU(t))K(t) = µ
∫ $3

0
Λ̄3(λ)G(t− λ)dλ

=⇒ K(t) = a4(0)e−
∫ t

0 (κ+σU(u))du + µ
∫ t

0
e−
∫ t
κ(κ+σU(u))du

∫ $3

0
Λ̄3(λ)G(κ − λ)dλdκ ≥ 0.

dU(t)
dt

+ (γ + εK(t))U(t) = φK(t)

=⇒ U(t) = a5(0)e−
∫ t

0 (γ+εK(u))du + φ
∫ t

0
e−
∫ t
κ(γ+εK(u))duK(λ)dλ ≥ 0,
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for all t ∈ [0, $].
By a recursive argument, it can be established that F(t), Q(t), G(t), K(t), and U(t) are

nonnegative for all t ≥ 0. Consequently, the solutions of system (23) satisfy (F(t), Q(t), G(t),
K(t), U(t)) ∈ R5

≥0 for all t ≥ 0.

Using the first equation of system (23), we can deduce that lim
t→∞

sup F(t) ≤ ψ

ρ
. Next,

we define
Υ1(t) =

∫ $1

0
Λ̄1(λ)F(t− λ)dλ + Q(t).

Then

dΥ1(t)
dt

=
∫ $1

0
Λ̄1(λ)

dF(t− λ)

dt
dλ +

dQ(t)
dt

=
∫ $1

0
Λ̄1(λ)(ψ− ρF(t− λ))dλ− (ξ + ϑ)Q(t)

= ψΛ1 − ρ
∫ $1

0
Λ̄1(λ)F(t− λ)dλ− (ξ + ϑ)Q(t)

≤ ψ− η1

(∫ $1

0
Λ̄1(λ)F(t− λ)dλ + Q(t)

)
= ψ− η1Υ1(t),

where η1 = min{ρ, ξ + ϑ}. Hence, lim
t→∞

sup Υ1(t) ≤
ψ

η1
= τ̂1. Since

∫ $1
0 Λ̄1(λ)F(t− λ)dλ

and Q(t) are nonnegative, then lim
t→∞

sup Q(t) ≤ τ̂1. Additionally, from the third equation

of system (23), we get

dG(t)
dt

= ξ
∫ $2

0
Λ̄2(λ)Q(t− λ)dλ− θG(t) ≤ ξΛ2τ̂1 − θG(t) ≤ ξτ̂1 − θG(t).

Therefore, lim
t→∞

sup G(t) ≤ ξτ̂1
θ = τ̂2. Finally, we let

Υ2(t) = K(t) +
κ

2φ
U(t).

This yields

dΥ2(t)
dt

=
dK(t)

dt
+

κ

2φ

dU(t)
dt

= µ
∫ $3

0
Λ̄3(λ)G(t− λ)dλ− κK(t)− σU(t)K(t)

+
κ

2φ
(φK(t)− γU(t)− εU(t)K(t))

= µ
∫ $3

0
Λ̄3(λ)G(t− λ)dλ− κ

2
K(t)− κγ

2φ
U(t)− (σ +

κε

2φ
)U(t)K(t)

≤ µ
∫ $3

0
Λ̄3(λ)G(t− λ)dλ− κ

2
K(t)− κγ

2φ
U(t)

≤ µτ̂2 − η2(K(t) +
κ

2φ
U(t)) = µτ̂2 − η2Υ2(t),

where η2 = min{ κ
2 , γ}. Hence, lim

t→∞
sup Υ2(t) ≤ µτ̂2

η2
= τ̂3. We have K(t) and U(t) are

nonnegative, this guarantees that lim
t→∞

sup K(t) ≤ τ̂3, and lim
t→∞

sup U(t) ≤ 2φτ̂3
κ = τ̂4. We

conclude that F(t), Q(t), G(t), K(t) and U(t) are ultimately bounded. Hence, the compact
set Ω̂ remains positively invariant under the dynamics of system (23).
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3.2.2. Analysis of Reproductive Numbers and Equilibrium Points

Lemma 4. There exists a basic reproductive number <̃0 = Λ1 F̃0(Λ2ξ(Λ3 ϕ1µ+ϕ3κ)+ϕ2κθ)
(ξ+ϑ)κθ

for system
(23) such that

(i) the system always has an infection-free equilibrium point ΞQ̃0, and
(ii) if <̃0 > 1, the system also has an infected equilibrium point ΞQ̃1.

Proof. It is evident that system (23) possesses an infection-free equilibrium denoted as

ΞQ̃0 = (F̃0, 0, 0, 0, 0), where F̃0 =
ψ

ρ
. The nonlinear terms responsible for new infections,

denoted as Γ̂2, and the outflow term ∆̂2, are represented by:

Γ̂2 =

 Λ1(ϕ1FK + ϕ2FQ + ϕ3FG)
0
0

, ∆̂2 =

 (ξ + ϑ)Q
−ξΛ2Q + θ G

−µΛ3G + κK + σUK

.

We calculate the derivatives of Γ̂2 and ∆̂2 at the equilibrium ΞQ̃0, resulting in the following
matrices:

Γ2 =

 Λ1 ϕ2 F̃0 Λ1 ϕ3 F̃0 Λ1 ϕ1 F̃0
0 0 0
0 0 0

, ∆2 =

 ξ + ϑ 0 0
−ξΛ2 θ 0

0 −µΛ3 κ

.

The next-generation matrix takes the following form:

Γ2∆−1
2 =

 Λ1 F̃0(Λ2ξ(Λ3 ϕ1µ+ϕ3κ)+ϕ2κθ)
(ξ+ϑ)κθ

Λ1 F̃0(Λ3 ϕ1µ+ϕ3κ)
κθ

Λ1 F̃0 ϕ1
κ

0 0 0
0 0 0

.

The basic reproductive number <̃0 is given as:

<̃0 =
Λ1 F̃0(Λ2ξ(Λ3 ϕ1µ + ϕ3κ) + ϕ2κθ)

(ξ + ϑ)κθ
= <̃01 + <̃02 + <̃03, (25)

where

<̃01 =
Λ1Λ2Λ3 F̃0µξϕ1

κθ(ξ + ϑ)
, <̃02 =

Λ1 F̃0 ϕ2

ξ + ϑ
, <̃03 =

Λ1Λ2 F̃0ξϕ3

θ(ξ + ϑ)
.

The parameters <̃0i, i = 1, 2, 3 have the same biological meaning of the parameters <0i,
i = 1, 2, 3 that explained in Section 2. To find any additional equilibrium to ΞQ̃0, we let
(F, Q, G, K, U) be any equilibrium satisfying

0 = ψ− ρF− ϕ1FK− ϕ2FQ− ϕ3FG, (26)

0 = Λ1(ϕ1FK + ϕ2FQ + ϕ3FG)− (ξ + ϑ)Q, (27)

0 = ξΛ2Q− θG, (28)

0 = µΛ3G− κK− σUK, (29)

0 = φK− γU − εUK. (30)

From Equations (28) and (30), we get

Q =
θG
ξΛ2

, U =
φK

γ + εK
. (31)



Computation 2023, 11, 207 15 of 35

Upon substitution of Equation (31) into Equation (29), the result is as follows:

G =
γκK + (σφ + κε)K2

µΛ3(γ + εK)
. (32)

Upon substitution of Equation (32) into Equation (31), the result is as follows:

Q =
θ
(
γκK + (σφ + κε)K2)
µξΛ2Λ3(γ + εK)

. (33)

From Equations (26) and (27), we get

ψ− ρF =
(ξ + ϑ)Q

Λ1
. (34)

Upon substitution of Equation (33) into Equation (34), the result is as follows:

F =
1
ρ

(
ψ−

θ(ξ + ϑ)
(
γκK + (σφ + κε)K2)

µξΛ1Λ2Λ3(γ + εK)

)
. (35)

Upon substitution of Equations (32), (33) and (35) into Equation (27), the result is as follows:

