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Abstract: The aim of this paper is to approximate fixed points of nonexpansive type mappings in
Banach spaces when the set of fixed points is nonempty. We study the general Picard-Mann (GPM)
algorithm, obtaining the weak and strong convergence theorems. We provide an example to illustrate
the convergence behaviour of the GPM algorithm. We compare the GPM algorithm with other
existing (well known) algorithms numerically (under different parameters and initial guesses).
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1. Introduction and Preliminaries

Let (Z, ]|.||) be a Banach space. The mapping ® : Z — Z is nonexpansive if

[@(3) —dW)| < [[d-v[VEveZ ey
check for A point ¢ € Z is a fixed point of ® if $(9) = 0. Let F(P) denote the set of fixed
updates points of ®. Finding a fixed point of nonlinear mappings is an important problem and

Citation: Shukla, R.; Panicker, R. various algorithms have been used by many researchers. The Picard algorithm [1] is mostly
Approximating Fixed Points of used (simplest and popular) to find the fixed points of contractive mappings. However,
Nonexpansive Type Mappings via for nonexpansive mappings, the Picard algorithm need not converge to a fixed point.
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Krasnosel’skil [2], Schaefer [3] and Mann [4] proposed more general algorithms to find
fixed points of nonexpansive mappings.

Many mathematicians extended and generalized the class of nonexpansive mappings
in different directions, see [5]. In 2011, Garcia-Falset et al. [6] considered the following class
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Definition 1 ([6]). Let ) be a subset of a Banach space Z such that Y # @. A mapping ® : Y —
Y is said to satisfy condition (E,) on Y if there exists y > 1 such that

Publisher’s Note: MDPI stays neutral ||19 — CD(U) H < “l/lHl9 — @(19) || + ||l9 — 1/“, \ 19,1/ € J/
with regard to jurisdictional claims in
published maps and institutional affil- A mapping ® satisfies condition (E) on )) whenever ® satisfies (E,) for some p > 1.

iations.
A number of papers have been appeared in literature dealing with condition (E),
see [5,7-9] and references therein. In the last two decades, a number of algorithms (from
= one step to four steps) were studied by mathematicians to improve the fastness of the
Copyright: © 2022 by the authors. algorithm, see [4,10_34]
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This article is an open access article  gaisfying condition (E). We employ general Picard-Mann (in short GPM) and obtain a
number of weak and strong convergence results. We supply a numerical example and
compare the GPM algorithm with various algorithms presented in Section 2.
We denote — for strong convergence, — for weak convergence, and ww(ﬂn) denotes a
cluster points (w-limit) set of a sequence {9, }, thatis, wy (&) := {¢: 30, — 0}
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Lemma 1 ([35] p. 484). Let Z be a uniformly convex Banach space and 0 < a < p, <b <1
foralln € N. Let {8, } and {v, } be two sequences such that hm sup 10, <7, 11m sup lvnll <7

and lgn |pn®n + (1 — pu)vnl|| = r hold for some r > 0. Then hm 18 — val| = 0
n—oo
Lemma 2 ((Demiclosedness principle). [6]). Let Y be a nonempty subset of a Banach space

Z which has the Opial property. Let & : Y — Y be a mapping satisfying condition (E). Suppose
{0} is a sequence in Y such that {8, } converges weakly to ¢ and lim |8, — ®(0)|| = 0. Then,
n—oo

®(0) = 0. That is, I — ® is demiclosed at zero.

Lemma 3 ([6]). Let YV be a nonempty subset of a Banach space Z and ® : Y — Y satisfies
condition (E) with F(®) # @. Then, ® is quasi-nonexpansive.

2. Various Iterative Methods (or Algorithms)

In this section, we present a number of iterative methods considered in the literature:
foragiven ) € Y and {a,}, {Bn}, {7} C[0,1].

e  Mann [4]
Opi1=(1—ay)0; + ay®(0y). )

e  Ishikawa [10]

{vn = (1= Bn)0n + Bu®(0n) 3)

Opi1 = (1 —an) 0 + 0y ®@(vy).

e Noor [11]

(1= 7n) 0 + 1P (0n)
Vy = (1 - ,Bn)ﬁn + ,BnCD(Zn) (4)
= (1—ay)8 + an®(vy).

e Agarwaletal. [12]

{vn = (1= Bu)On + Pu®(n) ©)

V1 = (1 - “n)¢(19n) + D(nq>(1/n).
e  Phuengrattana and Suantai [13]

zn = (1= 9n)0n + 12 ®(0n)
vy =(1— ,Bn)zn + ,Bnq)(zn) (6)
Opi1=(1—ay)vy + ay,®@(vy).

e Sahu [14]
Oy1 =P{(1 — )0y + 2, P(8,) }- ?)

