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Abstract: This paper presents a general procedure to formulate and implement 3D elements of
arbitrary order in meshes with multiple element types. This procedure includes obtaining shape
functions and integration quadrature and establishing an approach for checking the generated
element’s compatibility with adjacent elements’ surfaces. This procedure was implemented in Matlab,
using its symbolic and graphics toolbox, and complied as a GUI interface named ShapeGen3D
to provide finite element users with a tool to tailor elements according to their analysis needs.
ShapeGen3D also outputs files with the element formulation needed to enable users to implement the
generated elements in other programming languages or through user elements in commercial finite
element software. Currently, finite element (FE) users are limited to employing element formulation
available in the literature, commercial software, or existing element libraries. Thus, the developed
procedure implemented in ShapeGen3D offers FEM users the possibility to employ elements beyond
those readily available. The procedure was tested by generating the formulation for a brick element,
a brick transition element, and higher-order hexahedron and tetrahedron elements that can be used
in a spectral finite element analysis. The formulation obtained for the 20-node element was in perfect
agreement with the formulation available in the literature. In addition, the results showed that
the interpolation condition was met for all the generated elements, which provides confidence in
the implementation of the process. Researchers and educators can use this procedure to efficiently
develop and illustrate three-dimensional elements.

Keywords: higher-order elements; hexahedrons; tetrahedrons; integration quadrature; custom
elements; transition elements

1. Introduction

The finite element method (FEM) is a popular numerical technique for solving partial
differential equations (PDE) in engineering and mathematics. Traditional areas in which
this method has been applied include structural analysis, heat transfer, fluid flow, mass
transport, electromagnetic potential, and augmented reality [1–5]. Under this method, the
domain is subdivided into smaller parts, called elements, composed of multiple nodes.
The number of nodes within an element determines the order of the interpolation function
that represents the approximate solution of the PDE. The interpolation function is defined
in terms of nodal basis functions, also known as shape functions. The error associated
with the interpolation is minimized using the calculus of variation, resulting in a system
of algebraic equations. The variational formulation also requires the integration of finite
element variables that are a function of shape functions and other properties, such as shape
function derivatives, over the element’s domain. These integrals are approximated using a
quadrature rule, which requires selecting appropriate integration points and corresponding
weights to obtain an exact integration. Finally, each element’s equations are combined into
a larger system of equations that models the entire problem.
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The shape functions and integration quadrature are essential parts of the FEM formu-
lation of an element. Generally, the nodal shape functions are defined in a reference element
in local coordinates. If the same shape functions used to interpolate displacements in a
reference element are used to map local and global coordinates, they are termed isopara-
metric elements. The nodal functions and integration quadrature are available for several
three-dimensional elements in the literature and are incorporated into commercial FEM
software. These elements are generally lower order and limited to four specific elements:
hexahedrons from the Lagrangian and Serendipity families, tetrahedrons, prisms, and
pyramids [6]. For instance, ABAQUS [7] only offers elements of quadratic order to model
solids, including a hexahedron from the Serendipity family, also known as the 20-node
brick element, tetrahedrons, and prism elements.

Researchers generally use elements only up to the second order of the geometries
mentioned above when modeling three-dimensional solids. However, there is a need to
employ elements of higher order in many applications. For instance, transition elements are
extensively used for mesh refinement [8], where relying only on quadratic elements brings
up hanging node problems. Unconventional elements, such as the xNy-element concept [9],
are developed to tackle this issue. Transition elements are also employed in contact prob-
lems. Buczkowski [10] developed 22 and 21-node elements, and Smith et al. [11] developed
14-node hexahedral isoparametric elements to analyze contact problems by modifying the
8 and 20-node hexahedral elements. In addition to transition elements, there is also a need
for higher-order three-dimensional elements as they offer higher accuracy in calculating
Lagrangian solid dynamics. For instance, the spectral finite element method [12] uses
the interpolation function of high-order Lagrange polynomials to capture high-frequency
wave propagation that benefits fields such as structural health monitoring [13–16] and
seismology [17].

Formulating shape functions for elements with arbitrary numbers of nodes in 3D
requires defining the nodal distribution, interpolation functions, and integration quadrature.
The method for determining the shape functions [3] requires incorporating a polynomial
function as the interpolation function in each nodal point. These calculations can be
carried out by hand for one-dimensional and lower-order two-dimensional elements.
For three-dimensional cases, the procedure is extremely laborious. Another aspect in
generating the element formulation is verifying that the shape functions fulfill the following
conditions [3]: (a) Interpolation: take a unit value at node i and zero at all other nodes;
(b) Local support: vanish over any element boundary that does not include node i; and
(c) Interelement compatibility: No discontinuities at the element boundary, i.e., for solid
mechanics applications, the elements should deform along the common surface without
openings and overlaps. If two elements share a surface, the difference in the value of the
shape functions at common nodal points between the two elements should be zero. If the
element is a hexahedron or tetrahedron, the need to define the nodal distribution can be
avoided by following specific procedures available in the literature. For the hexahedron
element of the Lagrangian family, the procedure is explained in [3], whereas in the case
of the Serendipity family, Arnold and Arnold [18] provided the theory to obtain shape
functions for any given order. In the case of higher-order tetrahedrons, Silvester [19]
proposed a simple and elegant procedure based on four-digit node numbering to obtain
nodal coordinates that generate a uniform nodal distribution, which is observed to cause
Runge oscillations [20]. Some alternative nodal distributions to mitigate this effect are
Fekete points, Gauss–Legendre points, and Chebyshev points.

There are several methods to obtain the integration quadrature, such as the Gaussian
quadrature rule [21] and Legendre–Gauss–Lobatto nodes [22] for hexahedrons. In the
case of higher-order tetrahedrons, the standard collapsed coordinate system that maps
the quadrature to the tetrahedron from a reference hexahedron [23] is a popular choice.
Another approach is based on the integration scheme used for the finite cell method, where
a high-order tetrahedron is subdivided into multiple sub-tetrahedrons [20], and numerical
integration is carried out on each of them using Gaussian quadrature.
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Several existing libraries provide the nodal shapes for higher-order elements that
have been obtained a priori. For example, ELEMENTS [24] is a library written in c++ that
focuses on supporting novel element spaces, such as Serendipity element space and any
order spectral elements. Nekter++ [25] is a FEM solver that supports variable polynomial
order in space and heterogeneous polynomial order within two and three-dimensional
elements. Scilab [26] is another platform that offers spectral elements in 2D. Some other
libraries, such as deal.ii [27], Dune [28], and MFEM [29] are also available. These codes do
not generate shape functions nor determine the appropriate integration quadrature for a
custom element and do not provide a visual representation.

No methodology exists in the literature for formulating elements of arbitrary order in
an automated way. Moreover, if a new element is generated, checks must be performed to
guarantee that the interpolation and location support conditions are satisfied. Such a task is
difficult to perform for a 3D element as they contain more than three boundaries or surfaces
where the local support condition needs to be satisfied for each shape function. In addition,
an approach must be established to verify the interelement compatibility of elements in
a multielement mesh. Hence, a general procedure is developed in this paper to perform
these tasks programmatically. This procedure is capable of generating shape functions
and integration quadrature for: (1) arbitrary or custom elements with a given nodal
distribution and interpolation function; (2) hexahedrons of the Serendipity and Lagrange
families; and (3) tetrahedrons of any given element order. The integration quadrature
includes integration points and weights for: (1) volume; and (2) surface integration. The
normal vector and parametric coordinates for each element surface are also obtained to
enable users to implement the traction vector in FEM applications. The interpolation
and local support conditions are checked qualitatively through computer graphics, while
interelement compatibility is verified by establishing expressions that ensure nodal shape
agreement from adjacent elements at common nodes.

An attractive feature of the proposed procedure is that it can be automated using
symbolic and graphical tools, readily available in programming platforms such as Matlab,
Python, and Mathematica. In this paper, Matlab was used to implement the procedure,
but other users can program the procedure on the platform of their choice. In addition,
a Graphical User Interfaces (GUI), named ShapeGen3D (ShapeGen 3D installation file
link: https://github.com/sjdyke-reth-institute/ShapeGen3D/blob/main/ShapeGen3D.
mlappinstall, accessed on 19 September 2023), was developed to expedite the use of the
procedure. GUIs have facilitated the implementation of novel techniques developed by FE
code developers, such as in [30,31]. Hence, the development of ShapeGen3D can serve as
an interactive approach for developing 3D elements and providing finite element users the
flexibility to adopt elements of arbitrary order in their simulations.

The remainder of this paper is organized as follows. Section 2 presents the generalized
procedure for generating element properties and explains the implementation of the GUI
interface, ShapeGen3D. Section 3 obtains the formulation for several 3D elements through
the use of ShapeGen3D. The numerical examples are relevant to applications that can be
potentially impacted by this work, including the generation of tailored elements designed to
reduce the computational cost associated with the analysis (Section 3.3), transition elements
that connect fine to coarse mesh regions, such as in contact problems (Section 3.4), and
high-order spectral elements to simulate wave propagation behavior (Section 3.5). Section 4
discusses the potential impact of this development in the computational mechanics field.
Finally, Section 5 concludes with some final remarks.