K

ρµ2ξ2Λ2
2Λ2

3(γ + εK)2

(
ÃK3 + B̃K2 + C̃K + D̃

)
= 0, (36)

where

Ã = θ(ξ + ϑ)(σφ + εκ)(θϕ2(σφ + εκ) + ξΛ2(εµΛ3 ϕ1 + ϕ3(σφ + εκ))),

B̃ = εµρξθΛ2Λ3(ξ + ϑ)(σφ + εκ) + θ(ξ + ϑ)(σφ + εκ)(γκθϕ2

+ γξΛ2(µΛ3 ϕ1 + κϕ3)) + (γκθ(ξ + ϑ)− ψεµξΛ1Λ2Λ3)

(θϕ2(σφ + εκ) + ξΛ2(εµΛ3 ϕ1 + ϕ3(σφ + εκ))),

C̃ = γ
(

γϕ2κ2θ2(ξ + ϑ)− ψµΛ1Λ3ξ2Λ2
2(2εµΛ3 ϕ1 + ϕ3(σφ + 2εκ))

+ ξθΛ2(µΛ3(γκϕ1(ξ + ϑ) + (σφ + 2εκ)(ρ(ξ + ϑ)− ψΛ1 ϕ2))

+ γϕ3κ2(ξ + ϑ)
))

,

D̃ = µρκξθΛ2Λ3γ2(ξ + ϑ)
(
1− <̃0

)
,

where <̃0 is defined by Equation (25). From Equation (36), we have

1. If K = 0, then from Equations (31)–(33) and (35) the infection-free equilibrium ΞQ̃0
is obtained.

2. If K 6= 0, we have the equation ÃK3 + B̃K2 + C̃K + D̃ = 0. In this scenario, let us
introduce a function Ψ̄(K) defined on [0, ∞) as:

Ψ̄(K) = ÃK3 + B̃K2 + C̃K + D̃.

We have

Ψ̄(0) = µρκξθΛ2Λ3γ2(ξ + ϑ)
(
1− <̃0

)
< 0, if <̃0 > 1,

lim
K→∞

Ψ̄(K) = ∞.

As a result, the function Ψ̄ possesses a positive real root denoted as K̃1 > 0. Conse-
quently, by substituting Equations (32) and (33) into Equation (26), we obtain:

F̃1 =
ψ

ρ + ϕ1K̃1 + ϕ2Q̃1 + ϕ3G̃1
,
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where

Q̃1 =
θ
(
γκK̃1 + (σφ + κε)K̃2

1
)

µξΛ2Λ3
(
γ + εK̃1

) , G̃1 =
γκK̃1 + (σφ + κε)K̃2

1
µΛ3

(
γ + εK̃1

) , Ũ1 =
φK̃1

γ + εK̃1
.

The existence of the infected equilibrium ΞQ̃1 =
(

F̃1, Q̃1, G̃1, K̃1, Ũ1
)

is contingent
upon <̃0 being greater than 1.

3.2.3. The Analysis of the Stability of the Equilibria ΞQ̃0 and ΞQ̃1

In the upcoming theorems, we will explore the concept of global asymptotic stability
concerning the equilibrium points. In order to simplify the following discussion, we denote
(F(t− λ), Q(t− λ), G(t− λ), K(t− λ)) by (Fλ, Qλ, Gλ, Kλ).

Theorem 4. For system (23), if <̃0 < 1, then ΞQ̃0 is G.A.S, and it becomes unstable when <̃0 > 1.

Proof. We introduce a Lyapunov function as follows:

Θ̃0 = F̃0H
(

F
F̃0

)
+

1
Λ1

Q +
(ξ + ϑ)

(
1− <̃02

)
ξΛ1Λ2

G +
θ(ξ + ϑ)

(
1−

(
<̃02 + <̃03

))
ξµΛ1Λ2Λ3

K

+
θκ(ξ + ϑ)

(
1− <̃0

)
φξµΛ1Λ2Λ3

U +
1

Λ1

∫ $1

0
Λ̄1(λ)

∫ t

t−λ
F(κ)(ϕ1K(κ) + ϕ2Q(κ) + ϕ3G(κ))dκdλ

+
(ξ + ϑ)

(
1− <̃02

)
Λ1Λ2

∫ $2

0
Λ̄2(λ)

∫ t

t−λ
Q(κ)dκdλ

+
θ(ξ + ϑ)

(
1−

(
<̃02 + <̃03

))
ξΛ1Λ2Λ3

∫ $3

0
Λ̄3(λ)

∫ t

t−λ
G(κ)dκdλ.

Clearly, Θ̃0(F, Q, G, K, U) > 0 for all F, Q, G, K, U > 0, and Θ̃0(F̃0, 0, 0, 0, 0) = 0.
Further, dΘ̃0

dt is given by:

dΘ̃0

dt
=

(
1− F̃0

F

)
dF
dt

+
1

Λ1

dQ
dt

+
(ξ + ϑ)

(
1− <̃02

)
ξΛ1Λ2

dG
dt

+
θ(ξ + ϑ)

(
1−

(
<̃02 + <̃03

))
ξµΛ1Λ2Λ3

dK
dt

+
θκ(ξ + ϑ)

(
1− <̃0

)
φξµΛ1Λ2Λ3

dU
dt

+ ϕ1FK + ϕ2FQ + ϕ3FG

− 1
Λ1

∫ $1

0
Λ̄1(λ)Fλ(ϕ1Kλ + ϕ2Qλ + ϕ3Gλ)dλ

+
(ξ + ϑ)

(
1− <̃02

)
Λ1

Q−
(ξ + ϑ)

(
1− <̃02

)
Λ1Λ2

∫ $2

0
Λ̄2(λ)Qλdλ

+
θ(ξ + ϑ)

(
1−

(
<̃02 + <̃03

))
ξΛ1Λ2

G−
θ(ξ + ϑ)

(
1−

(
<̃02 + <̃03

))
ξΛ1Λ2Λ3

∫ $3

0
Λ̄3(λ)Gλdλ.

This implies that

dΘ̃0

dt
=

(
1− F̃0

F

)
(ψ− ρF− ϕ1FK− ϕ2FQ− ϕ3FG) +

1
Λ1

(∫ $1

0
Λ̄1(λ)Fλ(ϕ1Kλ

+ϕ2Qλ + ϕ3Gλ)dλ− (ξ + ϑ)Q) +
(ξ + ϑ)

(
1− <̃02

)
ξΛ1Λ2

(
ξ
∫ $2

0
Λ̄2(λ)Qλdλ− θG

)
+

θ(ξ + ϑ)
(
1−

(
<̃02 + <̃03

))
ξµΛ1Λ2Λ3

(
µ
∫ $3

0
Λ̄3(λ)Gλdλ− κK− σUK

)
+

θκ(ξ + ϑ)
(
1− <̃0

)
φξµΛ1Λ2Λ3

(φK− γU − εUK) + ϕ1FK + ϕ2FQ + ϕ3FG

− 1
Λ1

∫ $1

0
Λ̄1(λ)Fλ(ϕ1Kλ + ϕ2Qλ + ϕ3Gλ)dλ +

(ξ + ϑ)
(
1− <̃02

)
Λ1

Q
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−
(ξ + ϑ)

(
1− <̃02

)
Λ1Λ2

∫ $2

0
Λ̄2(λ)Qλdλ +

θ(ξ + ϑ)
(
1−

(
<̃02 + <̃03

))
ξΛ1Λ2

G

−
θ(ξ + ϑ)

(
1−

(
<̃02 + <̃03

))
ξΛ1Λ2Λ3

∫ $3

0
Λ̄3(λ)Gλdλ

=

(
1− F̃0

F

)
(ψ− ρF)−

θκγ(ξ + ϑ)
(
1− <̃0

)
φξµΛ1Λ2Λ3

U

− θ(ξ + ϑ)

φξµΛ1Λ2Λ3

(
φσ
(
1−

(
<̃02 + <̃03

))
+ κε

(
1− <̃0

))
UK.

