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Abstract: This work documents the existence of a cointegration relationship between credit spreads,
leverage and equity volatility for a large set of US companies. It is shown that accounting for the
long-run equilibrium dynamic between these variables is essential to correctly explain credit spread
changes. Using a novel structural model in which equity is modeled as a compound option on
the firm’s assets, a new methodology for estimating the unobservable market value of the firm’s
assets and volatility is developed. The proposed model allows to significantly reduce the pricing
errors in predicting credit spreads when compared with several structural models. In terms of
correlation analysis, it is shown that not accounting for the long-run equilibrium equation embedded
in an error correction mechanism (ECM) results into a misspecification problem when regressing a
set of explanatory variables onto the spread changes. Once credit spreads, leverage and volatility
are correctly modeled, thus allowing for a long-run equilibrium, the fit of the regressions sensibly
increases if compared to the results of previous research. It is further shown that most of the cross-
sectional variation of the spreads appears to be more driven by firm-specific characteristics rather
than systematic factors.

Keywords: credit spreads; financial leverage; asset volatility; cointegration; compound options

1. Introduction

Structural models of credit risk have faced several difficulties in explaining both the
level and changes of bond and CDS spreads observed in the data since its pioneering
introduction by [1]. The early empirical work by [2] shows that the Merton model for
callable coupon bonds overprices such bonds. This findings have motivated a variety
of extensions, such as allowing for default before the bond maturity, stochastic interest
rates, jumps, and strategic default. Despite these extensions, the structural approach is still
questioned regarding its ability to explain the level of credit spreads ([3]).

This work attempts at giving an alternative explanation to the (alleged) lack of accuracy
by structural models of default to explain credit spreads. In particular, the most important
finding of the paper is that the documented inability by such models to describe both the
cross-section and the time-series components of the spreads lies first in the type of default
model chosen for the analysis, but mostly in the econometric tools employed for assessing
the goodness to fit of the former.

Given the recent findings in [4] documenting the need of a time-varying volatility of
the asset in order to explain the level of credit spread over medium- and long-term maturi-
ties, a novel estimation technique of a time-varying volatility of the assets is introduced
herein. However, the novel structural model proposed here as well as the related estima-
tion technique are much simpler than the one in [4]. As a matter of fact, their calibration
methodology relies on the Fortet’s lemma, maximum likelihood and Chebychev interpola-
tion in the case of stochastic diffusive asset volatility (and, on top of those, on simulated
maximum likelihood when jumps are introduced). They have 9 parameters, over a total of
12, to estimate. In this paper, even though the asset value process is assumed to follow a
geometric Brownian motion (thus asset volatility is not stochastic), the proposed estimation
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methodology allows to retrace the time series of the asset volatility for a given firm. Hence,
the time series of the equity volatility can be also estimated accordingly.

To help the reader navigate throughout the paper, a brief roadmap of the steps and
findings is provided:

(a) A new structural model is developed along the lines of [1,5]. The model developed
here is an extension of the Merton’s model in which the firm’s equity is priced as an
n-fold compound call option instead of a vanilla call option; this allows to account for
more than one debt maturing at only one future date, which surely is one of the most
evident limitations of the Merton’s model.

(b) A new estimation technique is implemented for those variables which structural
models of default predict to be the drivers for the spreads. More specifically, a simple
estimation which relies only on the joint calibration on the price of the equity and CDS
spreads (and, indirectly, by the book value of the firm’s debt) is proposed to estimate
the value of the firm’s assets alongside its volatility, which are both unobservable
quantities.

(c) Once the asset volatility and the market leverage are estimated, the goodness of
these estimates is tested as their own ability to predict the one-period ahead CDS
spreads. Different combinations of the model parameters are tested in order to obtain
a satisfying calibration.

(d) Finally, an econometric analysis of the determinants of the credit spreads is conducted
using an error correction mechanism (ECM).

The findings in (d) are the most interesting, as, to the best of my knowledge, the inabil-
ity of structural models to explain the level of credit spreads has never been addressed via
cointegration analysis. In fact, previous works such as [6–9] investigated the link between
credit spreads and their determinants via simple linear regressions. There, a set of variables
(usually leverage, equity volatility and characteristics of the term structure of interest rates)
is regressed onto the spreads in order to explain their level and changes. This paper shows
that use of such regressions to explain the level of the spreads (either bonds or CDS) is
intrinsically flawed. As shown later in the paper, the level of credit spreads, as well as other
variables entering the regressions, display a unit root. Therefore, any regression analysis
based on these variables would detect spurious correlations. Hence, the only consistent
way to tackle this problem is investigating the presence of a long-run equilibrium equation
between these variables using an error correction mechanism (ECM), as introduced by [10].
If these variables are cointegrated (that is, if there exists a linear combination of them
which is stationary), an ECM can be estimated and the economic relationship between
them can be further investigated. If the variables are not cointegrated, only the changes in
spreads can be explained by regressing the first differences those variables onto the former
(alternatively, a stationary VAR can be used). The use of an ECM, when possible, is more
desirable, as it allows to shed light on the economic, and not only statistical, relationship
between the variables.

It still appears surprising how previous works fully ignore a possible cointegration,
despite [11] developing a VECM to investigate the cointegration of bond and CDS spreads.
Such analysis is possible only if the time-series component of the spreads is non-stationary.
Here, instead, a cointegration analysis is conducted between the CDS spreads and their
determinants as predicted by the structural models of default. This leads to a cointegrated
system, where credit spreads, financial leverage and the firm’s riskiness comove, adjusting
to a long-run equilibrium. Empirical results discussed in this paper support the existence
of a cointegrating relationship between these variables

In the following analysis, CDS rather than bond spreads are used, as the former
constitute a more direct and clean signal for the underlying default risk. In fact, CDS
spreads provide relatively pure pricing of the default event of the underlying entity, as they
are typically traded on standardized terms. In fact, unlike bonds, CDSs have a constant
maturity, the underlying instrument is always par valued, they concentrate liquidity in
one instrument, and are not affected by different taxation regimes; also, bond spreads are
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more likely to be affected by differences in contractual arrangements, such as differences
in seniority, coupon rates, embedded options, and guarantees. Secondly, many corporate
bonds are bought by investors who simply hold them to maturity, and the secondary market
liquidity is therefore often poor. Furthermore, shorting bonds is even more difficult in the
cash market, as the repo market for corporate bond is often illiquid, and the tenor of the
agreement is usually very short. CDS contracts instead allow investors to implement trading
strategies to hedge credit risk over a longer period of time at a known cost. Moreover,
as shown by [11], CDS spreads tend to respond more quickly than bond spreads to changes
in credit conditions in the short run.

The rest of the paper is organized as follows. Section 2 provides a short literature
review of the works connected to the paper. Section 3 introduces the compound option
structural model of default alongside the estimation methodology for the firm’s asset value
and volatility. Section 4 models the cointegration relationship between the variables, and
the short-term adjustment is estimated. Finally, Section 5 discusses the main findings and
performs some robustness checks. Section 6 concludes.

2. Literature Review

Academic research has taken mainly three routes in analyzing the quite surprising
lack of accuracy of structural models in explaining the observed credit spreads.

Firstly, attempts to empirically implement models on individual corporate bond
spreads have failed ([12]). Mixed evidence supporting the structural approach is instead
documented for CDS spreads ([8,9]), thus suggesting liquidity and tax arguments for the
lack of success in case of bonds ([13,14]). Ref. [15] finds that expected losses account for a
low fraction of spreads for investment grade bonds. Ref. [6] documents that proxies for
credit risk explain only a small portion of changes in yield spreads and that the unexplained
portion is driven mainly by factors that are independent of both credit-risk and standard
liquidity measures.

Secondly, efforts to calibrate models to observable moments, including historical
default rates and Sharpe ratios, have been unable to match average credit spreads levels
(the so-called credit spread puzzle). Ref. [3], testing over an extensive class of structural
models, shows that credit risk accounts for only a small fraction of yield spreads for
investment-grade bonds of all maturities, with the fraction lower for bonds of shorter
maturities, but it accounts for a much higher fraction of yield spreads for high-yield bonds.
They calibrate each of the models on the historical default loss experienced and equity risk
premia, and demonstrate that different models (under)predict similar credit risk premia.

Thirdly, models have been unable to jointly explain the dynamics of credit spreads
and equity volatilities. Within this framework of research, ref. [16] finds that idiosyncratic
volatility can explain one-third of yield spreads for investment grade bonds rated below
Aaa. An important recent development which examines potential links between the credit
spread puzzle and macroeconomic conditions using consumption-based asset-pricing
is [17]. The authors show that the [18] pricing kernel combined with some mechanism to
match the countercyclical nature of defaults is able to capture the level and time variation
of Baa-Aaa spreads. However, they also show that a pricing kernel that explains the equity
premium with a constant Sharpe ratio cannot explain the credit spread.

A recent paper which tries to address all the above-mentioned failures of structural
models of default in explaining credit spreads is [4]. In their paper, the authors use the
framework in [19] (i.e., the firm has issued a consol bond) in which the unlevered asset
process is modeled as in [20]. Thus allowing for stochastic volatility in firm value process
and calibrating the variance risk premium consistently with reasonable firm-level Sharpe
ratios, they are first able to resolve the credit spread puzzle for medium- to longer-term
maturities for representative Baa- and Aa-rated firms. Secondly, introducing jumps in
the asset value process allows to fit shorter term credit spreads as well. Moreover, their
model succeeds at explaining the joint dynamics of credit spreads and equity volatilities,
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and allows them to identify economically significant variance risk premia, which explain
an important part of spread levels.

To summarize, this works hopes to fill some theoretical, methodological and empirical
gaps detected in this literature, more specifically, the following:

• Provide a novel and richer, though still tractable, structural model of default which
removes one of the most stringent restriction of the Merton’s model, namely clustering
the firm’s debt at one single point in time (theoretical);

• Develop a new estimation technique for some crucial unobservable variables, such as
the value of the firm’s assets and volatility (methodological);

• Conduct a cointegration analysis on a large panel of US CDS spreads (using the
estimated variables) to show that large part of the empirical failure of structural
models is more apparent than real as it was largely due to an omitted variable problem
(empirical).

3. The Model, Estimation Methodology and Data Description
3.1. The Compound Option Model

Consider a firm which has issued n bonds and equity, both receiving payments in
the form of coupons and dividends. According to the indenture of the bonds: (1) the
firm promises to repay each bond, with face value Fi, to the bondholders at known times
ti ∈ (t0, tn], i ∈ I := {1, . . . , n}; (2) in case of default, which may occur only at the given
tis, the bondholders immediately take over the company, and the shareholders receive
nothing; and (3) the firm cannot issue any senior or equivalent rank claims on the firm
nor do share repurchases before tn. Usual assumptions in terms of transaction cost, taxes,
bid/ask spreads, short-selling and indivisibility of assets apply.

For convenience of notation, set t0 := 0 and denote the generic payoff at time ti
as Xti := Xi. Let V, S and D represent the firm’s assets, equity and debt, respectively.
According to the structural approach and the Modigliani–Miller theorem, both equity and
debt are functions of the firm’s assets and not vice versa ([21]). It is important to have in
mind that under the structural approach to default, there is one state variable, namely V,
which drives the prices of all the assets in the economy: both S and D (and any derivatives
written on them) are functions of V and, of course, of the parameters driving the process
assumed for V. Neither S nor D can be functions of one another; this would violate the
Modigliani–Miller Proposition I (with no taxes).

Then, fix a filtered probability space (Ω,F ,F,P) and assume no-arbitrage conditions
in the economy. Under certain technical conditions, there exists a risk-neutral probability
measure Q, equivalent to P such that the gain process associated with any admissible
trading strategy deflated by the risk-free rate is a martingale. Furthermore, the following
notation for the (risk-free) discount factor

DF(ti, tj) =
Bi
Bj

= exp
(
−
∫ tj

ti

rs ds
)

,

is used, being that Bt = exp
(∫ t

0 rs ds
)

is the value of the money-market account at time t,
and rt is a (possibly stochastic) positive function of time.

Similarly to [5], the firm refinances each bond payment with equity. In this setting,
bankruptcy occurs when the firm fails to make the reimbursement payment because it
is unable to issue new equity. Ref. [22] argues that the firm will find no takers for its
stock whenever the value of the equity, if the payment is made, is less than the value of
the payment due. If all of the firm debt is finally repaid, the firm is liquidated, and the
shareholders receive any remaining value as a lump-sum liquidating dividend.

More specifically, if at time ti the value of equity prior to making the payment is larger
than payment due, the bond is paid off and the firm is kept alive; otherwise, bondholders
declare bankruptcy. In the case that the bond is repaid, the same mechanism occurs at the
next payment date, ti+1, and so on until the last payment date, tn. This mechanism can also
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be interpreted as the firm defaulting on its debt because is unable to issue new equity ([5]).
Hence, the default time is defined as

τ := inf
i∈I
{ti : S?

i (V) < Fi} (1)

where S?
i (V) is the continuation value of equity, that is the value of equity before paying

the bond, e.g., if the continuation value of the equity S? is 20 and the face value of debt is 30,
then equity is worthless (S = 0). The eventuality that shareholders may have an incentive
to raise new equity to keep receiving dividends in the future, thus postponing default, is not
possible within this model. Most importantly, though the process driving both the firm’s
assets and equity will be assumed to be defined in continuous time, default is assumed to
occur only at discrete times, namely when the bonds outstanding are due. This is clearly a
limitation and main feature of compound option model of default. For structural models in
which the default barrier is monitored continuously, see, among others, ref. [19,22,23].

As for any structural model, given that the firm’s equity is a function of the firm value,
default times can be re-expressed as events in the asset value space: for each value of equity
which triggers default corresponds only one value of the firm assets, namely V̄i at time ti,
which implies (1), that is

τ = inf
i∈I
{ti : Vi < V̄i}.

