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Abstract: In recent times, the global community has been faced with the unprecedented challenge of
the coronavirus disease (COVID-19) pandemic, which has had a profound and enduring impact on
both global health and the global economy. The utilization of mathematical modeling has become
an essential instrument in the characterization and understanding of the dynamics associated with
infectious illnesses. In this study, the utilization of the differential quadrature method (DQM)
was employed in order to anticipate the characterization of the dynamics of COVID-19 through
a fractional mathematical model. Uniform and non-uniform polynomial differential quadrature
methods (PDQMs) and a discrete singular convolution method (DSCDQM) were employed in the
examination of the dynamics of COVID-19 in vulnerable, exposed, deceased, asymptomatic, and
recovered persons. An analysis was conducted to compare the methodologies used in this study, as
well as the modified Euler method, in order to highlight the superior efficiency of the DQM approach
in terms of code-execution times. The results demonstrated that the fractional order significantly
influenced the outcomes. As the fractional order tended towards unity, the anticipated numbers
of vulnerable, exposed, deceased, asymptomatic, and recovered individuals increased. During the
initial week of the inquiry, there was a substantial rise in the number of individuals who contracted
COVID-19, which was primarily attributed to the disease’s high transmission rate. As a result, there
was an increase in the number of individuals who recovered, in tandem with the rise in the number
of infected individuals. These results highlight the importance of the fractional order in influencing
the dynamics of COVID-19. The utilization of the DQM approach, characterized by its proficient
code-execution durations, provided significant insights into the dynamics of COVID-19 among
diverse population cohorts and enhanced our comprehension of the evolution of the pandemic.
The proposed method was efficient in dealing with ordinary differential equations (ODEs), partial
differential equations (PDEs), and fractional differential equations (FDEs), in either linear or nonlinear
forms. In addition, the stability of the DQM and its validity were verified during the present study.
Moreover, the error analysis showed that DQM has better error percentages in many applications
than other relevant techniques.

Keywords: differential quadrature method; COVID-19; Caputo fractional derivative; delta Lagrange
kernel; discrete singular convolution

1. Introduction

The vast genome of the viruses known as coronaviruses consists of non-segmented,
single-stranded, positive-sense ribonucleic acid (RNA) and is contained inside an envelope.
The viruses share features with other members of the Nidovirales order, including the
ability to express genes through a three-nested set of numerous sub-genomic messenger
RNAs (mRNAs), the presence of a ribosomal frameshifting mechanism, the presence of
distinctive enzymatic activity, the development of a virion envelope, and the presence
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of a multi-span membrane protein inside the virion. The 28 species of coronaviruses are
divided into three groups, with groups 1 and 2 being found in mammals and group 3 being
found in birds. The first human coronaviruses (hCoVs), hCoV-229E and hCoV-OC43, were
discovered in the lungs of humans in the 1960s. In the early 2000s, however, a coronavirus
associated with severe acute respiratory syndrome (SARS-CoV) triggered an epidemic of
SARS, resulting in 776 fatalities and a case fatality rate (CFR) of 9.6%. This marked the
transition of coronaviruses from being relatively harmless to being extremely pathogenic
to humans.

Since the inception of the continuing COVID-19 pandemic in 2013, about 7,000,000 people
have died. This pandemic was further fueled by the outbreak of Middle East respiratory
syndrome (MERS) in 2012. Coronaviruses were divided into four subgroups, based on
phylogenetic analyses: alpha, beta, gamma, and delta. Six human coronaviruses (hCoVs)
related to alphacoronaviruses (hCoV-229E and hCoV-NL63) or betacoronaviruses (hCoV-
OC43, hCoV-HKU1, MERS-CoV, and SARS-CoV) were reported prior to the emergence
of the novel coronavirus in 2019. Because of its structural and pathological similarities
to SARS-CoV, the new hCoV that causes COVID-19 is categorized as a betacoronavirus,
named SARS-CoV-2. According to reports, zoonotic hCoVs that caused outbreaks circulated
in animals before spreading to people. In Wuhan, China, at the end of December 2019,
SARS-CoV-2 first appeared. The presence of SARS-CoV in bats, palm civets, and raccoon
dogs is particularly noteworthy. Additionally, bats can spread MERS-CoV, although camels
are its primary host.

