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Abstract: Cayley hash values are defined by paths of some oriented graphs (quivers) called Cayley
graphs, whose vertices and arrows are given by elements of a group H. On the other hand, Brauer
messages are obtained by concatenating words associated with multisets constituting some config-
urations called Brauer configurations. These configurations define some oriented graphs named
Brauer quivers which induce a particular class of bound quiver algebras named Brauer configuration
algebras. Elements of multisets in Brauer configurations can be seen as letters of the Brauer messages.
This paper proves that each point (x, y) ∈ V = R\{0}×R\{0} has an associated Brauer configuration
algebra ΛB(x,y) induced by a Brauer configuration B(x,y). Additionally, the Brauer configuration alge-
bras associated with points in a subset of the form (b(x)c, d(x)e]× (b(y)c, d(y)e] ⊂ V have the same
dimension. We give an analysis of Cayley hash values associated with Brauer messages M(B(x,y))

defined by a semigroup generated by some appropriated matrices A0, A1, A2 ∈ GL(2,R) over a
commutative ring R. As an application, we use Brauer messages M(B(x,y)) to construct explicit
solutions for systems of linear and nonlinear differential equations of the form X′′(t) + MX(t) = 0
and X′(t)− X2(t)N(t) = N(t) for some suitable square matrices, M and N(t). Python routines to
compute Cayley hash values of Brauer messages are also included.

Keywords: Brauer configuration algebra; Brauer message; Cayley graph; Cayley hash; path algebra;
quiver representation

1. Introduction

Hash functions are compression functions that are easy to compute. They are helpful
tools in several cryptographic tasks. Ensuring data integrity and password authentication
systems are some of the primary roles of hash functions. Data integrity provided by hash
functions prevents undesirable data modification [1].

To date, it is believed that well-posed hash functions such as SHA256 are unbreakable
by several attacks, including those conducted by a quantum computer.

The Cayley graph CH,s = (V, E) associated with a subset s of a multiplicative (semi)group
H is a k-regular graph, whose set of vertices V are in bijective correspondence with the set
H. In this case, if vg1 , vg2 ∈ V are vertices corresponding to the elements g1, g2 ∈ H, then
there is an arrow connecting vg1 and vg2 provided that there is an element s ∈ s, such that
g−1

1 g2s−1 = 1, where 1 is the identity element of the group H. The idea behind the use of
Cayley graphs in cryptography is to produce hash functions that are collision resistant.
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The input to these functions gives directions for walking around the graph, and the output
is the ending vertex of the walk [2].

On the other hand, Brauer messages were introduced by Espinosa et al. [3] in their
research regarding some bound quiver algebras called Brauer configuration algebras by
Green and Schroll [4]. This paper provides Cayley hash values to some of these Brauer mes-
sages.

Brauer messages have applications in different science fields. For instance, they were
used by Cañadas et al. in the graph energy theory to compute the trace norm of some
matrices and in the war games theory to declare winners and losers in war games based
on the behavior of a missile defense system (MDS) [5]. Furthermore, mutations of Brauer
messages can be used to give an algebraic interpretation of the Advanced Encryption
Standard (AES) key schedule [6].

1.1. Motivations

This paper uses an interaction between cryptography, algebraic geometry, combina-
torics, and the theory of representation of associative algebras to obtain applications of the
theory of Brauer configuration algebras in cryptography and differential equations.

Relationships between algebraic geometry and Brauer configuration algebras are
motivated by a recent paper published by Green and Schroll [7], who proved that each
point in an affine variety has an associated suitable associative algebra and that all these
algebras have the same dimension. As an interpretation of this result, we prove that,
associated with each point in R∗ × R∗, there is a suitable Brauer configuration alge-
bra and that Brauer configuration algebras associated with points in a set of the form
(m, m + 1]× (n, n + 1], m, n ∈ Z have the same dimension. The messages arising from these
Brauer configurations (called Brauer messages) are used to provide solutions for linear
and nonlinear systems of differential equations. We compute Cayley hash values of Brauer
messages establishing for which integer numbers such hash values are collision-resistant.

Henceforth, we outline the main results presented in this paper and how previous
works are used to obtain them.

1.2. Contributions

We prove that each point (x, y) ∈ V = R\{0} ×R\{0} is associated with a suitable
Brauer configuration algebra. Properties of these algebras are also established. In particular,
it is proved that their dimensions can be computed by enumerating suitable lattice paths.
Similar conditions have their corresponding centers.

As an application, we interpret message specializations of these Brauer configura-
tions as appropriated matrices with applications in Catalan combinatorics and differen-
tial equations. It is also proved that some of these matrices are solutions to some lin-
ear and nonlinear systems of differential equations of the form X′′(t) + 2γ−1X(t) = 0
and X′(t)− X2(t)Me(α, γ, β)t = Me(α, γ, β)t, where Me(α, γ, β) is a matrix whose entries
are given by appropriated Brauer messages. It is worth noting that finding explicit solutions
to nonlinear differential equations is in general a cumbersome problem.

Cayley hash functions based on matrix semigroups are applied to some Brauer mes-
sages to prove that these hash families are collision resistant.

Python routines to compute Cayley hash values of Brauer messages associated with
points in the plane are also introduced.

Figure 1 shows how previous works, mutations, and Brauer configuration algebras
(BCAs) can be related to obtain the main results (targets of red arrows) presented in this
paper.

In Section 2.1.1, we recall the main results regarding BCAs; Proposition 1 and Theorem 2
give formulas for the dimensions of these algebras and their centers.

Theorem 3 provides the properties of BCAs associated with points in the plane. Their
dimensions and combinatorial data regarding indecomposable projective modules over
these algebras are given.
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Theorem 4 describes arithmetic properties of specialized matrices given by mutations
of Brauer configurations associated with the plane.

Corollary 1 provides explicit solutions of linear and nonlinear systems of differential
equations.

Section 4 is devoted to Cayley hash functions. Theorem 5 gives Cayley hash values for
appropriated matrix semigroups. These results allow to give Cayley hash values of Brauer
messages. Corollary 2 proves that Sosnovski hash functions are collision-resistant when
they are applied to Brauer messages.

Figure 1. This graph shows how the background relates to the main results presented in this paper.

This paper is distributed as follows: Section 2 is devoted to recalling definitions and
notation used throughout the document. In particular, we recall the notion of Brauer
configuration algebra. In Section 3, we give our main results. We associate to each point
(x, y) ∈ V an apropriated Brauer configuration algebra determining which of them have
the same dimension. Mutations are defined for the variables associated with these algebras.
Such mutations give rise to new classes of matrices with applications in combinatorics
and differential equations. Section 4 is devoted to the values of Cayley hash functions
associated with Brauer messages. Experimental data are given in Section 5. Concluding
remarks and possible future works are described in Section 6. Appendix A gives Python
routines to compute Brauer messsages, their Sosnovski hash values, and polygons of Brauer
configurations associated with the plane.
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2. Background and Related Work

In this section, we introduce some definitions and notation to be used throughout the
paper. In particular, a brief overview regarding hash functions and Brauer configuration
algebras is given [4].

Henceforth, the symbol F (C) denotes a field (the complex numbers field), and d(x)e
(b(x)c) denotes the smallest (greatest) integer greater (less) than or equal to a real number
x. In path algebras FQ, it is assumed that F is an algebraic closed field.

2.1. Related Work on Cayley Hash Functions

This section gives a background on hash functions, in particular, Cayley hash functions.
Hash functions are easy-to-compute compression functions, as described before. Such

functions are used in several contexts. For instance, they are helpful in password manage-
ment systems. Servers that authenticate user passwords save a one-way hash associated
with a unique password so that if an attacker steals the database, it may be unfeasible for
the attacker to recover the original password as plaintext [1,8].

A hash family is a four-tuple (X ,Y ,K,H), where

• X is a set of possible messages, which could be finite or infinite.
• Y is a finite set of possible message digests or authentication tags.
• K is the set of keys.
• For each k ∈ K, there is a hash function hK : X → Y ∈ H. If |X | and |Y| denote the

cardinals of X and Y , and 2|Y| ≤ |X |, then hk is said to be a compression function.
If X = Y , and the hash function h is the identity, then h is said to be an unkeyed hash
function [1,2].

A hash function is said to be secure if the following three problems are difficult to
solve:

Preimage

Instance: A hash function h : X → Y and an element y ∈ Y .
Find: x ∈ X such that h(x) = y.

Second Preimage

Instance: A hash function h : X → Y and an element x ∈ X .
Find: x′ ∈ X such that x′ 6= x and h(x′) = h(x).

Collision
Instance: A hash function h : X → Y and an element x ∈ X .
Find: x, x′ ∈ X such that x′ 6= x and h(x′) = h(x).

Hash functions are used to construct a short fingerprint or digest the message of some
data. If an attacker alters the data, then the fingerprint will no longer be valid. One of the
most used methods to construct iterated hash functions is the Merkle–Damgård scheme,
which builds hash functions from a compression function. Rivest introduced, in 1990,
the first scheme of this type named MD4. Soon afterwads, Rivest himself proposed an
improved version of MD4 called MD5.

Collisions in the compression function of MD4 and MD5 were discovered in the 1990s.
The family of secured hash algorithms (SHAs) was proposed as a standard by NIST in

1993. SHA-0 was adopted as FIPS 180. Each of these hash algorithms was an improvement
of the earlier versions to prevent previously found attacks.

It was shown in 1998 that SHA-0 allows collisions in approximately 261 steps, whereas
the first collision for SHA-1 was found in 2017. SHA-2 includes the four hash functions
known as SHA-224, SHA-256, SHA-384, and SHA-512, according to the sizes of the cor-
responding fingerprints. It is worth pointing out that currently SHA-256, which outputs
256 bits fingerprints, is the most used hash function. It is the basis of many password
authentication systems.

According to the National Academy of Sciences, Engineering, and Medicine [8] (NAE),
although, nowadays it is believed to be essentially impossible to break a hash function such
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as SHA-256, password hashing is at higher risk due to the size of all 10-character passwords
being only about 266 passwords, and thus prone to an attack based on a quantum computer.