The default barrier (V̄i)i∈I can be interpreted as a latent sequence of thresholds em-
bedded into the firm’s capital structure and riskiness. Operationally, the default thresholds
are found recursively starting from the default threshold in tn, which coincides with Fn
as in the Merton’s model. The other values of the barrier are calculated as the solution of
an integral equation, where the dimension of the integrals increases alongside with the
number of bond outstanding (i.e., given n bond outstanding, n− 1 integral equation must
be solved, being the last integral to be solved an (n− 1)-dimensional integral).

Within this framework, both the present and the continuation value of the equity
can be calculated as the risk-neutral expectation of their terminal payoffs. At any time
ti ∈ [0, tn], the terminal payoff of the the firm’s equity can be expressed as

Sn(V) = Vn1τ>tn −
n

∑
k=i+1

Fk
DF(tk, tn)

1τ>tk .

The interpretation of the payoff function is straightforward: equity holders receive the
asset value in tn (if the firm has been able to repay all its outstanding debt), net of all the
future reimbursements (if the firm has survived at each default point).

The continuation value of the equity is given by the present value of the expected
payoff of the equity before having checked for the potential default occurring at ti, that is

S?
i (V) = EQ

i [DF(ti, tn)Sn(V)], (2)

where the EQ
i (·) ≡ EQ(·|Fti ). As a consequence, the value of the equity is given by

Si(V) = max{S?
i (V)− Fi, 0}.

See Figure 1 for a visual representation of the continuation and actual value of the
equity. Under (1) and (2), it can be further expressed in terms of events in equity space and,
ultimately, in the asset value space. Therefore, we have the following.
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Figure 1. Continuation value (dashed and dotted line) and value (solid line) of the equity. Checking
whether the continuation value of the equity S? is greater than the face value of the bond F is
equivalent to finding the value of the assets V greater than the default threshold V̄.

S?
i (V) = EQ

i

(
DF(ti, tn)Vn1⋂n

h=i+1

{
S?

h(V)≥Fh

})− n

∑
k=i+1

FkEQ
i

(
DF(ti, tk)1⋂k

h=i+1

{
S?

h(V)≥Fh

})
= EQ

i

(
DF(ti, tn)Vn1⋂n

h=i+1{Vh≥V̄h}

)
−

n

∑
k=i+1

FkEQ
i

(
DF(ti, tk)1⋂k

h=i+1{Vh≥V̄h}

)
.

(3)

Notice that (3) is the most general expression for the continuation value of the equity.
So far, no distributional assumptions have been made on the process driving the asset
value nor on the form of the discount factor. The asset value process could be a Lévy
process, as well as a process with continuous paths and stochastic volatility; similarly,
the discount factor could be assumed stochastic. However, ref. [24] shows that compound
option problems, such as in [5,25,26], can neither be solved in a semi-closed form under
stochastic interest rates nor stochastic volatility. Consequently, in order to preserve analyti-
cal tractability, a positive constant continuously compounded risk-free rate r is assumed
throughout. Additionally, a geometric Brownian motion is considered for the asset value
process, that is

dVt = (r− p)Vt dt + σVVt dWQ
t , (4)

where p is the continuously compounded payout rate, σV the instantaneous volatility
of the assets, and WQ

t a Q-standard Brownian motion. The asset value is modeled as a
geometric Brownian motion, as it allows to obtain semi-closed formulas for the compound
option problem.

Defining the events Vi,k :=
⋂k

h=i+1{Vh ≥ V̄h}, the ti-continuation value of the equity
can be written as

S?
i (V) = e−r(tn−ti)EQ

i

(
Vn1Vi,n

)
−

n

∑
k=i+1

e−r(tk−ti)FkEQ
i

(
1Vi,k

)
, (5)
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and for ti = t0, it follows

S0(V) = e−rtnEQ(Vn1Vn)−
n

∑
k=1

e−rtk FkQ(Vk), (6)

where Vk ≡ V0,k, for k ∈ I. Notice that the t0-continuation value of the equity and the
contemporaneous value of the equity coincide as no debt is due in t0 (i.e., F0 = 0). In order
to derive an analytical solution, a change of measure as in [26] is performed such that
Q̂ ∼ Q, with

dQ̂
dQ

∣∣∣∣∣
Ft

=
Vtept

V0Bt
= exp

(
σVWQ

t −
σ2

V
2

t

)
.

The measure Q̂ is referred as the firm-value fund measure thereafter. Setting t = tn, it
follows

S0(V) = e−ptn V0Q̂(Vn)−
n

∑
k=1

e−rtk FkQ(Vk).

In order to compute the probabilities under Q and Q̂, the result about multivariate
Gaussian probabilities in [5] is used. Hence, the two probabilities can expressed as the
following multivariate Gaussian integrals:

S0(V) = e−ptn V0Φn
(
d+; Γn

)
−

n

∑
k=1

e−rtk FkΦk
(
d−k ; Γk

)
(7)

where d+ :=
(
d+i
)

1≤i≤n and d−k =
(
d+i − σV

√
ti
)

1≤i≤k with

d+i =
ln(V0/V̄i) +

(
r− p + σ2

V/2
)
ti

σV
√

ti
, Γk =



1
√

t1
t2

√
t1
t3

. . .
√

t1
tk

1
√

t2
t3

. . .
√

t2
tk

. . . . . . . . . . . . . . .

1
√

tk−1
tk

1


.

and Φi(z; Γ) is the cumulative distribution function of an i-dimensional normal random
vector with zero mean and covariance matrix Γ calculated over the set×i

j=1(−∞, zj).
Notice that, if n = 1 and p = 0, the model coincides with the Merton’s model.

3.2. Estimation of the Unobservable Asset Value and Volatility

The unobservable parameters of the model are the value of the firm assets, V, and the
asset volatility, σV . As the sequence of risk-neutral probabilities Q(τ ≥ ti) can be estimated
from the CDS spreads in a model-free fashion as in [27], the following system of non-linear
equations can be employed to estimate both variables:{

S(V, σV) = S
Φ−i (V, σV) = Q(τ ≥ ti) ∀i ∈ I.

(8)

Here, the functional form of S(V, σV) and Φ−i (V, σV) = Φi
(
d−i (V, σV); Γi

)
are ob-

tained from (7). S is the observed stock price, whilst Q(τ ≥ ti) are the model-free risk
neutral probability of survival (for maturity ti) estimated from the CDS spread. Notice that,
if i ≥ 2, the system is overdetermined, as there are more equations than unknowns; thus,
the system can be solved with nonlinear least squares with a Jacobian matrix. Although
nonlinear least squares can also be implemented without knowing the Jacobian matrix,
the use of the latter reduces the number of iterations by about 66%, significantly improving
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speed and accuracy. More specifically, the Jacobian of the problem is given by an (i + 1)× 2
matrix such that

J =

[ ∂S
∂V

∂S
∂σV

∂Φ−i
∂V

∂Φ−i
∂σV

]
=

[
∆S νS
∂Φ−i
∂V

∂Φ−i
∂σV

]
where ∆S and νS are, respectively, the delta and the vega of the equity (which depend on
the number of bond outstanding n and whose names are borrowed from the literature on
options). Analytical expressions for the delta and the vega of the equity are available in
Appendices B and C. Once the estimates of V and σV are obtained, the volatility of the
equity and the firm’s leverage are calculated accordingly using Ito’s lemma and accounting
identities (see Appendix A for the derivation), that is

σS = σV
V
S

∆S,
D
S

=
V − S

S
. (9)

3.3. Estimation of the Risk-Neutral Survival Probabilities

In order to obtain an estimate of the risk-neutral survival probabilities Q(τ ≥ ti) in (8),
the following algorithm is used. Consider the payoff, Πj, of a CDS initiated at t0 = 0 with

maturity tj and intermediate premium payments at (ti)
j
i=1, j ∈ N, and notional equal to

one (see [28] for a more in-depth discussion on such methodology)

Πj(t) = DF(t, τ)(τ − t̄)s1{0<τ≤tj} + s
j

∑
i=1

DF(t, ti)(ti − ti−1)1{τ≥ti} −DF(t, τ)LGD1{0<τ≤tj}

with 0 ≤ t < tj, t̄, the last payments date before t, that is t̄ := sup1≤i≤j{ti ≤ τ}, s, the
CDS spread paid by the protection buyer (before default, if it happens), LGD the loss
given default, and DF(ti, tj) the (possibly stochastic) discount factor between ti and tj.
The first term is the discounted accrued rate at default and represents the compensation
the protection seller receives for the protection provided from the last ti until default τ.
The terms in the summation represent the CDS rate premium payments if there is no default:
this is the premium received by the protection seller for the protection being provided.
The final term is the payment of protection at default, if this happens before final tj.

If default is assumed to happen only at reset dates (that is, accrued interests are
ignored), the first summand vanishes, and the tj-maturity CDS price in t0 = 0, according to
risk-neutral valuation, is

CDSj(s, LGD) = EQ[Πj(0)
]
= s

j

∑
i=1

P(0, ti)(ti − ti−1)Q(τ ≥ ti)− LGD
∫ tj

0
P(0, t)dQ(τ ≥ t)

where P(ti, tj) is the ti-value of a zero-coupon bond with maturity tj ≥ ti. Following
common market practice, despite being the loss given default a random variable in (0, 1),
here, it is set as a known parameter. More specifically, the values that are commonly
employed by the literature and suggested by the ISDA are LGD = {0.5, 0.6, 0.8}.

If the term structure of the risk-free interest rates is also known at inception (and
assumed as a deterministic function of the maturity only, rt := r0(t)), then the previous
expression simplifies as

CDSj(s, LGD) = s
j

∑
i=1

e−rti ti (ti − ti−1)Q(τ ≥ ti)− LGD
∫ tj

0
e−rtt dQ(τ ≥ t).

The CDS spread for maturity tj is the value of s, say sj, which makes the price
the value of the CDS contract equal to zero when the contract is initiated, that is sj :={

s > rtj : CDSj(s, LGD) = 0
}

. Hence,
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sj = LGD

∫ tj
0 e−rtt dQ(τ ≥ t)

∑
j
i=1 e−rti ti (ti − ti−1)Q(τ ≥ ti)

≈ LGD
∑

j
i=1 e−rti ti [Q(τ ≥ ti−1)−Q(τ ≥ ti)]

∑
j
i=1 e−rti ti (ti − ti−1)Q(τ ≥ ti)

(10)

Notice that the relation that links the spread and the risk-neutral probabilities in (10)
is model free, as no assumptions are made on the evolution of the default time: conversely,
every model of default, structural or reduced-form, should aim at reproducing the spreads
and probabilities in (10).

Empirically, Equation (10) is used first to obtain the risk-neutral probabilities of sur-
vival Q(τ ≥ ti) to use in (8). These are obtained substituting the left hand side, sj, with the
observed CDS spread for maturity tj. Starting from the shortest tenor (usually six months),
the survival probabilities at longer horizons are obtained recursively.

Once the algorithm in (8) is carried out and (V, σV) are estimated, then (10) is used
again to obtain the CDS spread based on the model-implied risk-neutral probabilities of
survival. Then, the estimated asset value and volatility at time t are used to forecast both
survival probabilities and CSD spread at t + 1 (one week ahead).

3.4. Data Description and Aggregation Schemes of the Firms’ Capital Structures

This novel estimation technique is applied to a set of 64 US companies, constituents of
the S&P100 during the period spanning from January 2013 till December 2017. Companies
with either preferred equity or subject to merges or acquisitions are excluded. Addition-
ally, only companies for which CDS spreads are available are included. Table 1 displays
the complete name list, alongside the SIC code, credit rating and industry the company
operates in.

Data on stock prices, number of shares outstanding, dividends and the risk-free yield
curve (and other variables used in the next sections) are obtained from Bloomberg. CDS
spreads are from Thompson Reuters Datastream. Information relative to the firms’ capital
structures and cost of debt is gathered from Compustat and the 10-K documents. All
the observations are collected at weekly frequency frequency, over a total of 260 weeks,
with the exception of the information on the firm’s capital structure, which is available at
quarterly frequency.

In order to implement the estimation in (8), the term structure of the firm’s debt must
be known or approximated somehow. I opt for clustering the firm’s debt at three fixed point,
ti = {1, 5, 10} years, i = 1, 2, 3. This clustering mirrors the availability from Compustat
of short-term debt, which is clustered at one year horizon; then the other fixed future
dates are chosen, as the most liquid CDS contracts are those with 5- and 10-year maturities.
In particular, the face values of the bond due in t1 = 1 represent the company’s short-term
debt and are computed as the Compustat variable DD1Q (long-term debt due in one year),
that is F1 = DD1Q. The remaining two bonds clustered at t2 = 5 and t3 = 10 are obtained
from DLTQ (long-term debt total), such that F2 + F3 = w · DLTQ+ (1−w) · DLTQ. The weight
is set as w = 1/3, as motivated in the next section. This results in a sequence of outstanding
debt, which is increasing with maturities. The choice of setting n = 3 is considered optimal,
as it is the smallest number of maturity dates needed in order to match both the level, slope
and curvature of the term structure of the survival probabilities extracted from the CDSs.
As a matter of fact, an effective calibration of the model should aim at reproducing the
aforementioned term structure as accurately as possible.
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Table 1. List of the selected companies (ticker) and their SIC code. The sample is further divided into
four categories based on the industry/type or business: (a) financial companies; (b) mining, energy and
utilities companies; (c) manufacturing; (d) retail, wholesale and services. Credit ratings are obtained
from Compustat and the mode of the ratings over January 2013 to Decemeber 2017 are reported.

