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Abstract: Processing noise online in sensors-based measurement data (SMD) and mitigating the
effect of domain drift are always challenges. As a result, it negatively impacts the effectiveness and
feasibility of data-driven model (DDM)-based mechanical-system fault identification (MFI). Here,
we propose an online bearing fault diagnosis method named ANFIS-BFDM by using an adaptive
neurofuzzy inference system (ANFIS). Reduction in the influence of domain drift between the source
domain and target domain (DDSTD) is considered in both the data processing and fault identification.
Online solutions for preprocessing SMD and exploiting the filtered data to label the target domain are
presented in a fusion domain deriving from the source and target domains. First, in the offline phase,
frequency-based splitting of SMD into different time series is performed to cancel the high-frequency
region. An optimal data screening threshold (ODST) is distilled in the remaining low-frequency data
to develop an impulse noise filter named FIN. An ANFIS then identifies the dynamic response of
the bearing(s) via the filtered data. The FIN and ANFIS are finally exploited during the online phase
to filter noise and recognize the object’s health status online. The survey results reflect the positive
effects of the method, even if severe impulse noise appears in the databases.

Keywords: bearing fault diagnosis; deep-learning-based fault identification; AI-based fault diagnosis

1. Introduction

The vibration signal contains meaningful information about the appearance of fault/
damage on mechanical systems [1,2]. Therefore, it has been widely used for DDM-based
MFI [3–6]. Accordingly, a data matrix Xs labeled via vector ys (called source domain) is
built in the offline phase to identify the dynamic response of the managed mechanical
object (MMO), whereas a data matrix Xt (called target domain) is set up online to reflect
the dynamic behavior of the MMO at the survey time. With advantages in managing
inaccurate and uncertain databases, fuzzy logic (FL) and artificial neural networks (ANN)
are employed extensively for this approach [7–10]. Reality has shown that a fit fuzzy-set
space for FL and a suitable net structure for ANN need to be pre-estlablished in each
application. However, a satisfactory response to these requirements is often a considerable
challenge [11]. Additionally, processing noise online in SMD and mitigating the negative
effect of domain drift between Xs and Xt are always difficult [12,13].

ANFIS is a fuzzy model that is set up automatically through the ANN’s training
process. Due to being able to partly subdue the inherent difficulties of FL and ANN, it has
been widely used, including the AI-based fault diagnosis [7,10]. ANFIS can also collaborate
with singular spectrum analysis (SSA) successfully in applications related to time series [11].
In such an approach, filtering noise in measured data or seeking information in data series
are typical applications [14–16]. For example, a continuous hidden Markov model to extract
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the bearing fault features relies on the singular features via SSA [17], or processing data for
an ANFIS-based classification derives from SSA [11].

Noise in measurement data related to the measurement method and instrument errors,
false observations, changing environmental conditions, or random aspects cause random
IN (impulse noise). There is, however, still no sufficiently strong solution for canceling IN
in measured data [18]. This difficulty is because IN occurs randomly related to a group of
factors whose circumstances and the mechanism that affects measurement accuracy are
unknown; the source of these errors is unclear and not easy to find. Nguyen et al. [19]
presented a method of filtering random noise and IN in data derived from the dynamic
response of smart dampers such as magnetorheological and electrorheological dampers.
The filter relied on an optimal data screening threshold quantified via clustering results.
Unfortunately, its narrow application scope is only the databases derived from the dynamic
response of smart dampers.

Along with the negative impact of noise, DDSTD in the databases for MFI always
exists, which reduces the effectiveness and feasibility of DDM-based MFIs in practical
applications. In many cases, DDSTD is the main cause for a method with appropriate
accuracy in the theoretical investigation, but not in its applications with practical operating
conditions. It is the strong motivation attracting researchers to pay attention to seeking
solutions for domain adaptation (DA) to take part in compensating adaptively for domain
drift [3–6,13]. Li et al. [3] proposed a bearing fault diagnosis based on ANN and cross-
domain. Wu et al. [4] showed a method of bearing fault diagnosis that trained an ANN
from the cross-domain to reduce the distribution difference between the source domain and
target domain in each data channel. Another DA, called transfer Component analysis (Pal
et al. [13]), was also applied effectively for pattern analysis. It learned transfer components
across domains in a reproducing kernel Hilbert space. In the subspace spanned by these
transfer components, data properties are preserved, and data distributions in different
domains become closer to each other. However, either generating the fake samples as
shown by Li et al. [3] or adjusting the ANN weights by Wu et al. [4] leads to a disadvantage
related to the cumulated error from the network-based MFIs. It is exacerbated under the
influence of noise. Additionally, the impact of IN is the considerable difficulty encountered
in the method of transfer component analysis, as shown by Pan et al. [13].