Remark 1. In 2013, S. H. Khan [36] introduced the same iterative method like (7) and called
it the Picard—Mann hybrid iterative method.
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Chugh et al. [15]

(1 —7u) 00 + 7 ® (V)

= (1= Bu)@(8) + pn®(zn)
l9n+1 = (1 —an)vy + ay®@(vy).

Karaca and Yildirim [16]

{Vn = (1= Bn)0 + Bn®(On)
i1 = P{(1 — ay)®(On) + an®(vn) }-

Abbas and Nazir [17]

(1= 9u) 8 + 7 ®(0n)
= (1= Bu)®(0n) + BnP(zn)
=(1—an)P(vn) + an®(zn).

ﬁnJrl

Thakur et al. [18]

—_

(1= 72)0n + 1 ®(0n)
= (1 Bn)zn + Bn®(zn)
l9n+1 =(1—ap)P(0) + an®(vy).

Sintunavarat and Pitea [19]

v
vn = (1= Bu)On + Bnzn
Oni1 = (1 — an)P(vn) + anP(zn).

Thakur et al. [20]

vy = (1— ,ann + ,Bnq)(ﬂn)
i1 = O{(1 — ay)D(0,) + anvy }.

Ullah and Arshad et al. [22]

{vn = (1= Bu)B + Bu®(Yy)
Oy = P{(1 — ay) 0y + a0y ®(vy) ).

Ullah and Arshad [23]

By = (1 — an) 0y + an® ()}

®)

©)

(10)

(11)

(12)

(13)

(14)

(15)

Remark 2. [n 2020, F. Ali and ]. Ali [37] introduced the same iterative method like (15) and

called it the F* iterative method.

Hussain et al. [24]

O e

Opi1 = P?{(1 — ay)P(8) + an®(vy) }.

(16)
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Ullah and Arshad [25]

{Vn = (1= Bu)0u + Bn® (V) (17)
Op1 = OH (1 — an)vy + an®(vy)}

Piri et al. [26]

vp = D{(1— Bn)0n + BuP(0n)} (18)
Opi1 = (1 — a)®(vy) + ay®?(vy).
Bhutia and Tiwary [27]
vp = P{(1— Bn)0n + Ba ()} (19)
Opi1 = P —ap) vy + an®(v)}.
Garodia and Uddin [28]
Bpp1 = P*{(1 — ay)D(8y) + 1, D* () }. (20)

Garodia and Uddin [29], and Hussain et al. [38] (D-iterative algorithm, see also [39])

{un = O{(1—Bn)B + Pn®(0,)} 1)
Opi1 = P?{(1 — ay)P(8) + an®(vy)}.

Remark 3. If we look at the submission dates, it can be noticed that the paper by Hussain
et al. [38] has been received on 3 May 2020, while Garodia and Uddin’s paper [29] has no
submission information. Thus, we cannot say which iterative method appeared first.

Ali et al. [30]

{Vn = @{(1—Bn)0 + pn®(n)} (22)
O = P{(1 — ) ®(vy) + ay®?*(vi)}.

Ali and Ali [31]
By = P{(1 — an) 0y + ay®(0n)}. (23)

Hassan et al. [32]

wy = ®{(1—6,)0, + 6,P ( n)}
= @{(1 — yn)wn + 1nP(wn)}

Un ZCD{(l_,Bn)Zn“F,Bn ( n)}

On1 = @{(1 — an)vn + an®(va)}.

(24)

Rani and Arti [33]

zy = (1= 7n)0n +1u® (%)}
vn = P{(1 = Bn)P(0n) + nP(zn) } (25)
Opi1 = P{(1 — an)vy + an®(vy) }.
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e  Ahmad et al. [34]

vp = (1= Bn)On + BuP(Vn)
{ﬂnﬂ = ®{(1— an)®(vy) + &, ®*(vn)}. 26)

3. A General Picard-Mann Iterative Method
In [40], Shukla et al. proposed the following algorithm (known as GPM):

(27)

191 =d%ec)y
Opi1 = PH{(1 — wy)0y +an®(8,)}, n €N,

where {a,} is a sequence in [0, 1], and k is a fixed natural number.

Remark 4. It is easy to see that none of the iterative methods (from (2) to (26)) reduces to iterative
method (27).