According to human epidemiological data, a sizable portion of first- and second-
generation human cases of COVID-19 were linked to the Huanan Seafood Wholesale
Market in Wuhan, China. Following whole-genome sequencing, which revealed 96.2%
similarity, it was determined that SARS-CoV-2 was linked to bat coronavirus RaTG13
(Bat-CoV RaTG13) [1].

On 11 March 2020, the World Health Organization (WHO) declared that the outbreak
of COVID-19 was a pandemic. By the middle of April 2021, over 137 million confirmed
cases and over 2.95 million fatalities globally prompted a global public health emergency
that was caused by this deadly viral illness. This epidemic has affected almost 229 nations,
regions, and territories. Being a respiratory ailment that is extremely infectious and has
the potential to be quite severe, COVID-19 has presented considerable problems to public
health systems all over the world [2].

Mathematical modeling is an essential part of understanding the dynamics of virus
transmission, predicting the path the virus will take in the future, and developing control
methods that are both efficient and effective. In 2020, Chen et al. [3] developed a mathemat-
ical model to simulate the potential transmission of COVID-19 from the infection source
to human beings. The model was based on the assumption that COVID-19 is transmitted
from bats to wild animals as hosts, with transmission to humans after they hunted through
seafood markets. The model was a system of ordinary differential equations (ODEs).

Derivatives and integrals of fractional order are the focus of fractional calculus (FC).
Derivatives and integrals of fractional order are as ancient as calculus itself, but they have
had a renaissance in the last thirty years due to their widespread use in fields as diverse as
physics, biology, and sociology. The solutions of differential equations of fractional order
more accurately represent practical circumstances than their integer-order counterparts.
Because the biological models incorporating derivatives are more realistic and complete
than the conventional order models, Caputo fractional order derivative (CFOD)-based
models have received much interest in recent years. Several types of difficulties have been
investigated in this context, including qualitative theory, analytical solutions, and numerical
calculations. Many methods have been developed to deal with these issues. Hybrid
methods, including the integration transform and other approaches, such as perturbations
or decompositions, have become popular in dealing with linear and nonlinear problems
of fractional order [4–7]. Yasmin et al. [8,9] constructed families of solutions of fractional
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models, using an extended direct algebraic method. In addition, a long-waves model by
fractional derivatives were investigated by Naeem et al. [10].

For more generalization, the Caputo fractional order derivative model has been de-
veloped to fully describe COVID-19. Nazir et al. [11] studied the fractional model using
a modified Euler method and Mpinganzima et al. [12,13] numerically investigated the
prediction model in Rwanda for the impact of control measures. Abioye et al. [14] analyzed
the mathematical model for malaria and COVID-19 using a two-step Lagrange interpola-
tion polynomial approximate method. Their findings demonstrated that decreasing the
likelihood of developing malaria and COVID-19 through preventative measures reduced
the risk of contracting COVID-19 following malaria infection and decreased the risk of
contracting malaria following COVID-19 infection, to the point of elimination. The spa-
tiotemporal spread of COVID-19 in the presence of vaccine distribution was examined
mathematically by Alaje et al. [15] via a homotopy perturbation method. A spatiotempo-
ral study of population states underscored the importance of comprehensive vaccination
coverage in eradicating COVID-19 globally. Avusuglo et al. [16] examined a mathematical
model of COVID-19 and influenza in Canada. The results indicated that the influenza
vaccination rate and the transmission rates for both COVID-19 and influenza had a lower
and approximately similar effect on absenteeism. In contrast, the rate of COVID-19 im-
munization and the capacity for polymerase-chain-reaction (PCR) testing were critical
determinants for lowering absenteeism. Moreover, the authors utilized the model to esti-
mate and quantify the (indirect) advantage of influenza vaccination against the spread of
COVID-19. Singh et al. [17] studied the transmission dynamics of COVID-19 and tubercu-
losis via a Runge–Kutta fourth-order method. The results showed that both infections can
be mitigated by controlling the transmission rate.

The aim of this study is to employ a more reliable technique—the differential quadra-
ture method (DQM)—and modify it to suit the fractional models which are known as
fractional DQMs. Uniform and non-uniform polynomial differential quadrature methods
(PDQMs) and a discrete singular convolution method (DSCDQM) are employed to reduce
the execution time and errors more than can be achieved by relevant numerical techniques.
These techniques are employed to describe and investigate the dynamical behavior of
COVID-19 to estimate the numbers of susceptible, exposed, deceased, asymptomatic, and
recovered people. Moreover, the effect of fractional order is considered throughout the
investigation process.