Possible attacks on the currently used hash functions have encouraged the use of
provably secure hash functions, whose security is based on the difficulty of solving a
known hard problem.

Cayley hash functions based on the Cayley graph of certain (semi)groups are examples
of these types of schemes, whose security follows from the hardness of the expander graph
problem associated with a (semi)group.

In 1991, Zémor [9] introduced hash function schemes based on matrix products in
the special linear group Sl(Fp), where p is a fixed prime number. Zémor himself and
Tillich [10] broke such schemes. Furthermore, they introduced the group Sl(F2n) to increase
the security of the original hash functions [11]. In this setting, F2n is a field.

Due to the popularity of the hash functions introduced by Zémor and Tillich, several
proposals in the same line were proposed by Petit and Lubotzki et al., who introduced Cay-
ley hash functions based on Ramanujan graphs, in particular LPS hash functions [12–15].

The Tillich–Zémor hash function hashes each bit of a given message individually.

In this case, the matrices have the form A =

[
α 1
1 0

]
and B =

[
α α + 1
1 1

]
, where

F2n = F2[x]/(p(x)), F2 is the two-element field, (p(x)) is the ideal generated by an ir-
reducible polynomial of degree n, and α is a root of p(x). For instance, the message
M = 110011 is hashed to the matrix B2 A2B2.

It is worth noting that the Tillich–Zémor hash function was successfully attacked by
Grass et al. [16], who obtained collisions using the Euclidean algorithm for polynomials.
Afterwards, Petit and Quisquater [17] introduced an extended form of Grass et al.’s algo-
rithm to provide a second preimage algorithm. Grassl et al. also ran Grover’s algorithm on
a quantum computer to study the strength of the cryptographic system AES [18].

Mullan and Tsaban [19] introduced a general attack for the Tillich–Zémor scheme. It
runs with polynomial time o(

√
q) to find collisions for an arbitrary q. It does not work for

bit strings of length n > 100.
Other pairs of matrices such as in the Tillich–Zémor scheme have been proposed by

Bromber et al. and Sosnovki, who introduced a semigroup platform corresponding to the
hash functions f (x) = 2x + 1 and g(x) = 3x + 1 modulo a prime p > 3 (the corresponding

associated matrices have the form A =

[
2 1
0 1

]
and B =

[
3 1
0 1

]
). In this case, the input

string hash function can have an arbitrary length, and the output has the size 2log(p).
In this paper, we applied Sosnovski hash functions to Brauer messages to investigate

their collision-resistant property.

2.1.1. Background and Related Work on Brauer Configuration Algebras

Brauer configuration algebras (BCAs) were introduced by Green and Schroll [4] to
generalize research on tame algebras. Soon afterwards, Cañadas et al. used these algebras
and their associated messages to obtain applications in cryptography, cibersecurity, and the
graph energy theory [3,5,6,20,21].

It is worth pointing out that Espinosa [3] introduced in his doctoral dissertation the
notion of the message of a Brauer configuration as the element of a word algebra. He used
Brauer messages to give formulas for the number of perfect matchings of a snake graph
and the number of homological ideals associated with a Nakayama algebra. On the other
hand, Cañadas et al. introduced mutations of Brauer configurations to give an algebraic
description of the cryptosystem AES [6].

In this paper, we associate Brauer configuration algebras with points in the plane,
establishing which points have associated Brauer configuration algebras with the same di-
mension.
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2.1.2. Path Algebras

In this section, we give a brief discussion on quivers, path algebras, and their ideals
based on the work of Assem et al. [22].

A quiver or directed graph Q = (Q0, Q1) is a quadruple consisting of two sets: Q0
(whose elements are called points or vertices) and Q1 (whose elements are called arrows)
and two maps s, t : Q1 → Q0 which associate to each arrow α ∈ Q1, its source s(α) ∈ Q0,
and its target t(α) ∈ Q0, respectively. If F is an algebraically closed field, then we let FQ
denote the path algebra associated with the quiver Q, whose underlying F-vector space
has as its basis the set of all paths of length l ≥ 0 in Q, such that the product of two basis
vectors is given by the usual concatenation of paths.

The following Figure 2 shows a quiver Q with four vertices a1, a2, a3, and a4 and three
arrows α1, α2, and α3. Note that, Q1 = {α1, α2, α3} is the set of paths of length 1, whereas
Q2 = {α1α2, α1α3} is the set of paths of length 2 in Q.

Figure 2. A quiver Q with four vertices and three arrows α1, α2, and α3, s(α2) = s(α3) = a2 = t(α1),
s(α1) = a1, t(α2) = a3, and t(α3) = a4.

The basis B of the algebra FQ associated with the quiver Q shown in Figure 2 is
B = {ea1 , ea2 , ea3 , ea4 , α1, α2, α3, α1α2, α1α3}, where {ea1 , ea2 , ea3 , ea4} is the set of primitive
idempotents, with e2

ai
= eai and eai eaj = 0 if i 6= j.

Let Q be a finite and connected quiver. The two-sided ideal RQ of the path algebra FQ
generated (as an ideal) by the arrows of Q is called the arrow ideal of FQ. A two-sided
ideal I of FQ is said to be admissible if there exists m ≥ 2 such that Rm

Q ⊆ I ⊆ R2
Q.

If I is an admissible ideal of FQ, the pair (Q, I) is said to be a bound quiver. The quotient
algebra FQ/I is said to be the algebra of the bound quiver (Q, I) or, simply, a bound quiver
algebra.

Let Q be a quiver. A relation in Q with coefficients in F is an F-linear combination of
paths of length, with at least two having the same source and target.

If (ρj)j∈J is a set of relations for a quiver Q such that the ideal they generate 〈ρj | j ∈ J〉
is admissible, we say that the quiver Q is bound by the relation (ρj)j∈J or by the relations
ρj = 0 [22].

Henceforth, we let rad Λ denote the radical of a path algebra Λ = FQ, which is the
intersection of all maximal ideals. Actually, if I is an admissible ideal of Λ, it holds that
rad(FQ/I) = RQ/I.

If ≺ is an admissible well-ordering on the set of paths, i.e., ≺ is a well-ordering such that

1. If a, b, u, v ∈ Q, where uav and ubv are both nonzero a ≺ uav or a = uav.
2. If a ≺ b, then uav ≺ ubv.
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Then, the tip Tip(x) = w of an element x ∈ FQ is the maximal path w with respect to
≺ such that w has a nonzero coefficient in x when it is written as a linear combination of the
elements of a fixed basis of FQ. Tip(X) = {Tip(x) | x ∈ X} is the set of tips of elements in
X [7].

Let I be an ideal in a path algebra FQ and let G ⊂ I . If 〈Tip(G)〉 = 〈Tip(I)〉, then G is
a Gröbner basis for I with respect to ≺.

2.1.3. Brauer Configuration Algebras

In this section, we briefly discuss the main results regarding Brauer configuration
algebras [4].

A Brauer configuration algebra ΛB (or simply Λ if no confusion arises) is induced by
a Brauer configuration B = (B0,B1, µ,O), consisting of a pair of finite sets B0 and B1,
a function µ : B0 → N+ (N+ denote the set of positive integers), and an orientation O.

• Elements of B0 (B1) are called vertices (polygons). Polygons are labeled multisets
consisting of vertices.

• If V ∈ B1, then |V| > 1 (i.e., each polygon contains more than one vertex).
• O is a choice for each vertex δ ∈ B0 of a cyclic ordering of the polygons in which δ

occurs as a vertex including repetitions (see [4] for more details). For instance, if a
vertex δ ∈ B0 occurs in polygons Vii , Vi2 , . . . , Vim for suitable indices, then the cyclic
order is obtained by linearly ordering the list, say

Vd1
i1

< Vd2
i2

< · · · < Vdm
im , dis > 0, (1)

where, Vds
is = V(1)

is < V(2)
is < · · · < V(ds)

is means that vertex δ occurs ds times in
polygon Vis , denoted ds = occ(δ, Vis). The cyclic order is completed by adding the
relation Vim < Vi1 . Note that if Vi1 < · · · < Vit is the chosen ordering at vertex δ, then
the same ordering can be represented by any cyclic permutation.
The sequence (1) is said to be the successor sequence at vertex δ, denoted Sδ, which is
unique up to permutations. Note that Green and Schroll [4] mentioned that different
orientation choices are typically associated to nonisomorphic Brauer configuration
algebras.
Henceforth, in this paper, if a vertex δ′ 6= δ belongs to some polygons Vj1 , Vj2 , . . . Vjk
ordered according to the already defined cyclic ordering associated with the vertex δ,
then we assume that up to permutations the cyclic ordering associated with the vertex
δ′ is built, taking into account that polygons Vj1 , Vj2 , . . . Vjk inherit the order given by
the successor sequence Sδ.

• If V denotes the underlying set defined by a polygon V (repetitions are not allowed in
V), then

⋃
V∈B1

V = B0.

If δ ∈ B0, then the valency val(δ) of δ is given by the identity

val(δ) = ∑
V∈B1

occ(δ, V). (2)

If δ ∈ B0 is such that µ(δ)val(δ) = 1, then δ is said to be truncated (it occurs once in
just one polygon). Otherwise, δ is a nontruncated vertex. A Brauer configuration without
truncated vertices is said to be reduced.

Algorithm 1 is a short version of an algorithm defined by Cañadas et al. in [5] to build
a Brauer configuration algebra.

The following results describe the structure of Brauer configuration algebras [4,23].
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Algorithm 1: Construction of a Brauer configuration algebra

1. Input A reduced Brauer configuration B = (B0,B1, µ,O).
2. Output The Brauer configuration algebra ΛB = FQB/IB.
3. Construct the quiver QB = ((QB)0, (QB)1, s, t) as follows:

• (QB)0 = B1.
• For each covering Vi < Vj in a successor sequence Sδ, define an arrow

αδ
i

Vi → Vj∈ (QB)1.
• For each path defined by a successor sequence Sδ, construct a special cycle

Cδ ∈ QB defined by the union Sδ ∪ {Vim < Vi1}, where, Vi1 = min Sδ

and Vim = max Sδ.