Consequently, we propose an online bearing fault diagnosis method relying on ANFIS,
named ANFIS-BFDM in this research, by seeking fit solutions for the aspects noted above.
Namely, we (i) set up a fusion domain deriving from the source and target domains,
and (ii) carry out tasks of processing measured data and exploiting the filtered data to
classify/label uXt via solutions understood as performing embedding processes in the
fusion domain, X f = Xs ∪ lX

t, where lXt ⊂ Xt is the data matrix containing the labeled
samples (in the label vector ly

t) corresponding to the bearing’s healthy condition, and the
remainder in Xt denoted uXt is the unlabeled samples. These works can partially diminish
the influence of DDSTD in data processing and fault identification. The ANFIS-BFDM
has offline and online phases. First, in the offline, frequency-based splitting of SMDs into
different time series is performed to cancel the high-frequency region. An optimal data
screening threshold ODST is then distilled in the remaining low-frequency data, to which
we develop an impulse noise filter named FIN. From SMDs processed by the FIN, the
dynamic response of the managed bearing(s) is identified via an ANFIS. Finally, we exploit
the FIN and the trained ANFIS in the online phase to filter noise and recognize the object’s
health status online.

The three main contributions of this study follow. The first is the FIN. It follows the
idea shown by Nguyen et al. [19], where the change in the distribution of the cluster data
space built from the measured data stream is employed to catch IN. However, instead
of focusing on the source domain only as in this reference, we seek the change in the
embedding data space called the fusion domain. It relies on an observation that the fusion
domain can track the measured data stream better than the source domain. The reason is
the existing domain drift between the source and target domains.
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The second contribution is a solution of combination between SSA and the filter FIN
to extend the frequency range of processed data. This aspect is a vital supplementation for
the previous research [11], where the high-frequency noise is filtered only.

The third contribution is the algorithm ANFIS-BFDM for identifying damage of the
bearing(s). It consists in processing SMD streams based on SSA and the FIN, establishing a
multifeature from the processed data, and the ANFIS-based interpolation (1), where the
ANFIS takes the role of a mapping from the fusion domain X f to the target domain Xt:

ANFIS : X f → Xt

uXt 7→ ^
y = ANFIS (uXt),

(1)

where
^
y is the output vector of the ANFIS corresponding to the input uXt. In this relation-

ship, instead of using a data-driven model to identify the source domain Xs, as shown by
Lei et al. [10] and Tran et al. [11], we exploit X f to make the negative impacting degree of
domain drift between the source and target domains weaken.

During this paper, we use the abbreviations and symbols in Table 1.

Table 1. Abbreviations and symbols.

Abbreviation Full Phrase Symbol Meaning

ANFIS Adaptive neurofuzzy inference system dak Convergent degree
ANFIS-BFDM BFDM based on ANFIS dk Dispersion of data points in the k-th cluster
BFDM Bearing fault diagnosis method L Length of time series transformed by the SSA
CDS Cluster data space H Number of considered fault statuses
DA Domain adaptation p Number of time series transformed by the SSA
DDM Data-driven model q Number of low frequency series deriving from SSA

DDSTD Domain drift between the source domain
and target domain P̃0

Number of the established samples corresponding
to only one health’s single status of the managed
object

FIN Impulse noise filter Rk Normalized distribution radius
MFI Mechanical system fault identification RA(k) Distribution radius of k-th data cluster
ODST Optimal data screening threshold Xs Data matrix in the labeled source domain
SMD Sensors-based measurement data Xt Data matrix in the target domain
SSA Singular spectrum analysis lXt Labeled samples in Xt

IDS Initial data set uXt Unlabeled samples in Xt

IN Impulse noise ys Label of the source domain

ly
t Label of lXt

Γk The k-th data cluster

2. Related Works

Let us consider a given initial data set (IDS), IDS :
(

X(
¯
x i) ∈ <P×n, y(yi) ∈ <P×1

)
consisting of input–output data points

(
¯
x i, yi

)
,i = 1 . . . P, where

¯
x i = [xi1, . . . , xin] ∈ <n

belongs to the input data space X and yi ∈ <1 belongs to the output data space y. The IDS
is a measured database with noise, including random and impulse noise (IN), expressing
an unknown mapping f : X→ Y.

This section shows (i) an approximation of the mapping f using ANFIS, and (ii) the
method for filtering IN based on ANFIS. These contents are exploited in the proposed
theory, described in Section 3.

2.1. Building ANFIS from a Database

The algorithm named ANFIS-JS (Nguyen et al. [16]) for building an ANFIS from the
joined input–output data space IDS is presented here. It is exploited in Section 3 to (i) set up
a cluster data space (CDS) for our proposed filter (named FIN) for filtering IN in mechanical
vibration databases, and (ii) build ANFISs for our proposed method of DDM-based fault
diagnosis. The algorithm for kernel fuzzy C-means clustering with kernelization (KFCM-K)
(Marcelo et al. [20]) is adopted here. Accordingly, clusters Γk, k = 1 . . . C, are established
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through seeking cluster centers
¯
x

0

1, . . . ,
¯
x

0

C (
¯
x

0

i = [x0
i1, . . . , x0

in] ∈ <n) in the input space
such that JKFCM(.)→ min, where

JKFCM

(
µij,

¯
x

0)
=

C
∑

i=1

P
∑

j=1
µij

m
∥∥∥∥φ(

¯
x j)− φ(

¯
x

0

i )

∥∥∥∥2

subjected to
(

µij ∈ [0, 1] ∀i, j ; ∑C
i=1 µij = 1 ∀j

)
,

(2)