Ticker SIC Division S&P Credit Rating

AAPL 3663 Manufacturing AA+
ABT 2834 Manufacturing A+
ALL 6331 Finance, Insurance and Real Estate A−
AMGN 2836 Manufacturing A
BA 3721 Manufacturing A
BAC 6020 Finance, Insurance and Real Estate A−
BMY 2834 Manufacturing A+
C 6199 Finance, Insurance and Real Estate BBB+
CAT 3531 Manufacturing A
CL 2844 Manufacturing AA−
CMCSA 4841 Transportation, Communications, Electric, Gas and Sanitary service A−
COF 6141 Finance, Insurance and Real Estate BBB
COP 1311 Mining A
COST 5399 Wholesale Trade A+
CSCO 3576 Manufacturing AA−
CVS 5912 Retail Trade BBB+
CVX 2911 Manufacturing AA−
DD 2821 Manufacturing A−
DIS 4888 Transportation, Communications, Electric, Gas and Sanitary service A
EMR 3823 Manufacturing A
EXC 4911 Transportation, Communications, Electric, Gas and Sanitary service BBB
F 3711 Manufacturing BBB−
FDX 4513 Transportation, Communications, Electric, Gas and Sanitary service BBB
GD 3721 Manufacturing A+
GE 4911 Transportation, Communications, Electric, Gas and Sanitary service AA+
HAL 1389 Mining A
HD 5211 Wholesale Trade A
IBM 7370 Services AA−
INTC 3674 Manufacturing A+
JNJ 2834 Manufacturing AAA
JPM 6020 Finance, Insurance and Real Estate A−
KO 2086 Manufacturing AA−
LLY 2834 Manufacturing AA−
LOW 5211 Wholesale Trade A−
MCD 5812 Retail Trade A
MDT 3845 Manufacturing A
MMM 2670 Manufacturing AA−
MO 2111 Manufacturing BBB+
MON 5169 Retail Trade BBB+
MRK 2834 Manufacturing AA
MS 6211 Finance, Insurance and Real Estate BBB+
MSFT 7372 Services AAA
ORCL 7370 Services AA−
OXY 1311 Mining A
PEP 2080 Manufacturing A
PFE 2834 Manufacturing AA
PG 2840 Manufacturing AA−
PM 2111 Manufacturing A
RTN 3812 Manufacturing A
SLB 1389 Mining AA−
SO 4911 Transportation, Communications, Electric, Gas and Sanitary service A−
SPG 6798 Finance, Insurance and Real Estate A
T 4812 Transportation, Communications, Electric, Gas and Sanitary service BBB+
TGT 5331 Wholesale Trade A
TWX 8748 Services BBB
TXN 3674 Manufacturing A+
UNH 6324 Finance, Insurance and Real Estate A+
UNP 4011 Transportation, Communications, Electric, Gas and Sanitary service A
USB 6020 Finance, Insurance and Real Estate A+
UTX 3724 Manufacturing A−
VZ 4812 Transportation, Communications, Electric, Gas and Sanitary service BBB+
WFC 6020 Finance, Insurance and Real Estate A
WMT 5331 Retail Trade AA
XOM 1311 Mining AAA
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As the probabilities of survival, and therefore the spread, depend on both the loss given
default parameter and the aggregation scheme of the firm’s capital structure, different
combinations are investigated. More specifically, different values of the weight w in
F2 + F3 = w · DLTQ+ (1− w) · DLTQ are tested. These are w = {1/2, 1/3, 2/3}.

Tables 2–4 report the results on the pricing error of the 3-fold compound option model
for w equal to 1/2, 1/3 and 2/3, respectively. For each aggregation scheme, the pricing
errors are obtained for LGD = {0.5, 0.6, 0.8}. The average CDS spread quoted by the
market is reported alongside the one implied by the model for different LGDs. Spreads
are expressed in basis points. The signed differences and percentage errors of the average
market and the model-implied CDS spreads are reported as well as the percentage error
between the model-free and model-implied risk-neutral probabilities of survival. Results
are clustered based on contractual maturities (1, 5 and 10 years) and on leverage.

The aggregation scheme in Table 2 (w = 1/2) underprices short-term spreads of
low-levered firms (as extensively documented in the literature for models without jumps)
as well as long-term spreads of medium- and high-levered firms. For low- and medium-
levered firms, pricing errors are small for short- and long-term CDS contracts (4 bps); the
error increases for highly levered firms and in the case of the 5-year spread (46 bps).

The second aggregation scheme as in Table 3 (w = 1/3) further underpredicts short-
term spreads of all but highly levered firms. This is driven by how the default barrier is
computed in the compound option model (and common sense): the more debt is due in
the distant future, the more likely the firm is to survive at shorter horizons. Seemingly
as the previous scheme, it underprices also the long-maturity spread of highly levered
firms. The pricing error in the instance of underpricing is around 6 bps; when the model
overprices the predicted spreads, the error is about 24 bps.

Finally, the last aggregation scheme in Table 4 (w = 2/3) consistently overprices short-
and medium-term spreads of about 46 bps, whilst underpricing long-term spreads of 14 bps.
As explained above, this is due to the fact that if w = 2/3, the larger fraction of the firm’s
debt is due at years one and five.

The empirical performance of the compound option model in predicting the one-week-
ahead spread based on the selected aggregation scheme and level of loss given default
is summarized in Table 5. The smallest average absolute mean error (expressed in basis
points) is obtained for w = 1/3 and LGD = 50%. The same value of loss given default is
also employed by [3,29]. Because most previous works focus on the 5-year CDS spread,
as it is the most actively traded in the market, the same average error is checked for that
sub-sample. The same conclusion upon the best aggregation scheme is obtained.

In the next section, the link between credit spreads and the variables which structural
models of default predict driving the spreads is investigated. Among these variables, mar-
ket leverage and equity volatility are used. Given the results of this section, the combination
w = 1/3 and LGD = 50% is used throughout. Different combinations of the parameters are
further tested as a robustness check in Section 5.
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Table 2. Pricing error of the CDS spread and risk-neutral probabilities of default for w = 1/2. All the model-implied spreads are calculated setting the loss given
default equal to 50%, 60% or 80%. This allows to jointly test for the effect of the aggregation scheme in the firm’s capital structure and on the selected value of LGD.
The table reports the market CDS spread alongside those produced by the model (expressed in basis points) based on the estimates of the firm’s asset and volatility
on the previous week. The results are clustered based on the maturity of the CDS contract (1, 5, and 10 years) and on the firm’s average leverage. A positive/negative
pricing error CDSmrk −CDSmodel indicates that the model under/overpredicts the level of the spread. This is reflected into the over/underprediction of the survival
probabilities. Errors are also reported as percentages in brackets. For the probabilities of survival, only percentage errors are reported. Based on leverage, the number
of companies in each bucket are Nlow = 44, Nmed = 15, Nhigh = 5.

LGD

50% 60% 80% 50% 60% 80% 50% 60% 80%

LEV CDSmrk CDSmodel
CDSmrk−CDSmodel

1 −Qmodel /Qmrk
(1−CDSmodel /CDSmrk)

1-year

(0, 0.25] 7.68 4.47 4.12 3.80
3.21 3.55 3.87

−0.06% −0.05% −0.04%(42%) (46%) (50%)

(0.25, 1] 15.55 20.19 20.02 20.43 −4.64 −4.47 −4.88 0.09% 0.08% 0.06%
(−30%) (−29%) (−31%)

(1, ∞) 28.85 91.44 86.25 82.77 −62.59 −57.40 −53.92 1.19% 0.93% 0.66%
(−217%) (−199%) (−187%)

5-year

(0, 0.25] 35.20 43.59 41.51 40.20 −8.39 −6.31 −4.99 0.70% 0.50% 0.31%
(−24%) (−18%) (−14%)

(0.25, 1] 60.12 107.84 105.93 106.59 −47.71 −45.80 −46.47 4.30% 3.60% 2.78%
(−79%) (−76%) (−77%)

(1, ∞) 89.97 192.52 189.47 189.75 −102.55 −99.50 −99.78 8.69% 7.40% 5.76%
(−114%) (−111%) (−111%)

10-year

(0, 0.25] 62.28 63.28 61.72 61.82 −1.00 0.57 0.46 −0.25% −0.16% −0.09%
(−2%) (1%) (1%)

(0.25, 1] 93.55 90.40 87.45 86.76 3.15 6.10 6.79 −2.47% −1.97% −1.49%
(3%) (7%) (7%)

(1, ∞) 134.89 121.84 117.62 115.07 13.05 17.27 19.82 −6.97% −5.52% −4.15%
(10%) (13%) (15%)
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Table 3. Pricing error of the CDS spread and risk-neutral probabilities of default for w = 1/3. All the model-implied spreads are calculated setting the loss given
default equal to 50%, 60% or 80%. This allows to jointly test for the effect of the aggregation scheme in the firm’s capital structure and on the selected value of LGD.
The table reports the market CDS spread alongside those produced by the model (expressed in basis points) based on the estimates of the firm’s asset and volatility
on the previous week. The results are clustered based on the maturity of the CDS contract (1, 5, and 10 years) and on the firm’s average leverage. A positive/negative
pricing error CDSmrk − CDSmodel indicates that the model under/overpredicts the level of the spread. This is reflected into the over/underprediction of the
survival probabilities. Errors are also reported as percentages in brackets. For the probabilities of survival, only percentage errors are reported. Based on leverage,
the numbers of companies in each bucket are N(0,0.25] = 44, N(0.25,1] = 15, N(1,+∞) = 5.

LGD

50% 60% 80% 50% 60% 80% 50% 60% 80%

LEV CDSmrk CDSmodel
CDSmrk−CDSmodel

1 −Qmodel /Qmrk
(1−CDSmodel /CDSmrk)

1-year

(0, 0.25] 7.68 0.86 0.67 0.50
6.81 7.00 7.18

−0.13% −0.11% −0.08%(89%) (91%) (93%)

(0.25, 1] 15.55 11.37 10.79 10.39 4.18 4.75 5.16 −0.10% −0.08% −0.07%
(27%) (31%) (33%)

(1,+∞) 28.85 75.65 70.27 66.58 −46.80 −41.41 −37.73 0.89% 0.67% 0.46%
(−162%) (−144%) (−131%)

5-year

(0, 0.25] 35.20 25.22 23.06 21.19 9.98 12.14 14.01 −1.07% −0.99% −0.86%
(28%) (34%) (40%)

(0.25, 1] 60.12 78.66 75.47 74.14 −18.53 −15.35 −14.01 1.45% 1.12% 0.77%
(−31%) (−26%) (−23%)

(1,+∞) 89.97 162.23 159.91 162.48 −72.26 −69.94 −72.51 6.15% 5.25% 4.17%
(−80%) (−78%) (−81%)

10-year

(0, 0.25] 62.28 64.91 63.27 63.04 −2.62 −0.99 −0.76 0.40% 0.35% 0.27%
(−4%) (−2%) (−1%)

(0.25, 1] 93.55 95.76 93.09 92.90 −2.21 0.46 0.65 −0.69% −0.49% −0.31%
(−2%) (0%) (1%)

(1,+∞) 134.89 131.64 127.62 126.99 3.25 7.27 7.90 −4.05% −3.14% −2.25%
(2%) (5%) (6%)
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Table 4. Pricing error of the CDS spread and risk-neutral probabilities of default for w = 2/3. All the model-implied spreads are calculated setting the loss given
default equal to 50%, 60% or 80%. This allows to jointly test for the effect of the aggregation scheme in the firm’s capital structure and on the selected value of LGD.
The table reports the market CDS spread alongside those produced by the model (expressed in basis points) based on the estimates of the firm’s asset and volatility
on the previous week. The results are clustered based on the maturity of the CDS contract (1, 5, and 10 years) and on the firm’s average leverage. A positive/negative
pricing error CDSmrk −CDSmodel indicates that the model under/overpredicts the level of the spread. This is reflected into the over/underprediction of the survival
probabilities. Errors are also reported as percentages in brackets. For the probabilities of survival, only percentage errors are reported. Based on leverage, the number
of companies in each bucket are N(0,0.25] = 44, N(0.25,1] = 15, N(1,+∞) = 5.

LGD

50% 60% 80% 50% 60% 80% 50% 60% 80%

LEV CDSmrk CDSmodel
CDSmrk−CDSmodel

1 −Qmodel /Qmrk
(1−CDSmodel /CDSmrk)

1-year

(0, 0.25] 7.68 16.57 16.29 16.53
−8.89 −8.61 −8.85

0.17% 0.14% 0.11%(−116%) (−112%) (−115%)

(0.25, 1] 15.55 26.77 26.60 27.15 −11.22 −11.05 −11.61 0.21% 0.18% 0.14%
(−72%) (−71%) (−75%)

(1,+∞) 28.85 94.77 89.07 83.35 −65.92 −60.22 −54.49 1.25% 0.97% 0.67%
(−228%) (−209%) (−189%)

5-year

(0, 0.25] 35.20 63.77 62.07 62.05 −28.57 −26.87 −26.84 2.63% 2.15% 1.63%
(−81%) (−76%) (−76%)

(0.25, 1] 60.12 129.01 125.68 125.52 −68.89 −65.55 −65.39 6.17% 5.10% 3.90%
(−115%) (−109%) (−109%)

(1,+∞) 89.97 196.16 190.20 186.96 −106.19 −100.23 −96.99 8.92% 7.39% 5.54%
(−118%) (−111%) (−108%)

10-year

(0, 0.25] 62.28 60.77 59.16 58.83 1.51 3.12 3.45 −1.35% −1.07% −0.80%
(2%) (5%) (6%)

(0.25, 1] 93.55 84.65 81.19 79.41 −22.37 −18.91 −17.13 −4.25% −3.53% −2.76%
(−24%) (−20%) (−18%)

(1,+∞) 134.89 111.07 106.77 103.77 −48.79 −44.49 −41.49 −9.47% −7.61% −5.80%
(−36%) (−33%) (−31%)
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Table 5. Average absolute mean errors (expressed in basis points). Considering both all maturities
and the 5-year maturity only, which is the most liquid, the error is smallest for the aggregation scheme
w = 1/3. Additionally, setting LGD = 0.5 makes the pricing error smallest. As expected, the largest
average pricing error is for the scheme w = 2/3, which puts a lot of debt expiring in the short-term
(which is unlikely to be for most of the companies). Reported figures are weighted averages in which
the weights are the numbers of companies in each leverage bucket.