4. Define the path algebra FQB.
5. The admissible ideal IB is generated by relations of the following types:

(a) Identify special cycles associated with nontruncated vertices in the same

polygon (i.e., if δ1, δ2 ∈ U with U ∈ B1, then Cµ(δ1)
δ1

∼ Cµ(δ2)
δ2

).
(b) If Cδ is a special cycle associated with a nontruncated vertex δ, then a

product of the form Cµ(δ)a ∈ IB if a is the first arrow of δ.
(c) Products of the form ab ∈ FQB with a induced by a covering in a special

cycle Cδ1 and b induced by another special cycle Cδ2 (with δ1 6= δ2)
belong to IB.

6. ΛB = FQB/IB is a Brauer configuration algebra with a basis consisting of
classes of special cycles and classes of prefixes of special cycles.

Theorem 1 ([4], Theorem B, Proposition 2.7, Theorem 3.10, Corollary 3.12). Let ΛB be a
Brauer configuration algebra with Brauer configuration B = (B0,B1, µ,O).
1. There is a bijection between the set of indecomposable projective ΛB-modules and the polygons

of B. Moreover, if PV is an indecomposable ΛB-module induced by a polygon V with r

nontruncated vertices, then rad PV =
r
∑

i=1
Ui, where for each i, Ui is a uniserial ΛB-module.

Ui ∩Uj is uniserial for all 1 ≤ i, j ≤ r.
2. I is admissible, and ΛB is multiserial and symmetric.
3. The number of summands in the rad PV/soc PV of an indecomposable projective ΛB-module

PV with rad2 PV 6= 0 equals the number of nontruncated vertices of the polygon V counting
repetitions.

4. If V ∈ B1, |V| ≥ 3, δ ∈ V is a truncated vertex, B′ = (B′0,B′1, µ,O), B′0 = B0\{δ},
B′1 = B1\V ∪V′ with V′ = V\{δ}, then ΛB and ΛB′ are isomorphic.

Proposition 1 and Theorem 2 give formulas for the dimensions dimF ΛB and
dimF Z(ΛB) of a Brauer configuration algebra Λ and its center Z(ΛB) [4,23].

Proposition 1 ([4], Proposition 3.13). Let ΛB be a Brauer configuration algebra associated with
the Brauer configuration B and let C = {C1, . . . , Ct} be a full set of equivalence class representatives
of special cycles. Assume that for i = 1, . . . , t, Ci is a special δi-cycle where δi is a nontruncated
vertex in B. Then,

dimF ΛB = 2|Q0|+ ∑
Ci∈C
|Ci|(ni|Ci| − 1) = ∑

δi∈Γ0
δi non-truncated

val(δi)(nival(δi)− 1),

where |Q0| denotes the number of vertices of Q, |Ci| denotes the number of arrows in the δi-cycle
Ci, and ni = µ(δi).
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Theorem 2 (Theorem 4.9, [23]). Let ΛB = FQ/I be the Brauer configuration algebra associated
with the connected and reduced Brauer configuration B. Then,

dimF Z(ΛB) = 1 + ∑
δ∈B0

µ(δ) + |B1| − |B0|+ #(Loops Q)− |CB|,

where CB = {δ ∈ Γ0 | val(δ) = 1, and µ(δ) > 1}.

Proposition 2 ([4], Proposition 3.6). Let ΛB be the Brauer configuration algebra associated with
a connected Brauer configuration B. The algebra ΛB has a length grading induced from the path
algebra FQ if and only if there is an N ∈ Z>0 such that for each nontruncated vertex δ ∈ B0
val(δ)µ(δ) = N.

2.2. The Message of a Brauer Configuration

The notion of the message of a Brauer configuration and labeled Brauer configurations
were introduced by Espinosa et al. [3] to define suitable specializations of some Brauer
configuration algebras. According to them, since polygons in a Brauer configuration
B = (B0,B1, µ,O) are multisets, it is possible to assume that any polygon U ∈ B1 is given
by a word w(U) of the form

w(U) = δs1
1 δs2

2 . . . δ
st−1
t−1 δst

t , (3)

where for each i, 1 ≤ i ≤ t, si = occ(δi, U).
The message is in fact an algebra of words element WB associated with a fixed Brauer

configuration, such that for a given field F the word algebra WB consists of formal sums of
words with the form ∑

αi∈F
U∈B1

αiw(U), 0w(U) = ε is the empty word, and 1w(U) = w(U) for

any U ∈ B1. The product in this case is given by the usual word concatenation. The formal
product (or word product)

M(B) = ∏
U∈B1

w(U) (4)

is said to be the message of the Brauer configuration B.
If R is a ring, then a specialization of a reduced Brauer configuration B = (B0,B1, µ,O)

is a Brauer configuration
Be = (Be

0,Be
1, µe,Oe)

endowed with a suitable map e : B0 → R, such that

Be
0 = Img e ⊂ R,

Be
1 = e(B1) = {e(H) | H ∈ B1}, if H ∈ B1 then e(H) = {e(δi) | δi ∈ H} ∈ e(B1),

we(U) = ((e(δ1))
f1(e(δ2))

f2 . . . (e(δn))
fn)is the specialization under e of a word

w(U) = δ
f1
1 δ

f2
2 . . . δ

fn
n associated with a polygon U ∈ B1.

µe(e(δ)) = µ(δ), for any vertex δ ∈ B0.

(5)

The orientation Oe is defined by the orientation O, in such a way that if

Sδ = Ud1
i1

< Ud2
i2

< · · · < Udm
im

is a successor sequence associated with a vertex δ ∈ B0 (see (1)), then, for some d′j > 0,
1 ≤ j ≤ m, it holds that

S′e(δ) = (e(Ui1))
d′1 < (e(Ui2))

d′2 < · · · < (e(Uim))
d′m
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is contained in the successor sequence Se(δ) associated with e(δ) ∈ Be
0.

M(Be) = ∝
U∈Be

1

we(U) (∝ is a suitable operation associated with the specialization

ring) is the specialized message of the Brauer configuration B provided that, in such a case,
each word can be interpreted by a product of the specialization ring elements.

A Brauer configuration B = (B0,B1, µ,O) is said to be S-labeled (or simply labeled,
if no confusion arises) by an integer sequence S = {n1, n2, . . . , n|Γ1|} if each polygon
Uij is labeled by an integer number nj, 1 ≤ j ≤ |B1|. In such a case, we often write
B1 = {(U1, n1), (U2, n2), . . . , (Uk, nk)},

For each vertex δ ∈ B0, a corresponding cyclic ordering of labeled polygons where
δ occurs is defined. One advantage of labeling Brauer configurations is that the set S can
be used to systematically define the orientation associated with each vertex or obtain the
polygons recursively [3].

It is worth noticing that any finite set can be used to label Brauer configurations. In this
paper, we use finite well-ordered sets of lattice paths to label Brauer configurations.

3. Main Results

In this section, we give properties of Brauer configuration algebras ΛB(x,y) associated
with points (x, y) ∈ V.

If (x, y) ∈ {(r, s) ∈ R2 | r > 0, s > 0} = D, then (x, y) defines a path P connecting
P0 = (x, y) with (0, 0). Internal vertices Pi are such that;

Pi ∈ {(b(x)c − (i− 2), y), (x, b(y)c − (i− 2))}, for 2 ≤ i ≤ xy− 1.

P1 ∈ {(b(x)c, y), (x, b(y)c)}. (6)

An arrow α ∈ P connecting vertices (b(x)c − i, y), (b(x)c − (i + 1), y) ((b(x)c, y −
i), (b(x)c, y− (i + 1))) is labeled by a symbol x (y). The same is assumed if the arrow α con-
nects points (b(x)c, y) and (b(x)c, b(y)c) and ((x, b(y)c) and (b(x)c, b(y)c)). Since, it is easy
to see that there are (

b(x)c+b(y)c
b(x)c ) = c(x, y) of such paths, we endowed this set with a linear

order �. We let L(x,y) denote such a set of paths, whose elements L(x,y)
1 ,L(x,y)

2 , . . . ,L(x,y)
c(x,y)

are ordered in the form:
L
(x,y)
1 ≺ L

(x,y)
2 ≺ · · · ≺ L

(x,y)
c(x,y). (7)

A labeled (by the set L(x,y)) Brauer configuration B(x, y) is associated with each point
(r, s) ∈ D in such a way that:

B(r,s) = (B
(r,s)
0 ,B(r,s)

1 , µ(r,s),O(r,s)),

B
(r,s)
0 = {x, y},

B
(r,s)
1 = {(P1,L(r,s)

1 ), (P2,L(r,s)
2 ), . . . , (Pc(r,s),L

(r,s)
c(r,s))},

µ(r,s)(x) = µ(r,s)(y) = 1,

(Pi,L
(r,s)
i ) < (Pi+1,L(r,s)

i+1 ) if and only if L
(r,s)
i ≺ L

(r,s)
i+1 , 1 ≤ i ≤ c(r, s)− 1,

w(Pi) = xrys is the word associated with each polygon Pi.

(8)

Successor sequences Sx and Sy have the forms:

Sx = . . . (Pi,L
(r,s)
1 )(1) < (Pi,L

(r,s)
2 )(2) < · · · < (Pi,L

(r,s)
r )(r) . . .

< (Pc(r,s),L
(r,s)
1 )(1) < · · · < (Pc(r,s),L

(r,s)
r )(r),

Sy = . . . (Pi,L
(r,s)
1 )(1) < (Pi,L

(r,s)
2 )(2) < · · · < (Pi,L

(r,s)
s )(s) . . .

< (Pc(r,s),L
(r,s)
1 )(1) < · · · < (Pc(r,s),L

(r,s)
s )(s).