φ(.) is the kernel function and m > 1 is the fuzzy factor. In the case of using Gaussian

kernel function K(.), the update law of the cluster centroids
¯
x

0

1, . . . ,
¯
x

0

C and the membership
degree of the j-th data point for the i-th cluster (µij) can be inferred from (2) as follows:

¯
x

0

i =
∑P

j=1 µij
m ¯

x j K(
¯
x j,

¯
x

0

i )

∑P
j=1 µij

m K(
¯
x j,

¯
x

0

i )

, (3)

µij =



( C
∑

h=1

1−K(
¯
x j ,

¯
x

0

i )

1−K(
¯
x j ,

¯
x

0

h)

)1/(m−1)
−1

if
¯
x j 6=

¯
x

0

i

1 (and µik(k 6=j) = 0) if
¯
x j =

¯
x

0

i
(i = 1 . . . C; j = 1 . . . P).

(4)

The hard distribution in the CDS can be set up. The j-th data point is called to be
distributed hardly into the q-th cluster if µqj = max

h=1...C

(
µhj

)
. In this hard distribution, the

created data clusters are the so-called hard clusters.

2.2. Optimal Data Screening Threshold

This subsection summarizes the algorithm AfODST (Nguyen et al. [19]) called Algo-
rithm 1 in this paper. The algorithm takes part in the proposed new filter named FIN in the
following section.

2.2.1. Related Definitions

First, the given IDS is re-formed as a new database: IDS :
(

RX ∈ <P×(n+1), y ∈ <P×1
)

,
in which

RX =

{
¯
x i ỹi =

yi
max|yi|

}
= {xi1 xi2 . . . xin ỹi}, i = 1 . . . P. (5)

By using the algorithm KFCM-K for RX, a CDS of C data fuzzy clusters signed Γk,
k = 1 . . . C, is obtained.

Definition 1. (Convergent degree). Convergent degree dak of Γk is defined as follows:

dak (k = 1 . . . C) =
{

1− ( p̃− pk)/ p̃ if p̃ > pk
1 if p̃ ≤ pk,

(6)

where p̃ = P/C, and pk is the number of data points to be distributed hard in Γk, k = 1 . . . C.

Definition 2. (Distribution radius). Distribution radius of data cluster Γk, signed RA(k) is defined:

RA(k) =

(
1
pk

P

∑
q=1

µkq(
¯
xq)

∥∥∥∥¯
xq −

¯
x

0

k

∥∥∥∥2)0.5

, k = 1 . . . C, (7)
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where µkq(
¯
xq) is the membership degree of the q-th data point belonging to the k-th cluster to be

estimated by (4);
∥∥∥∥¯

xq −
¯
x

0

k

∥∥∥∥ is the Euclidean distance between data point
¯
xq and cluster centroid

¯
x

0

k . The normalized distribution radius Rk is defined as follows:

Rk = RA(k)/max
h

(
RA(h)

)
, k = 1 . . . C, h = 1 . . . C. (8)

Remark 1. The distribution radius Rk in Definition 2 is normalized to remove the dimension.
Based on this approach, the filter FIN proposed in Section 3 can match with different numerical
databases well.

Definition 3. (Data dispersion). The dispersion of data points in the k-th cluster signed dk is then
defined:

dk = Rktanh
(

ηRkdak
−1
)

, k = 1 . . . C, (9)

where 1 < η ≤ η = 0.5πC/∑C
k=1 Rkdak

−1 is an experience formula.

2.2.2. The AfODST

IDS :
(

RX ∈ <P×(n+1), y ∈ <P×1
)

can be redepicted

〈input− output〉 = 〈RX − y〉 (10)

From a given IDS, ODST-trainset and ODST-testset are set up. They are the two
distinct datasets with the same size and input–output structures as shown in (10). Then,
an ANFIS named ANFIS_train (with C1 input data clusters in the input cluster data space
iCDS1) is built from ODST-trainset; also, an ANFIS_test (with C2 input data clusters in
the input cluster data space iCDS2) is set up based on ODST-testset. In these works, the
algorithm ANFIS-JS is adopted for establishing CDSs. From iCDS1, dk, k = 1 . . . C1, (9)
is estimated. One then (i) seeks the m-th cluster satisfying dm = max

i=1...C1
di, (ii) removes

this hard cluster along with all the data points hard distributed in it, and (iii) updates the
ANFIS_train net based on the remaindered clusters in iCDS1. The result obtained is the
updated ANFIS_train net denoted uANFIS_train, filtered ODST-trainset denoted fODST-
trainset, and C1 := C1 − 1. Similarly, one gets uANFIS_test from ANFIS_test, fODST-
testset from ODST-testset, and C2 := C2 − 1. The input of fODST-testset is eventually
used for uANFIS_train to calculate the error, Equation (11), where ŷj is the j-th output of
uANFIS_train.

E =
(
∑P

j=1 (ŷj − yj)
2/P

)0.5
. (11)

This loop process is carried out until E(h) ≈ E(h− 1). As a result, the ODST is the
value of dm = max

i=1...C1
di at the (h − 1)-th loop. This content can be depicted via the two

procedures and Algorithm 1 below.