After performing a direct calculation and utilizing the value F̃0 = ψ/ρ, we acquire:

dΘ̃0

dt
=

(
1− F̃0

F

)(
ρF̃0 − ρF

)
−

θκγ(ξ + ϑ)
(
1− <̃0

)
φξµΛ1Λ2Λ3

U

− θ(ξ + ϑ)

φξµΛ1Λ2Λ3

(
φσ
(
1−

(
<̃02 + <̃03

))
+ κε

(
1− <̃0

))
UK

= −
ρ
(

F− F̃0
)2

F
−

θκγ(ξ + ϑ)
(
1− <̃0

)
φξµΛ1Λ2Λ3

U

− θ(ξ + ϑ)

φξµΛ1Λ2Λ3

(
φσ
(
1−

(
<̃02 + <̃03

))
+ κε

(
1− <̃0

))
UK.

Clearly, dΘ̃0
dt ≤ 0 when <̃0 < 1. In addition, dΘ̃0

dt = 0 when F = F̃0 and K = U = 0.

Let Φ̄0 =
{
(F, Q, G, K, U) : dΘ̃0

dt = 0
}

, and considering the largest invariant subset of Φ̄0

as Φ̄
′
0. Hence, all solutions converge to: Φ̄

′
0. In Φ̄

′
0, all elements satisfy F(t) = F̃0 and

K(t) = U(t) = 0. Subsequently, the fourth equation in system (23) yields

0 =
dK(t)

dt
= µ

∫ $3

0
Λ̄3(λ)Gλdλ.

The condition of nonnegativity for G implies that G(t) must be equal to zero for all values
of t. Furthermore, the first equation of model (23) leads to

0 =
dF(t)

dt
= ψ− ρF̃0 − ϕ2 F̃0Q(t) =⇒ Q(t) = 0, for all t.

Then, Φ̄
′
0 =

{
(F, Q, G, K, U) ∈ Φ̄0 : F = F̃0, Q = G = K = U = 0

}
=
{

ΞQ̃0
}

. Therefore,
based on L.I.P, we can conclude that ΞQ̃0 is G.A.S whenever <̃0 < 1 [42].

In addition to this, model (23) can be rewritten as:

dℵ(t)
dt

= F (ℵ(t),ℵ(t− λ)),

where ℵ(t) = (F(t), Q(t), G(t), K(t), U(t))T . This system represents a coupled system of
ordinary differential equations with a delay parameter. By employing total differentiation
at the equilibrium point ΞQ̃0, we obtain:

dF(t)
dt = ∂F

∂F |ΞQ̃0
F + ∂F

∂Q |ΞQ̃0
Q + ∂F

∂G |ΞQ̃0
G + ∂F

∂K |ΞQ̃0
K + ∂F

∂U |ΞQ̃0
U,

dQ(t)
dt = ∂F

∂F |ΞQ̃0
F + ∂F

∂Q |ΞQ̃0
Q + ∂F

∂G |ΞQ̃0
G + ∂F

∂K |ΞQ̃0
K + ∂F

∂U |ΞQ̃0
U,

dG(t)
dt = ∂F

∂F |ΞQ̃0
F + ∂F

∂Q |ΞQ̃0
Q + ∂F

∂G |ΞQ̃0
G + ∂F

∂K |ΞQ̃0
K + ∂F

∂U |ΞQ̃0
U,

dK(t)
dt = ∂F

∂F |ΞQ̃0
F + ∂F

∂Q |ΞQ̃0
Q + ∂F

∂G |ΞQ̃0
G + ∂F

∂K |ΞQ̃0
K + ∂F

∂U |ΞQ̃0
U,

dU(t)
dt = ∂F

∂F |ΞQ̃0
F + ∂F

∂Q |ΞQ̃0
Q + ∂F

∂G |ΞQ̃0
G + ∂F

∂K |ΞQ̃0
K + ∂F

∂U |ΞQ̃0
U.

(37)
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Exponential solutions are a valid choice in linear DDEs because these equations exhibit
linearity and bear resemblance to ordinary differential equations with constant coefficients.
The preference for exponential solutions as an initial approach in linear systems stems from
their ability to provide a clear and accessible means of characterizing system stability and
dynamics. Assuming that the linear DDEs system (37) exhibits exponential solutions:

F = extWF, Q = extWQ, G = extWG, K = extWK, U = extWU .

Employing the above ansatz into system (37), and rearranging to obtain AW = 0, where

A =


x + ρ ϕ2 F̃0 ϕ3 F̃0 ϕ1 F̃0 0

0 x + ξ + ϑ− ϕ2 F̃0Λ̂1 −ϕ3 F̃0Λ̂1 −ϕ1 F̃0Λ̂1 0
0 −ξΛ̂2 x + θ 0 0
0 0 −µΛ̂3 x + κ 0
0 0 0 −φ x + γ

, W =


WF
WQ
WG
WK
WU

.

It is essential to highlight that the characteristic equation arises when the matrix A becomes
non-invertible, a condition signified by the determinant det(A) equating to zero. Specif-
ically, for the equilibrium point ΞQ̃0 in system (23), the characteristic equation takes the
form (x + γ)(x + ρ)Ỹ(x) = 0, with Ỹ(x) representing a continuous function defined on
the interval [0, ∞).

Ỹ(x) = x3 +
(
κ + ξ + ϑ + θ − F̃0Λ̂1 ϕ2

)
x2

+
(
θκ − ξ F̃0Λ̂1Λ̂2 ϕ3 + (θ + κ)

(
ξ + ϑ− F̃0Λ̂1 ϕ2

))
x

+ θκ(ξ + ϑ)− F̃0Λ̂1
(
ξµΛ̂2Λ̂3 ϕ1 + κθϕ2 + κξΛ̂2 ϕ3

)
,

where Λ̂i =
∫ $i

0 Ti(λ)e−(x+αi)λdλ, i = 1, 2, 3. The case of <̃0 > 1 implies that Ỹ(0) =

κθ(ξ + ϑ)
(
1− <̃0

)
< 0 and lim

x→∞
Ỹ(x) = ∞, which guarantees that Ỹ(x) has a positive real

root. Therefore, ΞQ̃0 is unstable when <̃0 > 1.

Theorem 5. For system (23), if <̃0 > 1, then ΞQ̃1 is G.A.S.

Proof. We consider the function Θ̃1(F, Q, G, K, U) given by Equation (38) as:

Θ̃1 = F̃1H
(

F
F̃1

)
+

Q̃1

Λ1
H
(

Q
Q̃1

)
+

F̃1
(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
G̃1

θ
(
κ + σŨ1

) H
(

G
G̃1

)
+

ϕ1 F̃1K̃1

κ + σŨ1
H
(

K
K̃1

)
+

σϕ1 F̃1

2
(
κ + σŨ1

)(
φ− εŨ1

) (U − Ũ1
)2

+
ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ)

∫ t

t−λ
H
(

F(κ)K(κ)
F̃1K̃1

)
dκdλ

+
ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ)

∫ t

t−λ
H
(

F(κ)Q(κ)
F̃1Q̃1

)
dκdλ +

ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ)

∫ t

t−λ
H
(

F(κ)G(κ)
F̃1G̃1

)
dκdλ

+
ξ F̃1Q̃1

(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) ∫ $2

0
Λ̄2(λ)

∫ t

t−λ
H
(

Q(κ)
Q̃1

)
dκdλ

+
µϕ1 F̃1G̃1

κ + σŨ1

∫ $3

0
Λ̄3(λ)

∫ t

t−λ
H
(

G(κ)
G̃1

)
dκdλ. (38)

It is observed from the equilibrium condition Equation (30) that φ− εŨ1 =
γŨ1

K̃1
> 0.