(9)
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The following Figure 3 shows a Brauer quiver QB(r,s) induced by a Brauer configura-
tion B(r,s), with d(r)e+ d(s)e = 4.

Figure 3. Example of a Brauer quiver associated with a Brauer configuration B(r,s). The symbol cx
i

(cy
j ) denotes a set of loops cx

i,k (cy
j,m) associated with the vertex x (y), 1 ≤ k ≤ r, 1 ≤ m ≤ s.

For all possible values of i, j, and k, the admissible ideal IB(r,s) is generated by relations
of the form:

• αi
xαi+1

x , αi
xβi+1

y , βi
yβi+1

y ,

• αi
xcy

i+1,k, cy
j,kα

j
x, β

j
ycx

j+1,k,

• (cx
i,j)

2, (cy
i,j)

2.

• Cx ∼ Cy, Cra, where Cx (Cy) is a special cycle associated with vertex x (y), and a is
the first arrow of a special cycle Cr, r ∈ {x, y}.
The following result gives the structure of Brauer configuration algebras ΛB(r,s) =

FQB(r,s)/IB(r,s) induced by Brauer configurations of type B(r,s).

Theorem 3. For r, s ∈ D, it holds that:

1. The Brauer configuration algebra ΛB(r,s) is reduced and connected.
2. ΛB(r,r) has length grading induced by the path algebra FQB(r,r).
3. The number of summands in the heart ht(Pi) of the indecomposable projective module Pi

equals r + s, and for any i, 1 ≤ i ≤ r + s.
4. dimF ΛB(r,s) = (r2 + s2)c(dre, d(s)e)− c(dre, d(s)e)(r + s− 2).
5. If (x, y) ∈ (b(r)c, d(r)e]× (b(s)c, d(s)e], then dimF ΛB(x,y) = dimF ΛB(dre,d(s)e).
6. dimF Z(ΛB(dre,d(s)e) = 1 + (d(r)e+ d(s)e − 1)c(dre, d(s)e).

Proof.

1. Since each polygon contains vertices x and y, it follows that the Brauer configuration

B(r,s) is reduced. Furthermore,
c(d(r)e,d(s)e)⋂

i=1
Pi 6= ∅. Thus, QB(r,s) is connected.

2. Since µ(r,r)val(x) = µ(r,r)val(y) = r(2r
r ), the result holds as a direct consequence of

Proposition 2.
3. Each polygon Pi has r vertices denoted by x and s vertices denoted by y. Thus, Pi has

r + s nontruncated vertices, counting repetitions.
4. val(x) = rc(d(r)e, d(s)e), val(y) = sc(d(r)e, d(s)e), and |B(r,s)

1 | = c(d(r)e, d(s)e).
5. Since rad2 ΛB(r,s) 6= 0, it suffices to observe that

#(Loops QB(r,s)) = (s− 1)c(d(r)e, d(s)e) + (r− 1)c(d(r)e, d(s)e).

6. We note that by definition L(r,s) = L(x,y), if (x, y) ∈ (b(r)c, d(r)e]× (b(s)c, d(s)e].

Remark 1. Similar results as those presented in Theorem 3 can be obtained in the other quadrants
of V = R∗ ×R∗ by building sets L(r,s) connecting consecutive vertices in an appropriated fashion.
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For instance, in the fourth quadrant, arrows in paths connect vertices (b(r)c, b(s)c) and (0, 0)
with consecutive internal vertices of the form (d(r)e − i, y), (d(r)e − (i + 1), y) or of the form
(x, d(s)e − i), (x, d(s)e − (i + 1)).

Mutation and Frozen Regions in the Plane

Let f 2 ⊂ D be a line segment containing points (n, k), (x1, 0), (0, x1) ∈ (Z× Z) ∩D,
with x1 = n + k. Let f 1 be a differentiable increasingly monotone curve on the interval
[0, x0] with f 1(x0) = 0, and f 1(0) = y0, x0, and y0 are real numbers such that 0 ≤ x0 ≤ x1,
and 0 ≤ y0 ≤ x1, thus, 0 ≤ f 1 ≤ f 2. These inequalities define a region R f 1

r
(Rm) bounded

by the coordinate axes f 1 and f 2 (bounded by the coordinate axes and f 1). R f 1
r

is said to be

a frozen (mutation) region. Figure 4 shows regions R f 1
r

and Rm. We let R( f 1, f 2) denote the
set {(x, y) ∈ D | 0 ≤ x ≤ x1, 0 ≤ y ≤ f 2(x)}.

Figure 4. Frozen (R f 1
r
) and mutation (Rm) regions.

Mutation and frozen regions allow defining a new labeling for sets L(x,y) of paths
associated with Brauer configurations of type (8). Such a labeling is defined as follows:

• Arrows α = a→ b ∈ L(x,y) are labeled with symbols x (horizontal arrows), y (vertical
arrows), and z (y mutations).

• An arrow α = a
y→ b ∈ L(x,y) is labeled with a new symbol z, i.e., α =

z
a→ b, if the

target b ∈ Int Rm ∪bd(Rm)\{ f }. Where, Int X (bd(X)) denotes the interior (boundary)
of a set X endowed with the usual topology of R2.

• The labeling of an arrow α = a
y→ b ∈ L(x,y) is kept without changes if b /∈ Int Rm.

Figure 5 shows an example of this kind of labeling with f 1(x) = − 2
3 x + 2, 0 ≤ x ≤ 3,

and f 2(x) =
√

49
4 − x2, 0 ≤ x ≤ 7

2 .

Figure 5. Example of a labeling with mutations associated with a region R(− 2
3 x + 2 (0 ≤ x ≤

3),
√

49
4 − x2 (0 ≤ x ≤ 7

2 )).
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The Brauer configuration B((
√

3,
√

3), f 1, f 2) = (B
(
√

3,
√

3)
0 ,B(

√
3,
√

3)
1 , µ(

√
3,
√

3),O(
√

3,
√

3))
is defined as follows:

• B
(
√

3,
√

3)
0 = {x, y,m}.

• |B(
√

3,
√

3)
1 | = |Q0| = (4

2) = 6.

• B
(
√

3,
√

3)
1 =

{
(U(
√

3,
√

3)
i ,L(

√
3,
√

3)
i ) | 1 ≤ i ≤ 6

}
.

• L
(
√

3,
√

3)
1 = xmmx, L

(
√

3,
√

3)
2 = xmxm, L

(
√

3,
√

3)
3 = xxmm,

L
(
√

3,
√

3)
4 = yxxm, L

(
√

3,
√

3)
5 = yxmx, L

(
√

3,
√

3)
6 = ymxx.

• µ(
√

3,
√

3)(x) = µ(
√

3,
√

3)(y) = µ(
√

3,
√

3)(m) = 1.
• The successor sequences Sx, Sy, and Sm at vertices x, y, and m have the following

forms:

Sx = (U(
√

3,
√

3)
1 )(2) < (U(

√
3,
√

3)
2 )(2) < (U(

√
3,
√

3)
3 )(2) < (U(

√
3,
√

3)
4 )(2)

< (U(
√

3,
√

3)
5 )(2) < (U(

√
3,
√

3)
6 )(2).

Sy = U(
√

3,
√

3)
4 < U(

√
3,
√

3)
5 < U(

√
3,
√

3)
6 .

Sm = (U(
√

3,
√

3)
1 )(2) < (U(

√
3,
√

3)
2 )(2) < (U(

√
3,
√

3)
3 )(2) < U(

√
3,
√

3)
4 < U(

√
3,
√

3)
5 < U(

√
3,
√

3)
6 .

(10)

• val(x) = 12, val(y) = 3, val(m) = 9.
• dimF Λ

B(
√

3,
√

3) = 212.
• dimF Z(Λ

B(
√

3,
√

3)) = 16.

Figure 6 illustrates polygons, U1, . . . , U6.

Figure 6. Labeled polygons U1, . . . , U6 ∈ B
(
√

3,
√

3)
1 .

Figure 7 shows the Brauer quiver induced by the Brauer configuration B((
√

3,
√

3), f 1, f 2).
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Figure 7. Brauer quiver QB((
√

3,
√

3), f 1, f 2) induced by the Brauer configuration B((
√

3,
√

3), f 1, f 2).

The admissible ideal is generated by the following relations (together with those
related to special cycles) for all possible values of i, j, and h:

• (lx
i )

2, (ly
i )

2, and (lm
i )2.

• la
i lb

j , if a 6= b.

• γm
i lx

j , lx
j γm

i .

• αx
i lm

j , lm
j αx

i .

• β
y
j lx

i , lx
i β

y
j .

• γm
i β

y
j , β

y
j γm

i .

• γm
i αx

j , αx
j γm

i .

• αx
i β

y
j , β

y
j αx

i .

• sxαx
h , syβ

y
h, and smγm

h .

Remark 2. Henceforth, we consider the specialization e : B0((x, y), f 1, f 2) → C, with e(x) =
e(y) = 1 and e(m) = eiφ for some fixed φ, 0 ≤ φ ≤ 2π associated with the Brauer configuration (8)
and its mutation. A specialized word is given by a product over C of the x, y, and m specializations,
whereas a message M(B((x, y), f 1, f 2) of the Brauer configuration B((x, y), f 1, f 2) is the sum
over C of the specialized words.

The following is an example of the specializations introduced in Remark 2:

e(w(U(
√

3,
√

3)
1 )) = 1 · eiφ · eiφ · 1,

e(w(U(
√

3,
√

3)
2 )) = 1 · eiφ · 1 · eiφ,

e(w(U(
√

3,
√

3)
3 )) = 1 · 1 · eiφ · eiφ,

e(w(U(
√

3,
√

3)
4 )) = 1 · 1 · 1 · eiφ,

e(w(U(
√

3,
√

3)
5 )) = 1 · 1 · eiφ · 1,

e(w(U(
√

3,
√

3)
6 )) = 1 · eiφ · 1 · 1.