Procedure 1. (For probing and removing IN). At the h-th loop, calculate dk ≡ dk(h) using
Equation (9) for iCDS1 (C1 clusters) and iCDS2 (C2 clusters). For iCDS1: look for the cluster satis-
fying dm1(h) = max

k=1...C1
dk(h); cancel this cluster and its data points, and restructure ANFIS_train;

fODST-trainset, uANFIS_train, and C1 := C1 − 1 are the obtained results. For iCDS2: similarly,
look for the cluster satisfying dm2(h) = max

k=1...C2
dk(h), cancel this cluster along with its data points,

and restructure ANFIS_test; fODST-testset, uANFIS_test, and C2 := C2 − 1 are the ones coming
from this phase.

Procedure 2. (for quantifying the ODST). The input of fODST-testset is used for the uANFIS_train
to calculate E(h) (11). The loop is to be continued if E(h) < E(h− 1). Otherwise, if E(h) ≈
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E(h− 1): stop this process and fix ODST : = dm1(h− 1). C1 corresponding to this loop is called
C f inish

1 .

Algorithm 1 The AfODST (Nguyen et al. [19])

Input: IDS :
(

RX ∈ <P×(n+1), y ∈ <P×1
)

(10)

Output: The ODST of the IDS (together with [E], [h], Cbegin
1 and C f inish

1 )

1. Build ODST-trainset and ODST-testset.
2. From ODST-trainset, ODST-testset and [E]: set up ANFIS_train (iCDS1, C1 clusters) and

ANFIS_test (iCDS2, C2 clusters).
3. Determine the ODST: ODST := 0; h := 0

While ODST = 0 and h ≤ [h]
h := h + 1; at the h-th loop:
(a) Perform Procedure 1
(b) Perform Procedure 2

End While
(c) Save the ODST, [E], [h], Cbegin

1 and C f inish
1 ; Stop.

3. Proposed Method of DDM-Based Fault Diagnosis
3.1. Proposed Filter FIN for Cancelling IN

Based on Algorithm 1 to quantify the ODST, the ODST-based filter named ODSTbF
has been presented in [19]. However, its application scope is only the databases describing
the dynamic response of smart dampers, such as MR or ER dampers. In this subsection, we
propose a new filter called FIN for filtering IN in any mechanical vibration database in the
form (10) for the fault diagnosis of mechanical systems. The FIN’s approach relies on two
vital observations, as follows.

1. The first observation. For DDM-based mechanical-system fault diagnosis, in general, a
labeled source domain (Xs, ys) is built to describe the dynamic response of the system
in the training phase while a target domain Xt is set up in the system’s operating
process that provides dynamic response information of the system at the survey time,
where Xs and Xt are matrixes of data samples and ys is the label vector of Xs. The
fact that there are labeled samples lXt (their label is ly

t) in Xt corresponding to the
managed object’s healthy status, then the remainder uXt (uXt ∪ lXt = Xt) is the
unlabeled samples. The fault identification here is to classify/label uXt based on the
labeled samples.

2. The second observation. Although a domain drift between the source and target
domains always exists, the difference between the data correlation in the database
(Xs ∪ Xt) without noise compared with that with INs can be recognized via their data
distribution status.

Let us consider a data matrix X with noise satisfying the three following aspects. (i) It
derives from source/target domain of the surveyed mechanical system. (ii) It is in the form
of lX

t such as uXt (including lX
t) or the individual parts in Xs deriving from a certain

single fault status. (iii) Its size must be equal to the size of lXt. The proposed FIN filter for
removing noise in X is then described in Algorithm 2 below.
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Algorithm 2 Filter FIN

Input: (Xs, ys) and (lX
t, ly

t) deriving from the managed mechanical system.
A measured data matrix X with noise as described above
Output: The filtered X

1. Set up an input-output dataset in the form of (10) named IDS_1 (12) where
~
y

s
and l

~
y

t

respectively are the data vectors normalized from ys and ly
t.

2. Determine the ODST of the IDS_1 based on Algorithm 1 such that (i) the ODST-trainset is
selected to be equal to the IDS_1, and (ii) although the ODST-testset is different from the
ODST-trainset, their sizes are similar (see Section 2). (Obtaining: the ODST of the IDS_1
along with Z, Cbegin

1 and C f inish
1 )

3. Establish an input-output dataset named IDS_2 (12) that is in the form of the IDS_1 but
contains X.

4. Filter INs in X

(a) From the IDS_2, build a cluster data space of the clusters Γk, k = 1 . . . C f inish
1 by

initializing C = Cbegin
1 and using the algorithm KFCM-K (Marcelo et al. [20])

(b) Calculate dk from Equation (9) for Γk, k = 1 . . . C f inish
1 , cancel all the clusters (and

their data points) satisfying dk> ODST, and update the data matrix X.