2. Materials and Methods

This section illustrates the general procedure to formulate and implement an element
within a multielement FE mesh through computer implementation. The formulation of the
element includes three stages, which are (1) the generation of shape functions, (2) integra-
tion quadrature, and (3) verification by checking interpolation and local support conditions.
If stages 1 and 2 are completed, the element can be incorporated into a multielement mesh if

https://github.com/sjdyke-reth-institute/ShapeGen3D/blob/main/ShapeGen3D.mlappinstall
https://github.com/sjdyke-reth-institute/ShapeGen3D/blob/main/ShapeGen3D.mlappinstall
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the interelement compatibility is satisfied between the adjacent elements of different types.
Hence, stage 3 checks the elements’ compatibility. The procedure was outlined in such
a way as to make computer implementation possible. This procedure was implemented
using a Matlab app with a GUI interface.

Figure 1 breaks down the steps to formulate an element (stages 1 to 3). At the input step,
a distinction is made between hexahedron and tetrahedron elements and arbitrary elements.
Arbitrary elements, such as transition elements, do not have any specified nodal coordinates
and shape functions. Hence, an approach was developed that utilizes (1) nodal coordinates
and (2) the monomial basis of the interpolation function to calculate the shape functions, as
described in Section 2.1. The procedure for determining the shape functions of hexahedrons
and tetrahedrons of elements followed existing literature (see Sections 2.3 and 2.4).
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Next, in stage 2, the volume and surface integration quadrature are obtained. The
integration quadrature in volumetric space includes only integration points and weights,
whereas the surface integration quadrature includes integration points, weights, and para-
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metric coordinates for each element’s surface. As arbitrary elements do not have any
reference quadrature, a method similar to the finite cell method [32,33] was implemented,
as described in Section 2.2. Following this approach, the integration quadrature for any ele-
ment type can be determined for both volume and surface integrations in an automated way,
allowing computer implementation. Moreover, the formulation of standard quadratures
for hexahedrons and tetrahedrons was implemented as outlined in Sections 2.3 and 2.4,
respectively. Stage 3 is a verification step to check the interpolation and local support
conditions. This verification was conducted through a graphical representation of the shape
function in Matlab (see Section 2.6). The locations where the shape functions yield a 0 value
are presented as a void (blank space).

For the final implementation stage, if an element is to be incorporated into a multiele-
ment mesh, the interelement compatibility condition between two adjacent elements must
be checked. In this paper, a method was developed that can be used to check this condition
for each of the integration points of the adjacent surfaces numerically. Such a task is highly
labor-intensive to perform by hand for 3D elements, but it can be automized, as presented
in Section 2.5. Figure 2 shows the overview of this stage, which requires the input of the
surface pairs that will form the interelement boundary.
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The layout of this methodology was essential for developing GUI software that au-
tomizes the generation of arbitrary 3D element formulation. Finally, Section 2.7 shows
the implementation of the GUI interface, which facilitates the execution of the procedure
outlined in Figures 1 and 2.

2.1. Computation of Shape Functions for a Given Nodal Distribution and Interpolation Function

The generation of shape functions of the development stage is discussed here. As-
sume that an element defined by a node-set Pi =

[
xi yi zi

]
consists of n nodes and an

interpolation function fn(x, y, z). If fn(x, y, z) is a linear combination of arbitrary constants
ci and a function with a monomial basis, Fi(x, y, z), then the interpolation function can be
written as

fn(x, y, z) =
n

∑
i=1

ciFi(x, y, z) (1)

This function, fn, can also be expressed in terms of the shape function terms, Ni, as

fn(x, y, z) =
n

∑
i=1

Ni(x, y, z)ui (2)

where ui is a variable associated with node i. Plugging Equation (1) into Equation (2)

n

∑
i=1

ciFi(x, y, z) =
n

∑
i=1

Ni(x, y, z)ui (3)
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The shape functions can be obtained for a given set of known function Fi by manip-
ulating Equation (3) to solve for parameters ci. In matrix form, this operation becomes x

c1
c2
.
.

cn

 =


F1(P1) F2(P1) . . Fn(P1)
F1(P2) F2(P2) . . Fn(P2)

. . . . .

. . . . .
F1(Pn) F2(Pn) . . Fn(Pn)


−1

u1
u2
.
.

un

 (4)

C = F−1U (5)

Plugging ci in Equation (3) and isolating ui, yields the shape functions [4]. If the
interpolation function fn is unable to form a non-invertible matrix F with node set P, then
the node-set and interpolation function are not valid. If invertible, shape functions can be
formulated that automatically satisfy the interpolation and partition of unity condition.
This method cannot be used to generate shape functions for rational polynomials, such as
in the case of Wachspress basis functions [34] and Radial basis functions [35]. This approach
for determining shape functions was implemented using the symbolic toolbox in Matlab.
The steps implemented in the Matlab routines are summarized in Figure 3.
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2.2. Determination of Integration Quadrature for an Arbitrary Element

The integration quadrature for an arbitrary element is determined following an ap-
proach similar to the finite cell method [32,33], which involves dividing the element into
a finite number of tetrahedron cells and mapping the integration points from a reference
tetrahedron to each cell. First, the Delaunay triangulation [36] is carried out for the given
set of node P, which subdivides the arbitrary element into multiple tetrahedrons in the xyz
space. Each of the tetrahedrons is termed as Se, where the subscript e indicates the element
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number with nodal coordinates (xn, yn, zn), and n can take values from 1 to 4. Next, a
reference element, consisting of a standard orthogonal tetrahedron in ξηΓ space with ver-
tices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) is formulated. An integration quadrature,
i.e., integration points and weights, up to order 4 is used from [37] for such reference
tetrahedron element. The shape functions of the reference 4-noded tetrahedron element are

N1 = 1− ξ − η − Γ

N2 = ξ

N3 = η

N4 = Γ

(6)

Finally, the integration quadrature of the global cells or tetrahedrons is calculated.
Each integration point coordinate (ξi, ηi, Γi) from the reference tetrahedron in ξηΓ space is
mapped to each Se in the xyz space following Equation (7) [3]

 x
y
z

 =

 N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4


ξi ,ηi ,Γi



x1
y1
z1
·

x4
y4
z4


(7)

The weight of the integration points for the global element
(
wx

i
)
, where superscript

x indicates xyz space, is mapped by multiplying the weights of integration points of the
reference element

(
wξ

i

)
with the determinant of Jacobian, as wx

i = |J|wξ
i . Following the

isoparametric mapping, the Jacobian matrix can be determined as

J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂Γ

∂y
∂Γ

∂z
∂Γ

 =


∂N1
∂ξ

∂N2
∂ξ

∂N3
∂ξ

∂N4
∂ξ

∂N1
∂η

∂N2
∂η

∂N3
∂η

∂N4
∂η

∂N1
∂Γ

∂N2
∂Γ

∂N3
∂Γ

∂N4
∂Γ


ξi ,ηi ,Γi


x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4

 (8)

For linear tetrahedrons, i.e., the reference element,

J =

−1 1 0 0
−1 0 1 0
−1 0 0 1




x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4

 (9)

The integration quadrature on each surface is also determined to allow the compu-
tation of equivalent nodal flux. First, the surfaces of an element must be identified. This
step can be accomplished by determining the convex hull [36], which is the smallest con-
vex set that bounds all the nodes of an element. Hence, the convex hull of the Delaunay
triangulation is determined to obtain the integration points and weights at the surfaces.
Each surface s of the set is a triangle with three vertices (an, bn, cn), where n is from 1 to 3.
The integration point coordinates for a surface s are determined as,

xs =

x
y
z

 =
1
3

a1 + a2 + a3
b1 + b2 + b3
c1 + c2 + c3

 (10)
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The normal vector for the surface, pointing outside the element interior, can be deter-
mined by performing the following cross-product operation as,

snz =
((a2, b2, c2)− (a1, b1, c1))× ((a3, b3, c3)− (a1, b1, c1))

‖((a2, b2, c2)− (a1, b1, c1))× ((a3, b3, c3)− (a1, b1, c1))‖
(11)

where ‖v‖ indicates the second norm of vector v. The parametric coordinates of a surface s,
snx, sny can be determined as

sny =

([
b1 b2 b3

]
−
[
a1 a2 a3

])∥∥[b1 b2 b3
]
−
[
a1 a2 a3

]∥∥ (12)

snx = snz × sny (13)

The area of the surface is the weight of the integration, which can be determined as

ws =
1
2
|n| (14)

2.3. Formulation of Nodal Coordinates and Integration Quadrature for Hexahedron Elements

A standard orthogonal hexahedron in xyz space is considered to formulate hexa-
hedron elements with eight vertices as (1,−1,−1), (1, 1,−1), (−1, 1,−1), (−1,−1, 1),
(1,−1, 1), (1, 1, 1), (−1, 1, 1). If cn is an arbitrary constant, the interpolation function for
Lagrange family elements can be written as,

fn =
i=mx ,j=my ,k=mz

∑
i=0,j=0,k=0

cnxiyjzk (15)

where mx, my, and mz are the polynomial order along x, y, and z axis. For the Serendipity
family, the interpolation function for such element can be obtained as,

fn = 1 +
i=mx ,j=1,k=1

∑
i=1,j=0,k=0

cnxiyjzk +
i=1,j=my ,k=1

∑
i=0,j=1,k=0

cnxiyjzk +
i=1,j=1,k=mz

∑
i=0,j=0,k=1

cnxiyjzk (16)

Many studies and codes [37,38] follow a uniform nodal distribution that exhibits
Runge oscillations. To avoid this numerical artifact, this development follows Legendre–
Gauss–Lobatto nodes [22] where the node coordinates for each of the three axes, xP, yP, zP,
is the solution of Equations (17)–(19) between +1 and −1, respectively.