The current manuscript is organized as follows: Section 2 is devoted to describing the
mathematical formulation of the model. In Section 3, the differential quadrature method
is introduced for fractional differential equations. The numerical results are described in
Section 4 and the conclusions are stated in Section 5.

2. Mathematical Model of COVID-19

The mathematical model describing the dynamics of infection for COVID-19 is de-
scribed by the following fractional order system, with order 0 < η < 1 [11]:

cDηSp(t) = Λp −mpSp − βpSp
(

Ip + kAp
)
− βWSPW, (1)

cDηEp(t) = βpSp
(

Ip + kAp
)
+ βWSpW −

(
1− δp

)
ωpEp − δpώpEp −mpEp, (2)

cDη Ip(t) =
(
1− δp

)
ωpEp −

(
γp + mp

)
Ip, (3)

cDη Ap(t) = δpώpEp −
(
γ́p + mp

)
Ap, (4)

cDη Rp(t) = γp Ip + γ́p Ap −mpRp, (5)
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cDηW(t) = µp Ip + µ́p Ap − εW, (6)

where cDη refers to Caputo’s fractional derivative of order η. The population is divided
into five epidemiological compartments: susceptible people Sp, exposed people Ep, symp-
tomatic infected people Ip, asymptomatic infected people Ap and removed people Rp
(including recovered and deceased people). W represents the reservoir of the virus. More-
over, Λp is the total population and birth date, mp is the rate of death, βp is the transmission
rate from Ip to Sp, k is the multiple of the transmissibility of Ap to that of Ip, βw is the
transmission rate from W to Sp, δp is the proportion of the asymptomatic infection rate of
people, ωp is the incubation period, ώp is the latent period, γp is the infectious period of
symptomatic infection, γ́p is the infectious period of asymptomatic infection of people, µp
is the shedding coefficients from Ip to W, µ́p represents the shedding coefficients from Ap
to W, and ε is the lifetime of the virus in W.

The initial conditions are as follows:

Sp(0) = SP0 , Ep(0) = EP0, Ip(0) = IP0 , Ap(0) = Ap0 , Rp(0) = Rp0 , W(0) = W0. (7)

3. Preliminaries and Method of Solution

Here, the system of fractional order differential Equations (1)–(6) is solved by the
fractional differential quadrature method (FDQM) with two distinct shape functions. First,
Caputo’s fractional derivative is introduced; then, the FDQM is described and applied.

3.1. Caputo’s Fractional Derivative

In ordinary calculus, the focus is on higher order derivatives Dn f = dn f
dxn , where is

the convention is that D0 f = f . These derivatives are typically considered only when
n ∈ N, which means n belongs to the set of natural numbers. However, there is a natural
extension of calculus that aims to define derivatives and integrals with arbitrary real orders
α > 0, encompassing the ordinary definitions as special cases. This field is known as
fractional calculus, and its origins trace back to 1695 when L’Hospital posed the question to
Leibniz regarding the meaning of d1/2

dx1/2 . For over two centuries, fractional calculus remained
primarily within the realm of pure mathematics, with notable mathematicians like Euler,
Fourier, Abel, Liouville, Riemann, and Hadamard studying these fractional operators,
introducing new definitions, and investigating their fundamental properties.

However, in recent decades, the practical applications of fractional calculus have
become evident in various natural phenomena.

Definition 1. The Riemann–Liouville derivative of fractional order η [18], for a function υ(t), is
defined as:

RLDη
a υ(t) =

1
Γ(k− η)

dk

dtk

t∫
a

(t− x)k−η−1υ(x)dx, k− 1 ≤ η < k ∈ R+, (8)

In his 1967 paper [19], Caputo introduced a reformulation of the Riemann–Liouville
fractional derivative. He achieved this by interchanging the order of the ordinary derivative
and the fractional integral operator. This modification resulted in a Laplace transform
of the derivative that now incorporates integer-order initial conditions, in contrast to the
fractional-order conditions associated with the Riemann–Liouville fractional derivative.
Inspired by this concept, Caputo’s fractional-derivative definition based on the Riemann–
Liouville (RL) derivative is defined as follows:
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Definition 2. The Caputo derivative [18] of fractional order η of a function υ(t) is defined as:

cDηυ(t) =


1

Γ(k−η)

t∫
a
(t− x)k−η−1 υ(k)(x)dx, k− 1 < η < k ∈ R+,

dkυ
dtk , k = η.