 IDS_1 ≡ 〈input− output〉(1) =
〈(

RX1 = (Xs ∪ ~
y

s
) ∪ (lX

t ∪ l
~
y

t
)
)
−
(

y(1) = ys ∪ ly
t
)〉

IDS_2 ≡ 〈input− output〉(2) =
〈(

RX2 = (Xs ∪ ~
y

s
) ∪ (X∪ l

~
y

t
)
)
−
(

y(1) = ys ∪ ly
t
)〉 (12)

Remark 2. (i) It can be inferred from the first observation that the way of organizing data in IDS_1
and IDS_2 (12) enriches information related to the labeled data samples covering both domains.
This approach allows not only to weaken negative influence of the domain drift between the source
and target domains, but also to increase the difference of data correlation between (Xs ∪Xt) with
IN and (Xs ∪Xt) without IN. It is meaningful to improve the filtering effectiveness, and also allow
for exploiting the ODST (obtained in Step 2) for X (Step 4) deriving from any domain, not only the

source domain but also the target domain. (ii) In (12), operator ∪ in (Xs ∪ ~
y

s
), (lX

t ∪ l
~
y

t
), and

(X∪ l ỹ
t) increases the data dimension (a total of the two data dimensions) without increasing the

number of samples; while ∪ in (.) ∪ (.) and ys ∪ ly
t increases the number of data samples (the total

of the sample numbers) without increasing the data dimension.

3.2. Building Databases for the BFDM
3.2.1. A Multi-Feature

From six the selected single features deriving from Wu et al. [21], we set up a multi-
feature (MF) (13) from the acceleration-sensors-based signal X(ti):

MF(k) =



Xrmsv =
(
(1/N)∑N

i=1 X2(ti)
)0.5

Xmav = max (X(ti))

Xsmrv =
(
(1/N)∑N

i=1

√
X(ti)

)2

Xkc =
1

Xrms4 ∑N
i=1

(
X(ti)− 1

N ∑N
k=1 X(tk)

)4

Xc f = Xmav/Xrmsv

Xrms f =

(
∑N

i=2

.
X

2
(ti)/4π2∑N

i=1 X2(ti)

)0.5


, (13)

where ti is the i-th sampled time and N is the number of sampling points.
In (13), amplitude and energy are reflected by RMSV, MAV, and SMRV, the data’s

distribution situation is expressed via KC and CF, while the RMSF provides the signal’s
varying speed. Another approach, paying attention to analyzing the signal in the time–
frequency domain, was presented by Truong et al. [22]. In this study, we propose a way of
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exploiting the RMSV, MAV, SMRV, KC, CF, and RMSF in the time–frequency domain based
on the method presented by Truong [22] and others. Its advantage is to enrich the obtained
information by considering the single features in individual frequency ranges. The next
subsection details these aspects.

3.2.2. Building Databases

From measurements, we have H vibration datasets (14) in the time domain related to
H, the considered fault statuses:

[D1, D2, . . . , DH ]
T (14)

For Di(1 ≤ i ≤ H), based on SSA we obtain the p time series corresponding to
different frequency ranges as in (15):

[Di1, Di2, . . . , Dip], i = 1 . . . H (15)

Note that p in (15) is the parameter selected by the designer. Because the mechanical
vibration signal is prone to the low-frequency range [11], by placing the eigenvalues in
decreasing order, among the p subsets, we cancel (p-q), the last subsets related to the high-
frequency signal ranges. The remainder time series are employed to build the database as:

[Di1, Di2, . . . , Diq], i = 1 . . . H (16)

The mechanical vibration signal analyzed into frequency-based individual series as
in (16) is then used to describe the source and target domains. Namely, the input space
of the source domain is illustrated by the matrix (17), where L is the length of vector
Dik, k = 1 . . . q, while “R” means the raw data to be exploited.

Xs
R =


D11 · · · · · · D1q

...
. . . . . . ...

... . . . . . .
...

DP01 · · · · · · DP0q

 ∈ <P0×q, P0 = LH. (17)

Note that the health status of the managed mechanical system is not changed signifi-
cantly in a survey cycle. In this cycle, therefore, we can set up the input space of the labeled
and unlabeled raw-data parts of the target with the same length L, as follows:

lX
t
R =


lD11 · · · · · · lD1q

...
. . . . . . ...

... . . . . . .
...

lDL1 · · · · · · lDLq

 ∈ <L×q; uXt
R =


uD11 · · · · · · uD1q

...
. . . . . . ...

... . . . . . .
...

uDL1 · · · · · · uDLq

 ∈ <L×q. (18)

For the output, the j-th fault type is encoded via a certain real number yj. Thus, vectors
ys and ly

t are yielded, which depict the output of the source and the labeled part in the
target domain, respectively.

Subsequently, filtering IN in Xs
R or lX

t
R or uXt

R is performed based on the FIN (see
Section 3.1). These filtered databases are redenoted Xs, lX

t, and uXt, respectively. Building
datasets for training, testing, and checking rely on them. Specifically, by sliding a window
(with a width of N data points) along the columns of the Xs, or lX

t or uXt, such that data for
calculating one value of MF(.) must derive from a health’s single status of the managed
object, we obtain feature matrixes in the form of M(.) in (19):
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M(.) =



MF(1, 1) MF(1, 2) · · · · · · MF(1, kq)
MF(2, 1) MF(2, 2) · · · · · · MF(2, kq)

...
...

. . . . . . ...