(11)

The specialized message Me(B(
√

3,
√

3), f 1, f 2) = 3e2iφ + 3eiφ. If φ = π/2, then
Me(B(

√
3,
√

3), f 1, f 2) |φ=π/2= −3 + 3i.
If x1 = 4, we can define new Brauer configuration algebras and corresponding mes-

sages associated with points (r, s) ∈ {(x, y) ∈ D∩ (Z×Z) | y ≤ −x + 4} and straight lines
given by the formulas f 1

α (x) = −x + α for (0 ≤ x0 = i ≤ 4) ∩N, 0 ≤ α ≤ 4.
If x0 = x1 = 4, then f 1

4 (x) = f 2
4 (x) = −x + 4, 0 ≤ x ≤ 4.

The labeled Brauer configuration B((2, 2), f 1
4 , f 2

4 ) = (B
(2,2)
0 ,B(2,2)

1 , µ(2,2),O(2,2)) is
defined as follows:
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• B
(2,2)
0 = {x,m}.

• |B(2,2)
1 | = |Q0| = (4

2) = 6.

• B
(2,2)
1 =

{
(U(2,2)

i ,L(2,2)
i ) | 1 ≤ i ≤ 6

}
,

L
(2,2)
1 = xxmm, L

(2,2)
2 = xmxm, L

(2,2)
3 = xmmx,

L
(2,2)
4 = mmxx, L

(2,2)
5 = mxmx, L

(2,2)
6 = mxxm.

• µ(2,2)(x) = µ(2,2)(m) = 1.
• The successor sequences Sx and Sm at vertices x and m have the following form:

(U(2,2)
1 )(2) < (U(2,2)

2 )(2) < (U(2,2)
3 )(2) < (U(2,2)

4 )(2) < (U(2,2)
5 )(2) < (U(2,2)

6 )(2).
• val(x) = val(m) = 12.
• dimF ΛB((2,2), f 1

3 , f 2
3 )

= 276.

• dimF Z(ΛB( (2,2), f 1
4 , f 2

4 )
= 19.

Me(B((2, 2), f 1
4 , f 2

4 )) |φ=π= M(4, 4, 2) = 6e2iπ = 6. (12)

Figure 8 shows the Brauer quiver induced by the Brauer configuration B((2, 2), f 1
4 , f 2

4 ).

Figure 8. Brauer quiver associated with the labeled Brauer configuration B((2, 2), f 1
4 , f 2

4 ).

The specialized messages Me(α, γ, β) associated with Brauer configurations
B((r, s), f 1

α (x) = −x + α, f 2
4 (x) = −x + 4) with 0 ≤ α ≤ 4 are given in the following

Table 1.

Table 1. Specialized messages of type Me(B((r, s), y = −x + α, y = −x + 4)), 0 ≤ α ≤ 4.

Me((3, 1), f 1
0 , f 2

4 ) = 4 Me((2, 2), f 1
0 , f 2

4 ) = 6 Me((1, 3), f 1
0 , f 2

4 ) = 4

Me((3, 1), f 1
1 , f 2

4 ) = 2 Me((2, 2), f 1
1 , f 2

4 ) = 0 Me((1, 3), f 1
1 , f 2

4 ) = −2

Me((3, 1), f 1
2 , f 2

4 ) = 0 Me((2, 2), f 1
2 , f 2

4 ) = −2 Me((1, 3), f 1
2 , f 2

4 ) = 0

Me((3, 1), f 1
3 , f 2

4 ) = −2 Me((2, 2), f 1
3 , f 2

4 ) = 0 Me((1, 3), f 1
3 , f 2

4 ) = 2

Me((3, 1), f 1
4 , f 2

4 ) = −4 Me((2, 2), f 1
4 , f 2

4 ) = 6 Me((1, 3), f 1
4 , f 2

4 ) = −4

Notation Me((r, s), f 1
α , f 2

4 ) = M(α, 4, β), 0 ≤ α ≤ 4, 1 ≤ β ≤ 3 in Table 1 gives rise to a
5× 5-matrix M4, for which M(α, 4, 0) = 1 and M(α, 4, 4) = (−1)α.

M4 =


Me(0, 4, 0) Me(1, 4, 0) Me(2, 4, 0) Me(3, 4, 0) Me(4, 4, 0)
Me(0, 4, 1) Me(1, 4, 1) Me(2, 4, 1) Me(3, 4, 1) Me(4, 4, 1)
Me(0, 4, 2) Me(1, 4, 2) Me(2, 4, 2) Me(3, 4, 2) Me(4, 4, 2)
Me(0, 4, 3) Me(1, 4, 3) Me(2, 4, 3) Me(3, 4, 3) Me(4, 4, 3)
Me(0, 4, 4) Me(1, 4, 4) Me(2, 4, 4) Me(3, 4, 4) Me(4, 4, 4)


We call these matrices message-matrices associated with f 2

x1
.

The next Theorem 4 gives some properties of message-matrices MB = (M(α, γ, β)) =
(Me(B((α, γ− α), f 1

α , f 2
γ)) with x1 = γ > 1, 0 ≤ α ≤ γ.
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Theorem 4. For fixed non-negative integers α, β, an integer γ > 1; the message-matrix Mγ

associated with a linear map f 2
γ satisfies the following identities:

1. Me(α, γ, β− 1) +Me(α, γ, β) = Me(α, γ + 1, β).
2. Me(α− 1, γ, β) +Me(α, γ, β) +Me(α, γ, β + 1) = Me(α− 1, γ, β + 1).
3. Me(α, γ, β− 1) = ∑

h∈N
(−1)h(γ−1

h )(β−1−γ
α−h−1), (v

u) = 0, if u > v.

4. Me(0, γ, β) = (γ
β).

5. Me(1, 2m + 1, m) is the number of Dyck paths P in the (x, y) plane from (0, 0) to (2m, 0)
with steps (1, 1) and (1,−1) that never pass below the x-axis.

6. (Me(α, γ, β))2 = 2γ Iγ+1, where Iγ denotes the γ× γ identity matrix.

7. The determinant |Me(α, γ, β)| = (−2)tγ , where tγ = γ(γ+1)
2 denotes the γth triangular

number.

Proof.

1. The first item follows from the identity

Me(B((α, γ− α), f 1
α , f 2

γ+1)) = s(1) + t(1), where

s(x) = xMe(B((α− 1, γ− α), f 1
α , f 2

γ)),

t(y) = yMe(B((α, γ− α− 1), f 1
α , f 2

γ)).

(13)

2. (Induction) Suppose that entries of a n× n-matrix B are obtained from entries of an
(n− 1)× (n− 1) matrix A via the property 1 and that entries of matrix A satisfy the
property 2. According to the description, it suffices to prove that b9 = b5 + b6 + b10.
Indeed,

A =

a1 a2 •
a4 a5 •
a7 a8 •

 B =


• • • •
b5 b6 • •
b9 b10 • •
• • • •


Suppose that matrix A satisfies property 2, i.e., Me(α− 1, γ, β− 1) +Me(α, γ, β) +
Me(α, γ, β + 1) = Me(α− 1, γ, β + 1). Thus,

a4 + a7 = (a1 + a2 + a5) + (a4 + a5 + a8), (14)

a4 + a7 = (a1 + a4) + (a2 + a5) + (a5 + a8), (15)

therefore,

a4 + a7 = b9, a1 + a4 = b5, a2 + a5 = b6 and a5 + a8 = b10, (16)

b9 = b5 + b6 + b10 (see identities (14) and (15)).
3. The identity is a direct consequence of property 1. Note that

Me(α, γ, β− 1) = Me(α− 1, γ, β− 2) +Me(α, γ, β− 2) =
∑

h∈N
(−1)h(j−1

h )(β−2−γ
α−h−2) + ∑

h∈N
(−1)h(γ−1

h )(β−2−γ
α−h−1) = ∑

h∈N
(γ−1

h )[(β−2−γ
α−h−2) + (β−2−γ

α−h−1)] =

∑
h∈N

(−1)h(γ−1
h )(β−1−γ

α−h−1) = Me(α, γ, β− 1).

4. If we proceed by induction, assuming that the assertion is true for any matrix
Me(α, ι, γ), 1 ≤ ι ≤ β− 1, then it holds that Me(0, γ− 1, β− 1) +Me(0, γ− 1, β) =

Me(0, γ, β) = (γ−1
β−1) + (γ−1

β ) = (γ
β).

5. It follows from the identity Cm = Me(1, 2m + 1, m), where Cm = 1
m+1 (

2m
m+1) is the mth

Catalan number.
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6. By construction, we note that if Re
α0

(Ce
γ0

) is the α0th row (γ0th column of Me(α, γ, β)).,
then the inner product

〈Re
α0

, Ce
γ0
〉 =


γ

∑
ι=0

(γ+1
ι ), if α0 6= γ0,

0, otherwise.

7. |Me(α, γ, β)|2 = (±|Me(α, γ, β)|)2 = 2γ(γ+1)

The following Corollary 1 uses the properties given in Theorem 4 to obtain explicit
solutions of some linear and nonlinear systems of differential equations.