(9)

where a is the integration lower limit. For λ = κ, the classical definition of the integer-order
derivative is obtained.

3.2. Polynomial Based Differential Quadrature Method

The FDQM is a powerful numerical method that discretizes the fractional derivatives
present in the equations. This method involves approximating the derivatives using
discrete points and shape functions. The selection of appropriate shape functions is crucial
in ensuring the accuracy and convergence of the numerical solution. By employing the
FDQM, the fractional-order differential equations system is transformed into a system
of algebraic equations. Employing FDQM allows the numerical solution to be obtained
using standard techniques, such as matrix operations and iterative methods. The FDQM is
particularly effective in handling fractional-order equations, as it can accurately capture
the non-local effects and memory-dependent behavior inherent in such systems.

Bellman et al. [20] extended the Gauss quadrature technique to find the derivatives of
numerous orders of any differentiable function. They approximated the derivatives of the
function by a weighted sum of the function values at a group of nodes. Suppose a function
υ(t) is sufficiently smooth on the interval [t1, tN]:

Then, the different derivatives of this function can be determined as follows [20]:

∂nυ

∂tn | t=ti
= ∑N

j=1 <
(n)
ij υ

(
tj
)
, (i = 1 : N), (10)

where <(n)
ij is the weighting coefficient for nth derivative. The key to the accuracy of the

DQM is in determining the weighting coefficients. Therefore, based on the shape function,
they seem to be different.

Introducing a shape function, at definite grid points of number N [21,22]:

υ(ti) =
N

∑
j=1

∏N
k=1(ti − tk)(

ti − tj
)

∏N
j=1,j 6=k

(
tj − tk

)υ
(
tj
)
, (i = 1 : N), (11)

Consequently, the weighting coefficients <(1)
ij for the first derivative and <(2)

ij for the
second derivative can be found by differentiating Equation (11):

<(1)
ij =



1
(ti−tj)

N

∏
k=1,
k 6= i,j

(ti−tk)

(tj−tk)
, i 6= j

−
N

∑
j=1,
j 6=i

<(1)
ij , i = j

, <(2)
ij =

[
<(1)

ij

][
<(1)

ij

]
, (12)

Furthermore, the distribution of grid points N (uniform or non-uniform) has a sig-
nificant impact on the accuracy of PDQM results. The following equation describes the
non-uniform distribution based on Chebyshev’s distribution:

xi =
1
2

Lx

(
1− cos

(
π(i− 1)

N − 1

))
, (i = 1 : N). (13)
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3.3. Discrete Singular Convolution Differential Quadrature Method

The discrete singular convolution differential quadrature method (DSCDQM) is a
numerical technique for solving differential equations. It involves the use of the discrete
singular convolution, which can be mathematically expressed as follows [23,24]:

Q(t) = (F ∗ G)(t) =
∫ ∞

−∞
F(t− s)G(s)ds, (14)

where F(t− s) and G(t) are a singular kernel and a test function space element, respectively.
The shape function in this type depends on the choice of kernel type. However, this shape
function has numerous kernels, so the common one is used to describe the functional values
of the unknown function υ(t) and its derivatives at a certain number of grid points N. The
shape function of the delta Lagrange kernel (DLK) is described as follows:

υ(ti) = ∑M
j=−M

1(
ti − tj

) × ∏M
k=−M (ti − tk)

∏M
j=−M, k 6=i,j

(
tj − tk

) × υ
(
tj
)
, (i = −N : N), M ≥ 1 (15)

∂nυ

∂tn

∣∣∣∣t=ti = ∑N
j=1 <

(n)
ij υ

(
tj
)
, (i = −N : N), (16)

Consequently, <(1)
ij and <(2)

ij can be determined by differentiating Equation (15), as
follows [24–27]:

<(1)
ij =



1
(ti−tj)

M

∏
k=−M,
k 6=i,j

(ti−tk)

(tj−tk)
i 6= j

.

−
M

∑
j=−M,
j 6=i

<(1)
ij i = j

, <(2)
ij =



2

(
<(1)

ij <
(1)
ii −

<(1)ij

(ti−tj)

)
i 6= j

.