MF((P̃− 1), 1) MF((P̃− 1), 2) . . . . . . MF((P̃− 1), kq)
MF(P̃, 1) MF(P̃, 2) · · · · · · MF(P̃, kq)

 ∈ <
P̃×(kq), (19)

where k = 6 is the number of the single features in (13). Let P̃0 be the number of the
established data samples corresponding to only one health’s single status of the managed
object, then P̃ = P̃0 for M(.) deriving from either the lX

t or uXt, while P̃ = P̃0H for M(.)
deriving from the Xs.

To identify the dynamic response of the mechanical system where the managed object
is installed, we build two datasets, one named TrainS for training and the other named
TestS for testing. The form of the TrainS and TestS are shown in (20), in which IDS and ODS,
respectively, denote the input and output data space:

database ≡ [IDS−ODS] ≡
[

M
(
Xs ∪ lX

t)− ¯
y
]

, (20)

where M
(
Xs ∪ lX

t) ∈ <(H+1)P̃0×n comes from (19) and
¯
y ∈ <P×1 comes from (21),

P = P̃0(H + 1), n = kq:

¯
y ≡ y(1) =

[
ys ∪ ly

t]T
=[

1y ∈ <1×P̃0 , . . . , Hy ∈ <1×P̃0 , ly
t ∈ <1×P̃0

]T
∈ <P×1,

(21)

In (21), ty ∈ <1×P0 corresponds to the t-th fault type, t = 1 . . . H.
In fact, the two parameters, L and q in (17) and (18), need to be optimized. Note

that their optimal values are understood as their values such that the fault diagnosis
effectiveness of the ANFIS-BFDM is the best. Because the efficiency of the ANFIS-BFDM is
reflected by the mean accuracy (MeA) (23), so here we adopt the objective function (22) to
optimize L and q:

J(L, q) ≡ MeA(L, q)→ max (22)

MeA =
100×∑H

h=1 true_samplesh

∑H
h=1 total_samplesh

(%) (23)

where h denotes the h-th damage type, h = 1 . . . H, true_samplesh is the number of checking
samples expressing correctly the real status of the bearing(s), while total_samplesh is the
total of the checked samples.

3.3. The ANFIS-BFDM

The proposed ANFIS-BFDM consists of two phases described in Algorithm 3 below.
The first phase is an offline phase to identify the dynamic response of the mechanical
system where the bearing(s) is installed. The second phase is an online phase to estimate
online the bearing(s) health status at each checking time. They are described as follows:
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Algorithm 3 ANFIS-BFDM

Input: Measured data Xs and Xt with noise in the source and target domains.
Output: The Xt to be labeled to reflect the health status of the managed bearing(s).
In the offline phase:
Initialize L, q, and H in Equations (16) and (17).

1. Measure to provide time raw-data series of source and target domains.
2. Build/rebuild the raw input Xs

R(L, q) (17), lX
t
R(L, q) (18) and the output vectors ys and ly

t.
3. Filter IN in Xs

R(L, q) and lX
t
R(L, q) to obtain Xs(L, q) and lX

t(L, q) using the filter FIN

(Section 3.1), then save the key parameters of the FIN to be the ODST, Cbegin
1 and C f inish

1 .
4. Identify the dynamic response of the mechanical system installed the managed bearing(s)

via the Xs
R(L, q) and lX

t
R(L, q):

(a) Set up two different datasets TrainS and TestS in the form of (20);
(b) Train an ANFIS using TrainS and the algorithm ANFIS-JS (Nguyen et al. [16]);
(c) Optimize L and q upon the DE (differential evolution) (Gong and Cai [23]) and a

loop process from Step 2 to Step 4 until the function (22) is minimized. In this
process, TestS is used as the input–output dataset to test the difference between the
output of the ANFIS and the data output.

In the online phase:

5. Measure to build a raw database uXt
R (18).

6. Filter IN in the uXt
R to obtain the uXt upon the FIN with its parameters coming from Step 3.

7. Set up a dataset named CheckS from the uXt that is in the form of M(.) (19),

M(.) = M(uXt) ∈ <P̃0×n.
8. Classify the CheckS to recognize the bearing(s) health status as follows:

(a) Employ the CheckS as the input of the ANFIS to obtain its output
^
y.

(b) The label of the CheckS is d such that Equation 24 below is satisfied.

∥∥∥∥^
y− dys

∥∥∥∥ = min
i=1...H

∥∥∥∥^
y− iys

∥∥∥∥ (24)

4. Evaluating the ANFIS-BFDM
4.1. Establishing Database

We use two data sources of bearing acceleration to evaluate the proposed ANFIS-
BFDM in the three cases, as in Table 2. Data Source 1 derives from Case Western Reserve
University “12k Drive End Bearing Fault Data”, “DE” (drive end accelerometer data), the
fault diameter D1 = 0.014, and the motor load Lk (L0 = 0, L1 = 1HP) (https://csegroups.
case.edu/bearingdatacenter/pages/download-data-file) (accessed on 7 July 2021). Data
Source 2 is measured upon our experimental apparatus detailed in Figure 1, in which the
damage degree (n) and its location are provided at the end of Table 2. In these tables,
BaDnLm, InDnLm, and OuDnLm, respectively, define load degree to be m, damage level to
be n, and damage location to be at the Ball, or Inner, or Outer of the bearing; NM shows the
bearing to be undamaged.

https://csegroups.case.edu/bearingdatacenter/pages/download-data-file
https://csegroups.case.edu/bearingdatacenter/pages/download-data-file
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Table 2. Three surveyed data cases and crack sizes in Case 3.