(1− x2 )
d

dx
Lmx (x) = 0 (17)

(1− y2 )
d

dy
Lmy(y) = 0 (18)

(1− z2 )
d
dz

Lmz(z) = 0 (19)

where, Lmx indicates the Legendre polynomial of the degree mx . Each of these vec-
tors of Equations (17)–(19) comprise a set of (mx + 1),

(
my + 1

)
, and (mz + 1), respec-

tively. To obtain the nodal coordinates in three dimensions, a mesh grid of size(
my + 1

)
× (mx + 1)× (mz + 1) is generated using the obtained one-dimensional grids.

For the Lagrange family, all the mesh grid points were considered, whereas only the
points on the element edges were considered for the Serendipity family elements.

For integration quadrature, Legendre–Gauss–Lobatto quadrature and Gauss–Legendre
quadrature were computed for a given element order along the x, y, and z-axis. Similar to
node generation, one-dimensional reference grids were generated at first. For the Legendre–
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Gauss–Lobatto quadrature [22], the weights xw, for each component of a one-dimensional
reference grid in the x axis can be determined as

wxi =
2

mx(mx + 1)(Lmx (x))2 (20)

For the Gauss–Legendre quadrature [21], the coordinate of integration points in one
dimension, IxP can be determined as the solutions of Equation (21) between +1 and −1 as

Lmx (x) = 0 (21)

The corresponding weight components of xw can be determined as

xwi =
2

(1− IxP2
i )

[(
d

dx Lmx (x)
)∣∣∣

IxP i

]2 (22)

Considering that yw and zw are reference grids for the weights along y and z axes, the
weights w for the integration points in 3D can be determined using the tensor product [39]
as presented in Equation (23). The components of the product w are then assigned to the
corresponding points.

w = zw ∗
(

xwywT
)

(23)

where “∗” indicates elementwise multiplication. For the surfaces, the interpolation order
for each surface is determined before computing the integration quadrature. If a surface s
contains node i, the number of differentiations along each axis of the shape function that
produces a constant can be set as the interpolation order. This operation can be performed
for all the nodes contained by s, where the maximum order is chosen for the surface. For
smx, this condition can be defined using a constant C as presented in Equation (24), which
is carried out using the symbolic toolbox of Matlab.

∂nNi
∂xn = C, smx = max (n f or all i ∈ s) (24)

The coordinates and weights of the integration points and parametric coordinates for each
of the six surfaces for hexahedron elements, x = 1, x = −1, y = 1, y = −1, z = 1, and z = −1
are defined according to Table 1.

Table 1. Integration points weights and parametric coordinates of the element’s surfaces.

Surface Integration
Point Weights snT

x snT
y snT

z

x = 1 ywzwT [0 1 0] [0 0 1] [1 0 0]
x = −1 ywzwT [0 0 1] [0 1 0] [−1 0 0]
y = 1 xwzwT [0 0 1] [1 0 0] [0 1 0]

y = −1 xwzwT [1 0 0] [1 0 0] [0 −1 0]
z = 1 xwywT [1 0 0] [0 1 0] [0 0 1]

z = −1 xwywT [0 1 0] [1 0 1] [0 0 −1]

2.4. Formulation of Nodal Coordinates and Integration Quadrature for Tetrahedron Elements

This section presents the methodology implemented in the general procedure to formu-
late tetrahedron elements. The Lobatto triangle grid for orthogonal polynomials proposed
by Luo et al. [40] is implemented to generate element properties for the standard orthogonal
tetrahedron in xyz space, which consists of four vertices as (0, 0, 0), (1, 0, 0), (0, 1, 0),
and (0, 0, 1). This nodal distribution does not exhibit Runge oscillations. According to this
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method, if an mth degree interpolating polynomial is used, the interpolation function can
be expressed as,

fn =
i=m,j=m,k=m

∑
i=0,j=0,k=0

cnxiyjzk where, (i + j + k) ≤ m (25)

where cn is an arbitrary constant. A one-dimensional reference grid comprising a set of
m− 1 degrees is generated as,

v =
1
2
(1 + xP) (26)

where xP is the solution of Equation (26) between the range +1 and −1 as,(
1− x2

) d
dx

Lm(x) = 0 (27)

The Lm is the Legendre polynomial, which can be written as,

Lm(x) =
1
2n

m

∑
k=0

(
m
k

)
(x− 1)m−k(x + 1)k (28)

Then, using the grid, the i node coordinate,
[
xi yi zi

]
can be determined as,

• On the z = −1 surface with i = 1,2,. . .,m + 1, j = 1,2,. . .,m + 2, and l = m + 3 − i − j,

PT
i =


1
3
(
1 + 2vi − vj − vl

)
1
3
(
1− vi + 2vj − vl

)
0

 (29)

• On the x = −1 surface with j = 1,2,. . .,m, k = 2,3,. . .,m + 2 − j, and l = m + 3 − i − k,

PT
i =


0

1
3
(
1 + 2vj − vk − vl

)
1
3
(
1− vj + 2vk − vl

)
 (30)

• On the y = −1 surface with i = 2,3,. . .,m, k = 2,3,. . .,m + 2 − i, and l = m + 3 − i − k,

PT
i =


1
3 (1 + 2vi − vk − vl)

0
1
3 (1− vi + 2vk − vl)

 (31)

• On the slanted surface, x + y + z = 1 with i = 2,3,. . .,m, j = 2,3,. . ..m + 1 − i, and
l = m + 3 − i − j,

PT
i =


1
3
(
1 + 2vi − vj − vl

)
1
3
(
1 + 2vi − vj − vl

)
1− x− y

 (32)

• Interior nodes with i = 2,3,. . .,m, j = 2,3,. . .,m + 1 − i, k = 2,3,. . .,m + 2 − i − j, and
l = m + 4 − i − j − k,

PT
i =


1
4
(
1 + 3vi − vj − vk − vl

)
1
4
(
1− vi + 3vj − vk − vl

)
1
4
(
1− vi − vj + 3vk − vl

)
 (33)
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For elements with order ≤ 4, the integration quadrature is used from [37], whereas
the integration quadrature for elements with order > 4 is determined using the finite
cell method. According to this method, the element is subdivided into multiple sub-
tetrahedrons, and the integration points and weights for each of these sub-tetrahedrons
are then determined based on the Gaussian quadrature. The decomposition of the tetra-
hedron into 8 and 64 sub-tetrahedrons is shown in Figure 4. The method adopted for the
arbitrary element is followed to determine the integration quadrature at the surface with
the parametric coordinates presented in Table 2.
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Figure 4. Decomposition of the reference tetrahedron, (a) 8, (b) 64.

Table 2. Parametric coordinates of element surface.

Surface snT
x snT

y snT
z

x = −1 [0 0 1] [0 1 0] [−1 0 0]
y = −1 [1 0 0] [1 0 0] [0 −1 0]
z = −1 [0 1 0] [1 0 1] [0 0 −1]

x + y + z = 1 [−0.8165 0.4082 0.4082] [ 0 − 1√
2

1√
2 ] [ 1√

3
1√
3

1√
3 ]

2.5. Interelement Compatibility Check between Two Elements for a Chosen Surface Pair

The nodal compatibility condition requires that the nodal values of a variable evaluated
at the common nodes of adjacent elements must be equal. This condition will be satisfied
if all the nodes of the interelement surface have the same coordinates and satisfy the
interpolation condition. The interelement compatibility condition will be satisfied if the
value of a variable is equal for all the points on the interelement surface. If the interelement
condition is satisfied, the nodal compatibility condition is satisfied by default. This paper
develops a new approach to check the interelement compatibility condition between two
elements for a given interelement surface using the symbolic toolbox of Matlab. The
approach consists of forming a two-element mesh and ensuring the nodal shapes match at
the integration points of the interelement surface.

Assume two elements, e1 and e2, are formulated in the coordinates x =
(

x y z
)
,

and that the compatibility condition needs to be checked between surface p for element 1
and surface q for element 2. To form an interelement surface Γ by p and q, element 2
must go through coordinate transformation (x→ X ) such that the normal surface vectors
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cancel each other, and the surface centroids have the same coordinates as presented in the
equations below

p∈1nz + q∈2nZ = 0 (34)

1xp = 2Xq (35)

A coordinate translation followed by a rotation of the element nodal coordinates is
performed to satisfy Equations (34) and (35). Figure 5 presents the elements in the local
coordinate x, and Figure 6 shows element 2 in the X coordinates after the transformation is
conducted. For this purpose, the parametric coordinates of the surfaces of both elements
are utilized. A coordinate system, 1e, with −pnz as its third component, indicates that this
normal vector points inward to the element as

1e =
[

pny pnx −pnz

]
(36)

Computation 2023, 11, x  13 of 38 
 

 

2.5. Interelement Compatibility Check between Two Elements for a Chosen Surface Pair 

The nodal compatibility condition requires that the nodal values of a variable evalu-

ated at the common nodes of adjacent elements must be equal. This condition will be sat-

isfied if all the nodes of the interelement surface have the same coordinates and satisfy the 

interpolation condition. The interelement compatibility condition will be satisfied if the 

value of a variable is equal for all the points on the interelement surface. If the interelement 

condition is satisfied, the nodal compatibility condition is satisfied by default. This paper 

develops a new approach to check the interelement compatibility condition between two 

elements for a given interelement surface using the symbolic toolbox of Matlab. The ap-

proach consists of forming a two-element mesh and ensuring the nodal shapes match at 

the integration points of the interelement surface. 