−
M

∑
j=−M,
j 6=i

<(2)
ij i = j

, (17)

At this point, the weighting coefficients <η
ij for η ∈ (0, 1] are defined by employing

DQM as follows.
Caputo’s fractional derivative of order η ∈ (0, 1] is offered as:

cDηυ(t) =


1

Γ(1−η)

∫ t
a (t− x)−ηυ′(x) dx =

N
∑

j=1
<η

ij υ(tj, x), 0 < η ≤ 1

N
∑

j=1
<(1)

ij υ(tj, x), η = 1
(18)

Then, the weighting coefficients are computed as:

<η
ij = A1−η <(1)

ij −
<(1)

1,j

Γ(2− η)
(t− a)1−η , Aij = <

(1)
ij −<

(1)
1j , (19)

Finally, to transform the governing equations to algebraic equations, the governing
equations are first solved as a system of linear equations. Then, they are solved iteratively
as a nonlinear system until the convergence condition is satisfied, which is described
as follows: ∣∣∣∣υM+1

υM

∣∣∣∣ < 1, where M = 0, 1, 2, . . . (20)
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4. Numerical Results and Discussion

In the present paper, the MATLAB code was designed for computations and graphs.
The configuration of the computer used to perform the simulation results was HP Probook
450 G8 Laptop-11th Intel Core i5-1135G7, 8 GB RAM, 512 GB PCIe NVMe SSD, 15.6′′

FHD (1920 × 1080), Intel Iris X Graphics. This code was used to investigate the dynamics
of COVID-19 infection and transmission. The validity, efficiency, and accuracy of the
developed techniques were compared to the computed results of previous numerical and
analytical solutions [11,28]. To assess the convergence and accuracy of the developed
methods, the error-computation method outlined in [29,30] was used:

L∞ Error = max
1≤i≤N

|υnumerical(ti)− υexact(ti)|, (21)

The COVID-19 mathematical model was introduced as an algebraic system after sub-
stituting Equations (18) and (19) for the proposed methods in the system (1)–(6), as follows:

N
∑

j=1
<η

ijSp
(
tj
)
= Λp −mp

N
∑

j=1
δijSp

(
tj
)
− βp

N
∑

j=1
δijSp

(
tj
)( N

∑
j=1

δij Ip
(
tj
)
+ k

N
∑

j=1
δij Ap

(
tj
))

−βW
N
∑

j=1
δijSp

(
tj
) N

∑
j=1

δijSp
(
tj
)
,

(22)

N
∑

j=1
<η

ijEp
(
tj
)
= βp

N
∑

j=1
δijSp

(
tj
)( N

∑
j=1

δij Ip
(
tj
)
+ k

N
∑

j=1
δij Ap

(
tj
))

+ βW
N
∑

j=1
δijSp

(
tj
) N

∑
j=1

δijWp
(
tj
)

−
[(

1− δp
)
ωp

N
∑

j=1
δijEp

(
tj
)
+ δpώp

N
∑

j=1
δijEp

(
tj
)
+ mp

]
N
∑

j=1
δijEp

(
tj
)
,

(23)

N

∑
j=1
<η

ij Ip
(
tj
)
=
(
1− δp

)
ωp

N

∑
j=1

δijEp
(
tj
)
−
(
γp + mp

) N

∑
j=1

δij Ip
(
tj
)
, (24)

N

∑
j=1
<η

ij Ap
(
tj
)
= δpώp

N

∑
j=1

δijEp
(
tj
)
−
(
γ́p + mp

) N

∑
j=1

δij Ap
(
tj
)
, (25)

N

∑
j=1
<η

ijRp
(
tj
)
= γp

N

∑
j=1

δij Ip
(
tj
)
+ γ́p

N

∑
j=1

δij Ap
(
tj
)
−mp

N

∑
j=1

δijRp
(
tj
)
, (26)

N

∑
j=1
<η

ijWp
(
tj
)
= µp

N

∑
j=1

δij Ip
(
tj
)
+ µ́p

N

∑
j=1

δij Ap
(
tj
)
− ε

N

∑
j=1

δijWp
(
tj
)
, (27)

Moreover, to deal with the initial conditions (7), this was performed by adapting the
governing Equations (22)–(27).

Here, we chose some appropriate values for the parameters used in the model that is
provided in Table 1 (see [31]).

Table 1. Description of the parameters involved in the model.