All Maturities
LGD

w 0.50 0.60 0.80

1/2 11.86 24.51 30.00
1/3 9.58 20.14 25.86
2/3 20.99 44.80 55.85

5-year
LGD

w 0.50 0.60 0.80

1/2 24.96 49.43 59.25
1/3 16.85 37.66 49.78
2/3 44.08 90.14 110.80

4. Estimating the Cointegration

When regressing credit spread changes on the changes of the variables, which struc-
tural models of default would predict to influence the spread (as in [6]), if the levels the
selected variables are non-stationary and cointegrated, these regressions are misspecified.
Moreover, regressions on non-stationary levels (as in [7–9]) may lead to spurious correla-
tions. Therefore, it should not be surprising that the regressions on the levels work ‘better’
than the ones on the changes: despite the OLS estimators being super consistent, the R2s
and t-statistics are likely to be large, even if the underlying variables are not truly correlated.
As a consequence, reliable inference cannot be made.

For illustration purposes, Figure 2 shows the 5-year CDS spreads, financial leverage
and equity volatility (estimated as in (9)) for four companies operating in different indus-
tries. These variable are evidently non-stationary, also hinting at strong comovements. Unit
root tests confirm the non-stationarity of all the variables. Identical conclusions are drawn
for the other companies in the sample also if the model-implied market leverage is replaced
by book leverage.

Despite the estimation technique for the equity volatility is new, the other variables
still display stochastic trends. Hence, if cointegration is present, the appropriate way
to model the level of credit spreads is an error correction mechanism. Based on the
structural approach of default, the spread is likely to follow upon chances on the firm’s
financial leverage (D/S) and riskiness (σS) and not vice versa. Therefore, the model is
implemented à la Engle–Granger instead of using a VECM (that is, only one cointegrating
vector is estimated).

Assume the long-run equilibrium equation to be

CDSi,t = θi,0 + θi,LLEVi,t + θi,VVOLi,t + εi,t, (11)

in which (CDS, LEV, VOL)i,t are, respectively, the CDS spread (for a given maturity), model-
implied market leverage (D/S) and equity volatility (σS) of firm i at time t. CDS is observed,
whist LEV and VOL are estimated as in (9). Unreported results, available upon request,
show that the same conclusions discussed below are obtained using firms’ book leverage.
As default times are driven by the value of the equity at reimbursement dates, the volatility
of the equity is used in the cointegration equation.
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These are the variables that structural models of default predict as determinants of
default probabilities and, therefore, credit spreads. If the variables are random walks and
cointegrated, then the error term εi,t is stationary for all i. Figure 3 plots the residuals of the
regressions (11) for the same four companies taken into consideration in Figure 2. Visual
inspection, supported by unit root tests, confirms the presence of cointegration between
the CDS spreads, leverage, and volatility. The same conclusions regarding the existence of
a cointegrating vector apply to the whole sample of firms, as well as to CDS spreads for
different maturities.

The autoregressive distributive lag, ARDL(1, 1, 1), dynamic panel specification of (11)
(with exogenous variables, ∆X) is defined as

CDSi,t = αi + φiCDSi,t−1 + βi,0LEVi,t + βi,1LEVi,t−1 + γi,0VOLi,t + γi,1VOLi,t−1

+ ξ>∆Xt + ηi,t,
(12)

and the error correction reparameterization of (12) is

∆CDSi,t = λi(CDSi,t−1 − θi,0 − θi,LLEVi,t−1 − θi,VVOLi,t−1) + βi,0∆LEVi,t + γi,0∆VOLi,t

+ ξ>∆Xt + ηi,t

= λiεi,t−1 + βi,0∆LEVi,t + γi,0∆VOLi,t + ξ>∆Xt + ηi,t

(13)

where λi = −(1− φi), θi,0 = αi
1−φi

, θi,L =
βi,0+βi,1

1−φi
, and θi,V =

γi,0+γi,1
1−φi

. The parameter λi is
the error-correcting speed of adjustment term. If λi = 0, then there would be no evidence
for a long-run relationship. This parameter is expected to be significantly negative under the
prior assumption that the variables show a return to a long-run equilibrium. Of particular
importance is the vector θ = (θL, θV), which contains the long-run relationships between
the variables driving the spreads.

Following [6], exogenous variables, in changes (∆X), are also added. These are the
change in level, slope and curvature of the term structure of interest rates, the log-return on
the S&P500, and the change in the CBOE SKEW Index.

The level of interest rates is defined as the treasury yield for 5-year maturity. The slope
of the term structure is defined as the difference between between 5-year and 1-year treasury
yields. Although the spot rate is the only interest-rate-sensitive factor that appears in the
firm value process, the spot rate process itself may depend upon other factors as well.
For example, ref. [30] finds that the two most important factors driving the term structure
of interest rates are the level and slope of the term structure. To capture potential nonlinear
effects due to convexity, the squared level of the 5-year spot rate is also added as proxy for
the curvature.

Similarly, the return on the S&P500 is used to proxy for the state of the economy.
In fact, even if the probability of default remains constant for a firm, changes in credit
spreads can occur due to changes in the expected recovery rate. The expected recovery rate
in turn should be a function of the overall business climate.

Lastly, adding the changes in the CBOE SKEW Index aims at capturing the changes in
the probability and magnitude of a large negative systematic jump, which ultimately would
affect the firm value. Recent research ([4,9,31]) has in fact shown the crucial importance of
allowing for jumps in the firm value process in order to explain short-term credit spreads.
The CBOE SKEW Index is a strike-independent measure of the slope of the implied volatility
curve that increases, as this curve tends to steepen. The index is calculated from the price
of a tradable portfolio of out-of-the money S&P 500 options, similar to the VIX Index.



Computation 2022, 10, 155 17 of 41

2013 2014 2015 2016 2017 2018

40

50

60

70

80

90

100

110

2013 2014 2015 2016 2017 2018

0.4

0.45

0.5

0.55

0.6

2013 2014 2015 2016 2017 2018

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2013 2014 2015 2016 2017 2018

20

30

40

50

60

70

80

90

2013 2014 2015 2016 2017 2018

0.4

0.42

0.44

0.46

0.48

0.5

0.52

2013 2014 2015 2016 2017 2018

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

2013 2014 2015 2016 2017 2018

10

20

30

40

50

60

2013 2014 2015 2016 2017 2018

0.46

0.47

0.48

0.49

0.5

0.51

0.52

2013 2014 2015 2016 2017 2018

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

2013 2014 2015 2016 2017 2018

20

25

30

35

40

45

50

55

2013 2014 2015 2016 2017 2018

0.46

0.47

0.48

0.49

0.5

0.51

0.52

2013 2014 2015 2016 2017 2018

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Figure 2. Time series of the 5-year CDS spreads (top), equity volatility (middle) and financial leverage (bottom) estimated as in (9) for four different companies:
Capital One Financial (financials), Exelon (mining, energy and utilities), McDonald’s (retail, wholesale and services), and United Technologies (manufacturing).
Visual inspection suggest non-stationarity and a strong comovement of the three variables. The non-stationarity of the time series is confirmed by unit root tests.
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Figure 3. Cointegration equations (residuals of regression (11)) for four different companies: Capital
One Financial (financials), Exelon (mining, energy and utilities), McDonald’s (retail, wholesale and
services), and United Technologies (manufacturing). Visual inspection suggest stationarity, and
therefore cointegration of CDS spreads, leverage, volatility and the treasury yield. Unit root tests
confirm the stationarity of the residuals. (a) Financials; (b) mining, energy and utilities; (c) retail,
wholesale and services; (d) manufacturing.

The choice of the variables (both endogenous and exogenous) mirrors the ones in [6].
However, three major differences need to be highlighted. First, here an ECM is estimated
thus adding an additional stationary variable (the long-run equilibrium equation) to the
regression in the spread changes. Secondly, the proposed calibration allows to estimate a
firm-specific volatility (of both assets and equity), whilst they need to rely on a market-
wide measure of volatility, namely the changes in the VIX index. Finally, the proxy for the
downward jump risk employed here is different, as they calculate their own measure of
skew based on the implied volatilities of options on the S&P 5000 futures. Here, the CBOE
SKEW Index is used instead..

The estimation of the coefficients in (13) is carried through using the PMG estimator
proposed by [32], which allows for heterogeneous short-run dynamics and common long-
run equilibrium. Tables 6–8 report the estimates of the long-run equilibrium equation
in (11) and the short-term adjustment in (13). All the coefficients have the predicted sign
and are highly statistically significant.

Most of the results are qualitatively identical when 1-, 5- and 10-year spreads are used.
For what concerns the long-run equilibrium, both volatility and leverage display a positive
and statistically significant loading: an increase in either VOL or LEV lead to a larger level
of the spread in the long run. Focusing on the short-term adjustment, changes in both the
firm’s equity volatility and its financial leverage increase the change in the spread. In terms
of economic significance, an increase of 1% in the firm’s volatility increases the CDS spread
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of 0.7, 2.5 and 4 bps for 1-, 5- and 10-year maturity, respectively. Similarly, an identical
change in the firm’s financial leverage induces the spread to undergo increases of 0.4, 1.1
and 1.7 bps, ceteris paribus. Thus, when considering the short-term adjustment, changes in
the variable driving the long-equilibrium have an impact on the spreads, which increase
with the maturity of the CDS contract.

For what concerns the set of exogenous variables, all the variables display significant
coefficients. First, the changes in the level of interest rates have a negative impact on the
credit spread: as pointed out by [33], the static effect of a higher spot rate is to increase
the risk-neutral drift of the firm value process. A higher drift reduces the probability of
default, and in turn, reduces the credit spreads. Ref. [34] obtains similar results. Likewise,
the positive coefficients of the changes on the slope and curvature of the term structure
are consistent with the findings of previous studies. As a decrease in yield curve slope
may imply a weakening economy, it is reasonable to believe that the expected recovery
rate might decrease in times of recession. Therefore, this would further decrease the credit
spreads. Additionally, positive returns in the S&P500—which accounts for the growing
economy and therefore an increasing expected recovery rate—have the effect of reducing
the spread as suggested by economic intuition.

Finally, the coefficient reflecting the effect of systematic downward jumps (proxied
as changes in the CBOE SKEW Index) is the only estimate whose sign differs between
short- versus medium- and long-term spreads. As shown in [4,9,31], jumps are necessary
to explain the level of short-term spreads: structural models which account only for
diffusive shocks in the asset value process imply zero instantaneous probability of default
and therefore cannot meet the observed levels of 6-month and 1-year spreads. Hence,
the coefficient of ∆Skew is positive for 1-year spread changes as expected.

An increase in the probability of a negative systematic jump translates into larger shot-
term spreads. However, for longer maturities, the coefficient is negative. This apparently
counterintuitive result can be easily explained by how systematic negative jumps affect
firms. If such an event occurs, the ability of firms to repay its debt affects those liabilities
expiring in the immediate future. This is what is observed for spreads with 1-year maturity.
Conversely, if the firms survive the shot-term shock, they are more likely to be able to
survive the futures shocks. Thus, the medium- and long-term spreads lower. Additionally,
it is worth highlighting that, in the case of 5-year spreads, the impact of negative jumps is
only marginally significant.

To conclude, a further analysis of the cointegration mechanism between spreads,
volatility and financial leverage is discussed. As expected, the estimated coefficient of
the long-run equation (ε) is negative, within the unit circle and statistically significant.
The closer the estimate is to zero, the slower the adjustment. Conversely, the closer to −1,
the faster the adjustment. If λ = −1, there is full correction in 1 period, and if λ < −1
there is overshooting, that is an oscillatory adjustment dynamic. If λ > 0, there is not
cointegration, that is the disequilibrium expands. As expected, the size of the coefficient is
larger, in absolute value, for shorter maturities: short-term spreads adjust faster to shocks
in the firm’s volatility and leverage. The associated t-statistic is also larger for 1-year spread
changes. Conversely, the degree of cointegration becomes stronger at longer horizons: the
t-statistics of the long-run equilibrium equation increase with the maturity of the CDS.

To quantify the speed of convergence towards the long-run equilibrium, half-life
statistics can be considered. The estimated negative loading of the cointegrating equation,
λ̂, in (13) signifies that −100 · λ̂% of that disequilibrium is dissipated before the next time
period and −100 · (1− λ̂)% remains. It is often of interest to estimate how long it will take
for an existing disequilibrium to be reduced by 50% (half-life of disequilibrium), that is

half-life =
ln(0.5)

ln(λ̂− 1)
.
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Table 6. ECM for 1-year CDS spreads. All the variables which structural models predict to influence
the change in spreads are statistically significant and have the predicted signs. The loading on the
cointegrating equation (ε) is negative and statistically significant, thus confirming the existence of a
long-term equilibrium to which spreads, volatility and leverage converge. This model constrains the
long-run coefficient vector to be equal across panels while allowing for group-specific short-run and
adjustment coefficients. The averaged short-run parameter estimates are reported.

1-Year CDS Spread
Long-Run Equilibrium

Coefficient t-Stat p-Value

VOL 0.0028 9.88 0.000 ***
LEV 0.0024 14.45 0.000 ***

Short-term adjustment
Coefficient t-Stat p-Value

ε −0.1005 −11.52 0.000 ***
∆VOL 0.0074 6.29 0.000 ***
∆LEV 0.0036 5.23 0.000 ***
∆Level −0.0566 −4.55 0.000 ***
∆Slope 0.0213 4.56 0.000 ***
∆Curvature 1.2409 3.77 0.000 ***
∆ ln(S&P500) −0.0013 −5.13 0.000 ***
∆Skew 5× 10−7 2.37 0.018 **
Constant −0.0001 −9.66 0.000 ***

Number of observations: 16,640; number of groups: 64; observations per group: 260. Significance levels: 5% (**),
1% (***).

Table 7. ECM for 5-year CDS spreads. All the variables which structural models predict to influence
the change in spreads are statistically significant and have the predicted signs. The loading on the
cointegrating equation (ε) is negative and statistically significant, thus confirming the existence of a
long-term equilibrium to which spreads, volatility and leverage converge. This model constrains the
long-run coefficient vector to be equal across panels while allowing for group-specific short-run and
adjustment coefficients. The averaged short-run parameter estimates are reported.