Assume two elements, 𝑒1 and 𝑒2, are formulated in the coordinates 𝒙 =  (𝑥 𝑦 𝑧), 

and that the compatibility condition needs to be checked between surface 𝑝 for element 

1 and surface 𝑞 for element 2. To form an interelement surface 𝛤 by 𝑝 and 𝑞, element 2 

must go through coordinate transformation (𝒙 → 𝑿) such that the normal surface vectors 

cancel each other, and the surface centroids have the same coordinates as presented in the 

equations below 

𝒏𝑧𝑝∈1  +  𝒏𝑍𝑞∈2  =  0 (34) 

𝒙𝑝1  =  𝑿𝑞2  (35) 

A coordinate translation followed by a rotation of the element nodal coordinates is 

performed to satisfy Equations (34) and (35). Figure 5 presents the elements in the local 

coordinate 𝒙, and Figure 6 shows element 2 in the 𝑿 coordinates after the transformation 

is conducted. For this purpose, the parametric coordinates of the surfaces of both elements 

are utilized. A coordinate system, 𝒆1 , with − 𝒏𝑧𝑝  as its third component, indicates that 

this normal vector points inward to the element as 

𝒆1  =  [ 𝒏𝑦𝑝 𝒏𝑥𝑝  − 𝒏𝑧𝑝 ] (36) 

 

  
(a) (b) 

Figure 5. Elements 1 (a) and 2 (b) in 𝒙 coordinate. Bold black rectangle indicates surface 𝑝 and 𝑞. 

For element 2, a coordinate system can be constructed as 
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For element 2, a coordinate system can be constructed as

2e =
[

qnx qny qnz

]
(37)

According to Equation (34), element 2 needs to be rotated such that the qnz aligns with
−pnz . The resulting transformation of the x coordinates is

X = 1e2eT x (38)

Equation (38) facilitates the formation of an interelement boundary between p and q.
The rotation matrix, Rθ , about the qnz axis, and the coordinate translation is performed to
satisfy Equation (35) as

X =
(

1e2RθeT
)

x +
(

1xp − 2XRq

)
(39)
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where 2XRq is the centroid of the surface q after coordinate rotation and Rθ

Rθ =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (40)

Next, the shape functions are expressed in terms of the global coordinate X following
a similar approach as

X =
(

1e2RθeT
)T

x−
(

1xp − 2XRq

)
(41)

The variable substitution from x to X is performed using the Symbolic toolbox in
Matlab. For an element to undergo such coordinate transformation, x can be mapped
(x→X) using isoparametric formulation as,

X = ∑ Ni(x→ X)xi (42)

After the coordinate transformation, the compatibility condition can be checked fol-
lowing the procedure presented below. A variable u at x of element 1 can be determined as

1u = ∑ 1N i(x)1ui = ∑
xj /∈p

1N j(x)1uj + ∑
xk∈p

1N k(x)1uk (43)

where 1N j is shape function j of element 1 and xj /∈ p indicates that node j does not fall in
the surface p. Similarly, a variable u at x of an element 2 can be determined as

2u = ∑ 2N i(x→ X)2ui = ∑
xj /∈p

2N j(X)2uj + ∑
xk∈p

2N k(X)2uk (44)

The interelement compatibility condition holds if the variable 1u(x) = 1u(X), on the
interelement surface Γ. Following Equations (42)–(44) can be written as

∑
xj /∈p

1N j(x)1uj + ∑
xk∈p 1N k(x)1uk − ∑

xl /∈q
2N l(X)2ul − ∑

xm∈q
2Nm(X)2um = 0

x ∈ Γ

(45)

If the local support condition is satisfied, the first and third components of Equation (45)
will be zero as

∑
xj /∈p

1N j(x)1uj = 0, x ∈ Γ (46)

∑
xl /∈q

2N l(X)2ul = 0, x ∈ Γ (47)

Using Equations (46) and (47) and performing the assembly by setting 2um = 1uk = Γuk,
the compatibility conditions hold if

∑
xk∈Γ

(1N k(x)− 2N k(X))Γuk = 0, x ∈ Γ (48)

For every x ∈ Γ, and Γuk Equation (46) will be satisfied if

{

Γ

∑
xk∈Γ

(1N k(x)− 2N k(X))2dΓ = 0 (49)
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Equation (49) can be integrated numerically for each integration point as

∑
xg∈Γ

∑
xk∈Γ

(1N k(x)− 2N k(X))2 = 0 (50)

Similarly, Equations (46) and (47) can be checked numerically as

∑
xg∈Γ

∑
xj /∈Γ

(
1N j(x)

)2
dΓ = 0 (51)

∑
xg∈Γ

∑
xj /∈Γ

(
2N j(X)

)2
dΓ = 0 (52)

Hence, the compatibility condition is satisfied if Equations (50)–(52) are satisfied for a
given element surface pair between two elements.
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2.6. Generation of Graphical Representation of Element Properties

Element properties, including (a) shape functions, Ni (b) differentiation of Ni along
the x, y, and z-axis, and (c) integration points and weights, are plotted using the Matlab
graphics toolbox. These plots facilitate the understanding of the element interpolation
function and help to check the interpolation and local support conditions.

The Matlab graphics toolbox is utilized to create a 3D graphical representation of
elements’ properties, such as shape function value. For the hexahedron element, the
element is subdivided into a 3D grid to perform plotting. For tetrahedrons and arbitrary
elements, each surface is plotted. The fidelity of the plot can be increased by discretizing
the reference element further by tetrahedron partitioning, and subsequently, each point’s
coordinates can be mapped to Se following Equation (7). Figure 7 presents an example to
illustrate the process with a pyramid element. In step 1, the element is subdivided into
two tetrahedrons, S1 and S2. In steps 2 and 3, a reference tetrahedron is generated and
subdivided into multiple grids to increase the graphics fidelity, and finally, in step 4, each
grid point is mapped to the global tetrahedron.
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2.7. Implementation of GUI Interface

The procedure is compiled as a GUI software: ShapeGen3D, and organized into four
segments, as presented in Figure 8, to enable users to navigate, formulate, and verify the
accuracy of the formulation. Segment 1 is the input for the software that lets users choose
the element family of interest and the desired interpolation order. Segment 2 includes the
execution command to run the software and obtain the element formulation. Segment 3
allows users to store the element properties. Segment 4 represents the results and post-
processing blocks that will enable users to observe and manipulate plots that can be used
to verify the accuracy of the generated formulation visually. Detailed descriptions for each
of these segments are provided below.

A short description and a screenshot of the sub-options in Segment 1 are presented in
Table 3 and Figure 9, respectively. The element order and integration quadrature type must
be defined for developing hexahedron and tetrahedron elements. On the other hand, in the
case of arbitrary or custom elements, the nodal distribution must be inputted by users, and
the software will determine the integration quadrature.

Table 3. Segment 1 sub-options and description.

Seg 1: Input Options Sub-Options Description

Hexahedron or Brick element Polynomial degree along x mx of Equation (17)

Polynomial degree along y my of Equation (18)

Polynomial degree along z mz of Equation (19)

Lagrangian Family Checking this option will formulate a Lagrangian element.
Otherwise, a Serendipity element will be formulated

Integration quadrature
This option offers two integration quadratures;
(1) Gauss–Legendre
(2) Gauss–Lobatto
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Table 3. Cont.

Seg 1: Input Options Sub-Options Description

Tetrahedron element Element order m in Equation (27)

Number of Sub-Tetrahedral
The number of sub-tetrahedrons used for integration
quadrature following the finite cell method. It is active
when an element order greater than 4 is used.

Integration order for
reference tetrahedron

The integration order for each sub-tetrahedron. It is active
when an element order greater than 4 is used.

Arbitrary or Custom element
Input node coordinates

A table where the user can input the nodal distribution of
the desired element and cartesian coordinates (x, y, z) for
each node.

Input interpolation function A table where the user can input Fi(x, y, z) from
Equation (3), where i = [1 d] and d is the number of nodes.

Integration quadrature

If the software detects an arbitrary element from the
isoparametric hexahedron family, it will determine the
selected integration quadrature from one of the selected
options: (1) Gauss–Legendre and (2) Gauss–Lobatto.

Integration order for
reference tetrahedron

If the element is not from an isoparametric hexahedron
family, the integration quadrature is determined following
the procedure presented in Section 2.2 with the integration
order selected in this option

Check interelement compatibility Used to illustrate two consecutively generated elements
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Segment 2 represents the “Execution” block. It includes the “Generate shape function”
button, which executes the code with the input given in Segment 1 and generates shape
functions, integration quadrature, and graphical representation of the element properties.
The code can automatically detect isoparametric hexahedrons and tetrahedron elements.
There are several checkboxes, such as the “Do not guess” command. If this box is checked,
the software avoids detecting the element type and assumes it is an arbitrary element.
This segment also includes a display window that shows messages and the progress of
the execution of the code. If the “Check interelement compatibility” box is selected in
Segment 1, this option will be activated in Segment 2. The software will compute the
nodes with the same coordinates between two consecutive elements and subtract the
corresponding shape functions. If the difference is 0 at an interelement boundary, that
boundary satisfies the compatibility condition between two elements, i.e., there are no
discontinuities at the boundary.