It is clear that Θ̃1 is positive definite. Computing dΘ̃1
dt along with the solutions of model (23),

give us

dΘ̃1

dt
=

(
1− F̃1

F

)
dF
dt

+
1

Λ1

(
1− Q̃1

Q

)
dQ
dt

+
F̃1
(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) (
1− G̃1

G

)
dG
dt
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+
ϕ1 F̃1

κ + σŨ1

(
1− K̃1

K

)
dK
dt

+
σϕ1 F̃1(

κ + σŨ1
)(

φ− εŨ1
) (U − Ũ1

)dU
dt

+
ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ)

(
FK

F̃1K̃1
− FλKλ

F̃1K̃1
+ ln

(
FλKλ

FK

))
dλ

+
ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ)

(
FQ

F̃1Q̃1
− FλQλ

F̃1Q̃1
+ ln

(
FλQλ

FQ

))
dλ

+
ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ)

(
FG

F̃1G̃1
− FλGλ

F̃1G̃1
+ ln

(
FλGλ

FG

))
dλ

+
ξ F̃1Q̃1

(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) ∫ $2

0
Λ̄2(λ)

(
Q
Q̃1
− Qλ

Q̃1
+ ln

(
Qλ

Q

))
dλ

+
µϕ1 F̃1G̃1

κ + σŨ1

∫ $3

0
Λ̄3(λ)

(
G
G̃1
− Gλ

G̃1
+ ln

(
Gλ

G

))
dλ

=

(
1− F̃1

F

)
(ψ− ρF− ϕ1FK− ϕ2FQ− ϕ3FG)

+
1

Λ1

(
1− Q̃1

Q

)(∫ $1

0
Λ̄1(λ)Fλ(ϕ1Kλ + ϕ2Qλ + ϕ3Gλ)dλ− (ξ + ϑ)Q

)
+

F̃1
(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) (
1− G̃1

G

)(
ξ
∫ $2

0
Λ̄2(λ)Qλdλ− θG

)
+

ϕ1 F̃1

κ + σŨ1

(
1− K̃1

K

)(
µ
∫ $3

0
Λ̄3(λ)Gλdλ− κK− σUK

)
+

σϕ1 F̃1(
κ + σŨ1

)(
φ− εŨ1

) (U − Ũ1
)
(φK− γU − εUK)

+ ϕ1FK− ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ)

(
FλKλ

F̃1K̃1
− ln

(
FλKλ

FK

))
dλ

+ ϕ2FQ− ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ)

(
FλQλ

F̃1Q̃1
− ln

(
FλQλ

FQ

))
dλ

+ ϕ3FG− ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ)

(
FλGλ

F̃1G̃1
− ln

(
FλGλ

FG

))
dλ

+
ξ F̃1Q̃1

(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) (
Λ2Q
Q̃1
−
∫ $2

0
Λ̄2(λ)

(
Qλ

Q̃1
− ln

(
Qλ

Q

))
dλ

)
+

µϕ1 F̃1G̃1

κ + σŨ1

(
Λ3G
G̃1
−
∫ $3

0
Λ̄3(λ)

(
Gλ

G̃1
− ln

(
Gλ

G

))
dλ

)
.

This implies that

dΘ̃1

dt
=

(
1− F̃1

F

)
(ψ− ρF) +

(
ϕ2 F̃1 −

ξ + ϑ

Λ1
+

ξΛ2 F̃1
(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) )
Q

+ ϕ1 F̃1K +

(
ϕ3 F̃1 −

F̃1
(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
κ + σŨ1

+
µϕ1Λ3 F̃1

κ + σŨ1

)
G

− 1
Λ1

∫ $1

0
Λ̄1(λ)

FλQ̃1

Q
(ϕ1Kλ + ϕ2Qλ + ϕ3Gλ)dλ +

(ξ + ϑ)Q̃1

Λ1

−
ξ F̃1
(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) ∫ $2

0
Λ̄2(λ)

QλG̃1

G
dλ +

F̃1
(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
κ + σŨ1

G̃1

− µϕ1 F̃1

κ + σŨ1

∫ $3

0
Λ̄3(λ)

GλK̃1

K
dλ− κϕ1 F̃1

κ + σŨ1

(
K− K̃1

)
− σϕ1 F̃1

κ + σŨ1
U
(
K− K̃1

)
+

σϕ1 F̃1(
κ + σŨ1

)(
φ− εŨ1

) (U − Ũ1
)
(φK− γU − εUK) +

ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλKλ

FK

)
dλ
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+
ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλQλ

FQ

)
dλ +

ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλGλ

FG

)
dλ

+
ξ F̃1Q̃1

(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) ∫ $2

0
Λ̄2(λ) ln

(
Qλ

Q

)
dλ +

µϕ1 F̃1G̃1

κ + σŨ1

∫ $3

0
Λ̄3(λ) ln

(
Gλ

G

)
dλ. (39)

Using the following equilibrium conditions for ΞQ̃1

ψ = ρF̃1 + ϕ1 F̃1K̃1 + ϕ2 F̃1Q̃1 + ϕ3 F̃1G̃1,

ϕ1 F̃1K̃1 + ϕ2 F̃1Q̃1 + ϕ3 F̃1G̃1 =
(ξ + ϑ)Q̃1

Λ1
,

Q̃1 =
θG̃1

ξΛ2
=⇒ G̃1 =

ξΛ2Q̃1

θ
,

K̃1 =
µΛ3G̃1

κ + σŨ1
=

ξµΛ2Λ3Q̃1

θ
(
κ + σŨ1

) ,

φK̃1 = γŨ1 + εŨ1K̃1,

we get

ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1 =
F̃1K̃1

(
µΛ3 ϕ1 + ϕ3

(
κ + σŨ1

))
Λ3µ

=
ξΛ2 F̃1Q̃1

(
µΛ3 ϕ1 + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) ,(
ϕ2 F̃1 −

ξ + ϑ

Λ1
+

ξΛ2 F̃1
(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) )
Q̃1 = 0.

Therefore, Equation (39) will be represented in the following manner:

dΘ̃1

dt
=

(
1− F̃1

F

)(
ρF̃1 − ρF

)
+
(

ϕ1 F̃1K̃1 + ϕ2 F̃1Q̃1 + ϕ3 F̃1G̃1
)(

1− F̃1

F

)
+ ϕ1 F̃1K

− 1
Λ1

∫ $1

0
Λ̄1(λ)

FλQ̃1

Q
(ϕ1Kλ + ϕ2Qλ + ϕ3Gλ)dλ + ϕ1 F̃1K̃1 + ϕ2 F̃1Q̃1 + ϕ3 F̃1G̃1

−
ξ F̃1Q̃1

(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) ∫ $2

0
Λ̄2(λ)

QλG̃1

Q̃1G
dλ + ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

− µϕ1 F̃1G̃1

κ + σŨ1

∫ $3

0
Λ̄3(λ)

GλK̃1

G̃1K
dλ− κϕ1 F̃1

κ + σŨ1

(
K− K̃1

)
− σϕ1 F̃1

κ + σŨ1
U
(
K− K̃1

)
+

σϕ1 F̃1

κ + σŨ1
Ũ1
(
K− K̃1

)
− σϕ1 F̃1

κ + σŨ1
Ũ1
(
K− K̃1

)
+

σϕ1 F̃1(
κ + σŨ1

)(
φ− εŨ1

) (U − Ũ1
)(

φK− γU − εUK− φK̃1 + γŨ1 + εŨ1K̃1 − εŨ1K + εŨ1K
)

+
ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλKλ

FK

)
dλ +

ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλQλ

FQ

)
dλ

+
ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλGλ

FG

)
dλ

+
ξ F̃1Q̃1

(
Λ3 ϕ1µ + ϕ3

(
κ + σŨ1

))
θ
(
κ + σŨ1

) ∫ $2

0
Λ̄2(λ) ln

(
Qλ

Q

)
dλ

+
µϕ1 F̃1G̃1(
κ + σŨ1

) ∫ $3

0
Λ̄3(λ) ln

(
Gλ

G

)
dλ

= −
ρ
(

F− F̃1
)2

F
+
(

ϕ1 F̃1K̃1 + ϕ2 F̃1Q̃1 + ϕ3 F̃1G̃1
)(

2− F̃1

F

)
+ ϕ1 F̃1K

− ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλKλQ̃1

F̃1K̃1Q
dλ− ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλQλ

F̃1Q
dλ
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− ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλGλQ̃1

F̃1G̃1Q
dλ− ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

Λ2

∫ $2

0
Λ̄2(λ)