5-Year CDS Spread
Long-Run Equilibrium

Coefficient t-Stat p-Value

VOL 0.0225 17.13 0.000 ***
LEV 0.0159 15.54 0.000 ***

Short-term adjustment
Coefficient t-Stat p-Value

ε −0.0293 −9.60 0.000 ***
∆VOL 0.0252 10.39 0.000 ***
∆LEV 0.0114 7.69 0.000 ***
∆Level −0.0975 −4.90 0.000 ***
∆Slope 0.0346 3.42 0.001 ***
∆Curvature 1.8381 3.69 0.000 ***
∆ ln(S&P500) −0.0025 −5.71 0.000 ***
∆Skew −6× 10−7 −1.84 0.065 *
Constant −0.0003 −9.75 0.000 ***

Number of observations: 16,640; number of groups: 64; observations per group: 260. Significance levels: 10% (*),
1% (***).



Computation 2022, 10, 155 21 of 41

Table 8. ECM for 10-year CDS spreads. All the variables which structural models predict to influence
the change in spreads are statistically significant and have the predicted signs. The loading on the
cointegrating equation (ε) is negative and statistically significant, thus confirming the existence of a
long-term equilibrium to which spreads, volatility and leverage converge. This model constrains the
long-run coefficient vector to be equal across panels while allowing for group-specific short-run and
adjustment coefficients. The averaged short-run parameter estimates are reported.

10-Year CDS Spread
Long-Run Equilibrium

Coefficient t-Stat p-Value

VOL 0.0335 49.94 0.000 ***
LEV 0.0335 28.24 0.000 ***

Short-term adjustment
Coefficient t-Stat p-Value

ε −0.0275 −5.18 0.000 ***
∆VOL 0.0399 15.01 0.000 ***
∆LEV 0.0168 7.86 0.000 ***
∆Level −0.1129 −4.95 0.000 ***
∆Slope 0.0242 2.31 0.021 **
∆Curvature 2.2031 3.98 0.000 ***
∆ ln(S&P500) −0.0027 −5.41 0.000 ***
∆Skew −9× 10−7 −2.86 0.004 ***
Constant −0.0004 −5.31 0.000 ***

Number of observations: 16,640; number of groups: 64; observations per group: 260. Significance levels: 5% (**),
1% (***).

The estimated half-lives are 6.5, 23.3 and 24.9 weeks for the 1-, 5- and 10-year CDS
spread, respectively. This highlights a significantly different behavior of the short- versus
the medium- and long-term spreads: the short 1-year spreads reacts about four time faster
than the 5- and 10-year spreads in order to realign to equilibrium. This finding is not
surprising, as, given the shorter maturity, the spread should be expected to vary as quickly
as possible with the changes in the firm’s leverage and volatility.

5. Discussion on the Main Results and Robustness Checks

In this section, we first examine how the compound option performs in terms of
pricing errors (compared to other structural models); then, we compare our results on the
cointegration analysis with those reported in other studies which document the inability of
the proposed variables to explain the level and changes in credit spreads.

In order to compare the ability of the compound option model to price credit spreads,
the results reported by [3] are used. There, the authors calibrate seven different structural
models of default with different desirable features. More specifically, they analyze the
performance of the following models: a baseline simple model with and without stochastic
interest rates ([33]), a model with endogenous default barrier ([23]), a model with strate-
gic default ([35,36]), a model with mean-reverting leverage ratios ([37]), a model with
countercyclical market risk premium, and a jump-diffusion model. All the models under-
predict credit spreads. Average absolute mean errors are reported in Table 9. Similarly,
the compound option model (w = 1/3 and LGD = 50%) generally underpredicts the spread.
However, the extent of the underpricing is much smaller: the proposed model is able to
reduce the underpricing to 9.58 bps, whist the pricing errors of other structural models
range from 83.19 to 105.67 bps.
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Table 9. Average absolute mean errors (expressed in basis points) based on the results in [3]. There,
the authors analyze the ability of structural models of default to reproduce observed credit spreads.
They test a simple baseline model with and without stochastic interest rates ([33]), a model with
endogenous default barrier ([23]), a model with strategic default ([35,36]), a model with mean-
reverting leverage ratios ([37]), a model with countercyclical market risk premium, and a jump-
diffusion model. A loss given default parameter of 48.69% is used by the authors for their calibration.

Structural Model AAME

Baseline ([33]) 89.49
Baseline plus stochastic interest rates ([33]) 105.67
Endogenous default barrier ([23]) 86.27
Strategic default ([35,36]) 76.89
Mean-reverting leverage ratios ([37]) 93.25
Countercyclical market risk premium ([3]) 83.19
Jump-diffusion ([3]) 84.78
Compound option model 9.58

Given the extent of the reduction in the pricing error, it is worth stressing further
how the model implied spreads are calculated. In terms of market variables, the model
spread depends (via the risk-neutral probabilities) on the equity value, the leverage of the
company, the level of interest rates and the asset volatility. The proposed methodology is
able to estimate the asset volatility and value at time t, using the known capital structure
as well as the stock price. Once this volatility is estimated, say σ?

V,t, it is then used one
week ahead to predict the spread. Therefore the spread at time t + 1 is essentially a
function such as ĈDSt+1 = f (St+1, rr+1, LEVt+1, σ?

V,t), where the listed variables are the
contemporaneous stock price, level of interest rates, leverage and the previous-week asset
volatility, respectively. As r and LEV are unlikely to vary substantially from week to week,
the proposed estimation shows how the equity, alongside the past volatility, is a sufficient
statistic for predicting spreads in a compound option model.

However, it may be argued that what is being shown is simply predicting the credit
spread at time t + 1 with the credit spread at time t. This issue might be very impactful
on the analysis, as the CDS data do show a significant autoregressive component (which
is indeed modeled in the next section). In order to address this concern, the following
variables are calculated:

Xt = CDSt −CDSt−1, Yt = CDSt − ĈDSt,

where CDS is the observed market spread, and ĈDS is the spread estimated with the
proposed methodology. Given the results discussed in the previous sections, the test is
conducted setting LGD = 50% and w = 1/3. If this analysis is actually using the past
spread to predict the current one, the distributions of X and Y should be, if not identical,
relatively similar.

Thus, the two-sample Kolmogorov–Smirnov test is conducted on X and Y for each
company in the dataset. Under the null hypothesis, X and Y are drawn from the same
distribution. For brevity, the results of the test are omitted but available upon request.
In the case of 1- and 5-year spreads, the null hypothesis is always rejected; for the 10-year
spread, there are only two companies for which the test fails to reject the null hypothesis
at 5% significance level. Given these results, it can be fairly concluded that the proposed
model and estimation technique do not price the contemporaneous spread as the spread
realized in the previous period.

To conclude, the sensible reduction in terms of underpricing may suggest that the com-
pound option mechanism is better able to capture the default dynamics. Unfortunately [3]
do not analyze the compound option model in [5], as it is not analytically tractable for
their calibration approach. Better fits are only obtained by [4]; however, their model with
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stochastic asset volatility and jumps is far more complicated to calibrate than the proposed
compound option model of default.

Regardless of the better ability of the compound option model to produce credit
spreads, the use of a cointegration mechanisms is also able to enhance the fit of the regres-
sions on the spreads as compared with [6] and other studies. For each firm i, the adjusted-
R2s of the short-term adjustment is calculated and reported in Table 10. Average adjusted-
R2s of 69%, 45% and 30% are obtained for 1-, 5- and 10-year spread changes. These numbers
are significantly larger that the 26% (shot-maturity) and 21% (long-maturity) obtained by [6].
The results in [7] are not directly comparable, as the authors opt for regressing credit spread
levels instead of changes onto similar sets of variables (still in levels). As the goodness to
fit of the ECM model is evidently superior to the ones of a simple regression on changes,
this provides extra evidence of the importance of a long-run equilibrium dynamic, which
must be taken into account to correctly identify how credit spreads change.

Even when the implied volatility is used, the triplet spread, leverage, volatility still
shows a statistically significant cointegration. However, using the average implied volatility
of put options has a significant impact in the short-term adjustment dynamics: changes in
the implied volatility are significant (at 10% significance level) only for the 1-year spread.
Considering that most of equity options available in the market have maturity less than
one year, the loss of significance for the 5- and 10-year spread should not surprise: the
changes in the (short-term) implied volatility do not explain the reversion to the long-run
equilibrium of medium- and long-term spreads. Nonetheless, the cointegration among
the variables is still present, even though the model-implied volatility is replaced by the
option-implied volatility.

These results, alongside the good pricing errors obtained via a compound option
model of default, support the importance and ability of structural models in modeling the
default as well as in explaining the level and changes of credit spreads.

Robustness Checks

Despite the proposed cointegration displaying much larger adjusted R2s than previous
works, the goodness of this approach is further investigated via principal components
analysis (PCA), in a similar fashion to [7]. However, it is worth highlighting that the PCA
conducted herein is on the CDS spread changes, whilst [7] do so on the levels. Based
on the same arguments on the non-stationary of credit spreads discussed in the previous
section, PCA should always be implemented on independent and identically distributed
data (the changes) and not on random walks (the levels). Additionally, they look at raw
credit spreads, whilst PCA requires demeaned variables to be used.

PCA aims at studying the extent to which the selected set of variables in (13) captures
systematic credit-spread variations. PCA is, in fact, an effective tool for analyzing the
cross-sectional variation of the spread changes, thereby searching for common ‘factors’
(the components) which should affect credit spread changes regardless of firm-specific
characteristics.

First, the first 10 principal components (PCs) from the demeaned credit spreads
changes are extracted for both the 1-, 5-, and 10-year maturities. Figure 4 shows the
scree plots for the first 10 components. The spread changes for different maturities have
similar principal components and display the kink around the 3rd/4th component. Overall,
the first component explains 25–35% of the total variance of the spread changes; the second
component explains around 15%; the third component explains around 10%; and the
fourth component explains less then 10%. That is, in total, the first four components
explain only about 60% of the total variance of the CDS spread changes. The fact that
the first four component explain relatively little of the total variance points toward the
possibility that variables influencing spread changes are firm-specific (as leverage and firm’s
volatility) rather than systematic. This, alongside the successful cointegrating analysis,
further supports the validity of the structural model of default to explain credit spreads.
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Table 10. Adjusted R2s of the firm-specific time-series regressions in (13) (short-term adjustments).
As shown by both the mean- and median-adjusted R2, the explanatory power of the variables, which
should affect credit spread changes as predicted by structural models, diminishes with the maturity
of the spread.

1-Year 5-Year 10-Year 1-Year 5-Year 10-Year

Ticker adj–R2 Ticker adj–R2

AAPL 0.81 0.42 0.01 LLY 0.71 0.44 0.40
ABT 0.86 0.36 0.24 LOW 0.76 0.74 0.07
ALL 0.56 0.22 0.22 MCD 0.32 0.22 0.05
AMGN 0.62 0.38 0.30 MDT 0.92 0.88 0.79
BA 0.58 0.51 0.16 MMM 0.81 0.82 0.57
BAC 0.49 0.26 0.21 MO 0.65 0.41 0.19
BMY 0.71 0.29 0.15 MON 0.87 0.57 0.54
C 0.45 0.27 0.23 MRK 0.81 0.77 0.35
CAT 0.52 0.13 0.08 MS 0.63 0.53 0.50
CL 0.85 0.74 0.20 MSFT 0.90 0.59 0.15
CMCSA 0.57 0.20 0.13 ORCL 0.84 0.60 0.68
COF 0.87 0.72 0.73 OXY 0.71 0.33 0.14
COP 0.34 0.10 0.07 PEP 0.91 0.61 0.36
COST 0.89 0.89 0.87 PFE 0.64 0.43 0.19
CSCO 0.74 0.66 0.62 PG 0.86 0.82 0.20
CVS 0.75 0.57 0.24 PM 0.86 0.74 0.33
CVX 0.80 0.08 0.05 RTN 0.53 0.16 0.04
DD 0.66 0.39 0.43 SLB 0.36 0.12 0.05
DIS 0.77 0.46 0.32 SO 0.39 0.70 0.11
EMR 0.52 0.65 0.36 SPG 0.29 0.10 0.08
EXC 0.94 0.69 0.40 T 0.63 0.18 0.17
F 0.55 0.36 0.31 TGT 0.80 0.70 0.41
FDX 0.71 0.54 0.45 TWX 0.61 0.25 0.19
GD 0.81 0.81 0.76 TXN 0.81 0.40 0.44
GE 0.89 0.91 0.90 UNH 0.67 0.28 0.06
HAL 0.22 0.09 0.10 UNP 0.54 0.18 0.06
HD 0.79 0.55 0.33 USB 0.69 0.28 0.38
IBM 0.59 0.29 0.24 UTX 0.76 0.40 0.17
INTC 0.88 0.07 0.05 VZ 0.62 0.32 0.24
JNJ 0.77 0.50 0.47 WFC 0.62 0.53 0.52
JPM 0.57 0.41 0.39 WMT 0.71 0.33 0.09
KO 0.73 0.80 0.57 XOM 0.83 0.35 0.20

1-year 5-year 10-year

adj–R2

Mean 0.69 0.45 0.30
Median 0.71 0.41 0.24
Min 0.22 0.07 0.01
Max 0.94 0.91 0.90

These promising results could be, however, driven by over-fitting: as the volatility
is obtained using the compound option model so to match the other market variables,
the cointegrating mechanism could have been induced by the estimation methodology.
In order to address this potential issue, the volatility estimated from the spread and the
stock price is replaced by the option-implied volatility. More specifically, for each date, the
option implied volatility surface is obtained from the most liquid out-of-the-money put
options (i.e. out-of-the-money put options with daily trading volume above the annual
mean volume), and their average is used. Option data are obtained from the OptionMetrics.
The rational for focusing on put options is due to the fact part of the option skew displayed
by equity option is attributable to the leverage effect ([38]). Therefore, the information
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conveyed by the implied volatility in the put region may have some relevance for the
pricing of credit risk ([39]). Results are reported in Tables 11–13.