4. Convergence Theorems

In this section, we present some convergence results for the sequence generated by
iterative method (27).

Lemma 4. Let Y be a nonempty closed convex subset of a Banach space Z and ® : Y — Y a
mapping satisfying condition (E) with F(®) # @. Let {0, } be a sequence defined by (27). Then,
the following assertions hold:

(1) Ifpt € F(D), then lim |9, — pt|| exists;
(2) li_r>n d(8y, F(®)) exists, where d(0, F(®)) denotes the distance from 9 to F(®).
n—oo

Proof. Let pt € F(®). From (27), we have

[8ns1 =Pl = [9{(1—an)8 +au®(8:)} — p'

1(1 = )8 + an®(8,) — p|

(1= ) [[ 80 = p7[| + anl|D(80) — 7|

18, —p'|. (28)

IAIA A

Therefore, the sequence {||8, — p'||} is nonincreasing and bounded. Hence, nlgn |8, —

pt|| exists for each p* € F(®). Therefore, nlgrolo d(8y,, F(P)) exists. O

Lemma 5. Let Z be a uniformly convex Banach space, Y and ® be the same as in Lemma 4 with
F(®) # @. Let {0, } be a sequence defined by (27) with ay, € (a,b) C (0,1), forall n € N, where
a,b € (0,1). Then, nlgn |8, — D(8,)| = 0.

Proof. By Lemma 4, the sequence {¢,} is bounded and lim |8, — pt|| exists. Call it r.
n—o00

That is,
. +
r}l_{nw |8, —p'|| =1 (29)

Using the condition on mapping ®, we have
lp" = @) < [lp" = @(p")ll + 182 — p'|
and using (29)
limsup || ®(0,) — pt|| < r. (30)

n—o0
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Now, by (27) and (29), we have
r= lim ||8,,1 — p+|| = limsup ||<I>k{(1 — 00 + 2y P(0,)} — p+||
n—oo n—oo
< limsup ||[(1 — an)0 + 0, P(8,) — p+|\
n—oo
. K T
< lim (|8, —p'|| = 1.
Thus,
lim [[(1— &) (0 — er) + oy (P(0n) — PJF)H =Tr. (31)

n—o0

From (29)—(31) and Lemma 1, it follows that
Tim |18, — (8,)] =0,
O

Theorem 1. Let Z be a uniformly convex Banach space, ) and ® be the same as in Lemma 4 with
F(®) # @. Let {0, } be a sequence defined by (27) with «, € (a,b) C (0,1), forall n € N, where
a,b € (0,1). If Z satisfies the Opial property, then {0, } weakly converges to a point in F(P).

Proof. By Lemma 4, the sequence {8, } is bounded and by Lemma 5, lim 18, — @(8,)| =
n—oo

0. Since Z is uniformly convex, there exists a subsequence {8, } of {¢,} that weakly
converges to a point p € V. From the demiclosedness principle of I — ® (Proposition (2)),
p € wy(0,) C F(P). Now, we claim that wy, (9, ) is a singleton, and there is a unique weak
limit for each subsequence of {#,}. This implies that {¢,} weakly converges to a fixed
point of ®. In view of the Opial property, it can be seen that wy,(9,) is a singleton. This
completes the proof. O

Theorem 2. Let Y, ® and {0, } be the same as in Theorem 1 with F(®) # @ and Z a uniformly
convex Banach space. If the range of ) under ® is contained in a compact subset of Z, then {9, }
strongly converges to a fixed point of P.

Proof. Since the range of J under @ is contained in a compact set, there exists a subse-
quence {®(8,,)} of {®(d,)} that strongly converges to pt € V. By the triangle inequality,
we obtain

19, = Pl < 180, = @(Bu) || + [ @(80)) — p'll

and, by Lemma 5, the subsequence {8, } strongly converges to o', By the condition on
mapping @,
18, = @(p") | < pull B, — (B0 | + 16, — -

Taking j — oo implies

limsup || 8y, — @ (p")]| < ﬂjli_)rgo 19 — P (On)) || +limsup || 8, — p*l,

J— ]—00

and we have ®(p') = p'. In view of Lemma 4, it follows that nh_r}r;o |8, — p*|| exists.