QλG̃1

Q̃1G
dλ

+ ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1 −
ϕ1 F̃1K̃1

Λ3

∫ $3

0
Λ̄3(λ)

GλK̃1

G̃1K
dλ

−
ϕ1 F̃1

(
κ + σŨ1

)
κ + σŨ1

(
K− K̃1

)
− σϕ1 F̃1

κ + σŨ1

(
U − Ũ1

)(
K− K̃1

)
+

σϕ1 F̃1
(
φ− εŨ1

)(
κ + σŨ1

)(
φ− εŨ1

) (U − Ũ1
)(

K− K̃1
)
− σϕ1 F̃1(γ + εK)(

κ + σŨ1
)(

φ− εŨ1
) (U − Ũ1

)2

+
ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλKλ

FK

)
dλ +

ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλQλ

FQ

)
dλ

+
ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλGλ

FG

)
dλ +

ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

Λ2

∫ $2

0
Λ̄2(λ) ln

(
Qλ

Q

)
dλ

+
ϕ1 F̃1K̃1

Λ3

∫ $3

0
Λ̄3(λ) ln

(
Gλ

G

)
dλ

= −
ρ
(

F− F̃1
)2

F
+
(

ϕ1 F̃1K̃1 + ϕ2 F̃1Q̃1 + ϕ3 F̃1G̃1
)(

2− F̃1

F

)
+ ϕ1 F̃1K

− ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλKλQ̃1

F̃1K̃1Q
dλ− ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλQλ

F̃1Q
dλ

− ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλGλQ̃1

F̃1G̃1Q
dλ− ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

Λ2

∫ $2

0
Λ̄2(λ)

QλG̃1

Q̃1G
dλ

+ ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1 −
ϕ1 F̃1K̃1

Λ3

∫ $3

0
Λ̄3(λ)

GλK̃1

G̃1K
dλ− ϕ1 F̃1K̃1

(
K
K̃1
− 1
)

− σϕ1 F̃1(γ + εK)(
κ + σŨ1

)(
φ− εŨ1

) (U − Ũ1
)2

+
ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλKλ

FK

)
dλ

+
ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλQλ

FQ

)
dλ +

ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλGλ

FG

)
dλ

+
ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

Λ2

∫ $2

0
Λ̄2(λ) ln

(
Qλ

Q

)
dλ +

ϕ1 F̃1K̃1

Λ3

∫ $3

0
Λ̄3(λ) ln

(
Gλ

G

)
dλ.

Therefore

dΘ̃1

dt
= −

ρ
(

F− F̃1
)2

F
+
(

ϕ1 F̃1K̃1 + ϕ2 F̃1Q̃1 + ϕ3 F̃1G̃1
)(

2− F̃1

F

)
− ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλKλQ̃1

F̃1K̃1Q
dλ− ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλQλ

F̃1Q
dλ

− ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλGλQ̃1

F̃1G̃1Q
dλ− ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

Λ2

∫ $2

0
Λ̄2(λ)

QλG̃1

Q̃1G
dλ

+ ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1 −
ϕ1 F̃1K̃1

Λ3

∫ $3

0
Λ̄3(λ)

GλK̃1

G̃1K
dλ + ϕ1 F̃1K̃1

− σϕ1 F̃1(γ + εK)(
κ + σŨ1

)(
φ− εŨ1

) (U − Ũ1
)2

+
ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλKλ

FK

)
dλ

+
ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλQλ

FQ

)
dλ +

ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ) ln

(
FλGλ

FG

)
dλ

+
ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

Λ2

∫ $2

0
Λ̄2(λ) ln

(
Qλ

Q

)
dλ +

ϕ1 F̃1K̃1

Λ3

∫ $3

0
Λ̄3(λ) ln

(
Gλ

G

)
dλ.
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Furthermore, we have

ln
(

FλKλ

FK

)
= ln

(
FλKλQ̃1

F̃1K̃1Q

)
+ ln

(
F̃1

F

)
+ ln

(
K̃1Q
KQ̃1

)
,

ln
(

FλGλ

FG

)
= ln

(
FλGλQ̃1

F̃1G̃1Q

)
+ ln

(
F̃1

F

)
+ ln

(
G̃1Q
GQ̃1

)
,

ln
(

FλQλ

FQ

)
= ln

(
FλQλ

F̃1Q

)
+ ln

(
F̃1

F

)
,

ln
(

Qλ

Q

)
= ln

(
QλG̃1

Q̃1G

)
+ ln

(
Q̃1G
QG̃1

)
,

ln
(

Gλ

G

)
= ln

(
GλK̃1

G̃1K

)
+ ln

(
G̃1K
GK̃1

)
.

Then, dΘ̃1
dt will be

dΘ̃1

dt
= −

ρ
(

F− F̃1
)2

F
+
(

ϕ1 F̃1K̃1 + ϕ2 F̃1Q̃1 + ϕ3 F̃1G̃1
)(

2− F̃1

F

)
+ ϕ1 F̃1K̃1

− σϕ1 F̃1(γ + εK)(
κ + σŨ1

)(
φ− εŨ1

) (U − Ũ1
)2 − ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλKλQ̃1

F̃1K̃1Q
dλ

− ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλQλ

F̃1Q
dλ− ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ)

FλGλQ̃1

F̃1G̃1Q
dλ

− ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

Λ2

∫ $2

0
Λ̄2(λ)

QλG̃1

Q̃1G
dλ + ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

− ϕ1 F̃1K̃1

Λ3

∫ $3

0
Λ̄3(λ)

GλK̃1

G̃1K
dλ

+
ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ)

[
ln
(

FλKλQ̃1

F̃1K̃1Q

)
+ ln

(
F̃1

F

)
+ ln

(
K̃1Q
KQ̃1

)]
dλ

+
ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ)

[
ln
(

FλQλ

F̃1Q

)
+ ln

(
F̃1

F

)]
dλ

+
ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ)

[
ln
(

FλGλQ̃1

F̃1G̃1Q

)
+ ln

(
F̃1

F

)
+ ln

(
G̃1Q
GQ̃1

)]
dλ

+
ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

Λ2

∫ $2

0
Λ̄2(λ)

[
ln
(

QλG̃1

Q̃1G

)
+ ln

(
Q̃1G
QG̃1

)]
dλ

+
ϕ1 F̃1K̃1

Λ3

∫ $3

0
Λ̄3(λ)

[
ln
(

GλK̃1

G̃1K

)
+ ln

(
G̃1K
GK̃1

)]
dλ

= −
ρ
(

F− F̃1
)2

F
−
(

ϕ1 F̃1K̃1 + ϕ2 F̃1Q̃1 + ϕ3 F̃1G̃1
)[ F̃1

F
− 1− ln

(
F̃1

F

)]
− ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ)

[
FλKλQ̃1

F̃1K̃1Q
− 1− ln

(
FλKλQ̃1

F̃1K̃1Q

)]
dλ

− ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ)

[
FλQλ

F̃1Q
− 1− ln

(
FλQλ

F̃1Q

)]
dλ

− ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ)

[
FλGλQ̃1

F̃1G̃1Q
− 1− ln

(
FλGλQ̃1

F̃1G̃1Q

)]
dλ

− ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

Λ2

∫ $2

0
Λ̄2(λ)

[
QλG̃1

Q̃1G
− 1− ln

(
QλG̃1

Q̃1G

)]
dλ

− ϕ1 F̃1K̃1

Λ3

∫ $3

0
Λ̄3(λ)

[
GλK̃1

G̃1K
− 1− ln

(
GλK̃1

G̃1K

)]
dλ
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− σϕ1 F̃1(γ + εK)(
κ + σŨ1

)(
φ− εŨ1

) (U − Ũ1
)2.