Segment 3 is a block that outputs results in the Matlab workspace to allow users to
implement the elements in other programming languages or through user elements in
commercial finite element software, such as ABAQUS and ANSYS. Users can also output
shape functions and derivatives of the shape functions evaluated at the integration points
by ticking the “Shape matrix” and “Derivatives of Shape matrix” options. A descrip-
tion of the workspace files is presented in Table 4. These files are readily available for
FEM calculations.
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Table 4. Output files to Matlab workspace.

Workspace Filename Description Data Structure

Interpolation_Functions Stores interpolation in symbolic format
[
F1 F2 . Fd

]
Fi : Function I of Equation 1 in symbolic format

Node_Coordinates

Stores node coordinates


nx1 ny1 nz1
nx2 ny2 nz2

. . .
nxd nyd nzd


nj (nxi , nyi , nzi ) where nxi : x coordinate of
node i .

Shape_Functions

Stores shape functions in symbolic format
for the corresponding nodes


N1
N2
.

Nd


Ni : Shape function i in symbolic format.

Surface_Nodes_and_vectors

Stores nodes on surface and surface
normal vector pointing outward of the
domain for all surfaces


a nxa nya nza
b nxb nyb nzb
. . . .
d nxd nyd nzd


a, b, d are node numbers and integers.
nj (nxj , nyj , nzj ) is the normal vector pointing
outward of the domain on the surface
containing node j.

Integration_Points_Coordinates_Weights

Stores integration points and weights
inside the element


gx1 gy1 gz1 w1
gx2 gy2 gz2 w2

. . . .
gxd gyd gzd wd


gj (gxj , gyj , gzj ) where gxj : x coordinate of
integration point j. wj: weight of integration
point j.

Integration_Points_Coordinates_Weights_Vectors
on_Surface

Stores integration points and weights on
surfaces and surface normal vector
pointing outward of the domain for
all surfaces


gx1 gy1 gz1 w1
gx2 gy2 gz2 w2

. . . .
gxd gyd gzd wd




nx1 ny1 nz1
nx2 ny2 nz2

. . .
nxd nyd nzd


gj (gxj , gyj , gzj ) where gxj : x coordinate of
integration point j. wj: weight of integration
point. j. nj (nxj , nyj , nzj ) is the normal unit
vector pointing outward of the domain on the
surface at integration point j.

Parametric_Coordinates

Stores parametric coordinates for each
surface of the element

nx1 ny1
nx2 ny2
nx3 ny3


S

nxj and nyj are the parametric x and y
coordinates, respectively. S represents the
surface number.

Shape_Matrix

Stores the value of each shape function
evaluated at each integration point


N1|g1

N2|g1
. Nn|gd

N1|g2
N2|g2

. Nn|gd
. . . .

N1|gn
N2|gd

. Nn|gd


Ni |gj

: shape function i evaluated at integration
point j.

dx_Shape_Matrix

Stores the value of the first derivative of
each shape function evaluated at each
integration point



∂N1
∂x

∣∣∣
g1

∂N2
∂x

∣∣∣
g1

. ∂Nn
∂x

∣∣∣
g1

∂N1
∂x

∣∣∣
g2

∂N2
∂x

∣∣∣
g2

. ∂Nn
∂x

∣∣∣
g2

. . . .
∂N1
∂x

∣∣∣
gn

∂N2
∂x

∣∣∣
gn

. ∂Nn
∂x

∣∣∣
gn


∂Ni
∂x

∣∣∣
gj

: shape function derivative i evaluated

at integration point j.

Finally, segment 4 represents a results and post-processing block that shows the
results obtained by the software and allows users to manipulate graphics. There are many
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components, such as the “Shape function, N” spinner block, which is a control block where
the user can select to plot the number of shape function properties, such as their value and
derivatives. This segment also allows users to plot other element properties, such as node
number, integration points, and weights, as shown in the bottom left part of the software. It
also includes a display window that shows the shape function property in equation format
and other user-controlled options to manipulate the graphics options, such as the view
angle, axis, image resolution (Peels), and transparency (Fill). Increasing the “Peels” will
increase the overall image resolution. If “Fill” is chosen as 0, the software will not show
any 0 value and will represent it as a blank space.

3. Numerical Examples

This section shows the properties of three different 3D elements that were obtained
following the procedure developed in this paper. The results were generated through the
GUI software: ShapeGen3D. First, the element properties, i.e., nodal coordinates, shape
functions, and integration quadrature, of the popular 20-node brick element were obtained
and compared against the literature to verify the accuracy of the formulation. Second, a
21-node hexahedron transition element similar to a 20-node quadratic hexahedron element
but with one node on the xy face at z = 1 was formulated. The interpolation, local support
condition, and compatibility with the 20-node brick element were checked. Third, a custom
element was formulated to replicate the Germain–Lagrange plate [41] bending, showing
how the methodology implemented in the software can help solve challenging problems
efficiently. The fourth example shows the development of a 43-node transition element from
a fourth to second-order Lagrangian element. Finally, two high-order spectral elements
were formulated to provide a complete overview. The steps followed in ShapeGen3D to
generate the elements’ shape functions and other finite element properties for each of the
examples are presented in Table A9.

3.1. 20-Node Brick Element

A 20-node brick element follows serendipity element formulation with mx = 2, my = 2,
and mz = 2. The software determines the nodal coordinates, shape functions (Stage 1), and inte-
gration quadrature (Stage 2). The obtained results were saved as the files explained in Table 4
and are shown in the Appendix A, see Tables A1–A5, which includes: (1) nodal coordi-
nates; (2) corresponding shape functions; (3) integration points and weights; (4) integration
points on the surface and weights; and (5) nodes on the surface and surface normal vector
pointing outward of the domain for all surfaces, respectively. The nodal coordinates, shape
functions, and integration quadrature match the formulation found in the literature [37],
thus verifying the accuracy of the software results. Figure 10 represents the input to the
ShapeGen3D and the obtained results with nodes as black dots and integration points for
volume integration as red dots.

3.2. 21-Node Brick Element

Next, the 21-node brick element was formulated to illustrate the development of a
custom element. For this example, the node coordinates and the interpolation function
generated for the 20-node element were imported to “Arbitrary or Custom element” by
pressing the “Import previous element” button. Then, one node was added manually
with coordinate (0,0,−1), and several trials for adding a polynomial term associated with
coefficient c21 were made until an invertible F matrix (Equation (5)) was obtained by the
software. The additional polynomial basis that was added to the interpolation function
was x2y2(z + 1), which yields 2x2y2 at the z = 1 surface that contains the 21st mid-surface
node and vanishes at the z = −1 surface without a mid-surface node. The interpolation
function is presented in Equation (53) as,
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fn = c1 + c2x +c3y + c4z + c5xy + c6yz + c7xz + c8x2 + c9y2 + c10z2 + c11xyz + c12x2y

+c13x2z + c14y2x + c15y2z + c16z2x + c17z2y + c18x2yz + c19xy2z + c20xyz2

+c21x2y2(z + 1)

(53)

The input to ShapeGen3D is presented in Figure 11, which shows the input coordinate
of the 21st node and the polynomial term with coefficient c21. The obtained nodal coordi-
nates, corresponding shape functions, and nodes on the surface and surface normal vector
pointing outward of the domain for all surfaces are presented in Tables A6–A8, respectively.
Other element variables, such as integration points and weights, match those of the 20-node
brick element shown in Table A8.
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For stage 3, each shape function can be analyzed to check the accuracy of the cal-
culations performed by the software. The element must satisfy two conditions: (1) the
interpolation condition; and (2) local support. As stated in Section 2, the interpolation
condition was satisfied when an invertible matrix F of Equation (5) was obtained. The
graphical illustrations of each shape function can be used to check if the local support
condition is satisfied. For example, Figure 12 plots shape functions at nodes 5 and 21, N5
and N21, where the shape functions are shown to vanish at the face that does not contain
the nodes, and thus, satisfying the local support condition.
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3.3. 43-Node Hexahedron Element 

Figure 12. Nodal shape function for (a) Node 5 and (b) Node 21 evaluated in the space of the 21-node
hexahedron element.

Next, on stage 4, the compatibility with the 20-node brick element was checked. For
this purpose, the “Check compatibility” button was selected. Figure 13 shows the results
of the intercompatibility check of the first surface pair between the two elements, which
was performed according to the procedure described in Section 2.5. The green lamp next to
the compatibility text in Figure 10 indicates that the interelement compatibility condition
was satisfied. A red lamp would indicate that the intercompatibility condition was not
met. This condition can also be verified qualitatively using the plots of shape functions
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corresponding to the connecting nodes, which show the same shape function profile at the
element boundary. By checking all of the surface pairs, it is concluded that any surface
can be the interelement surface between the 20 and 21-node elements, except the xy face at
z = 1.
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3.3. 43-Node Hexahedron Element

A 43-node hexahedron element was formulated following a similar procedure as the
21-node, such that the interpolation function provided a solution to the plate bending
equation. According to the Kirchhoff–Love plate theory [41] for isotropic plates, the
displacement along the z-axis, w, follows the differential equation as,

2ρh
D

∂2w
∂t2 +

(
∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
=

q
D

(54)

where q is the constant distributed load, and D is the flexure rigidity. If the time derivative
is canceled, it forms the Germain–Lagrange plate equation. A polynomial solution of this
differential equation can be written as,

wn = c1 + c2x +c3y + c4x2 + c5xy + c6y2 + c7x3 + c8x2 + c9yx2 + c10xy2 + c11y3 + c12x4

+c13x3y + c14xy3 + c15y4 + c16x2y2
(55)