Table 11. ECM for 1-year CDS spreads using the average implied volatility of put options instead
of σS. Similar results are obtained; however, the implied volatility is significant only at the 10%
significance level in the short-term adjustment equation. Additionally, ∆LEV, ∆Curvature and ∆Skew
have become insignificant, and ∆Level is significant at the 10% significance level only.

1-Year CDS Spread
Long-Run Equilibrium

Coefficient t-Stat p-Value

IV 0.0008 3.77 0.000 ***
LEV 0.0025 12.18 0.000 ***

Short-term adjustment
Coefficient t-Stat p-Value

ε −0.1063 −9.79 0.000 ***
∆IV 0.0002 1.83 0.067 *
∆LEV 0.0012 1.42 0.156
∆Level −0.0390 −1.90 0.057 *
∆Slope 0.0318 3.17 0.002 ***
∆Curvature 0.5474 1.41 0.157
∆ ln(S&P500) −0.0020 −5.22 0.000 ***
∆Skew 4× 10−7 1.35 0.176
Constant 0.0001 2.31 0.000 ***

Number of observations:16,640; number of groups: 64; observations per group: 260. Significance levels: 10% (*),
1% (***).

Table 12. ECM for 5-year CDS spreads using the average implied volatility of put options instead
of σS. Similar results are obtained; however, the implied volatility is not significant in the short-
term adjustment equation. Additionally, ∆LEV, ∆Curvature and ∆Skew are significant at the 10%
significance level only, and ∆Level is significant at the 5% significance level only.

5-Year CDS Spread
Long-Run Equilibrium

Coefficient t-Stat p-Value

IV 0.0147 8.67 0.000 ***
LEV 0.0038 7.18 0.000 ***

Short-term adjustment
Coefficient t-Stat p-Value

ε −0.0360 −10.68 0.000 ***
∆IV 0.0002 0.91 0.361
∆LEV 0.0027 1.93 0.053 *
∆Level −0.1099 −2.19 0.028 **
∆Slope 0.0886 2.71 0.007 ***
∆Curvature 1.1884 1.74 0.081 *
∆ ln(S&P500) −0.0045 −5.87 0.000 ***
∆Skew −1−6 −1.90 0.057 *
Constant −6−6 −0.49 0.623

Number of observations: 16,640; number of groups: 64; observations per group: 260. Significance levels: 10% (*),
5% (**), 1% (***).
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Table 13. ECM for 10-year CDS spreads using the average implied volatility of put options instead of
σS. Similar results are obtained; however, neither the implied volatility nor leverage are significant
in the short-term adjustment equation. Additionally, ∆Level, ∆Slope, ∆Curvature and ∆Skew are
significant at the 5% significance level only.

10-Year CDS Spread
Long-Run Equilibrium

Coefficient t-Stat p-Value

IV 0.0312 11.43 0.000 ***
LEV 0.0285 17.22 0.000 ***

Short-term adjustment
Coefficient t-Stat p-Value

ε −0.0277 −5.82 0.000 ***
∆IV −2E-05 −0.09 0.931
∆LEV 0.0017 1.07 0.283
∆Level −0.1190 −2.24 0.025 **
∆Slope 0.0814 2.14 0.032 **
∆Curvature 1.6594 2.06 0.039 **
∆ ln(S&P500) −0.0055 −5.78 0.000 ***
∆Skew −2× 10−6 −2.31 0.021 **
Constant −0.0001 −5.43 0.000 ***

Number of observations: 16,640; number of groups: 64; observations per group: 260. Significance levels: 5% (**),
1% (***).

Secondly, credit spread changes for each company are regressed on an increasing set of
PCs. For each set of PCs, the average adjusted-R2 (and its standard deviation) are reported
in Table 14. Ref. [7] reports simple R2 instead of its adjusted correction for the number
of regressors. This is incorrect, as adding an extra regressor is likely to increase the R2,
but not the adjusted-R2, even when the variable (here, the PC) is not statistically significant.
Then, the same set of PCs is regressed onto the residuals of (13). If the variables used to
explain credit spread changes are not capturing systematic variations, large incremental
adjusted-R2 should be found from the regression of the residuals.

In general, the average adjusted-R2s of the regressions of PCs on both the spread
changes and on the residual of the short-term adjustment (13) are around 10%, thus signal-
ing a very modest impact of systematic factors in explaining the cross-sectional variation of
spread changes. The presence of a systematic factor related to the first principal compo-
nents appears to be slightly more important for the medium- and long-term spreads. This
could relate to how jump risk affect CDS spread changes for longer maturities. Perhaps
using the change in the CBOE SKEW as a proxy for large jumps in the firms’ asset value
is appropriate only when considering short-term spreads. This conjecture is based on
the fact the average adjusted R2 of the regression of the first component onto the 5-year
residuals is actually larger than the average adjusted R2 of the regression on the changes.
Somehow, the short-term adjustment regression induces systematic risk in the residuals:
the main difference between regression (13) estimated on the 5- and 10-year spread changes
is the impact of the jumps, whose estimated coefficients also display the opposite sign.
Alternatively, there is a systematic factor which the model is ignoring. This could be a
liquidity factor for the CDS market; however, it would account only for a very small fraction
of the cross-sectional variation of the CDS spread changes of longer maturities.
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Figure 4. Scree plots for the first 10 PCs of the demeaned 1-, 5-, and 10-year CDS spread changes.
The spread changes for different maturities have similar principal components and display the kink
around the 3rd/4th component. Overall, the first component explains 25–35% of the total variance
of the spread changes; the second component explains around 15%; the third component explains
around 10%; the fourth component explains less then 10%. The first 10 PCs are able to explain 80%
of the total variance for 1- and 10-year spread changes, and almost 90% of the total variance for the
5-year spread changes. However, the first four are able to explain only about 60% of the total variance.
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Table 14. Regression of both changes in CDS spreads (left columns) and residuals of (13) (right
columns) onto an increasing set of principal components. Large average adjusted R2s in the first
columns should would translate a significant impact of systematic factors on spread changes. This
does not appear to be the case. The pattern of the average adjusted R2s obtained from regressing the
PCs onto the residual of the ECM points should detect if some systematic factor could have been
missed by (13). Mixed evidence is found regarding the first PC in the case of 5- and 10-year spreads.

1-Year CDS Spread

∆CDS η

PCs mean adj–R2 st. dev. adj–R2 mean adj–R2 st. dev. adj–R2

1 0.089 0.202 0.068 0.166
2 0.087 0.211 0.068 0.182
3 0.110 0.261 0.086 0.220
4 0.071 0.189 0.079 0.209
5 0.073 0.200 0.085 0.224
6 0.062 0.189 0.069 0.205
7 0.059 0.179 0.069 0.220
8 0.047 0.165 0.065 0.207
9 0.039 0.153 0.069 0.219
10 0.032 0.141 0.062 0.200

5-year CDS spread
∆CDS η

PCs mean adj–R2 st. dev. adj–R2 mean adj–R2 st. dev. adj–R2

1 0.115 0.239 0.125 0.274
2 0.076 0.218 0.098 0.261
3 0.080 0.227 0.095 0.250
4 0.088 0.232 0.092 0.243
5 0.078 0.217 0.089 0.248
6 0.065 0.180 0.068 0.208
7 0.058 0.176 0.070 0.214
8 0.055 0.178 0.056 0.174
9 0.060 0.194 0.053 0.166
10 0.049 0.167 0.057 0.170

10-year CDS spread
∆CDS η

PCs mean adj–R2 st. dev. adj–R2 mean adj–R2 st. dev. adj–R2

1 0.118 0.248 0.100 0.215
2 0.096 0.243 0.086 0.225
3 0.102 0.263 0.093 0.233
4 0.091 0.243 0.080 0.213
5 0.096 0.252 0.084 0.217
6 0.065 0.208 0.069 0.192
7 0.065 0.207 0.071 0.184
8 0.055 0.199 0.063 0.182
9 0.047 0.178 0.057 0.167
10 0.047 0.176 0.058 0.165

As last robustness check, the error correction parametrization in (13) is re-estimated
for different values of the loss given default (60% and 80%). For the sake of brevity, the
estimates are not reported but are available upon request. All the conclusions obtained in
the previous section remain valid.
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6. Conclusions

This paper develops a new estimation technique for the unobservable firm’s asset value
and volatility which relies only on the observable equity value, risk-neutral probability of
default and the face value of the firm’s debt.

The estimated parameters are first used to test the ability of model to reprice CDS
spreads, out of sample. The pricing errors produced by the compound option model of
default are then compared with those generated by the structural models in [3]. The com-
pound option model sensibly outperforms the other models, being able to reduce the
pricing error by almost 90%.

Secondly, the estimated parameters are used to investigate the existence of cointegra-
tion between credit spreads and those variables which structural models of default predict
as driving their level. Estimations confirm the presence of an error-correction mechanism
which leads to a long-equilibrium between the level of the spreads, financial leverage and
the volatility of the firm’s equity. Once the cointegration equation is accounted for, the good-
ness to fit of the regressions on the changes improves substantially compared to previous
studies. Finally, principal component analysis is employed to study the cross-sectional
variation of credit spread changes.

Moreover, this work is the first to document the cointegration between CDS spreads,
financial leverage and the firm’s risk in a large panel of US firms. Once the cointegration
equation is added to the regressions on credit spread changes, the selected variables do
explain quite well their variation. Consistently with previous findings and the economic
intuition, it is shown that short-term spreads react more quickly to shocks to the long-run
equilibrium, and that jumps affect short- and long-term spreads differently. Additionally,
most of the variation in the cross-section appears to be driven by firm-specific characteristics
rather than systematic factors.

One of the clear limitation of this work is related to the assumptions of the compound
option model. In particular, the reference firm is assumed to default only at known
discrete times which coincide with the reimbursement dates of the bonds outstanding.
Furthermore, the exact amount of debt due at these future dates must be known (or sensibly
approximated). As explained in Section 3.4, the maturities of the firm’s debt, as well as the
aggregation scheme of the firm’s liabilities, had to be calibrated. The proposed calibration,
though based on the ability of the compound option model to price the spreads, is somehow
arbitrary, even though other calibration schemes were tested, showing that the results are
robust. Finally, it would be interesting to relax the model assumption on the static capital
structure: in fact, the firm is not allowed to modify its leverage throughout its lifetime.
In the interests of brevity, these extensions are best left for future research.
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Appendix A. The Stochastic Process Driving the Firm’s Equity

The stochastic properties of the process driving the value of the equity are discussed
can be easily obtained as follows. Given the core assumption of structural models of
defaults in which the only state variable is the value of the firm, V, and equity is a function
of such variable only (and time), i.e., S = f (V, t), by the virtue of Itô’s lemma, the value of
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the equity does not follow a geometric Brownian motion but instead a process that I refer
to as stochastic elasticity of variance (SEV). As a matter of fact, it can be shown that

dSt = αQS (Vt, t)St dt + σVSβ(Vt ,t)
t dWQ

t (A1)

with

αQS (Vt, t) :=
1
St

(
∂S
∂t

+
∂S
∂V

(r− p)Vt +
1
2

∂2S
∂V2 σ2

VV2
t

)
and β(Vt, t) := 1 +

ln ElV(St)

ln St

where ElV(St) := ∂S
St

/ ∂V
Vt

is the elasticity of the firm’s equity with respect to the asset value.
This model closely resembles the constant elasticity of variance (CEV) model ([40]) in which
the parameter β is assumed constant.

An alternative representation of (A1) is

dSt = αQS (Vt, t)St dt + σS(Vt, t)dWQ
t , (A2)

with
σS(Vt, t) = σV∆(n)

S
Vt

St
, (A3)

where ∆(n)
S := ∂S/∂V is the sensitivity of the equity with respect to changes of the asset

value (as equity is an option, it is the ‘Delta’ of the equity). Further details on the derivations
of Equations (A1)–(A3) can be found in [25].

Notice that, given that the value of the equity depends on the number of bonds
outstanding, ∆(n)

S also depends on n. Analytical expressions of ∆(n)
S are available in

Appendix B. It is worth highlighting that the process does not only have stochastic volatil-
ity, but it is also a model of local volatility in the sense of [41] as it depends on the current
level of the equity. Therefore, the model driving equity returns is a local-stochastic volatility
model (for further details on this class of models, see [42]).

Appendix B. The Delta of the Equity

In order to compute the sensitivity of the equity with respect to changes in the asset
value (herein, delta of the equity), the following result is needed.

Theorem A1. Let

Φk(d(x); Γ) =
∫

Υ(x)
Φ′k(y1, . . . , yi, . . . , yk; Γ)dy1 . . . dyi . . . dyk

with Γ positive definite and Υ(x) =
⋂k

i=1{yi ∈ R : yi ≤ di(x)}, with d(x) : R+ → Rk,
di(x) = ln x+ai

bi
with ai ∈ R and bi ∈ R+. Then

∂Φk(d(x); Γ)

∂x
=

1
x

k

∑
i=1

1
bi

∫
Ῡi(x)

Φ′k(y1, . . . , di(x), . . . , yk; Γ)dy1 . . . dyk,

where Ῡi(x) = Υ(x) \ {yi ≤ di(x)}.

Proof. Let zi = di(x), with i = {1, . . . , k}. Applying the chain rule, it follows

∂Φk(z1, . . . , zk)

∂x
=

k

∑
i=1

∂Φk
∂zi

∂zi
∂x

and by the virtue of the fundamental theorem of calculus
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∂Φk
∂zi

=
∫ z1

−∞
· · ·

∫ zi−1

−∞

∫ zi+1

−∞
· · ·

∫ zk

−∞
Φ′k(y1, . . . , yi−1, zi, yi+1, . . . , yk; Γ)dy1 . . . dyi−1dyi+1 . . . dyk.