Corollary 1. If i2 = −1, cos(Me(α, γ, β)t) = eitMe(α,γ,β)+e−itMe(α,γ,β)

2 , sin(Me(α, γ, β)t) =
eitMe(α,γ,β)−e−itMe(α,γ,β)

2 . And tg(Me(α, γ, β)t) = sin(Me(α, γ, β)t)(cos(Me(α, γ, β)t))−1. Then

1. cos(Me(α, γ, β)t) is a solution of the linear system of differential equations

X′′(t) + 2γ−1X(t) = 0. (17)

2. tg(Me(α, γ, β)t) is a solution of the nonlinear system of differential equations

X′(t)− X2(t)Me(α, γ, β)t = Me(α, γ, β)t. (18)

Proof. It suffices to note that

etMe(α,γ,β) =
1

2
B−1

2
Sh(2

γ−1
2 t)Me(α, β, γ) + Ch(2

β−1
2 t)Iγ,

e−tMe(α,γ,β) = − 1
2γ−12

Sh(2
γ−1

2 t)Me(α, γ, β) + Ch(2
β−1

2 t)Iγ,

d
dt
(etMe(α,γ,β)) = Ch(2

k−1
2 t)Me(α, γ, β) +

2
β−1

2

2β−1 Sh(2
β−1

2 t)(Me(α, γ, β))2 =

Me(α, γ, β)(Ch(2
β−1

2 t)Iγ +
1

2
β−1

2

Sh(2
γ−1

2 t)Me(α, γ, β)) =

Me(α, γ, β)etMe(α,γ,β).

d
dt
(e−tMe(α,γ,β)) = −Ch(2

γ−1
2 t)Me(α, γ, β) +

2
γ−1

2

2γ−1 Sh(2
γ−1

2 t)(Me(α, γ, β))2 =

Me(α, γ, β)(−Ch(2
γ−1

2 t)Iγ +
1

2
γ−1

2

Sh(2
γ−1

2 t)Me(α, γ, β)) =

−Me(α, γ, β)e−tMe(α,γ,β).

(19)

where Sh(x) (Ch(x)) denote the usual hyperbolic sine (cosine) function.

4. Cayley Hash Values of Brauer Messages Associated with the Plane

In this section, we compute and analyze Cayley hash values of Brauer messages
Me(B(r, s), f 1

α , f 2
γ).

Cayley hash functions are examples of provably secure hash functions. The following
Algorithm 2 allows building a hash function from an expander Cayley graph:
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Algorithm 2: Construction of a Cayley hash

• Fix a finite (semi)group H with a set of generators s with the same size as the text
alphabet A.

• Choose an injective function f : A→ s.
• The hash function of the text or word x1x2 . . . xk is the (semi)group element

f(x1)f(x2) . . . f(xk).

Remark 3. Note that, under these circumstances, message specializations e : B0((x, y), f 1, f 2)→
C, as those defined in Remark 2 with e(x) = i and e(m) = −i, are nothing but Cayley hash
functions if f 1 = f 2. In such a case, we assume that H is the group of nth roots of unity for n > 1
fixed.

As an example of the setting posed in Remark 3. We assume n = 4, H = {1,−1, i,−i},
and s = {i = e(x),−i = e(m)}. Thus, up to permutation Me(B(2, 1),−x + 3,−x + 3) =
xxmxmxmxx |x=i,m=−i= i is the corresponding Cayley hash.

Figure 9 shows the Cayley graph defined in Remark 3. Labels of the arrows are given

by the set s = {i,−i}, i.e., the arrow a b→ c denotes the identity ab = c.

Figure 9. Example of a Cayley graph associated with the 4th unity roots, with s = {i,−i}.

It is worth pointing out that Tillich and Zémor introduced hash functions associated
with the special group Sl(2,R) with R = Z2[x]/(p(x)) ∼= Zn

2 , where p(x) is an irreducible

polynomial of degree n over Z2. A0 =

[
x 1
1 0

]
and A1 =

[
x x + 1
1 1

]
are the

generators of the Tillich–Zémor hash function. In such a case, if M = m1m2 . . . mk ∈ {0, 1}∗,
then the corresponding Tillich–Zémor hash function H : {0, 1}∗ → Sl(2,R) assigns the
matrix product Am1 Am2 . . . Amk mod p(x), mi ∈ {0, 1} to the message M = m1m2 . . . mk ∈
{0, 1}∗.

The Tillich–Zémor ideas were generalized by Sosnovski [2], who introduced the
semigroup generated by the linear functions f0(x) = 2x + 1 and f1(x) = 3x + 1 over the
field Zp with p > 3. Her algorithm (Algorithm 3) goes as follows:
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Algorithm 3: Sosnovski hash function.

• Consider the matrices A0 =

[
2 1
0 1

]
and A1 =

[
3 1
0 1

]
.

• Apply the assignment 0→ A0, 1→ A1.
• Compute h(b1b2 . . . bk) = Ab1 Ab2 . . . Abk

mod p.
• The associated linear function has the form L(x) = rx + s.
• The hash value has the form (r + s, s).

According to Sosnovski [2], a binary text is associated with a directed path P in the
Cayley graph generated by f0 and f1 (the initial vertex s(P) of P is given by the identity).
Her algorithm hashes a bit string with a time complexity of at most 2n multiplications and
2n additions in Fp. In Zp, each addition (multiplication) requires O(log p) (O(log2 p)) bit
operations. Thus, if p ≈ 2m for m fixed, then the number of bit operations to evaluate a
hash value of an n bit string is O(m2n).

The family of hash functions has the following properties:

• Variable size input and fixed output size.
• The Cayley graphs of the semigroup have relatively large girth.
• Efficient computation.
• Pseudorandom.
• Collision resistant.

In this paper, we compute the Sosnovski hash function to the Brauer messages
M(B(x, y), f 1, f 2). To perform this, we apply the assignment x → A0, y→ A1,

m = A−1
0 A1 A0 = A2.

In other words, we obtain specialized Brauer messages

H(M(B(x, y), f 1, f 2)) = H(Me(B(x, y), f 1, f 2) |x=A0,y=A1,m=A2).

For i > 1, the Sosnovski–Brauer hash H(Mi) = hi of a matrix Mi is recursively
obtained by applying the following procedure:

It is worth pointing out that the multiplication of two of these matrices takes O(22,3728596).
Thus, constructing Hi requires O(22,3728596(i+1)) bit operations, which can be reduced by
using Theorem 5 and Sosnovki [2] arguments regarding the complexity of her hash function.

The following algorithm allows obtaining any block Bi
j from the seeds Bi−1

0 and Bi
0.

Henceforth, all the products are assumed to be computed modulo a fixed prime number p.
Python gives the complexity and execution time of the algorithm proposed as O(2n)

and 1.3 × (0.97)n seconds, respectively, if Hi consists of n, 2 × 2 matrices, bearing in
mind that choosing an orientation O(r,s) associated with a Brauer configuration B(r,s) at a
point (r, s) has complexity O(((r+s

s ))2). Such an orientation gives the appropriate matrix
multiplication sequence. For instance, for modulo 2127 − 1, we have that H1 = A0 A1 A0 A2,
where B1

1 = A0 A2.
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B2
0,1 = A0 A0,

B2
0,2 = A1 A0,

B2
0,3 = A0 A1,

B2
0,4 = A1 A1,

B2
0 = A0 A0 A1 A0 A0 A1 A1 A1,

B2
1 = A0 A0 A1 A0 A0 A2 A1 A2,

B2
2 = A0 A0 A2 A0 A0 A2 A2 A2,

H2 = A0 A0 A1 A0 A0 A1 A1 A1 A0 A0 A1 A0 A0 A2 A1 A2 A0 A0 A2 A0 A0 A2 A2 A2.

h2 = (3825661771, 1648879435) = (3825661771, 1648879435) mod 2127 − 1.

(20)

The following Theorem 5 gives formulas for some Sosnovski hash functions associated
with arbitrary products of the matrices A0, A1, and A2 (all the operations are assumed to
be computed modulo a fixed prime number p).

Theorem 5. If j0 = 0, ji, hi ≥ 1,

a11 = 2

m
∑

t=1
j2t−1

3

m−1
∑

t=1
j2t

,

a12 = (2j1 − 1) +
m−1

∑
k=1

2

k
∑

t=1
j2t−1

3

k
∑

t=1
j2t
(2j2k+1 − 1),

a′12 =
m−1

∑
k=1

2

k
∑

t=1
j2t−1

3

k
∑

t=1
j2t−2

(
3j2k−1

2
),

b11 = 3

m
∑

t=1
h2t−1

2

m−1
∑

t=1
h2t

,

b12 =
m

∑
k=1

3

k
∑

t=1
h2t−1

2

k−1
∑

t=1
h2t
(2h2k − 1),

b′12 =
3h1 − 1

2
+

m

∑
k=1

3

k
∑

t=1
h2t−1

2

k
∑

t=1
h2t (3h2k+1 − 1)

2
,

c11 = 2
∑

t≡1mod 3
t≤m

jt

3
∑

t≡0,2mod 3
0<t<m

jt

,

c12 = ∑
k≡1mod 3

k≤m

2
∑

t≡1mod 3
t<k

jt

3

∑
t≡0,2mod 3

0<t<k

jt

(2jk − 1),

(21)

c′12 = ∑
k≡2mod 3

k<m

2
∑

t≡1mod 3
t<k

jt

3

∑
t≡0,2mod 3

0<t<k

jt
(3jk − 1)

2
,

c′′12 = ∑
k≡0mod 3

k<m

2
∑

t≡1mod 3
t<k

jt

3

∑
t≡0,2mod 3

0<t<k

jt
3(3jk − 1)

4
.

Then,

H(Aj1
0 Aj2

1 . . . Aj2m−1
0 ) = (a11 + a12 + a′12, a12 + a′12),

H(Ah1
1 Ah2

0 . . . Ah2m−1
1 ) = (b11 + b12 + b′12, b12 + b′12),

H(Aj1
0 Aj2

1 Aj3
2 . . . Ajm−2

1 Ajm−1
2 Ajm

0 ) = (c11 + c12 + c′12 + c′′12, c12 + c′12 + c′′12), for m = 1 + 3d, d ≥ 0.

(22)
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Proof. It suffices noting that for k ≥ 1:

H(Ak
0) = H(

[
2k 2k − 1
0 1

]
) = (2k+1 − 1, 2k − 1),

H(Ak
1) = H(

[
3k 3k−1

2
0 1

]
) = (

3k+1 − 1
2

,
3k − 1

2
),

H(Ak
2) = H(

[
3k 3(3k−1)

4
0 1

]
) = (

3k+2 − 1
4

,
3(3k − 1)

4
).