Three Surveyed Data Cases

Case 1 (Data Source 1) Case 2 (Data Source 1) Case 3 (Data Source 2)

NML0 NML1 NML0
BaD1L0 BaD1L1 BaD1L0
InD1L0 InD1L1 InD1L0
OuD1L0 OuD1L1 OuD1L0

Crack Size in Case 3

Fault Degrees and Their
Location Width (mm) Depth (mm)

BaD1 0.15 0.2
InD1 0.2 0.3
OuD1 0.2 0.3
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Figure 1. Experimental apparatus for measuring vibration signal: motor (1), acceleration sensors
(3) and (5), the surveyed bearings (2) and (4), the module for processing and transforming series
vibration signal (Model: NI-9234) (6), the gearbox and the brake used for changing load (7).

4.2. Estimation Method and Results Obtained

Together with the MeA (23) we also employ the root means square error (RMSE) (25)
to verify the effectiveness:

RMSE =
√

∑P
i=1 (yi − ŷi)

2/P, (25)

where yi and ŷi, respectively, are the encoding and predicting outputs.
We carry out surveys based on the three databases, given in Table 2. In each case, we

select the number of samples to be 2000. Additionally, the optimal value of q for these three
databases is three, as presented below. As a result, due to P̃0 = 2000, q = 3, H = 4, and k = 6,
we obtain P = 10,000, n = 18 (see Equations (20) and (21)) along with the IDS and ODS of the
TrainS and TestS to be IDS ∈ <10,000×18 and ODS ∈ <10,000×1 (for setting up the ANFIS in
Step 4); while the IDS of the CheckS is IDS ∈ <2000×18 (for recognizing the bearing’s health
status in Step 8 of the ANFIS-BFDM).

To increase the severity of impulse noise in the surveys, we include with the measured
data an impulse source called r(t) whose pulse intensity does not exceed 2.4 times the
amplitude of the data such that 5% of the measured data points are impacted by this source.
For this work, each aforementioned random noise signal is added to a certain data point
belonging to 5% of the database randomly but not repeatedly. Figure 2 illustrates the
participation of r(t) in the InD1L1 belonging to Case 2, shown in Table 2.
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As mentioned above, the filter FIN is improved from [19] to manage mechanical
vibration databases. Because the FIN takes a vital part in the proposed ANFIS-BFDM,
we consider the positive role of the FIN and the effectiveness of the ANFIS-BFDM in
their mutual relationship via the RMSE (25) and MeA (23). Accordingly, the answer to
the question concerning the accuracy of the built testing and learning datasets can be
inferred through the RMSE and MeA of the results obtained from ANFIS-BFDM in two
cases, using the FIN and not using the FIN. Regarding the comparison results, we analyze
and compare the fault diagnosis results of the ANFIS-BFDM with/without the FIN and
the corresponding results deriving from some other methods of bearing diagnosis. They
are (i) the IFDUFL (intelligent fault diagnosis using unsupervised feature learning, [10]);
(ii) the BDIM (online bearing damage identifying method based on ANFIS, SSA, and
sparse filtering, [11]); (iii) the CHMM (continuous hidden Markov model for diagnosing
bearing fault, [17]), and (iv) the AfOBSM (algorithm for building a system of online bearing
status monitoring, [22]). The importance of optimizing the ANFIS-BFDM’s parameters
consisting of q and L in Equation (18) and the method for their optimal quantification are
also discussed and addressed through these surveys.

The results obtained from the surveys are shown in Figures 3–5 and Tables 1–5.
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Table 3. The MeA (%) of the ANFIS-BFDM in the three data cases (see Table 2) depends on q (16) (WF:
with the FIN; WOF: without the FIN; the bold: the results when q = qopt = 3).

q
Case 1 Case 2 Case 3

WOF WF WOF WF WOF WF

1 85.83 86.76 87.08 89.96 80.69 87.24
2 97.78 98.68 98.89 98.76 95.97 97.90
3 100 100 100 100 100 100
4 98.89 100 99.86 100 100 99.76
5 88.89 100 97.36 99.67 99.17 100
6 83.33 99.01 96.81 97.98 96.25 97.65
7 82.92 98.45 94.17 98.09 88.47 94.76
8 82.50 96.61 88.75 97.00 88.19 92.19
9 82.64 91.08 88.47 91.75 85.42 90.12

Table 4. The RMSE of the ANFIS-BFDM in the three data cases (see Table 2) depends on q (16) (WF:
with the FIN; WOF: without the FIN; the bold: the results when q = qopt = 3).

q
Case 1 Case 2 Case 3

WOF WF WOF WF WOF WF

1 0.119 0.109 0.170 0.131 0.145 0.119
2 0.103 0.095 0.068 0.045 0.097 0.089
3 0.067 0.043 0.061 0.041 0.075 0.061
4 0.072 0.052 0.062 0.051 0.070 0.076
5 0.117 0.073 0.079 0.047 0.078 0.078
6 0.151 0.102 0.087 0.063 0.094 0.077
7 0.182 0.017 0.083 0.067 0.126 0.098
8 0.193 0.116 0.134 0.089 0.126 0.110
9 0.176 0.123 0.125 0.098 0.143 0.122

Table 5. Lopt corresponding to the single faults.