Simplifying the result, we obtain

dΘ̃1

dt
= −

ρ
(

F− F̃1
)2

F
− ϕ1 F̃1K̃1

Λ1

∫ $1

0
Λ̄1(λ)

[
H
(

FλKλQ̃1

F̃1K̃1Q

)
+ H

(
F̃1

F

)]
dλ

− ϕ2 F̃1Q̃1

Λ1

∫ $1

0
Λ̄1(λ)

[
H
(

FλQλ

F̃1Q

)
+ H

(
F̃1

F

)]
dλ

− ϕ3 F̃1G̃1

Λ1

∫ $1

0
Λ̄1(λ)

[
H
(

FλGλQ̃1

F̃1G̃1Q

)
+ H

(
F̃1

F

)]
dλ

− ϕ1 F̃1K̃1 + ϕ3 F̃1G̃1

Λ2

∫ $2

0
Λ̄2(λ)H

(
QλG̃1

Q̃1G

)
dλ

− ϕ1 F̃1K̃1

Λ3

∫ $3

0
Λ̄3(λ)H

(
GλK̃1

G̃1K

)
dλ− σϕ1 F̃1(γ + εK)(

κ + σŨ1
)(

φ− εŨ1
) (U − Ũ1

)2.

Hence, if <̃0 > 1 then dΘ̃1
dt ≤ 0 for all F, Q, G, K, U > 0. Also, dΘ̃1

dt = 0 when F = F̃1,
Q = Q̃1, G = G̃1, K = K̃1 and U = Ũ1. Let Φ̄

′
1 be the largest invariant subset of Φ̃1 ={

(F, Q, G, K, U) : dΘ̃1
dt = 0

}
. Therefore, Φ̄

′
1 =

{
ΞQ̃1

}
. By applying L.I.P, we can conclude

that if <̃0 > 1, then the equilibrium ΞQ̃1 is G.A.S.

4. Numerical Simulations

In this part, we accomplish some numerical simulations for both systems (5) and (23) to
validate our theoretical results. Additionally, we investigate the impact of impaired humoral
immunity on model (5), besides, the influence of time-delays on the dynamical system (23).
We use ode45 and dde23 solvers in MATLAB to perform the numerical simulations for
systems (5) and (23), respectively. Other methods can also be used for solving these systems
(see e.g., [44,45]).

4.1. Numerical Simulation for Model (5)
4.1.1. Stability of Equilibria

In this part, we perform numerical simulations of system (5) using the parameter
values provided in Table 1. Many of these parameter values are adopted from prior research.
The remaining parameters, denoted as ϕi for i = 1, 2, 3, are chosen specifically for the
purpose of our numerical simulations. To assess the stability of the equilibria in system (5),
we initiate the simulations with three distinct initial conditions, as outlined below:

I.C.1: (F(0), Q(0), G(0), K(0), U(0)) = (400, 4, 2, 1, 0.4),
I.C.2: (F(0), Q(0), G(0), K(0), U(0)) = (250, 5, 2.85, 3.5, 0.3),
I.C.3: (F(0), Q(0), G(0), K(0), U(0)) = (500, 6.5, 4, 4, 0.1).

Table 1. Model parameters.

Parameter Value Reference Parameter Value Reference

ψ 10 [46] θ 0.8 [47]
ρ 0.01 [46] µ 2.6 [48]
ϕ1 varied - κ 2.4 [48]
ϕ2 varied - σ 0.06 [49]
ϕ3 varied - φ 0.01 [46]
ξ 0.2 [46] γ 0.3 [46]
ϑ 0.17 [46] ε varied -
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As <0 is employed to regulate the stability of equilibria and is contingent on the
infection rates ϕi for i = 1, 2, 3, we introduce variations to these parameters. We then
proceed to examine two distinct scenarios:

Stability of ΞQ0. We let ϕ1 = 0.0002, ϕ2 = 0.0001, ϕ3 = 0.0004 and ε = 0.001. This
gives <0 = 0.6869 < 1. Figure 1 presents that the trajectories of the solution starting with
I.C.1-I.C.3 end up at the equilibrium ΞQ0 = (1000, 0, 0, 0, 0). In fact, this shows that ΞQ0
is G.A.S based to the result of Theorem 2. From a biological perspective, this scenario
implies that the infection will be eradicated, and the human body will successfully eliminate
the pathogen.
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Figure 1. Solutions (F(t), Q(t), G(t), K(t), U(t)) of system (5) whenever <0 < 1. (a) Healthy
CD4+T cells; (b) (HIV-1)-latently infected cells; (c) (HIV-1)-actively infected cells; (d) HIV-1 par-
ticles; (e) B-cells.
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Stability of ΞQ1. We let ϕ1 = 0.003, ϕ2 = 0.0001, ϕ3 = 0.0004 and ε = 0.001.
With such choice we get <0 = 2.7365 > 1. Clearly, the equilibrium point ΞQ1 exists when
<0 > 1 with ΞQ1 = (366.543, 17.121, 4.28, 4.619, 0.152). Figure 2 demonstrates that the
numerical outcomes come to an agreement with the result of Theorem 3 as the solutions
of system (5) end up at ΞQ1 when <0 > 1 for all I.C.1–I.C.3. From a biological standpoint,
this situation reveals that both HIV-1 particles and B-cells will continue to exist within the
host organism.
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Figure 2. Solutions (F(t), Q(t), G(t), K(t), U(t)) of system (5) whenever <0 > 1. (a) Healthy
CD4+T cells; (b) (HIV-1)-latently infected cells; (c) (HIV-1)-actively infected cells; (d) HIV-1 par-
ticles; (e) B-cells.
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4.1.2. Effect of the Impaired Humoral Immunity

In this scenario, we introduce variations in the parameter ε while setting specific values
for ϕ1 = 0.003, ϕ2 = 0.0001, and ϕ3 = 0.0004. To explore how the dynamics of system (5)
are influenced by the impairment of the humoral immune response, we numerically solve
the system, considering different values of ε as outlined in Table 2. In this case, we define
the following initial condition:

I.C.4: (F(0), Q(0), G(0), K(0), U(0)) = (366, 17.15, 4.28, 4.6, 0.08).

Table 2. Effect of the impaired humoral immunity parameter.

ε Equilibria

ε = 0 ΞQ1 = (366.56, 17.12, 4.28, 4.619, 0.154)

ε = 0.04 ΞQ1 = (366.131, 17.132, 4.283, 4.629, 0.095)

ε = 0.1 ΞQ1 = (365.877, 17.139, 4.285, 4.635, 0.061)

ε = 2 ΞQ1 = (365.468, 17.15, 4.287, 4.644, 0.005)

We observe from Table 2 that an increase in ε results in a decrease in the number of
B-cells. This reduction is linked to a higher count of (HIV-1)-latently and (HIV-1)-actively
infected cells, as well as HIV-1 particles. As a consequence, the population of healthy
CD4+T cells decreases. An insightful observation from Figure 3 is that the impairment of
the humoral immune response does not alter the stability criteria of the equilibria. This is
evident as the parameter <0 remains unaffected by changes in ε.
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Figure 3. Solutions of system (5) for various ε values. (a) Healthy CD4+T cells; (b) (HIV-1)-latently
infected cells; (c) (HIV-1)-actively infected cells; (d) HIV-1 particles; (e) B-ells.

4.2. Numerical Simulation for Model (23)

In this subsection, for numerical computations, we choose a specific form for the
probability distribution functions Ti(λ), where i = 1, 2, 3, as outlined below:

Ti(λ) = δ∗(λ− λi), λi ∈ [0, $i], i = 1, 2, 3,

where δ∗(.) is the Dirac delta function. As $i → ∞, we obtain∫ ∞

0
Ti(λ)dλ = 1, i = 1, 2, 3.

Moreover, we have

Λi =
∫ ∞

0
δ∗(λ− λi)e−αiλdλ = e−αiλi , i = 1, 2, 3.

Therefore, the distributed-time delay system (23) will be converted into a discrete-time
delay system as follows:

dF(t)
dt = ψ− ρF(t)− ϕ1F(t)K(t)− ϕ2F(t)Q(t)− ϕ3F(t)G(t),

dQ(t)
dt = e−α1λ1 F(t− λ1)(ϕ1K(t− λ1) + ϕ2Q(t− λ1)

+ϕ3G(t− λ1))− (ξ + ϑ)Q(t),
dG(t)

dt = ξe−α2λ2 Q(t− λ2)− θG(t),
dK(t)

dt = µe−α3λ3 G(t− λ3)− κK(t)− σU(t)K(t),
dU(t)

dt = φK(t)− γU(t)− εU(t)K(t).