Parameters Description of Parameters

Sp = 800,000 Susceptible people

Ep = 200,000 Exposed people

Ip = 200 Infected people

Ap = 250 Asymptomatic people

Rp = 0 Recovered people

W = 50,000 Resivior

mp = 0.1 Rate of death
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Table 1. Cont.

Parameters Description of Parameters

Λp = np × Np = 5000 Total population and birth rate

ωp = 0.01 Incubation period

ώp = 0.768 Latent period

γp = 1.05 Infectious period of symptomatic infection

γ́p = 0.00001 Infectious period of asymptomatic infection of people

βp = 0.00006 Transmission rate from Ip to Sp

4.1. Validation of the DQM

To validate the current method, the DQM, the results of the uniform PDQM, the
non-uniform PDQM, and DSCDQM-DLK were compared to a modified Euler method [11].
The comparisons are depicted in Figure 1a,b.
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Moreover, the numerical results were tabulated, as shown in Tables 2–4, and compared
to those of [11], including the execution time of the code. The proposed methods were
applied to solve fractional differential equations, which could provide a more accurate
representation of the dynamics of COVID-19. Fractional differential equations capture
memory effects and long-range interactions, which can be relevant in modeling infectious
diseases. Figure 1a,b and Tables 2–4 show substantial agreement with previous work, but
with better execution times. Therefore, the PDQM and the DSCDQM have high accuracy
and convergence when solving fractional differential equations. By using appropriate grid
points and weighting functions, these methods can provide accurate approximations of the
solution. The results are comparable with recent research [28,32].

Table 2. Computation of errors of infected people via uniform and non-uniform PDQM at different
grid points (N) and fractional orders (η) for t = 100 days, compared to Nazir et al. [11].

N
Uniform PDQM Non-Uniform PDQM

η = 0.5 η = 0.7 η = 0.85 η = 1 η = 0.5 η = 0.7 η = 0.85 η = 1

100 0.00485996 0.12370351 0.81045132 3.66075705 0.00102353 0.06231845 0.61910253 3.65824812

150 0.00218186 0.08663727 0.70389814 3.65692309 2.507 × 10−4 3.436 × 10−2 0.49322681 3.65322267

200 4.984 × 10−4 0.04583646 0.55019547 3.65296345 6.885 × 10−5 0.02023349 0.40486598 3.64996646

250 1.297 × 10−4 0.02617926 0.44544264 3.65013186 3.737 × 10−5 0.01583587 0.37004211 3.64968175

300 3.737 × 10−5 0.01583587 0.37004211 3.64968174 2.069 × 10−5 0.01253342 0.33987774 3.64941908

350 2.069 × 10−5 0.01253338 0.33987770 3.64941911 2.069 × 10−5 0.01253332 0.33987764 3.64941908

400 2.069 × 10−5 0.01253332 0.33987764 3.64941908 2.069 × 10−5 0.01253332 0.33987764 3.64941908

Nazir et al.
[11] 2.069 × 10−5 0.01253332 0.33987764 3.64941908 2.069 × 10−5 0.01253332 0.33987764 3.64941908

Execution
time 1.75 (second)–uniform N ≥ 350 1.013 (second)–non-uniform N ≥ 300

Table 3. Computation of errors of infected people via uniform and non-uniform PDQM at different
times (days) and fractional orders, compared to Nazir et al. [11].

Time
(Days)

Uniform PDQM Non-Uniform PDQM

η = 0.5 η = 0.7 η = 0.85 η = 1 η = 0.5 η = 0.7 η = 0.85 η = 1

50 0.0788283 3.63412536 22.296806 73.305437 0.0788282 3.63412535 22.296805 73.305437

100 2.069 × 10−5 0.01253332 0.33987764 3.64941908 2.069 × 10−5 0.01253332 0.33987764 3.64941908

150 3.652 × 10−5 0.00185976 0.0198937 0.1422236 3.652 × 10−5 0.00185975 0.0198932 0.1422236

200 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206

250 1.886 × 10−7 4.121 × 10−6 3.164 × 10−5 1.973 × 10−4 1.886 × 10−7 4.121 × 10−6 3.164 × 10−5 1.973 × 10−4

300 2.053 × 10−8 2.597 × 10−7 1.470 × 10−6 7.287 × 10−6 2.053 × 10−8 2.597 × 10−7 1.470 × 10−6 7.287 × 10−6

350 2.692 × 10−9 1.881 × 10−8 7.369 × 10−8 2.680 × 10−7 2.692 × 10−9 1.881 × 10−8 7.369 × 10−8 2.680 × 10−7

Execution
time 1.75 (second)–uniform N ≥ 350 1.0 (second)–non-uniform N ≥ 300

Table 4. Computation of errors of infected people via DSCDQM-DLK at different grid points (N) and
fractional orders (η) for t = 200 days, compared to Nazir et al. [11].