A 3D element was formulated keeping the lowest order as quadratic along the z-
axis such that the interpolation function contained the polynomial basis presented in
Equation (55). First, a 36-node hexahedron element of the Serendipity family was formu-
lated with the options mx = 4, my = 4 and mz = 2. This interpolation function of this
Serendipity element does not contain the x2y2 term, hence, it cannot replicate the solution
of Equation (54) exactly. Thus, the element was imported as an arbitrary element, and
seven additional nodes with coordinates (±1, 0, 0), (0, ±1, 0), (0, 0, ±1), and (0, 0, 0)
were added. Finally, seven polynomial basis as x2y2z2, x2y2z, x2yz2, xy2z2, x2y2, z2y2 and
x2z2 were added to formulate the 43-node element that has the polynomial interpolation
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function as presented in Equation (56). The screenshot of this element formulation is
presented in Figure 14.

fn = c1 + c2x +c3y + c4z + c5x2 + c6xy + c7xz + c8y2 + c9yz + c10z2

+c11x3 + c12x2y + c13x2z + c15xy2 + c16xyz + c17xz2 + c18y3

+c19y2z + c20yz2 + c21x4 + c22x3y + c23x3z + c24x2yz + c25xy3

+c26xy2z + c27xyz2 + c28y4 + c29y3z + c30x4y + c31x4z

+c32x3yz + c33xy4 + c34xy3z + c35y4z + c36x4yz + c37xy4z

+c38x2y2z2 + c39x2y2z + c40x2yz2 + c41xy2z2 + c42x2y2

+c43y2z2, x2z2

(56)
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3.4. 43-Node Transition Element from Fourth to Second-Order Lagrangian Element

The fourth-order Lagrangian element is a 125-node element
(
mx = my = mz = 4

)
with five nodes along each axis. Such high-order elements can replicate wave propagation
and are widely used in the structural health monitoring field [13–16]. The second-order
Lagrangian element is a 27-node element ( mx = my = mz = 2

)
with three nodes along each

axis. In this example, a transition element was developed to bridge these two elements.
The transition element is considered to be of second order along the z-axis.

The z = 1 surface of the transition element should match the z = ∓1 surface of the
125-node element, and z = −1 surface should match the 27-node element’s surface. Hence,
there will be 25 nodes on the z = 1 surface and nine nodes on the z = −1 surface. As the
order of the transition element is two, instead of a 125-node element, a 75-node element
with mx = my = 4 and mz = 2 was considered as the reference element. Upon formulation
of the 75-node element, the nodes at the z = −1 surface are removed to replicate the surface
of a 27-node element.

The minimum order of the element is 2. Hence, all the monomial basis functions of
order 2 are kept. As the element needs to transition from order 4 to 2 along the z-axis, the
monomial basis that has order mz = 1 was kept and manipulated as (z + 1), such that those
terms vanish at the z = −1 surface, as presented in Table 5. The remaining 43 terms form
the interpolation function of the 43-node transition element.
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Table 5. Factors of interpolation function of 75 and 43 node elements.

Coefficient No. 75 Node Element Factors 43 Node Element Factors

Factors with,
mx < 3my < 3mz < 3

Factors of fn20 Factors of fn20

x2y2 x2y2

x2y2z x2y2z

x2yz2 x2yz2

xy2z2 xy2z2

x2y2z2 x2y2z2

x2z2 x2z2

y2z2 y2z2

Factors with mz = 1

x3z x3(z + 1)

y3z y3(z + 1)

x4z x4(z + 1)

x3yz x3y(z + 1)

y3z y3(z + 1)

y4z y4(z + 1)

x4yz x4y(z + 1)

x3y2z x3y2(z + 1)

x2y3z x2y3(z + 1)

xy4z xy4(z + 1)

x4y2z x4y2(z + 1)

x2y4z x2y4(z + 1)

x4y3z x4y3(z + 1)

x3y4z x3y4(z + 1)

x3y3z x3y3(z + 1)

x4y4z x4y4(z + 1)

The generated element satisfies the local support conditions presented in Figure 15
for two shape functions, nodes 6 and 35. The inter-element compatibility conditions were
also checked, and compatibility was observed between the z = 1 surface of the transition
element and the fourth-order element and between the z = −1 surface of the transition
and the second-order element. Figure 16 presents a graphical overview of the compatibility
check. The red hollow diamond represents the nodes of the second-order (Figure 16a)
and fourth-order (Figure 16b) elements, whereas the black dots represent the transition
element. It is evident that the node coordinates match, and the shape functions agree at the
common nodes.

3.5. Spectral Elements

Finally, the shape functions were generated for a hexahedron element of the La-
grangian family with 108 nodes to provide a complete overview of the methodology. In
ShapeGen3D, mx = 5, my = 5, and mz = 2 were provided as input parameters. The shape
function for node 70 of the element is presented in Figure 17a. The red spot of the plot
indicates the location of this node. It can be observed that the shape function satisfies the
interpolation and local support conditions as it vanishes to 0 over surfaces that do not
contain the node. The same behavior is observed for other nodes. This spectral element
was used for simulating guided waves by Soman et al. [15].
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Additionally, a 5th-order tetrahedron element (56 nodes) with input m = 5
(Equation (13)) was formulated. The shape function for the 50th node of the element
is presented in Figure 17b. All shape functions for this element were also observed to
satisfy the interpolation and local support conditions. Thus, analysts using the spectral
finite element method can use ShapeGen3D to determine the formulation for arbitrary
noded elements.
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4. Discussion

This development reduces implementation effort in formulating and verifying arbi-
trary 3D elements for FEM applications. It provides FEM users the possibility to employ
elements beyond those available in commercial FEM software, FEM libraries, and open-
access codes. The proposed procedure facilitates the formulation of higher-order elements,
which can be shown to solve challenging problems with fewer degrees of freedom in some
applications. The software was developed as part of a NASA-sponsored space technol-
ogy research institute, Resilient Extra-Terrestrial Habitat Institute (RETHi), which aims
to propel space exploration forward by developing new knowledge, technologies, and
techniques. ShapeGen3D was used to develop the 21-node brick elements presented in
this paper to capture meteoroid impact loading on a space habitat model. The model was
embedded within a Modular coupled virtual testbed (MCVT) [42,43] that integrates several
sub-systems of a space habitat to evaluate their interdependence and the effectiveness of
safety controls when a habitat is exposed to external disturbances. ShapeGen3D allowed
developers to easily adjust the elements of the structural model until the functional require-
ments were met. A 43-node brick element was also developed with ShapeGen3D to mimic
wave propagation due to meteoroid impact and assist with generating a structural health
monitoring algorithm for detecting damage.

Upon publication, this development is expected to benefit the computational me-
chanics community beyond the RETHi group. The higher-order and transition element
formulation that the software can generate will allow researchers to employ elements
that can increase the accuracy and reduce the computational time when dealing with
simulations that involve contact, mesh transition regions, and Lagrangian solid dynamics.
Furthermore, ShapeGen3D can become an educational tool to illustrate three-dimensional
FEM concepts.

5. Conclusions

This work presents the development of a generalized procedure for formulating nodal
coordinates, shape functions, and integration quadrature of higher-order hexahedrons,
tetrahedrons, and arbitrary or custom elements in 3D. This procedure also derived ex-
pressions for checking the interelement compatibility of adjacent elements, which enables
incorporating newly formulated elements within multielement meshes. The procedure
was incorporated into GUI software, ShapeGen3D, to facilitate its implementation. In this
paper, several elements were formulated to verify the accuracy of the implementation.
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ShapeGen3D allows users to verify that the nodal shape conditions are met and checks the
element’s compatibility with other elements through a graphical interface. This advanced
feature was illustrated through the 21-hexahedron element, where compatibility with a
20-node brick element was checked. Additionally, 43-node elements were formulated
to capture the behavior of a Germain–Lagrange plate and establish a transition between
Lagrangian elements of different order. Finally, a fifth-order tetrahedron element was
generated to simulate guided waves. Thus, this work can have potential impacts on the
accuracy and efficiency of FEM runs, as it can be used to generate elements that minimize
the number of elements and degrees of freedoms used in traditional analyses, develop
transition elements that connect fine to coarse mesh regions, and generate high-order
spectral elements that accurately capture waves propagating through solid bodies. The
numerical results illustrate that the generalized procedure captured in ShapeGen3D can
significantly benefit research and development in FEM and numerical methods.
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Appendix A

Table A1. Node_Coordinates for 20 node brick element.

Node Number X y Z

1 −1 −1 −1
2 1 −1 −1
3 1 1 −1
4 −1 1 −1
5 −1 −1 1
6 1 −1 1
7 1 1 1
8 −1 1 1
9 0 −1 −1
10 1 0 −1
11 0 1 −1
12 −1 0 −1
13 0 −1 1
14 1 0 1
15 0 1 1
16 −1 0 1
17 −1 −1 0
18 1 −1 0
19 1 1 0
20 −1 1 0
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Table A2. Shape_Functions for 20-node brick element.