As
∂zi
∂x

=
1

bix
,

the result follows.

With no loss of generality, p is assumed to be zero. Given n bond outstanding, the value
of the equity is given by (7), which, as a function of V, reads as

S(V, n) = VΦn
(
d+(V); Γn

)
−

n

∑
k=1

e−rtk FkΦk
(
d−k (V); Γk

)
where d+(V) :=

(
d+i (V)

)
1≤i≤n and d−k (V) =

(
d+i (V)− σV

√
ti
)

1≤i≤k with

d+i (V) =
ln(V/V̄i) +

(
r−v + σ2

V/2
)
ti

σV
√

ti
and Γk =



1
√

t1
t2

√
t1
t3

. . .
√

t1
tk

1
√

t2
t3

. . .
√

t2
tk

. . . . . . . . . . . . . . .

1
√

tk−1
tk

1


.

Therefore, the delta of the equity is generally defined as

∆(n)
S :=

∂S
∂V

=

(
Φn
(
d+(V); Γn

)
+ V

∂Φn(d+(V); Γn)

∂v

)
−

n

∑
k=1

e−rtk Fk
∂Φk

(
d−k (V); Γk

)
∂V

.

The derivation of a semi-closed formula for the computation of the delta for a generic n
is not straightforward. However, I explicitly develop analytical expressions for n = {1, 2, 3}
(which suffice for the actual calculations present in the paper). Additionally, although
∆(n)

S : R+ → (0, 1), for all n ∈ N, its numerical computation becomes progressively more
intensive (as n grows).

For convenience of notation, the dependence on V in the integration intervals (the d’s
and related expressions) is omitted. For n = 1, the ∆S is nothing but the Black–Scholes
delta of a call option (see [43]), i.e.,

∆(1)
S = Φ(d+)

In the case of n = 2, the ∆S is the Geske delta of a compound call-on-call (see [25]), i.e.,

∆(2)
S = Φ2

(
d+; Γ

)
with

d+ =

(
ln V

V̄1
+

(
r+

σ2
V
2

)
t1

σV
√

t1

ln V
F2
+

(
r+

σ2
V
2

)
t2

σV
√

t2

)
and Γ =

 1
√

t1
t2√

t1
t2

1


The Delta in the case of n = 3 was not available in the literature and is derived below.

Let

S(V, 3) = VΦ3
(
d+

3 ; Γ3
)
− e−rt1 F1Φ

(
d−1
)
− e−rt2 F2Φ2

(
d−2 ; Γ2

)
− e−rt3 F3Φ3

(
d−3 ; Γ3

)
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with

Γ3 =

 1 γ12 γ13
γ12 1 γ23
γ13 γ23 1

, Γ2 =

(
1 γ12

γ12 1

)
and γij =

√
ti
tj

, with i ≤ j

d±3 =

(
ln V

V̄1
+

(
r± σ2

V
2

)
t1

σV
√

t1

ln V
V̄2

+

(
r± σ2

V
2

)
t2

σV
√

t2

ln V
F3
+

(
r± σ2

V
2

)
t3

σV
√

t3

)
.

and d−2 / d−1 the first two / one elements of d−3 . Thus, the Delta is equal to

∂S
∂V

= Φ3

(
d−/+; Γ3

)
+ V

∂Φ3

(
d−/+; Γ3

)
∂V

− e−rt1 F1
∂Φ
(
d−1
)

∂V
− e−rt2 F2

∂Φ2
(
d−2 ; Γ2

)
∂V

− e−rt3 F3
∂Φ3

(
d−3 ; Γ3

)
∂V

.

To compute the delta of the equity for n = 3, an expression for the partial derivative
of the trivariate CDF is required. Using Theorem A1, it follows that

∂Φ3(d±; Γ)

∂V
=

∂Φ3(d±; Γ)

∂d±1

∂d±1
∂V

+
∂Φ3(d±; Γ)

∂d±2

∂d±2
∂V

+
∂Φ3(d±; Γ)

∂d±3

∂d±3
∂V

=
1
V

(
1

σV
√

t1

∫ d±2

−∞

∫ d±3

−∞

1√
(2π)3 det Γ

exp

(
−

τ1x2 + τ4y2 + τ9(d±1 )
2 + 2τ2xy + 2τ6d±1 y

2

)
dx dy

+
1

σV
√

t2

∫ d±1

−∞

∫ d±3

−∞

1√
(2π)3 det Γ

exp

(
−

τ1x2 + τ4(d±2 )
2 + τ9z2 + 2τ2d±2 x + 2τ6d±2 z

2

)
dx dz

+
1

σV
√

t3

∫ d±1

−∞

∫ d±2

−∞

1√
(2π)3 det Γ

exp

(
−

τ1(d±3 )
2 + τ4y2 + τ9z2 + 2τ2d±3 y + 2τ6yz

2

)
dy dz

)

=
1
V

(
I±1

σV
√

t1
+

I±2
σV
√

t2
+

I±3
σV
√

t3

)

where det Γ = (t2−t1)(t3−t2)
t2t3

and

Γ−1 =


t2

t2−t1
−
√

t1t2
t2−t1

0

−
√

t1t2
t2−t1

t2(t3−t1)
(t2−t1)(t3−t2)

−
√

t2t3
t3−t2

0 −
√

t2t3
t3−t2

t3
t3−t2

 =

τ1 τ2 0
τ2 τ4 τ6
0 τ6 τ9

.

All the double integrals can be computed recognizing appropriate bivariate Gaussian
random vector and re-expressing the integrals as an appropriate bivariate normal CDF, i.e.,

∫ a

−∞

∫ b

−∞

1
2πσ1σ2

√
1− ρ2

exp

−
(

w1−µ1
σ1

)2
+
(

w2−µ2
σ2

)2
− 2ρ

(
w1−µ1

σ1

)(
w2−µ2

σ2

)
2(1− ρ2)

dw1 dw2.

Solution of I1
In order to find the appropriate random vector W1 ∼ N (µ1, Σ1), I need to determine

Θ1 = {µ1, Σ1} = {µ1, µ2, σ1, σ2, ρ} such that

(
w1−µ1

σ1

)2
+
(

w2−µ2
σ2

)2
− 2ρ

(
w1−µ1

σ1

)(
w2−µ2

σ2

)
1− ρ2 = τ1w2

1 + τ4w2
2 + 2τ2w1w2 + 2τ6d1w2 + ã1 (A4)
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and re-express the density as normalized based on its covariance matrix (notice that ã1 is a
free parameter). Expanding the left-hand side of (A4)

1
1− ρ2

[
w2

1
σ2

1
+

w2
2

σ2
2
− 2

ρ

σ1σ2
w1w2 +

2
σ1

(
ρ

µ2

σ2
− µ1

σ1

)
w1 +

2
σ2

(
ρ

µ1

σ1
− µ2

σ2

)
w2

+

(
µ1

σ1

)2
+

(
µ2

σ2

)2
− 2ρ

µ1µ2

σ1σ2

]

the following conditions must be met:

1
(1− ρ2)σ2

1
= τ1

1
(1− ρ2)σ2

2
= τ4

− ρ

(1− ρ2)σ1σ2
= τ2

1
(1− ρ2)σ1

(
ρ

µ2

σ2
− µ1

σ1

)
= 0

1
(1− ρ2)σ2

(
ρ

µ1

σ1
− µ2

σ2

)
= τ6d1

1
1− ρ2

[(
µ1

σ1

)2
+

(
µ2

σ2

)2
− 2ρ

µ1µ2

σ1σ2

]
= ã1.

The first three conditions allow to find σ1, σ2 and ρ as

ρ = − τ2√
τ1τ4

σ2
1 =

1
τ1(1− ρ2)

=
τ4

τ1τ4 − τ2
2

σ2
2 =

1
τ4(1− ρ2)

=
τ1

τ1τ4 − τ2
2

.

The fourth condition imposes
µ1

σ1
= ρ

µ2

σ2

which can be substituted into the fifth condition to find µ2 as

µ2 = −τ6σ2
2 d1 = − τ6

τ4(1− ρ2)
d1 = − τ1τ6

τ1τ4 − τ2
2

d1.

Finally, µ1 is found as

µ1 = ρ
µ2σ1

σ2
=

τ2τ6

τ1τ4(1− ρ2)
d1 =

τ2τ6

τ1τ4 − τ2
2

d1,

and

ã1 =
τ1τ2

6
τ1τ4 − τ2

2
d2

1.

Therefore,

I1 =

√
det Σ1

det Γ

exp
(
− τ9d2

1−ã1
2

)
√

2π

∫ d2

−∞

∫ d3

−∞

1
2π
√

det Σ1
exp

(
−
(w1 − µ1)

>Σ−1
1 (w1 − µ1)

2

)
dw1

=

√
det Σ1

det Γ
Φ′(
√

a1d1)N2(d2, d3; µ1, Σ1)
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with N2 the CDF of a bivariate (non-standard) Gaussian vector and

a1 = τ9 −
τ1τ2

6
τ1τ4 − τ2

2

and
det Σ1 = σ2

1 σ2
2

(
1− ρ2

)
=

1
τ1τ4 − τ2

2
.

Solution of I2
The second integral is simpler to solve, as there is no xz term. In fact, it can be

expressed as the CDFs of two univariate Gaussian (independent) random variables as

I2 =
∫ d1

−∞

∫ d3

−∞

1√
(2π)3 det Γ

exp

(
−

τ1x2 + τ4d2
2 + τ9z2 + 2τ2d2x + 2τ6d2z

2

)
dx dz

=
σxσz√
det Γ

exp
(
− a2d2

2
2

)
√

2π

∫ d1

−∞

1√
2πσx

exp

(
−1

2

(
x− µx

σx

)2
)

dx ·

∫ d3

−∞

1√
2πσz

exp

(
−1

2

(
z− µz

σz

)2
)

dz

with
µx = −τ2d2

τ1
, σ2

x =
1
τ1

,

µz = −
τ6d2

τ9
, σ2

z =
1
τ9

,

a2 = τ4 −
τ2

2
τ1
−

τ2
6

τ9
, Σ2 =

(
σ2

x 0
0 σ2

z

)
.

Therefore,

I2 =

√
det Σ2

det Γ
Φ′(
√

a2d2)Φ
(

τ1d1 + τ2d2√
τ1

)
Φ
(

τ9d3 + τ6d2√
τ9

)
with

det Σ2 = σ2
x σ2

z =
1

τ1τ9
.

Alternatively, the integral can also be expressed as

I2 =

√
det Σ2

det Γ
Φ′(
√

a2d2)N2(d1, d3; µ2, Σ2),

where µ2 =
(
µx µy

)>.

Solution of I3
The procedure to solve the last integral is the same used for I1. Consider the random

vector W3 ∼ N (µ3, Σ3). Again, I need to determine Θ3 = {µ3, Σ3} = {µ1, µ2, σ1, σ2, ρ}
such that

(
w1−µ1

σ1

)2
+
(

w2−µ2
σ2

)2
− 2ρ

(
w1−µ1

σ1

)(
w2−µ2

σ2

)
1− ρ2 = τ4w2

1 + τ9w2
2 + 2τ2d3w1 + 2τ6w1w2 + ã3.
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Thus, the following conditions must be met

1
(1− ρ2)σ2

1
= τ4

1
(1− ρ2)σ2

2
= τ9

− ρ

(1− ρ2)σ1σ2
= τ6

1
(1− ρ2)σ1

(
ρ

µ2

σ2
− µ1

σ1

)
= τ2d3

1
(1− ρ2)σ2

(
ρ

µ1

σ1
− µ2

σ2

)
= 0

1
1− ρ2

[(
µ1

σ1

)2
+

(
µ2

σ2

)2
− 2ρ

µ1µ2

σ1σ2

]
= ã3.

The first three conditions allow to find σ1, σ2 and ρ as

ρ = − τ6√
τ4τ9

σ2
1 =

1
τ4(1− ρ2)

=
τ9

τ4τ9 − τ2
6

σ2
2 =

1
τ9(1− ρ2)

=
τ4

τ4τ9 − τ2
6

.

The fifth condition imposes
µ2

σ2
= ρ

µ1

σ1

which can be substituted into the forth condition to find µ1 as

µ1 = −τ2σ2
1 d3 = − τ2

τ4(1− ρ2)
d3 = − τ2τ9

τ4τ9 − τ2
6

d3.

Finally, µ2 is found as

µ2 = ρ
µ1σ2

σ1
=

τ2τ6

τ4τ9(1− ρ2)
d3 =

τ2τ6

τ4τ9 − τ2
6

d3,

and

ã3 =
τ9τ2

2
τ4τ9 − τ2

6
d2

3.

Therefore

I3 =

√
det Σ3

det Γ

exp
(
− τ1d2

3−ã3
2

)
√

2π

∫ d1

−∞

∫ d2

−∞

1
2π
√

det Σ3
exp

(
−
(w3 − µ3)>Σ−1

3 (w3 − µ3)

2

)
dw3

=

√
det Σ3

det Γ
Φ′(
√

a3d3)N2(d1, d2; µ3, Σ3)

with

a3 = τ1 −
τ9τ2

2
τ4τ9 − τ2

6

and
det Σ3 = σ2

1 σ2
2

(
1− ρ2

)
=

1
τ4τ9 − τ2

6
.
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Hence, the delta of the equity in the case n = 3 is

∂S
∂V

= Φ3
(
d+; Γ3

)
+

I+1
σV
√

t1
+

I+2
σV
√

t2
+

I+3
σV
√

t3
− e−rt3

F3

V

(
I−1

σV
√

t1
+

I−2
σV
√

t2
+

I−3
σV
√

t3

)

− e−rt2
F2

V

Φ′(d−1 )
σV
√

t1
Φ

d−2 −
√

t1
t2

d−1√
1− t1

t2

+
Φ′(d−2 )
σV
√

t2
Φ

d−1 −
√

t1
t2

d−2

1−
√

t1
t2


− e−rt1

F1

VσV
√

t1
Φ′(d−1 ).