(23)

Remark 4. We recall that Cassaigne et al. [24] proved that if A =

(
a 0
0 1

)
, B =

(
b 1
0 1

)
,

with a, b ∈ Q\{−1, 0, 1}. Then, the semigroup generated by A and B is free if |a| + |b| ≤ 1.
Additionally, there is a prime p for which νp(a)andνp(b) > 0, where νz is the p-adic value
of the number z. Such a result proves that two words in the semigroup generated by matrices

A =

(
a b
0 c

)
and B =

(
a′ b′

0 c′

)
are different if A and B do not commute.

The following result proves that the Sosnovski function is collision-resistant for any
Brauer message Mi, i ≥ 1.

Corollary 2. Let cll(hn) be the number of collisions associated with the Sosnovski hash values of
Brauer messages for a fixed positive integer n. Then, Lim

n→∞
cll(hn) = 0.

Proof. The result holds as a direct consequence of the results described in Remark 4.

5. Experimental Data

This section gives some experimental results obtained by running Python routines
in an Acer Predator Helios (intel core i7, 11th generation). We give execution times for
Sosnovski and Tillich–Zémor hash values of Brauer messages associated with points in
V = R∗ ×R∗. Figure 10 shows the number of bits of the compressed Brauer messages.

Figure 10. The specialized Brauer message given by a product of (i + 1)2i. Sosnovski matrices are
compressed by f (i) = 225.7621855345912 + 0.04323899371069182 bits.
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Tables 2 and 3 give matrices Hi, 1 ≤ i ≤ 3 (see Algorithms 4 and 5), which are
hash values of Brauer messages in the sense of Tillich–Zémor (for x = 1) and Sosnovski,
respectively. These tables also show the number of collisions between these messages for
the prime numbers considered by Sosnovski for her experimental data. Routine 4 in the
appendix gives these values for arbitrary prime numbers and any matrix Hi.

Algorithm 4: Sosnovski –Brauer hash function.

1. For i > 1, 1 ≤ k ≤ 2i, 0 ≤ j ≤ i, and a fixed prime P.

2. Bi
j,k = Aj

h1
Aj

h2
. . . Aj

hi
mod p, Aj

ht
∈ {A0, A1, A2}.

3. Matrix Aj
hi−j is in the jth position of the block Bi

j,k.

4. Define Bi
j = Bi

j,1Bi
j,2 . . . Bi

j,2i mod p.

5. Define Hi = Bi
0Bi

1 . . . Bi
i mod p. Bi

0 is the seed of Hi =

(
ri

11 ri
12

0 1

)
.

6. Define hi = (ri
11 + ri

12, ri
12).

Algorithm 5: Building blocks Bi
j.

1. Define B1
0,1 = A0, B1

0,2 = A1, B1
0 = A0 A1.

2. If 1 ≤ k ≤ 2i−1, then Bi
0,k = Bi−1

0,k A0. If k > 2i−1, then Bi
0,k = Bi−1

0,k mod 2i−1 A1.

3. For 1 ≤ j ≤ i, Bi
j is obtained by replacing any occurrence of A1 ∈ Bi

0
in positions {0, 1, 2, . . . , j} for A2.

Tables 4 and 5 give the execution time to compute Tillich–Zémor and Sosnovski hash
values of the Brauer messages. Figure 10 shows how Brauer messages are compressed by
Sosnovski hash values. Figure 11 shows a comparison between execution times to compute
Sosnovski and Tillich–Zémor hash values of the Brauer messages h3, h4, and h5 for prime
numbers (2127 − 1) to (2257 − 1053) given in Tables 4 and 5.

Table 2. Matrices Hi, 1 ≤ i ≤ 3 give Tillich–Zémor hash values of Brauer messages Mi.

P
Tillich–Zémor Hash

H1 H2 H3 Collisions

2127 − 1
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2137 − 555
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2147 − 387
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2157 − 213
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2167 − 771
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2177 − 919
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2187 − 477
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2197 − 775
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2207 − 429
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2217 − 675
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2227 − 721
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2237 − 949
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2247 − 309
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2256 − 1053
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0
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Table 3. Matrices Hi, 1 ≤ i ≤ 3 are used to compute hash values hi (see Algorithm 4).

P
Matrices Hi Giving Sosnovski Hash Values hi

H1 H2 H3 Collisions

2127 − 1
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2137 − 555
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2147 − 387
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2157 − 213
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2167 − 771
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2177 − 919
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2187 − 477
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2197 − 775
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2207 − 429
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2217 − 675
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2227 − 721
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2237 − 949
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2247 − 309
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

2257 − 1053
( 4 3

1 1
) ( 12239 10101

9039 7460
) ( 182280071328474839 157775084815395758

105888059171015748 91652902014389615
)

0

Table 4. Execution time to compute Tillich–Zémor hash values of Brauer messages.

P
Tillich–Zémor Hash Execution Time

h1 h2 h3 h4 h5

2127 − 1 0.0004341602325439453 0.0006673336029052734 0.006798982620239258 0.03159761428833008 0.06526613235473633

2137 − 55 0.000347137451171875 0.0006449222564697266 0.0022611618041992188 0.013956308364868164 0.05859231948852539

2147 − 387 0.0003173351287841797 0.0006644725799560547 0.0023436546325683594 0.014194965362548828 0.060041189193725586

2157 − 213 0.00032806396484375 0.0006654262542724609 0.002361774444580078 0.016431093215942383 0.06098580360412598

2167 − 771 0.0003294944763183594 0.0006687641143798828 0.0022988319396972656 0.015888214111328125 0.06810140609741211

2177 − 919 0.0004961490631103516 0.0006742477416992188 0.006218671798706055 0.015798568725585938 0.05859708786010742

2187 − 477 0.00031685829162597656 0.0006656646728515625 0.002795696258544922 0.01443624496459961 0.07203435897827148

2197 − 775 0.0003066062927246094 0.0006654262542724609 0.0022869110107421875 0.01398324966430664 0.056220293045043945

2207 − 429 0.0002818107604980469 0.0006542205810546875 0.0022432804107666016 0.014203786849975586 0.05470752716064453

2217 − 675 0.0002760887145996094 0.0006759166717529297 0.0022957324981689453 0.014241695404052734 0.05180048942565918

2227 − 721 0.0002751350402832031 0.0006277561187744141 0.0022869110107421875 0.013881683349609375 0.05261635780334473

2237 − 949 0.00027751922607421875 0.0006544589996337891 0.0023217201232910156 0.014061689376831055 0.06566166877746582

2247 − 309 0.0002579689025878906 0.0006601810455322266 0.0023131370544433594 0.01390981674194336 0.05171465873718262

2257 − 1053 0.0002589225769042969 0.0006580352783203125 0.002287626266479492 0.013902425765991211 0.06003284454345703
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Table 5. Execution time to compute Sosnovski hash values of Brauer messsages.

P
Sosnovski Hash Execution Time

h1 h2 h3 h4 h5

2127 − 1 0.0038597583770751953 0.0007631778717041016 0.004364728927612305 0.01313328742980957 0.04121112823486328

2137 − 55 0.0009815692901611328 0.0007708072662353516 0.003242969512939453 0.013436555862426758 0.043032169342041016

2147 − 387 0.000997304916381836 0.0007264614105224609 0.004378318786621094 0.014588117599487305 0.044119834899902344

2157 − 213 0.0009624958038330078 0.0007927417755126953 0.0033240318298339844 0.019335269927978516 0.041307926177978516

2167 − 771 0.0012710094451904297 0.0008392333984375 0.0033843517303466797 0.013152837753295898 0.04137396812438965

2177 − 919 0.0009815692901611328 0.0006961822509765625 0.0032160282135009766 0.012947797775268555 0.04337811470031738

2187 − 477 0.0009517669677734375 0.0007886886596679688 0.0032584667205810547 0.01270604133605957 0.04137253761291504

2197 − 775 0.001256704330444336 0.0008714199066162109 0.003565073013305664 0.022496700286865234 0.05827641487121582

2207 − 429 0.0009984970092773438 0.0007412433624267578 0.0032558441162109375 0.013258218765258789 0.041890859603881836

2217 − 675 0.0010428428649902344 0.0007922649383544922 0.0033080577850341797 0.01481318473815918 0.041900634765625

2227 − 721 0.0010094642639160156 0.0009601116180419922 0.003567218780517578 0.01440572738647461 0.04564785957336426

2237 − 949 0.003047943115234375 0.0007345676422119141 0.003594636917114258 0.014798164367675781 0.04285454750061035

2247 − 309 0.0010731220245361328 0.0008180141448974609 0.003509044647216797 0.01487278938293457 0.043372392654418945

2257 − 1053 0.0010068416595458984 0.0007958412170410156 0.003288745880126953 0.015767812728881836 0.04678201675415039

Figure 11. Execution time of the Tillich–Zémor and Sosnovski hash values of the Brauer messages
h3 − h5.

Discussion

Brauer messages associated with regions without mutations are nothing but bit strings,
so the Sosnovski algorithm can be applied to obtain their corresponding hash values
without increasing the algorithm’s execution time. On the other hand, the complexity of
such an algorithm is exponential, and the execution time increases for Brauer messages
associated with mutation regions.

Note that the hash values of Brauer messages associated with mutation regions ob-
tained via Sosnovski matrices and their conjugates require fixing an orientation associated
with a Brauer configuration B(r,s) at a point (r, s). To choose such an orientation O(r,s) has
complexity O(((r+s

s ))2).
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6. Concluding Remarks and Future Work

Brauer configuration algebras can be associated to each point (x, y) ∈ R∗ ×R∗. Their di-
mensions can be computed by using appropriated binomial numbers. The same computations
allow giving formulas for their centers. It is worth pointing out that suitable specializations
allow obtaining matrices with applications in several scientific fields. For instance, such
matrices give solutions to linear and no-linear differential equation systems. The specialized
matrices give rise to elements in appropriated semigroups, which we call Brauer messages.
The Sosnovski hash values of these messages are collision-resistant for large enough prime
numbers. However, the execution time for giving such hashes is exponential when applied to
Brauer messages with mutations.