N
Non-Uniform PDQM DSCDQM-DLK

η = 0.5 η = 0.7 η = 0.85 η = 1 η = 0.5 η = 0.7 η = 0.85 η = 1

100 1.977 × 10−5 0.813 × 10−4 1.717 × 10−3 0.0134789 2.405 × 10−6 8.321 × 10−5 7.874 × 10−4 0.0061135

150 0.155 × 10−5 0.344 × 10−4 0.265 × 10−3 0.0102579 2.354 × 10−6 7.925 × 10−5 7.659 × 10−4 0.0057321

200 2.632 × 10−6 8.001 × 10−5 7.913 × 10−4 0.0065217 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206

250 2.401 × 10−6 7.877 × 10−5 7.725 × 10−4 0.0060214 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206
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Table 4. Cont.

N
Non-Uniform PDQM DSCDQM-DLK

η = 0.5 η = 0.7 η = 0.85 η = 1 η = 0.5 η = 0.7 η = 0.85 η = 1

300 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206

350 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206

400 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206

Nazir et al.
[11] 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206 2.213 × 10−6 7.790 × 10−5 7.474 × 10−4 0.0053206

Execution
time 1.025 (second)–non-uniform N ≥ 300 0.5 (second)–non-uniform N ≥ 200

4.2. Stability Analysis

After a discretization process using the proposed schemes, a set of ordinary differential
equations in time was obtained as an alternative to Equations (1)–(6) in the following form:

d[U]

dt
= R[U] + [K] (28)

where

1. {U} =
(
Sp, Ep, Ip, Ap, Rp, W

)T are the unknown variables at the internal nodes of
the grid;

2. [K] is a vector including the initial conditions;
3. R[U] represents the right-hand side of Equations (22)–(27); and

4. <(1)
ij is the matrix of the weighting coefficient:

<(1)
ij =


<(1)

22 <(1)
23

<(1)
32 <(1)

33

· · ·
<(1)

2(n−1)

<(1)
3(n−1)

...
. . .

...
<(1)
(n−1)2 <(1)

(n−1)3 · · · <(1)
(n−1)(n−1)


(N−2)×(N−2)

(29)

Based on the stability of the system (28), the stability of the suggested technique
was examined. The bases of the stability analysis were the Eigen values of the coefficient
matrices “<”. If the real part of each Eigen value of “<” was either negative or zero, one
can conclude that the system (28) would be stable. This is illustrated by Figure 2. Moreover,
the error propagation with respect to time and fractional order is depicted in Figure 3.
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4.3. COVID-19 Dynamics

The graphical representation in Figure 4 illustrates the variation of the susceptible
population over time, considering different fractional orders: η = 0.5, 0.65, 0.75, 0.85, 0.95,
and 1. The results indicated a decreasing trend in the susceptible number of people as the
fractional order increased. Initially, the susceptible count experienced a significant decline
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within the first month. Subsequently, it rose until it reached its maximum value after a
period that depended on the specific fractional order. Notably, when the fractional order
was small, the susceptible population peaked earlier than it did with higher fractional
orders. As shown in Figure 5, there was a decrease in the number of exposed individuals
over time, particularly when a smaller fractional order was employed. In such cases,
the exposed population diminished rapidly and quickly vanished. Figure 6 provides
insights into the behavior of the infected population. It demonstrates that there was a
substantial increase in the number of infected individuals during the initial week of the
investigation, primarily due to the high rate of disease transmission. Consequently, the
number of recovered individuals, as depicted in Figure 7, displayed an increasing trend
when the number of infected individuals was high. However, the count of recoveries
eventually decreased due to continuous medical care, which aided in reducing the number
of infected patients. On a related note, the implementation of rigorous medical care and
home quarantine procedures enabled medical staff to effectively reduce the number of
deaths resulting from COVID-19 infection. This decline is clearly illustrated in Figure 8.
Furthermore, Figure 9 highlights the rapid decline in asymptomatic individuals within the
first three months of infection.
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Additionally, as shown in Figures 4–9, the considered model depends on the order and
offers more flexibility. As we increased the values of η, we saw that the solution tended to be
in integer-order solution. The growing and decaying rates of various model classes differed
in different fractional orders. Therefore, fractional calculus helped in understanding the
transmission dynamics of COVID-19. In a smaller fractional order, the decay process was
faster while the growth rate was slower. Increasing the fractional order may have slowed
the decay process while the growth rate increased.