Writing the three integrals explicitly, it follows

∆(3)
S = Φ3

(
d+; Γ3

)
+

1
σV
√

det Γ3

3

∑
i=1

√
det Σi

ti
Φ′
(√

aid+i
)

N2
(
d+ \ d+i ; µ+

i , Σi
)

− e−rt3
F3

V
1

σV
√

det Γ3

3

∑
i=1

√
det Σi

ti
Φ′
(√

aid−i
)

N2
(
d−3 \ d−i ; µ−i , Σi

)
− e−rt2

F2

V

Φ′(d−1 )
σV
√

t1
Φ

d−2 −
√

t1
t2

d−1√
1− t1

t2

+
Φ′(d−2 )
σV
√

t2
Φ

d−1 −
√

t1
t2

d−2

1−
√

t1
t2


− e−rt1

F1

VσV
√

t1
Φ′(d−1 ).

where d± \ d±i must be intended as the vector obtained from d± by removing the element
d±i (and keeping the order of the other elements unchanged).

Appendix C. The Vega of the Equity

In order to study the vega of the equity, the following result is needed.

Theorem A2. Let

Φk(d(x); Γ) =
∫

Υ(x)
Φ′k(y1, . . . , yi, . . . , yk; Γ)dy1 . . . dyi . . . dyk

with Γ positive definite and Υ(x) =
⋂k

i=1{yi ∈ R : yi ≤ di(x)}, with d(x) : R+ → Rk,
di(x) = bix± ai

x with ai : R+ → R and bi ∈ R+. Then

∂Φk(d(x); Γ)

∂x
=

k

∑
i=1

(
bi ∓

ai(x)
x2

) ∫
Ῡi(x)

Φ′k(y1, . . . , di(x), . . . , yk; Γ)dy1 . . . dyk,

where Ῡi(x) = Υ(x) \ {yi ≤ di(x)}.

Proof. It follows by the same arguments of Theorem A1 with

∂di
∂x

= bi ∓
ai(x)

x2 .

With no loss of generality, p is assumed to be zero. Given n bond outstanding, the value
of the equity is given by (7) which, as a function of σV , reads as

S(σV , n) = V0Φn
(
d+(σV); Γn

)
−

n

∑
k=1

e−rtk FkΦk
(
d−k (σV); Γk

)
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where dM(σV) :=
(
d+i (σV)

)
1≤i≤n and d−k (σV) =

(
d+i (σV)− σV

√
ti
)

1≤i≤k with

d+i (σV) =
ln(V0/V̄i) +

(
r + σ2

V/2
)
ti

σV
√

ti
and Γk =



1
√

t1
t2

√
t1
t3

. . .
√

t1
tk

1
√

t2
t3

. . .
√

t2
tk

. . . . . . . . . . . . . . .

1
√

tk−1
tk

1


,

and
V̄i := {v ∈ R+ : S?

i (v) = Fi}.

The vega of the equity is defined in general as

ν
(n)
S :=

∂s
∂σV

= V0
∂Φn

(
dM(σV); Γn

)
∂σV

−
n

∑
k=1

e−rtk Fk
∂Φk

(
dQ

k (σV); Γk
)

∂σV
.

In the same fashion of Appendix B, I calculate the vega of the equity for n = {1, 2, 3}.
For convenience of notation, the dependence on σV in the integration intervals (the d’s and
related expressions) is omitted.

For n = 1, it coincide with the Black–Scholes vega of a call option (see [43]), i.e.

ν
(1)
S = e−vtΦ′(dM)V0

√
t.

In the case of n = 2, it is the Geske vega of a compound call-on-call (see [25]), i.e.,

S(σV , 2) = V0Φ2
(
d+

2 ; Γ
)
− e−rt1 F1Φ

(
d−1
)
− e−rt2 F2Φ2

(
d−2 ; Γ

)
with

d±2 =

(
ln V0

V̄1
+

(
r± σ2

V
2

)
t1

σV
√

t1

ln V0
F2

+

(
r± σ2

V
2

)
t2

σV
√

t2

)
, Γ =

(
1 γ
γ 1

)
and γ =

√
t1

t2

The vega is calculated as

∂S
∂σV

= V0
∂Φ2

(
d+

2 ; Γ
)

∂σV
− e−rt1 F1

∂Φ
(
d−1
)

∂σV
− e−rt2 F2

∂Φ2
(
d−2 ; Γ

)
∂σV

.

In order to effectively compute the vega of the equity for n = 2, an expression for the
partial derivative with respect to σV of the bivariate CDF is needed. Furthermore, notice
that V̄1 is an implicit function of σV . Based on Theorem A2, it follows
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∂Φ2(d±; Γ)

∂σV
=

∂Φ2(d±; Γ)

∂d±1

∂d±1
∂σV

+
∂Φ2(d±; Γ)

∂d±2

∂d±2
∂σV

= − 1
σV

[(
d∓1 +

V̄′1
V̄1
√

t1

) ∫ d±2

−∞

1

2π
√

1− γ2
exp

(
−1

2
x2 − 2γd±1 x + d±1

2

1− γ2

)
dx

+d∓2

∫ d±1

−∞

1

2π
√

1− γ2
exp

(
−1

2
d±2

2 − 2γd±2 y + y2

1− γ2

)
dy

]

= − 1
σV

(d∓1 +
V̄′1

V̄1
√

t1

)exp
(
− d±1

2

2

)
√

2π

∫ d±2

−∞

1√
2π(1− γ2)

exp

(
−1

2

(
x− γd±1

)2

1− γ2

)
dx

+d∓2

exp
(
− d±2

2

2

)
√

2π

∫ d±1

−∞

1√
2π(1− γ2)

exp

(
−1

2

(
y− γd±2

)2

1− γ2

)
dy


= − 1

σV

[(
d∓1 +

V̄′1
V̄1
√

t1

)
Φ′
(
d±1
)
Φ

(
d±2 − γd±1√

1− γ2

)
+ d∓2 Φ′

(
d±2
)
Φ

(
d±1 − γd±2√

1− γ2

)]
.

Setting

d+2 :=
d+2 − γd+1√

1− γ2
=

ln V̄1
F2

+

(
r + σ2

V
2

)
(t2 − t1)

σV
√

t2 − t1

d−2 :=
d−2 γd−1√

1− γ2
= d+2 − σV

√
t2 − t1

and

d+1 :=
d+1 − γd+2√

1− γ2
=

ln
(

V0
V̄1

)
t2 − ln

(
V0
F2

)
t1

σV
√

t1t2(t2 − t1)
=

d−1 − γd−2√
1− γ2

:= d−1

and rearranging, it follows

ν
(2)
S =

1
σV

[
e−rt2 F2

((
d+1 +

V̄′1
V̄1
√

t1

)
Φ′
(
d−1
)
Φ
(
d−2
)
+ d+2 Φ′

(
d−2
)
Φ
(
d−1
))

−V0

((
d−1 +

V̄′1
V̄1
√

t1

)
Φ′
(
d+1
)
Φ
(
d+2
)
+ d−2 Φ′

(
d+2
)
Φ
(
d+1
))

+e−rt1 F1

(
d+1 +

V̄′1
V̄1
√

t1

)
Φ′
(
d−1
)]

Finally, if n = 3

S(σV , 3) = V0Φ3
(
d+

3 ; Γ3
)
− e−rt1 F1Φ

(
d−1
)
− e−rt2 F2Φ2

(
d−2 ; Γ2

)
− e−rt3 F3Φ3

(
d−3 ; Γ3

)
with

Γ3 =

 1 γ12 γ13
γ12 1 γ23
γ13 γ23 1

, Γ2 =

(
1 γ12

γ12 1

)
and γij =

√
ti
tj

, with i ≤ j

d± =

(
ln V0

V̄1
+

(
r± σ2

V
2

)
t1

σV
√

t1

ln V0
V̄2

+

(
r± σ2

V
2

)
t2

σV
√

t2

ln V0
F3

+

(
r± σ2

V
2

)
t3

σV
√

t3

)
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and d−2 / d−1 the first two / one elements of d−3 . Hence, the vega is equal to

∂S
∂σV

= V0
∂Φ3

(
d+

3 ; Γ3
)

∂σV
− e−rt1 F1

∂Φ
(
d−1
)

∂σV
− e−rt2 F2

∂Φ2
(
d−2 ; Γ2

)
∂σV

− e−rt3 F3
∂Φ3

(
d−3 ; Γ3

)
∂σV

.

Again, to compute the delta of the equity for n = 3, I need to find an expression for
the partial derivative of the trivariate CDF. Using Theorem A2, it follows

∂Φ3
(
d±; Γ

)
∂σV

=
∂Φ3

(
d±; Γ

)
∂d±1

∂d±1
∂σV

+
∂Φ3

(
d±; Γ

)
∂d±2

∂d±2
∂σV

+
∂Φ3

(
d±; Γ

)
∂d±3

∂d±3
∂σV

= − 1
σV

[(
d∓1 +

V̄′1
V̄1
√

t1

) ∫ d±2

−∞

∫ d±3

−∞

1√
(2π)3 det Γ

exp

(
−

τ1x2 + τ4y2 + τ9d±1
2
+ 2τ2xy + 2τ6d±1 y

2

)
dx dy

+

(
d∓2 +

V̄′2
V̄2
√

t2

) ∫ d±1

−∞

∫ d±3

−∞

1√
(2π)3 det Γ

exp

(
−

τ1x2 + τ4d±2
2
+ τ9z2 + 2τ2d±2 x + 2τ6d±2 z

2

)
dx dz

+d∓3

∫ d±1

−∞

∫ d±2

−∞

1√
(2π)3 det Γ

exp

(
−

τ1d±3
2
+ τ4y2 + τ9z2 + 2τ2d±3 y + 2τ6yz

2

)
dy dz

]

= − 1
σV

[(
d∓1 +

V̄′1
V̄1
√

t1

)
I1 +

(
d∓2 +

V̄′2
V̄2
√

t2

)
I2 + d∓3 I3

]

where det Γ = (t2−t1)(t3−t2)
t2t3

and

Γ−1 =


t2

t2−t1
−
√

t1t2
t2−t1

0

−
√

t1t2
t2−t1

t2(t3−t1)
(t2−t1)(t3−t2)

−
√

t2t3
t3−t2

0 −
√

t2t3
t3−t2

t3
t3−t2

 =

τ1 τ2 0
τ2 τ4 τ6
0 τ6 τ9

.

All the double integrals can computed in the same fashion described in Appendix B.
Solution of I1

I1 =

√
det Σ1

det Γ
Φ′
(√

a1d±1
)

N2
(
d±2 , d±3 ; µ±1 , Σ1

)
with

Σ1 =
1

τ1τ4 − τ2
2

(
τ4 −τ2
−τ2 τ1

)
, µ±1 = −det Σ1

(
−τ2τ6
τ1τ6

)
d±1 and a1 = τ9 − det Σ1τ1τ2

6

Solution of I2

I2 =

√
det Σ2

det Γ
Φ′
(√

a2d±2
)

N2
(
d±1 , d±3 ; µ±2 , Σ2

)
=

√
det Σ2

det Γ
Φ′
(√

a2d±2
)
Φ

(
τ1d±1 + τ2d±2√

τ1

)
Φ

(
τ9d±3 + τ6d±2√

τ9

)
.

with

Σ2 =
1

τ1τ9

(
τ9 0
0 τ1

)
, µ±2 = −det Σ2

(
τ2τ9
τ1τ6

)
d±2 and a2 = τ4 − det Σ2

(
τ2

2 τ9 + τ1τ2
6

)
.

Solution of I3

I1 =

√
det Σ3

det Γ
Φ′
(√

a3d±3
)

N2
(
d±1 , d±2 ; µ±3 , Σ3

)
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with

Σ3 =
1

τ4τ9 − τ2
6

(
τ9 −τ6
−τ6 τ4

)
, µ±3 = −det Σ3

(
τ2τ9
−τ2τ6

)
d±1 and a3 = τ1 − det Σ3τ2

2 τ9.

Hence, the vega of the equity in the case n = 3 is

∂S
∂σV

=
1

σV

[
e−rt3 F3

((
d+1 +

V̄′1
V̄1
√

t1

)
I−1 +

(
d+2 +

V̄′2
V̄2
√

t2

)
I−2 + d+3 I−3

)

−V0

((
d−1 +

V̄′1
V̄1
√

t1

)
I+1 +

(
d−2 +

V̄′2
V̄2
√

t2

)
I+2 + d−3 I+3

)
+ e−rt2 F2

((
d+1 +

V̄′1
V̄1
√

t1

)
Φ′
(
d−1
)
Φ
(
d−2
)
+

(
d+2 +

V̄′2
V̄2
√

t2

)
Φ′
(
d−2
)
Φ
(
d−1
))

+e−rt1 F1

(
d+1 +

V̄′1
V̄1
√

t1

)
Φ′
(
d−1
)]

Writing the three integrals explicitly, it follows

ν
(3)
S =

1
σV

[
e−rt3 F3

1√
det Γ3

3

∑
i=1

(
d+i +

V̄′i
V̄i
√

ti

)√
det ΣiΦ′

(√
aid−i

)
N2
(
d−3 \ d−i ; µ−i , Σi

)
−V0

1√
det Γ3

3

∑
i=1

(
d−i +

V̄′i
V̄i
√

ti

)√
det ΣiΦ′

(√
aid+i

)
N2
(
d+ \ d+i ; µ+

i , Σi
)

+e−rt2 F2

((
d+1 +

V̄′1
V̄1
√

t1

)
Φ′
(
d−1
)
Φ
(
d−2
)
+

(
d+2 +

V̄′2
V̄2
√

t2

)
Φ′
(
d−2
)
Φ
(
d−1
))

+ e−rt1 F1

(
d+1 +

V̄′1
V̄1
√

t1

)
Φ′
(
d−1
)]

,

where d± \ d±i must be intended as the vector obtained from d± by removing the element
d±i (and keeping the order of the other elements unchanged).
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