Future Work

The following investigations are interesting tasks to be addressed in the future.

1. To introduce new classes of matrices defined by specializations of variables associated
with general bounded regions.

2. To give explicit solutions for new classes of systems of differential equations by using
specialized Brauer messages.

3. To investigate hash values of Brauer messages associated with more general groups and
semigroups. For instance, there is no up-to-date hash function based on generators of
any of the Thompson groups. These approaches would decrease the complexity and
execution time when computing hash values of Brauer messages arising from mutation
regions.
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Abbreviations
The following abbreviations are used in this manuscript:

B0 Set of vertices of a Brauer configuration B

C Complex numbers field
dimF ΛB Dimension of a Brauer configuration algebra
dimF Z(ΛB) Dimension of the center of a Brauer configuration algebra
hi The Sosnovski hash value associated with a matrix Brauer message Mi
N The set of natural numbers
occ(α, V) Number of occurrences of a vertex α in a polygon V
R The set of real numbers
ti ith triangular number

V(α)
i Ordered sequence of polygons

val(α) Valency of a vertex α

w(V) The word associated with a polygon V
b(x)c The greatest integer less than or equal to x
d(x)e The smallest integer greater than or equal to x
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Appendix A. Python Routines

In this section, we give python routines to compute lattice paths (routine [2]), words
associated with each point (x, y) ∈ R∗ ×R∗, i.e., (routine [3]). In other words, routine [3]
computes the set B(x,y)

1 of the Brauer configuration B(x,y). Routine [4] computes matrices
Hi associated with the semigroup generated by matrices A0, A1, and A2 over Z. Matrices
Hi, execution times, and collisions between hash values of specialized Brauer messages are
computed modulo a prime number p via routine [7].
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Hi associated with the semigroup generated by matrices A0, A1, and A2 over Z. Matrices
Hi, execution times, and collisions between hash values of specialized Brauer messages are
computed modulo a prime number p via routine [7].

[1]: import numpy as np
import itertools
from itertools import permutations
import matplotlib.pyplot as plt
import math
from math import factorial
from copy import deepcopy
import random
from random import sample
import time
import sys
import datetime

[2]: def lattice_paths(n,k,f):
allPaths = [ "".join( x ) for x in itertools.product( "xy", repeat=n+k )

if x.count( "x" ) == n and x.count( "y" ) == k ]
length =1
width= 0.01
head_width = 0.2
x1=np.linspace(-1, n+1, 100)
s=int(factorial(n+k)/(factorial(k)*factorial(n)))
def drawPath(ax,path):

x = n
y = k
ax.set_aspect(’equal’,’box’)
for d in path:

if d == "y":
dx = 0.0
dy = length
if y-dy>=-x+f:

ax.arrow( x, y, -dx, -dy,
width = width,
head_width = head_width,
color = "blue",
length_includes_head = True)

else:
ax.arrow( x, y, -dx, -dy,

width = width,
head_width = head_width,
color = "orange",
length_includes_head = True)

else:
dx = length
dy = 0.0
ax.arrow( x, y, -dx, -dy,

width = width,
head_width = head_width,
color = "red",
length_includes_head = True )

x += -dx
y += -dy

for i, p in enumerate(allPaths):

ax= plt.subplot(1,s,i+1)
ax.plot(x1, -x1+f,’--’, color=’green’)
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ax.plot(x1, -x1+n+k,’--’, color=’green’)
ax.axis( "off" )
drawPath(ax,p)

[3]: def allwords(n,k,f):
def words(n,k,f,i):

x = n
y = k
length =1
allPaths = [ "".join( x ) for x in itertools.product("xy", repeat=n+k)

if x.count( "x" ) == n and x.count( "y" ) == k ]
s=int(factorial(n+k)/(factorial(k)*factorial(n)))
A=[list(allPaths[i]) for i in range(s)]
for d in range(len(A[0])):

if A[i][d]==’y’:
dx = 0
dy = length
if y-dy>=-x+f:

pass
else:

A[i][d]=’m’
else:

dy = 0
dx = length

x += -dx
y += -dy

return "".join(A[i])
s=int(factorial(n+k)/(factorial(k)*factorial(n)))
allwords=[words(n,k,f,i) for i in range(s)]
return allwords

[4]: A0=np.array([[2,1],[0,1]])
A1=np.array([[3,1],[0,1]])
A2=np.matmul(np.matmul(np.linalg.inv(A0),A1),A0)
def Hash(n,k,f):

Words=allwords(n,k,f)
Codification=[]
for words in Words:

matrix=[]
for letter in words:

if letter==’x’:
matrix.append(A0)

if letter==’m’:
matrix.append(A2)

if letter==’y’:
matrix.append(A1)

Codification.append(matrix)
Hash=[]
for code in Codification:

multiplication=np.identity(2)
for i in range(len(code)):

multiplication=np.matmul(multiplication,code[i])
Hash.append(multiplication)

return Hash
def brauer_message(n,k,f):

Multiplication=np.identity(2)
for matriz in Hash(n,k,f):

Multiplication=np.matmul(Multiplication,matriz)
return print(Multiplication.astype(int))
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[5]: sys.float_info.max
sys.maxsize
def Module_Bigger_numbers(numb,mod):

division=math.floor(numb/mod)
res=numb-division*mod
return int(res)

def Mult_matrix(matrix1,matrix2):
Mult=[[0,0],[0,0]]
for i in range(2):

for j in range(2):
for k in range(2):

Mult[i][j] += int(matrix1[i][k] * matrix2[k][j])
return Mult

def Num_bit(a,b,mod):
sum=a+b
s=Module_Bigger_numbers(sum,mod)
sum_bit=sum.bit_length()
b_bit=b.bit_length()
return sum_bit+b_bit

[6]: def collision(List_Hash):
Colision=[]
numcolision=[]
for k in range(len(List_Hash)):
List_Hash_copy=deepcopy(List_Hash)
#print(’Hashcopy’,Hashcopy)
Messages=[]
#print(p,Hashcopy)
for i in range(len(List_Hash_copy)):

for j in range(len(List_Hash_copy)):
if i!=j and i<j:

if np.array_equal(List_Hash_copy[i],List_Hash_copy[j])==True:
Messages.append([List_Hash_copy[i],List_Hash_copy[j],i,j])

Colision.append(Messages)
#print(Mensajes)
numcolision.append(len(Messages))
return numcolision

[7]: List_Hash=[]
Number_seed=[]
def Block_Hash(A0,A1,b,prime_list):

List_Hash=[]
Mod=[prime_list]
Time=[]
Collision=[]
c=0
Bit=[]
for k in range(len(inv)):

numb_matrix=0
list_h=[]
BBit=[]
times=[]
#print(Mod[k])
st = time.time()
mod=Mod[k]
A0=A0.astype(int)
A1=A1.astype(int)
A20=np.multiply(np.linalg.det(A0),np.linalg.inv(A0))



Computation 2022, 1, 164 29 of 31
Computation 2022, 1, 0 29 of 31

A20=A20.astype(int)
#print(A20)
H=np.matmul(np.matmul(A20,A1),A0)
A2=np.multiply(inv[k],np.matmul(np.matmul(A20,A1),A0))
for i in range(2):

for j in range(2):
A2[i][j]=Module_Bigger_numbers(A2[i][j],mod)

#print(A2)
Id=np.identity(2)
Matrix=[A0,A1,A2]
Seed=[A0,A1]
HH=[A0,A1,A0,A2]
H1=Id
seed=[]
for i in HH:

H1=Mult_matrix(H1,i)
numb_matrix+=1

seed.append(numb_matrix)
for i in range(2):

for j in range(2):
H1[i][j]=Module_Bigger_numbers(H1[i][j],mod)

print(H1)
et=time.time()
elapsed_time=et-st
times.append(elapsed_time)
bit=Num_bit(H1[0][0],H1[0][1],mod)
BBit.append(bit)
cont=2
list_h.append(H1)
for k in range(b):

numb_matrix=0
st = time.time()
#print(’Start time’,st)
Block_seed=[]
Seedc=deepcopy(Seed)
if len(Seed)==2:

for i in range(2):
for j in range(len(Seed)):

Block_seed.append([Seed[j],Matrix[i]])
else:

for i in range(2):
for j in range(len(Seedc)):

Seedc[j].append(Matrix[i])
Block_seed.append(Seedc[j])

Seedc=deepcopy(Seed)
List_Block_mutations=[]
next=0
position=len(Block_seed[0])
Block_seedc=deepcopy(Block_seed)
while next!=position:

Block_mutations=[]
for i in range(len(Block_seedc)):

Block=[]
if np.array_equal(Block_seedc[i][position-1-next],A1)==True:

Block_seedc[i][position-1-next]=A2
for j in range(len(Block_seedc[i])):

Block.append(Block_seedc[i][j])
Block_mutations.append(Block)
for s in Block:
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List_Block_mutations.append(s)
Block_seedc=Block_mutations
next+=1

Hashmessage=Id
for m in Block_seed:

for n in m:
Hashmessage=Mult_matrix(Hashmessage,n)
numb_matrix+=1
for i in range(2):
for j in range(2):

␣
↪→Hashmessage[i][j]=Module_Bigger_numbers(Hashmessage[i][j],mod)

Hm=Hashmessage
for t in List_Block_mutations:

Hm=Mult_matrix(Hm,t)
numb_matrix+=1
for i in range(2):

for j in range(2):
Hm[i][j]=Module_Bigger_numbers(Hm[i][j],mod)

seed.append(numb_matrix)
print(Hm)
list_h.append(Hm)
Seed=Block_seed
et= time.time()
elapsed_time=et-st
bit=Num_bit(Hm[0][0],Hm[0][1],mod)
BBit.append(bit)
times.append(elapsed_time)
cont+=1

List_Hash.append(list_h)
Number_seed.append(seed)
Time.append(times)
Bit.append(BBit)
coll=collision(list_h)
Collision.append(coll)
c+=1

return List_Hash,Time, Bit, Collision, Mod, Number_seed
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