(40)

For system (40), the basic reproductive number is:

<̃0(40) =
F̃0e−α1λ1

(
ξe−α2λ2

(
ϕ1µe−α3λ3 + ϕ3κ

)
+ ϕ2κθ

)
(ξ + ϑ)κθ

. (41)

The Effect of the Time-Delays on the Stability of Equilibria

To explore how the solutions of the system are affected by the time-delay parame-
ters (40), we keep the parameters constant ϕ1 = 0.003, ϕ2 = 0.0001, ϕ3 = 0.0004, ε = 0.001,
α1 = 0.1, α2 = 0.2 and α3 = 0.3. On the contrary, the remaining parameters will be selected
from Table 1. Furthermore, we will vary the delay parameters λi, where i = 1, 2, 3. The
dependence of <̃0(40) which is presented in Equation (41) on the values of λi causes a
remarkably changing in the stability of equilibria as long as parameters λi are changed.
Let’s consider the following scenarios for the delay values:
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DV1 λ1 = 0.07, λ2 = 0.06, λ3 = 0.05.
DV2 λ1 = 0.8, λ2 = 0.7, λ3 = 0.9.
DV3 λ1 = 1.3, λ2 = 1.4, λ3 = 1.5.
DV4 λ1 = 1.8, λ2 = 1.9, λ3 = 2.
DV5 λ1 = 4, λ2 = 3, λ3 = 5.

We solve system (40) under the below initial
I.C.5: (F(r), Q(r), G(r), K(r), U(r)) = (400, 4, 2, 1, 0.3), r ∈ [−λ, 0], λ = max{λ1, λ2, λ3}.
In Table 3, we present the values of <̃0(40) for different values of λi, i = 1, 2, 3. We

notice that an increase in the parameters λi leads to a remarkable decrease in the values of
<̃0(40). Figure 4 illustrates the numerical solutions of the system. A significant effect of the
inclusion of time-delays is concluded, that is an increase in the number of healthy CD4+T
cells and a decrease in the numbers of (HIV-1)-latently and (HIV-1)-actively infected cells,
HIV-1 particles, and B-cells occur.

Table 3. The disparity of <̃0(40) based on λi.

Delay Parameters (λ1, λ2, λ3) Equilibria <̃0(40)

(0.07, 0.06, 0.05) ΞQ̃1(40) = (377.574, 16.705, 4.126, 4.388, 0.144) <̃0(40) = 2.656
(0.8, 0.7, 0.9) ΞQ̃1(40) = (552.652, 11.161, 2.426, 2.003, 0.066) <̃0(40) = 1.812
(1.3, 1.4, 1.5) ΞQ̃1(40) = (743.32, 6.092, 1.151, 0.795, 0.026) <̃0(40) = 1.346
(1.8, 1.9, 2) ΞQ̃1(40) = (935.941, 1.446, 0.247, 0.147, 0.005) <̃0(40) = 1.069
(4, 3, 5) ΞQ̃0(40) = (1000, 0, 0, 0, 0) <̃0(40) = 0.461
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Figure 4. The influence of the time-delay parameters λi on the solutions of the system (40). (a) Healthy
CD4+T cells; (b) (HIV-1)-latently infected cells; (c) (HIV-1)-actively infected cells; (d) HIV-1 particles;
(e) B-cells.

4.3. Sensitivity Analysis
4.3.1. Sensitivity Analysis for Model (5)

The primary objective of a sensitivity analysis is to pinpoint the variable with the
highest risk contribution. To achieve this, we will employ partial derivatives to compute
sensitivity indices when variables undergo variations based on parameters. The normalized
forward sensitivity index for the basic reproductive number, <0, can be expressed in terms
of parameters as follows:

ΞS =
S
<0

∂<0

∂S
, (42)

where S is a given parameter. We used Equation (42) to determine the sensitivity indices
for each parameter contained in the basic reproductive number, <0, using the parameter
values provided in Table 1, as well as the following parameters: ϕ1 = 0.003, ϕ2 = 0.0001
and ϕ3 = 0.0004. Table 4 and Figure 5 present the sensitivity index values for <0. It is
evident that ψ, ϕ1, ϕ2, ϕ3, µ and ξ have positive indices values. In this instance, there is a
correlation between the endemicity of the HIV-1 disease and an increase in the values of
these parameters. The other indices are negative, which means that when the values of ρ,
κ, ϑ and θ increase, the value of the basic reproductive number, <0, decreases. Obviously,
the most crucial parameters in terms of sensitivity are ψ, ϕ1 and µ, while ϕ2 and ϕ3 are the
least crucial. The parameter of B-cells responsiveness, φ, has no effect on <0.

Figure 5. Forward sensitivity analysis of the parameters on <0 in system (5).
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Table 4. Sensitivity index of <0 of model (5).

Parameter S Value of ΞS Parameter S Value of ΞS

ψ 1 µ 0.802
ρ −1 ξ 0.361
ϕ1 0.802 κ −0.802
ϕ2 0.099 ϑ −0.459
ϕ3 0.099 θ −0.901

4.3.2. Sensitivity Analysis for Model (40)

We applied Equation (42) with respect to <̃0(40) to compute the sensitivity indices for
each parameter contained in the basic reproductive number, <̃0(40), using the parameter
values provided in Table 1, as well as the following parameters: ϕ1 = 0.003, ϕ2 = 0.0001,
ϕ3 = 0.0004, α1 = 0.1, α2 = 0.2, α3 = 0.3, λ1 = 0.07, λ2 = 0.06, and λ3 = 0.05. Table 5 and
Figure 6 present the sensitivity index values for <̃0(40). Since, ψ, ϕ1, ϕ2, ϕ3, µ and ξ have
positive indices, then, increasing these values will increase endemic of the HIV-1 disease.
While increasing negative indices values, which are κ, ϑ, θ, α1, α2, α3, λ1, λ2, and λ3 will
decrease the value of <̃0(40). We can see that ψ, ϕ1 and µ are the most important parameters,
and ϕ2 and ϕ3 are the least important. The parameter of B-cells responsiveness, φ, has no
effect on <̃0(40).

Table 5. Sensitivity index of <̃0(40) of model (40).

Parameter S Value of ΞS Parameter S Value of ΞS

ψ 1 ϑ −0.459
ρ −1 θ −0.899
ϕ1 0.799 α1 −0.007
ϕ2 0.101 α2 −0.011
ϕ3 0.1 α3 −0.012
µ 0.8 λ1 −0.007
ξ 0.358 λ2 −0.011
κ −0.799 λ3 −0.012

Figure 6. Forward sensitivity analysis of the parameters on <̃0(40) of system (40).
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5. Discussion

To show the importance of including the latent CI spread in our proposed models, we
consider model (5) under the effect of three types of antiviral drug therapies as:

dF(t)
dt = ψ− ρF(t)− (1− `1)ϕ1F(t)K(t)− (1− `2)ϕ2F(t)Q(t)− (1− `3)ϕ3F(t)G(t),

dQ(t)
dt = (1− `1)ϕ1F(t)K(t) + (1− `2)ϕ2F(t)Q(t) + (1− `3)ϕ3F(t)G(t)− (ξ + ϑ)Q(t),

dG(t)
dt = ξQ(t)− θG(t),

dK(t)
dt = µG(t)− κK(t)− σU(t)K(t),

dU(t)
dt = φK(t)− γU(t)− εU(t)K(t),

(43)

where `1 ∈ [0, 1] is the efficacy of antiviral therapy in blocking VI. Moreover, `2 ∈ [0, 1] and
`3 ∈ [0, 1] are the efficacies of therapy in blocking latent CI and active CI, respectively [50].

The basic reproductive number of system (43) is:

<0 =
(1− `1)F0µξϕ1

κθ(ξ + ϑ)
+

(1− `2)F0 ϕ2

ξ + ϑ
+

(1− `3)F0ξϕ3

θ(ξ + ϑ)
.