Node Ni(x,y,z)

1 x2yz
8 −

x2y
8 −

x2z
8 + x2

8 +
xy2z

8 −
xy2

8 +
xyz2

8 −
xyz
8 −

xz2

8 + x
8 −

y2z
8 +

y2

8 −
yz2

8 +
y
8 + z2

8 + z
8 −

1
4

2 x2yz
8 −

x2y
8 −

x2z
8 + x2

8 −
xy2z

8 +
xy2

8 −
xyz2

8 +
xyz
8 + xz2

8 −
x
8 −

y2z
8 +

y2

8 −
yz2

8 +
y
8 + z2

8 + z
8 −

1
4

3 − x2yz
8 +

x2y
8 −

x2z
8 + x2

8 −
xy2z

8 +
xy2

8 +
xyz2

8 −
xyz
8 + xz2

8 −
x
8 −

y2z
8 +

y2

8 +
yz2

8 −
y
8 + z2

8 + z
8 −

1
4

4 − x2yz
8 +

x2y
8 −

x2z
8 + x2

8 +
xy2z

8 −
xy2

8 −
xyz2

8 +
xyz
8 −

xz2

8 + x
8 −

y2z
8 +

y2

8 +
yz2

8 −
y
8 + z2

8 + z
8 −

1
4

5 − x2yz
8 +

x2y
8 −

x2z
8 + x2

8 −
xy2z

8 +
xy2

8 +
xyz2

8 −
xyz
8 + xz2

8 −
x
8 −

y2z
8 +

y2

8 +
yz2

8 −
y
8 + z2

8 + z
8 −

1
4

6 − x2yz
8 +

x2y
8 −

x2z
8 + x2

8 +
xy2z

8 −
xy2

8 −
xyz2

8 +
xyz
8 −

xz2

8 + x
8 −

y2z
8 +

y2

8 +
yz2

8 −
y
8 + z2

8 + z
8 −

1
4

7 − x2yz
8 −

x2y
8 + x2z

8 + x2

8 −
xy2z

8 −
xy2

8 +
xyz2

8 +
xyz
8 −

xz2

8 + x
8 +

y2z
8 +

y2

8 −
yz2

8 +
y
8 + z2

8 −
z
8 −

1
4

8 − x2yz
8 −

x2y
8 + x2z

8 + x2

8 +
xy2z

8 +
xy2

8 −
xyz2

8 −
xyz
8 + xz2

8 −
x
8 +

y2z
8 +

y2

8 −
yz2

8 +
y
8 + z2

8 −
z
8 −

1
4

9 yz
4 −

z
4 −

y
4 +

x2y
4 + x2z

4 −
x2

4 −
x2yz

4 + 1
4

10 x
4 −

z
4 −

xz
4 −

xy2

4 +
y2z
4 −

y2

4 +
xy2z

4 + 1
4

11 y
4 −

z
4 −

yz
4 −

x2y
4 + x2z

4 −
x2

4 +
x2yz

4 + 1
4

12 xz
4 −

z
4 −

x
4 +

xy2

4 +
y2z
4 −

y2

4 −
xy2z

4 + 1
4

13 z
4 −

y
4 −

y∗z
4 +

x2y
4 −

x2z
4 −

x2

4 +
x2yz

4 + 1
4

14 x
4 + z

4 + xz
4 −

xy2

4 −
y2z
4 −

y2

4 −
xy2z

4 + 1
4

15 y
4 + z

4 +
yz
4 −

x2y
4 −

x2z
4 −

x2

4 −
x2yz

4 + 1
4

16 z
4 −

x
4 −

xz
4 +

xy2

4 −
y2z
4 −

y2

4 +
xy2z

4 + 1
4

17 xy
4 −

y
4 −

x
4 + xz2

4 +
yz2

4 −
z2

4 −
xyz2

4 + 1
4

18 x
4 −

y
4 −

xy
4 −

xz2

4 +
yz2

4 −
z2

4 +
xyz2

4 + 1
4

19 x
4 +

y
4 +

xy
4 −

xz2

4 −
yz2

4 −
z2

4 −
xyz2

4 + 1
4

20 y
4 −

x
4 −

xy
4 + xz2

4 −
yz2

4 −
z2

4 +
xyz2

4 + 1
4

Table A3. Integration_Points_Coordinates and Integration_Points_Weights for 20 node brick element.

Integration Point No x y z Weight

1 −0.7746 −0.7746 −0.7746 0.171468
2 −0.7746 −0.7746 0 0.274348
3 −0.7746 −0.7746 0.774597 0.171468
4 −0.7746 0 −0.7746 0.274348
5 −0.7746 0 0 0.438957
6 −0.7746 0 0.774597 0.274348
7 −0.7746 0.774597 −0.7746 0.171468
8 −0.7746 0.774597 0 0.274348
9 −0.7746 0.774597 0.774597 0.171468
10 0 −0.7746 −0.7746 0.274348
11 0 −0.7746 0 0.438957
12 0 −0.7746 0.774597 0.274348
13 0 0 −0.7746 0.438957
14 0 0 0 0.702332
15 0 0 0.774597 0.438957
16 0 0.774597 −0.7746 0.274348
17 0 0.774597 0 0.438957
18 0 0.774597 0.774597 0.274348
19 0.774597 −0.7746 −0.7746 0.171468
20 0.774597 −0.7746 0 0.274348
21 0.774597 −0.7746 0.774597 0.171468
22 0.774597 0 −0.7746 0.274348
23 0.774597 0 0 0.438957
24 0.774597 0 0.774597 0.274348
25 0.774597 0.774597 −0.7746 0.171468
26 0.774597 0.774597 0 0.274348
27 0.774597 0.774597 0.774597 0.171468
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Table A4. Integration_Points_Coordinates_Weights_Vectors_on_Surface for 20 node brick element.

Integration Point No x y z Weight nx ny nz

1 1 −0.7746 −0.7746 0.30864 1 0 0
2 1 −0.7746 0 0.49382 1 0 0
3 1 −0.7746 0.77459 0.30864 1 0 0
4 1 0 −0.7746 0.49382 1 0 0
5 1 0 0 0.79012 1 0 0
6 1 0 0.77459 0.49382 1 0 0
7 1 0.77459 −0.7746 0.30864 1 0 0
8 1 0.77459 0 0.49382 1 0 0
9 1 0.77459 0.77459 0.30864 1 0 0
10 −1 −0.7746 −0.7746 0.30864 −1 0 0
11 −1 −0.7746 0 0.49382 −1 0 0
12 −1 −0.7746 0.77459 0.30864 −1 0 0
13 −1 0 −0.7746 0.49382 −1 0 0
14 −1 0 0 0.79012 −1 0 0
15 −1 0 0.77459 0.49382 −1 0 0
16 −1 0.77459 −0.7746 0.30864 −1 0 0
17 −1 0.77459 0 0.49382 −1 0 0
18 −1 0.77459 0.77459 0.30864 −1 0 0
19 −0.7746 1 −0.7746 0.30864 0 1 0
20 −0.7746 1 0 0.49382 0 1 0
21 −0.7746 1 0.77459 0.30864 0 1 0
22 0 1 −0.7746 0.49382 0 1 0
23 0 1 0 0.79012 0 1 0
24 0 1 0.77459 0.49382 0 1 0
25 0.77459 1 −0.7746 0.30864 0 1 0
26 0.77459 1 0 0.49382 0 1 0
27 0.77459 1 0.77459 0.30864 0 1 0
28 −0.7746 −1 −0.7746 0.30864 0 −1 0
29 −0.7746 −1 0 0.49382 0 −1 0
30 −0.7746 −1 0.77459 0.30864 0 −1 0
31 0 −1 −0.7746 0.49382 0 −1 0
32 0 −1 0 0.79012 0 −1 0
33 0 −1 0.77459 0.49382 0 −1 0
34 0.77459 −1 −0.7746 0.30864 0 −1 0
35 0.77459 −1 0 0.49382 0 −1 0
36 0.77459 −1 0.77459 0.30864 0 −1 0
37 −0.7746 −0.7746 1 0.30864 0 0 1
38 −0.7746 0 1 0.49382 0 0 1
39 −0.7746 0.77459 1 0.30864 0 0 1
40 0 −0.7746 1 0.49382 0 0 1
41 0 0 1 0.79012 0 0 1
42 0 0.77459 1 0.49382 0 0 1
43 0.77459 −0.7746 1 0.30864 0 0 1
44 0.77459 0 1 0.49382 0 0 1
45 0.77459 0.77459 1 0.30864 0 0 1
46 −0.7746 −0.7746 −1 0.30864 0 0 −1
47 −0.7746 0 −1 0.49382 0 0 −1
48 −0.7746 0.77459 −1 0.30864 0 0 −1
49 0 −0.7746 −1 0.49382 0 0 −1
50 0 0 −1 0.79012 0 0 −1
51 0 0.77459 −1 0.49382 0 0 −1
52 0.77459 −0.7746 −1 0.30864 0 0 −1
53 0.77459 0 −1 0.49382 0 0 −1
54 0.77459 0.77459 −1 0.30864 0 0 −1
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Table A5. Surface_Nodes_and_vectors for 20-node brick element.

Node Number nx ny nz

2 1 0 0
3 1 0 0
6 1 0 0
7 1 0 0
10 1 0 0
14 1 0 0
18 1 0 0
19 1 0 0
1 −1 0 0
4 −1 0 0
5 −1 0 0
8 −1 0 0
12 −1 0 0
16 −1 0 0
17 −1 0 0
20 −1 0 0
3 0 1 0
4 0 1 0
7 0 1 0
8 0 1 0
11 0 1 0
15 0 1 0
19 0 1 0
20 0 1 0
1 0 −1 0
2 0 −1 0
5 0 −1 0
6 0 −1 0
9 0 −1 0
13 0 −1 0
17 0 −1 0
18 0 −1 0
5 0 0 1
6 0 0 1
7 0 0 1
8 0 0 1
13 0 0 1
14 0 0 1
15 0 0 1
16 0 0 1
1 0 0 −1
2 0 0 −1
3 0 0 −1
4 0 0 −1
9 0 0 −1
10 0 0 −1
11 0 0 −1
12 0 0 −1

Table A6. Node_Coordinates for 21 node brick element.