Therefore, {9, } strongly converges to p'. O

Theorem 3. Let Y, ® and {0, } be the same as in Theorem 1 with F(®) # @ and Z a uniformly
convex Banach space with F(®) # @. Then, the sequence {8, } strongly converges to a fixed point
of ® zj‘lirginfd(ﬂn, F(®)) =0.

n—oo

Proof. This can be completed following Theorem 4.12 [7]. O
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2 91 2
3(19 + )

Theorem 4. Let ), Z, ® and {0, } be the same as in Theorem 3 with F(®) # @. If ® satisfies
condition (I), then {0, } strongly converges to a point in F(P).

Proof. This can be completed following Theorem 4.13 [7]. O

5. Numerical Results

In this section, we present an example and employ it to compare various iterative
methods for different initial guess and parameters.

Example 1. Let R? be a Banach space equipped with the norm
(8, 83| = 80| + |81
and Y = [0,1] x [0,1] a subset of R?. Let & : J — Y be a mapping defined by
Lo 4 12 1 352)) if 9D 3
o (9, 92)) = {§3w )% 1-19 ) it €[0.9),

LU %9(2)), if 91 € [3,1].

Now, we show that ® satisfies the condition (E) for y = 6, and, for this, we consider the
following cases:

Case (i) Let 8V € [0,3). If vV € [0,3); then,

jo) —ow) = (o0 + 1) = (01 1) 4 30 e

v = 3 4 v 4 4 v
< %|(19(1)+V(1))(19(1)7V(1))|+%|19(1)7V(1)|+§w(2)71/(2)|
< B0 v D] 4 210 @] < 8-,

Let vV € [2,1]. Now, we show that

2
s — 1 <l9(1) + 1>

_|_§‘,_9(2)_V(2)‘ < 5{ 5 y

4

+ ‘19@) —1+ %19@)

}

100 — @ | 4 [6@ — @), (32)

7 3

Now, we can break the above inequality into two parts. First, we show the following inequality:

1 1\ v 1 1 1\?
(o) - —Z (Q DI 18 DIl ® _,m
3(19 +4> 7 3 <5|¢ 3(19 +4> + |0 v\, (33)
From the triangle inequality, we have
1 1\> v 1] |1 1)? v 1
(W) L S <22} — 9D m__-_Z
3(19 +4> 7 3= 3<l9 +4> 0 % 7 3| (34)
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/1)

7

For 81 ¢ [O, ;gg) it can be seen that |[v(1) — (M| > R, In view of (34), we can see

2
that (33) is true for this case. Again, for 9(1) € {%, %) the function 8(1) — %(19(1) + %)

is increasing and

o0 — 1 (60 1 1) ’> 2005 Ths,

2
@ _ (e 1
9 3@ +4)

In light of (34), it follows that (33) is true for this case too. However,

.10

4 .
- 21

2’19(2) _ 1/(2)‘ < 93 — )], (35)

Combining (33) and (35), we can see that (32) is true. By the triangle inequality,
10 —2(v)[| < [[®(8) —P(w)| + [[¢ — D)l (36)

mapping O satisfies condition (E).

Case (i) Let 0V € [3,1].Ifv() € [2,1], then ® is a contractive mapping and satisfies condition

1

3

(E). Let vV € [0, 3). We prove the following conditions:

1 1\% 3 6 1 7
I OGO I 2192 _,,(2) D) _ = 76(2) _
3(1/ +4) +4‘19 v ] < 5{ -0 3‘+ 70 1‘}
+ 91 — v W) 4193 — @), (37)

We shall break the above inequality into two parts. First, we shall prove the following
inequality:

oW 1 1y 1Y
7 "3 3" 71

1 1M — ) (38)

By the triangle inequality, we have

oW 1 1y 1Y
7 "3 3" T3

From the considered range of 8V and v(Y), we can estimate

=y
— 48

and ’919(1) ’ > 13 . Therefore, 4’ 691 — f’ > 47 From the above estimate and (39), it
implies that (38) is true However,

2‘19(2) _V<z)‘ < [0@ — @), (40)
Combining (38) and (40), it can be seen that (37) is true. In view of (36) and (37), mapping

D satisfies condition (E). Since P is not continuous, P is not nonexpansive. It can be seen
that (5 216 4) is a fixed point of P.
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Now, we compare convergence behavior of various algorithms in view of Example (32).
We make different choices of initial guesses and parameters («,,, B, vn) and set |8, — p|| <

10~1° as our stopping criterion (p is a fixed point of ®).

Observations: In view of Table 1 and Figures 1-6, we note that, for different choices of
initial guesses and parameters, the general Picard-Mann algorithm (GPM) (27) (with k = 4)
converges faster to a fixed point of mapping satisfying condition (E) than other algorithms
considered in Section 2. We also conclude that (GPM) algorithm is consistent.