We assume that ` = `1 = `2 = `3, then we get

<`
0 = (1− `)

[
F0µξϕ1

κθ(ξ + ϑ)
+

F0 ϕ2

ξ + ϑ
+

F0ξϕ3

θ(ξ + ϑ)

]
= (1− `)<0.

Now, we calculate the drug efficacy ` that makes <`
0 < 1 and stabilizes ΞQ0 of sys-

tem (43) as:

1 ≥ ` > ˜̀min = max
{

0, 1− 1
<0

}
. (44)

When we ignore the latent CI spread in model (43) we obtain

dF(t)
dt = ψ− ρF(t)− (1− `)ϕ1F(t)K(t)− (1− `)ϕ3F(t)G(t),

dQ(t)
dt = (1− `)ϕ1F(t)K(t) + (1− `)ϕ3F(t)G(t)− (ξ + ϑ)Q(t),

dG(t)
dt = ξQ(t)− θG(t),

dK(t)
dt = µG(t)− κK(t)− σU(t)K(t),

dU(t)
dt = φK(t)− γU(t)− εU(t)K(t),

(45)

and the basic reproductive number of model (45) is:

<̂`
0 = (1− `)

[
F0µξϕ1

κθ(ξ + ϑ)
+

F0ξϕ3

θ(ξ + ϑ)

]
= (1− `)<̂0.

We determine the drug efficacy ` that makes <̂`
0 < 1 and stabilizes ΞQ0 of system (45) as:

1 ≥ ` > ˆ̀min = max
{

0, 1− 1
<̂0

}
. (46)

Clearly, <̂0 < <0, then comparing Equations (44) and (46) we get that ˆ̀min ≤ ˜̀min. There-
fore, if we apply drugs with efficacy ` such that ˆ̀min ≤ ` < ˜̀min, this guarantees that
<̂`

0 < 1 and then ΞQ0 of system (45) is G.A.S, however, <`
0 > 1 and then ΞQ0 of system (43)

is unstable. Consequently, the designed drug therapies using a model without considering
the latent CI spread may be inaccurate or insufficient to eradicate the viruses from the body.
Therefore, our proposed models are more relevant in describing the HIV-1 dynamics than
the models presented in [29,30].

The primary limitation of our current study is that we did not utilize real data to
estimate the model’s parameter values. Several factors contribute to this limitation:
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1. Limited Availability of Real Data: There is a scarcity of real data from HIV-1 infected
individuals, which hinders the accurate estimation of model parameters.

2. Precision Issues: Comparing our obtained results with the limited existing studies
may lack precision due to the scarcity of data points.

3. Data Collection Challenges: Collecting real data from HIV-1 infected patients can be a
challenging and resource-intensive task.

4. Experimental Scope: Conducting experiments to obtain real data falls outside the
scope of this paper.

Therefore, it is crucial to acknowledge that the theoretical findings presented in this
paper should be validated against empirical observations when sufficient real data be-
comes accessible.

6. Conclusions

In this study, we developed two models to get an insight into HIV-1 dynamics taking
impaired humoral immunity under consideration. These models consist of five compart-
ments; healthy CD4+T cells, (HIV-1)-latently infected cells, (HIV-1)-actively infected cells,
free HIV-1 particles, and B-cells. In pursuit of a more realistic representation, we considered
a scenario where healthy CD4+T cells become susceptible to infection upon encounter-
ing free HIV-1 particles, (HIV-1)-latently infected cells, and (HIV-1)-actively infected cells.
In our second model, we introduced three distributed time-delays to better capture the dy-
namics. It is noteworthy that the solutions generated by these models exhibit nonnegative
and bounded characteristics. Within this framework, we identified two critical equilibria:
the infection-free equilibrium denoted as ΞQ0 (or ΞQ̃0) and the infected equilibrium rep-
resented as ΞQ1 (or ΞQ̃1). To quantify the impact and potential outcomes, we computed
the basic reproductive numbers, denoted as <0 (or <̃0). These values play a pivotal role in
dictating the existence and global stability of the aforementioned equilibria. Notably, <0 (or
<̃0) comprises three distinct components: the contribution from viral infection (VI), the con-
tribution arising from latent cellular infection (latent CI), and the contribution attributed to
active cellular infection (active CI). To assess the overall system behavior, we employed
Lyapunov functions and the LaSalle’s invariance principle (L.I.P) to investigate the global
asymptotic stability of these equilibria. Our analysis yielded two important scenarios:
first, if <0 < 1 (or <̃0 < 1), then the infection-free equilibrium ΞQ0 (or ΞQ̃0) is globally
asymptotically stable (G.A.S), leading to eventual infection extinction. Conversely, if<0 > 1
(or <̃0 > 1), the equilibrium ΞQ0 (or ΞQ̃0) becomes unstable, and the infected equilibrium
ΞQ1 (or ΞQ̃1) prevails as G.A.S, signifying the establishment of chronic infection. To rein-
force our theoretical findings, we conducted numerical simulations that corroborated our
analytical results. Furthermore, we delved into the impact of B-cell impairment, time-delay,
and latent CI on the dynamics of HIV-1. Notably, weakened immunity emerged as a
significant contributor to disease progression. Additionally, the presence of time-delay
emerged as a key factor in reducing the basic reproductive number <̃0 and consequently
suppressing HIV-1 replication. In light of this, strategies aimed at eliminating HIV-1 from
the body should prioritize measures that reduce <̃0 below 1. We also observed an increase
in delay parameters λi, where i = 1, 2, 3, when infected patients undergo drug therapies
against HIV-1. In a crucial finding, we highlighted the consequences of neglecting latent CI
spread within the HIV-1 dynamics model. This omission can lead to an underestimation
of the basic reproductive number, potentially resulting in inaccurate or insufficient drug
dosing for virus eradication. This underscores the vital importance of incorporating latent
CI spread within our proposed models. In addition, we conducted a sensitivity analysis to
elucidate how variations in the values of all model parameters can impact <0 (or <̃0) under
specific data conditions. This comprehensive analysis provided valuable insights into the
sensitivity of the system to parameter changes, further enhancing our understanding of
HIV-1 dynamics.
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Future Works

The following enhancements can be made to extend Model (23):

• Including the diffusion of the cells and viruses as [8,9]:

∂F(t, h)
∂t

− φF∆F(t, h) = ψ− ρF(t, h)− ϕ1F(t, h)K(t, h)− ϕ2F(t, h)Q(t, h)− ϕ3F(t, h)G(t, h),

∂Q(t, h)
∂t

− φQ∆Q(t, h) =
∫ $1

0
T1(λ)e−α1λF(t− λ, h)(ϕ1K(t− λ, h) + ϕ2Q(t− λ, h)

+ϕ3G(t− λ, h))dλ− (ξ + ϑ)Q(t, h),
∂G(t, h)

∂t
− φG∆G(t, h) = ξ

∫ $2

0
T2(λ)e−α2λQ(t− λ, h)dλ− θG(t, h),

∂K(t, h)
∂t

− φK∆K(t, h) = µ
∫ $3

0
T3(λ)e−α3λG(t− λ, h)dλ− κK(t, h)− σU(t, h)K(t, h),

∂U(t, h)
∂t

− φU∆U(t, h) = φK(t, h)− γU(t, h)− εU(t, h)K(t, h),

where h is the position, ∆ = ∂2

∂h2 and φu is the diffusion coefficient of compartment u.
One can also include different kinds of diffusion in our systems (see e.g., [51–53]).

• Utilizing real-world data to estimate model parameters accurately, which can enhance
the model’s predictive capabilities and align it better with empirical observations.

• Broadening the scope of the model to incorporate the role of Cytotoxic T Lymphocytes
(CTLs) alongside B-cells, allowing for a more comprehensive representation of the
immune response.

• Investigating the integration of age structure into the infected cell population within the
model, which can provide insights into how age-related factors impact disease dynamics.

• Exploring the effects of viral mutations on the dynamics of the model, considering
how genetic changes in the virus may influence disease progression and response to
interventions.

It should be noted that these proposed enhancements are being deferred for future
consideration and further study.
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