Node Number x y z

1 −1 −1 −1
2 1 −1 −1
3 1 1 −1
4 −1 1 −1
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Table A6. Cont.

Node Number x y z

5 −1 −1 1
6 1 −1 1
7 1 1 1
8 −1 1 1
9 0 −1 −1
10 1 0 −1
11 0 1 −1
12 −1 0 −1
13 0 −1 1
14 1 0 1
15 0 1 1
16 −1 0 1
17 −1 −1 0
18 1 −1 0
19 1 1 0
20 −1 1 0
21 0 0 1

Table A7. Shape_Functions for 21-node brick element.

Node Ni(x,y,z)

1 x2yz
8 −

x2y
8 −

x2z
8 + x2

8 +
xy2z

8 −
xy2

8 +
xyz2

8 −
xyz
8 −

xz2

8 + x
8 −

y2z
8 +

y2

8 −
yz2

8 +
y
8 + z2

8 + z
8 −

1
4

2 x2yz
8 −

x2y
8 −

x2z
8 + x2

8 −
xy2z

8 +
xy2

8 −
xyz2

8 +
xyz
8 + xz2

8 −
x
8 −

y2z
8 +

y2

8 −
yz2

8 +
y
8 + z2

8 + z
8 −

1
4

3 − x2yz
8 +

x2y
8 −

x2z
8 + x2

8 −
xy2z

8 +
xy2

8 +
xyz2

8 −
xyz
8 + xz2

8 −
x
8 −

y2z
8 +

y2

8 +
yz2

8 −
y
8 + z2

8 + z
8 −

1
4

4 − x2yz
8 +

x2y
8 −

x2z
8 + x2

8 +
xy2z

8 −
xy2

8 −
xyz2

8 +
xyz
8 −

xz2

8 + x
8 −

y2z
8 +

y2

8 +
yz2

8 −
y
8 + z2

8 + z
8 −

1
4

5 x
8 +

y
8 −

xy2

8 −
x2y
8 −

xz2

8 −
yz2

8 + z2

8 +
xyz2

8 −
xy2z

8 −
x2yz

8 +
xyz
8 +

x2y2(z + 1)
8 − 1

8

6 y
8 −

x
8 +

xy2

8 −
x2y
8 + xz2

8 −
yz2

8 + z2

8 −
xyz2

8 +
xy2z

8 −
x2yz

8 −
xyz
8 +

x2y2(z + 1)
8 − 1

8

7 xy2

8 −
y
8 −

x
8 +

x2y
8 + xz2

8 +
yz2

8 + z2

8 +
xyz2

8 +
xy2z

8 +
x2yz

8 +
xyz
8 +

x2y2(z + 1)
8 − 1

8

8 x
8 −

y
8 −

xy2

8 +
x2y
8 −

xz2

8 +
yz2

8 + z2

8 −
xyz2

8 −
xy2z

8 +
x2yz

8 −
xyz
8 +

x2y2(z + 1)
8 − 1

8

9 yz
4 −

z
4 −

y
4 +

x2y
4 + x2z

4 −
x2

4 −
x2yz

4 + 1
4

10 x
4 −

z
4 −

xz
4 −

xy2

4 +
y2z
4 −

y2

4 +
xy2z

4 + 1
4

11 y
4 −

z
4 −

yz
4 −

x2y
4 + x2z

4 −
x2

4 +
x2yz

4 + 1
4

12 xz
4 −

z
4 −

x
4 +

xy2

4 +
y2z
4 −

y2

4 −
xy2z

4 + 1
4

13 x2y
4 −

yz
4 −

y
4 +

y2z
4 +

y2

4 +
x2yz

4 −
x2y2(z + 1)

4

14 x
4 + xz

4 −
xy2

4 + x2z
4 + x2

4 −
xy2z

4 −
x2y2(z + 1)

4

15 y
4 +

yz
4 −

x2y
4 +

y2z
4 +

y2

4 −
x2yz

4 −
x2y2(z + 1)

4

16 xy2

4 −
xz
4 −

x
4 + x2z

4 + x2

4 +
xy2z

4 −
x2y2(z + 1)

4

17 xy
4 −

y
4 −

x
4 + xz2

4 +
yz2

4 −
z2

4 −
xyz2

4 + 1
4

18 x
4 −

y
4 −

xy
4 −

xz2

4 +
yz2

4 −
z2

4 +
xyz2

4 + 1
4

19 x
4 +

y
4 +

xy
4 −

xz2

4 −
yz2

4 −
z2

4 −
xyz2

4 + 1
4

20 y
4 −

x
4 −

xy
4 + xz2

4 −
yz2

4 −
z2

4 +
xyz2

4 + 1
4

21 z
2 −

x2z
2 −

y2z
2 −

x2

2 −
y2

2 +
x2y2(z + 1)

2 + 1
2
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Table A8. Surface_Nodes_and_vectors for 21-node brick element.

Node Number nx ny nz

2 1 0 0
3 1 0 0
6 1 0 0
7 1 0 0
10 1 0 0
14 1 0 0
18 1 0 0
19 1 0 0
1 −1 0 0
4 −1 0 0
5 −1 0 0
8 −1 0 0
12 −1 0 0
16 −1 0 0
17 −1 0 0
20 −1 0 0
3 0 1 0
4 0 1 0
7 0 1 0
8 0 1 0
11 0 1 0
15 0 1 0
19 0 1 0
20 0 1 0
1 0 −1 0
2 0 −1 0
5 0 −1 0
6 0 −1 0
9 0 −1 0
13 0 −1 0
17 0 −1 0
18 0 −1 0
5 0 0 1
6 0 0 1
7 0 0 1
8 0 0 1
13 0 0 1
14 0 0 1
15 0 0 1
16 0 0 1
21 0 0 1
1 0 0 −1
2 0 0 −1
3 0 0 −1
4 0 0 −1
9 0 0 −1
10 0 0 −1
11 0 0 −1
12 0 0 −1
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Table A9. Element formulation steps.

Objective Procedure
20-node brick formulation Segment 1 options Hexahedron or Brick element Click

Polynomial degree along x 2
Polynomial degree along y 2
Polynomial degree along z 2

Lagrangian Family Un-check
Integration quadrature Gauss–Legendre

Segment 2 options Do not guess Unchecked
Generate shape function! Click

21-node brick formulation Segment 1 options Arbitrary or Custom element Click
Import Element Previous Element

Number of nodes 21
Input Node coordinates in the

21st row 0 0 1

Input Interpolation function in the
21st row x2y2(z + 1)

Integration quadrature Gauss–Legendre
Segment 2 options Do not guess Unchecked

Generate shape function! Click

20 and 21-node brick
compatibility test

Segment 1 options Compare shape function Click
Check interelement compatibility Click

36-node brick element Segment 1 options Hexahedron or Brick element Click
Polynomial degree along x 4
Polynomial degree along y 4
Polynomial degree along z 2

Lagrangian Family Un-check
Integration quadrature Gauss–Legendre

Segment 2 options Do not guess Unchecked
Generate shape function! Click

43-node brick element for
Germain–Lagrange plate bending

Segment 1 options Arbitrary or Custom element Click
Import Element Previous Element

Number of nodes 43

Input Node coordinates

0 0 1
0 0 −1
0 1 0

0 −1 0
1 0 0
−1 0 0
0 0 0

Input monomial basis functions

x2 y2 z2

x2y2z
x2 yz2

xy2z2

x2y2

z2y2

x2z2

Integration quadrature Gauss–Legendre
Segment 2 options Do not guess Unchecked

Generate shape function! Click

75-node brick element Segment 1 options Hexahedron or Brick element Click
Polynomial degree along x 4
Polynomial degree along y 4
Polynomial degree along z 2

Lagrangian Family Check
Integration quadrature Gauss–Lobatto

Segment 2 options Do not guess Unchecked
Generate shape function! Click
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Table A9. Cont.

Objective Procedure

43-node transition element from
fourth to second order
Lagrangian element

Segment 1 options Arbitrary or Custom element Click
Import Element Previous Element

Number of nodes 43

Remove Node coordinates

0 0 1
0 0 −1
0 1 0

0 −1 0
1 0 0
−1 0 0
0 0 0

Remove monomial basis functions Factors with
mx < 3my < 3mz < 3

Modify monomial basis functions

x3(z + 1)
y3(z + 1)
x4(z + 1)

x3y(z + 1)
y3(z + 1)
y4(z + 1)

x4y(z + 1)
x3y2(z + 1)

Integration quadrature Gauss–Lobatto
Segment 2 options Do not guess Unchecked

Generate shape function! Click

Spectral hexahedron
formulation

Segment 1 options Hexahedron or Brick element Click
Polynomial degree along x 5
Polynomial degree along y 5
Polynomial degree along z 2

Lagrangian Family Check
Integration quadrature Gauss–Lobatto

Segment 2 options Do not guess Unchecked
Generate shape function! Click

Spectral tetrahedron
formulation

Segment 1 options Tetrahedron element Click
Element order 5

No of Sub-Tetrahedrons 8
Integration order for
reference tetrahedron 1

Segment 2 options Do not guess Unchecked
Generate shape function! Click
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