Moreover, the fractional order had a great impact on the transmission dynamics of the
proposed model. In addition, it helped in better understanding the physical behavior of
a spreading infection in a community. Moreover, the adopted numerical methods can be
used as a fruitful technique to achieve computational results for such nonlinear problems.
Various compartments’ concerned growth or decay processes were slightly faster at lower
fractional orders, compared to the greater value of η. These graphical representations
provide valuable insights into the dynamics of various population groups during infection.
The analysis demonstrates the impact of fractional order on the susceptible, exposed,
infected, recovered, deceased, and asymptomatic populations. These findings contribute to
a deeper understanding of COVID-19’s progression and can aid in formulating effective
strategies for disease management and control.

The relationship between the number of recovered individuals and the prevalence
of infected individuals provides valuable insights into the trajectory of a pandemic such
as COVID-19. Understanding this relationship helps assess the disease’s progression,
estimate the effectiveness of control measures, and predict future trends. Here are some
key observations:

As shown in Figures 6–8, the number of recovered individuals directly impacts the
prevalence of infected individuals. As more individuals recover, the pool of susceptible
individuals decreases, leading to a decline in virus transmission. This reduction helps slow
the spread of the disease and reduces the overall prevalence of infected individuals over
time. The relationship between recovered and infected individuals is closely linked to herd
immunity. When a significant portion of the population becomes immune through infection
or vaccination, it creates a protective barrier that limits the transmission of the disease. This
reduces the prevalence of infected individuals and helps to control the pandemic. By closely
monitoring the relationship between the number of recovered and infected individuals,
public health officials and policymakers can gain insights into the trajectory of the pandemic.
They can assess the effectiveness of interventions, make informed decisions regarding
control measures, and predict future trends in disease transmission. This understanding
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helps in the management of healthcare resources, the planning of vaccination campaigns,
and the implementation of targeted measures to mitigate the impact of the pandemic.

5. Conclusions

The numerical solution for the mathematical model (1–6) that captures the dynamics
of COVID-19 was achieved by utilizing two techniques within the differential quadrature
method. The first technique employed was the polynomial-based differential quadrature
method (PDQM), available in uniform and non-uniform cases. The second technique used
was the discrete singular convolution (DSCDQM). Caputo’s fractional derivatives describe
the fractional derivatives within the model. Several conclusions were established through
the implementation of these techniques and fractional derivatives, contributing to a deeper
understanding of the dynamics of COVID-19. The following key conclusions were drawn:

• The used techniques—uniform PDQM, non-uniform PDQM, and DSCDQM—showed
higher accuracy than the modified Euler method [11], with better execution times.

• The fractional order had a great impact on the results. As the fractional order ap-
proached one, the expected numbers of susceptible, exposed, deceased, asymptomatic,
and recovered people became larger.

• The rise in the number of susceptible people was dramatic in the first month, then in-
creased until it reached maximum values after a period, depending on the fractional order.

• The number of infected people increased significantly in the first week of the investiga-
tion, due to the high-spread rate of the disease. Consequently, the number of recovered
people increased during the period with the higher number of infected people.

• The number of recovered people decreased due to the continuing medical care, which
decreased the number of infected patients.

These conclusions provide valuable insights into the behavior and dynamics of COVID-
19, shedding light on the patterns observed in different population groups. The numerical
solutions obtained through the differential quadrature methods offer a comprehensive
understanding of the pandemic’s progression and aid in formulating effective disease-
control and management strategies. Moreover, the employed techniques demonstrated their
superiority over the modified Euler method in both accuracy and execution time. The result
highlights the practicality and reliability of the polynomial-based differential quadrature
method (both uniform and non-uniform cases) and the discrete singular convolution
method for simulating the dynamics of COVID-19. Overall, the numerical solutions and the
conclusions contribute to the scientific understanding of the pandemic, providing valuable
information for policymakers, healthcare professionals, and researchers working toward
mitigating the impact of COVID-19.
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