Source 1 Lopt Source 2 Lopt

NML0/L1 31,600 NML0 49,900
BaD1L0/L1 53,800 BaD1L0 68,500
InD1L0/L1 35,600 InD1L0 51,340
OuD1L0/L1 35,500 OuD1L0 51,500

4.3. Discussion

Some vital points drawn from Figures 3–5 and Tables 3–6 are as follows.

Table 6. Comparing results related to the three datasets in two cases: with/without noise r(t).

Methods

MeA (%)

Case 1 Case 2 Case 3 Case 1
with r

Case 2
with r

Case 3
with r

IFDUFL 100 99.54 95.82 94.34 92.11 90.56
BDIM 96.98 100 100 93.18 92.87 91.01

CHMM 92.19 94.25 94.76 87.56 89.93 84.65
AfOBSM 96.82 98.36 94.55 90.13 93.11 89.73

ANFIS-BFDM 100 100 100 96.87 96.12 94.99

The positive role of the filter FIN for the proposed algorithm ANFIS-BFDM is reflected
clearly by the results in Tables 3 and 4 and Figures 3 and 5. In all the surveyed databases,
the MeAs (23) of the ANFIS-BFDM with the FIN are almost higher than that without the
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FIN; also, the RMSEs (25) of the proposed method with FIN are always lower than that
without the FIN.

The effectiveness of the ANFIS-BFDM depends significantly on the parameter q in
Equation (16). The appropriate selection of this parameter (denoted qopt), therefore, is very
critical. It relates to the reconstruction of SSA and is one of the two necessary conditions
for maximizing the objective function (22). Note that qopt depends on many factors such as
the mechanical characteristics of the health-managed object, its operation condition, and
especially the noise status coming from uncertainties that could not be estimated fully to
filter completely. Therefore, a sufficiently wide range of q must be employed when looking
for qopt to avoid unsatisfactory conclusions. For example, in Case 3 with q = 4, shown
in Tables 3 and 4, the ANFIS-BFDM with the FIN provided even worse results than the
ANFIS-BFDM without the FIN.

The stability of qopt when the operating condition of the mechanical systems is to be
changed can be recognized from the survey results in Tables 3 and 4 or Figures 3–5, namely,
based on the MeA in Table 3: for the dataset “Case 1”, qopt is 3 or 4 or 5; for “Case 2”, qopt
is 3 or 4; for “Case 3”, qopt is 3 or 5. Based on the RMSE in Table 4, for all cases, qopt is 3.
Hence, we select q = 3 for all these datasets.

Note that finding the optimal value (Lopt) of L in (17) is necessary to ensure the
advantages of the proposed method. Meaningful information about the health status of the
mechanical system is lost if L is less than Lopt. Conversely, the calculating cost rises if L is
much higher than Lopt. The survey results obtained from the single damages are shown in
Table 5. As a result, the optimal values of L for datasets combined from single faults are the
maximum value of the constituent ones. For example,

Lopt(NML0/L1, BaD1L0/L1) = 34800. (26)

Finally, the compared results illustrated in Table 6 reflect that, although impacted by
noise, the ability of the proposed method in identifying the fault is the best, in both groups
with/without the added noise r(t).

5. Conclusions

The proposed method of fault diagnosis of rolling element bearings named ANFIS-
BFDM is presented. The online solution for preprocessing measured data and the way
of exploiting the filtered data to label the target domain were our key proposals in this
research. In the offline phase, frequency-based splitting of the stream of measured data
into different time series was performed to cancel the high-frequency region. The optimal
data screening threshold ODST was distilled in remaindered low-frequency data to set
up the impulse noise filter FIN. An ANFIS was trained from the preprocessed data to
identify the dynamic response of the managed bearing(s). In the online phase, the ODST
and ANFIS were employed to filter noise and recognize online the object’s health status,
respectively. Together with the survey results obtained, some aspects can be observed from
the theoretical basis, as follows.

1. This combination of filtering high-frequency noise and IN allows for improving the
processing efficiency and speed, suitable for online applications.

2. The proposed way of organizing data in IDS_1 and IDS_2 (12) of the FIN enriches
information related to the labeled data samples covering both the source and target
domains. It allows not only to weaken the negative influence of the domain drift
between the source and target, but also to increase the difference of data correlation
between with and without IN to improve the filtering effectiveness.

3. As presented in the proposed algorithm ANFIS-BFDM, the ANFIS that takes the role
of the mapping (1) from the fusion domain to the target domain can make the negative
impacting degree of domain drift between the source and target domains weaken.

In short, there are two key advantages of the proposed method: (i) the possibility for
actual applications of the data preprocessing solution based on SSA and the filter FIN in
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online filtering of the measured data, and (ii) the compared effectiveness of the ANFIS-
BFDM in reliably identifying a fault even if severe impulse noise appears in the databases.
These aspects are verified in Section 4.

Finally, despite the strong points, the considerable time delay related to the calculating
cost of this method is also a challenge. The improvement of the delay is the motivation for
the authors’ future research.
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