Table 1. Influence of initial guesses and parameters: comparison of various iterative methods.

Initial Points

Iterations

(0.3,0.3) (0.6,0.6) (0.9,0.9)
Case (i): ay = ﬁ/ Bn = (i’l _&2)21 Yn = (n3 :l_ 10)
GPM with k = 4 (27) 26 25 27
Bhutia and Tiwary (19) 38 35 38
Garodia and Uddin (20) 35 33 36
(Gzall;odia and Uddin, and Hussain et al. (D-iterative method) 35 33 36
Hussain et al. (16) 38 36 38
Ullah and Arshad (17) 53 49 53
Piri et al. (18) 52 49 53
Ali et al. (23) 35 33 36
Rani and Arti (25) 35 33 36
Ahmad et al. (26) 53 49 53
Case (ii): o = m’ Pn = (nj5)3’ = (on Ji 10)2
GPM with k = 4 (27) 25 24 26
Bhutia and Tiwary (19) 38 33 38
Garodia and Uddin (20) 33 31 34
S:z;)glc?) 22211) Uddin, and Hussain et al. (D-iterative 33 31 34
Hussain et al. (16) 38 36 38
Ullah and Arshad (17) 48 45 48
Piri et al. (18) 48 45 49
Ali et al. (23) 33 31 34
Rani and Arti (25) 33 31 34
Ahmad et al. (26) 48 45 49
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5 x10° . . . . . .
45F k
4 - -
35 i
=
I 3r ]
e E
=
= 25 1
o
[}
= 2r .
g
1.5F i
1+ —#%— GPM with k=4 i
—©— Bhutia and Tiwary
05} —+A— Garodia and Uddin
’ —fe— D-iterative method
0
0 5 10 15 20 25 30 35 40 45
No. of iteration
1 1
Figure 1. Convergence behavior with parameters | a, = , = ,
5 8 P ( "= Gon 1100172 P = (wr sy

1

Yn = W) and initial guess (0.3,0.3).

5
5 10 : . .
45} 1
4t ]
35F 4
=
I3 -
=
o 25 .
[}
Q)
= 2r .
g
15 8
1r —%— GPM with k=4 -
—©— Hussain et al.
05} ——= Ullah and Arshad
’ —— Piri et al.
0
0 10 20 30 40 50
No. of iteration
Figure 2 Convergence behavior with parameters |« ! B !
. Vv - s = 7
& 8 P " (10n+100)172° 7" T (n+5)3
1

Yn = W) and initial guess (0.3,0.3).
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5 x10 . . .
45F b
4t 4
35F b
=
| 3r J
3:
o 25 1
o
Q
= 2F 1
g
15F i
1F —%— GPM with k=4
—Oo— Ali et al.
05F —=— Rani and Arti |
’ —fe— Ahmad et al.
0
0 10 20 30 40 50
No. of iteration
1 1
Figure 3. Convergence behavior with parameters | a, = , = ,
& 5 P ( "= o 100072 P T sy

o m) and initial guess (0.3,0.3).

%107

454 .

N
T
1

w
3
T

L

w
T

N
3
T

value of ||¢,, — p||
N

-
[¢)]
T

—¥— GPM with k=4

—©— Bhutia and Tiwary
Garodia and Uddin
—f— D-iterative method

N
T

0 5 10 15 20 25 30 35 40
No. of iteration
Figure 4 Convergence behavior with parameters |a, = ! Bn = !
g . g p n7(3n+1)/ nf(n_'_z)z/
Y = ﬁ) and initial guess (0.9,0.9).
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%1078

N
T
)

w
3
T

L

w
T

N
3
T

value of ||9,, — p||
N

-
[¢)]
T

—¥— GPM with k=4 .
—©— Hussain et al.

Ullah and Arshad
—fe— Piri et al.

N
T

0 10 20 30 40 50
No. of iteration

Figure 5. Convergence behavior with parameters (Dcn =

Y = ﬁ) and initial guess (0.9,0.9).

%1070

45¢F 1

N
T
)

w
3]
T

L

w
T

N
)
T

value of ||¢,, — p||
N

-
[6)]
T

—%— GPM with k=4

—Oo— Ali et al.
Rani and Arti

—fe— Ahmad et al.

AdAdAAAAAL LA LAAL

0 10 20 30 40 50
No. of iteration

N
T

1 1

T Gnr1) P = (n+2)2’

Figure 6. Convergence behavior with parameters (zxn

Y = m) and initial guess (0.9,0.9).
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