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Abstract: The aim of the paper is to present a two-step method for facilitating the design of analog
amplifiers taking into account the bottom–top approach and utilizing machine learning techniques.
The X-chart and a framework describing the specificity of analog circuit design using machine
learning are introduced. The possibility of libraries with open machine learning models to support
the designer is also discussed. The proposed method is verified for a three-stage amplifier design. In
the first step, the stage type is predicted with 89.74% accuracy as the applied learner is a Decision Tree
machine learning algorithm. Moreover, two induction rule algorithms are used for predictive logic
generation. In the second step, some typical parameters for a given stage are predicted considering
four learners: Decision Tree, Random Forest, Gradient Boosted Trees, and Support Vector Machine.
The most suitable is found to be Support Vector Machine, which is characterized with the smallest
obtained errors.

Keywords: analog design; machine learning; amplifier circuits; X-chart; framework for analog
circuits design

1. Introduction

Amplifier design is a complex problem related to finding the best circuit structure
according to specifications predefined by the user. This specification explains the desired
function and application of the designed circuit, and its required electrical parameters and
characteristics. To solve this design task, the designer should know and understand the
principle of operation and specific features of a wide variety of simple circuits, in addition
to the methods for designing complex electronic modules and devices. In analog electronics,
some simple building stages serve as the basis of construction of different analog circuits
such as amplifiers, functional converters, filters, and generators [1,2]. Thus, knowledge
about circuit operability and possible circuit variants, and about the theory of how to
construct a circuit according to a given specification, are a very important part of the design
process. The circuit design is also supported by Electronic Design Automation (EDA) soft-
ware equipped with multiple component libraries and appropriate instrumentation. This
saves time, resources, and effort for designers. Some errors and non-suitable circuit variants
can be avoided. Recently, machine and deep learning have been utilized in an assistive role
in circuit design to automate engineering tasks [3–5]. Machine learning-based approaches
to design rely on the collected data, a strong understanding of the theory in electronics,
and the practically proven methods. This knowledge should be combined with familiarity
regarding the specificity and advantages of machine learning algorithms [6–8] that should
support the right design decisions. Furthermore, Hamolia and Melnyk show the need for
new methodologies for high-level automated design, integrated in EDA software, which is
driven by continuous technology development [9]. The authors point out the appearance
of a new scientific field related to machine learning-based EDA for facilitating all phases
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of chip design. Ren et al. group the applications of machine learning for solving EDA
problems to predictors, optimizers, and generators [10]. They argue that conventional EDA
algorithms should collaborate with machine learning for achieving greater efficiency. It
seems that the design process could be facilitated in both directions: from top to bottom
and from bottom to top, and at behavioral, structural, and physical levels through machine
learning models. Some research papers address similar topics, showing positive results,
successful implementations, and challenging issues. Dieste-Velasco et al. present a method-
ology for improving the design of electronic circuits, driven by artificial neural network
algorithms and the statistical technique design of experiments [11]. They conclude that
the proposed approach can be used for efficient behavioral modeling of electronic circuits
and for the prediction of some parameters. Guerra-Gomez et al. investigate the speed of
regression techniques used in the design of medium- and large-scale electronic circuits and
prove the suitability of regression algorithms for circuit modeling with high speed and
high accuracy [12]. The research team of Hasani et al. propose a compositional method for
building an artificial neural network used for modeling complex analog integrated circuits
and reduced simulation time is demonstrated [13]. Mina et al. summarize the existing
scientific achievements in automating the design process of integrated analog circuits (on
MOS, CMOS technology), pointing out the advantages of machine learning techniques
(supervised, unsupervised, reinforcement learning) for circuit designers [14].

Machine learning utilization at the physical level of chip design is also discussed
in several scientific publications, which describe the current progress and bottlenecks of
component placement and routing [15–17]. Time saving for optimal component placement
on the printed circuit board (PCB), avoiding concurrency issues in routing, and increasing
the designer’s efficacy are among the future problems that should be solved, including
through usage of machine learning.

Obviously, the evolution of machine learning and data science has led to invent-
ing novel methodological solutions in electronics and circuit design, as indicated by the
increased scientific interest in recent years. The reported findings are related to design
optimization [18], object detection [19], defect identification [20], classification [21], etc.

The aim of the paper is to present a method for facilitating the design of analog
amplifiers based on utilization of machine learning algorithms following the bottom–top
design strategy. The X-chart and a framework reflecting on the specificity of analog circuit
design using machine learning are introduced. The possibility for creating some libraries
with open machine learning models is also discussed.

2. Design Process of Analog Devices

A similar approach to the Gajski–Kuhn Y-chart [22], which explains the characteristics
of a design process through its three domains, outlining behavioral, structural, and physical
design, is applied here (Figure 1a). The Gajski–Kuhn Y-chart is created with examples for
digital circuit design, but in this work is adapted to the specificity of analog circuit design
using machine learning (Figure 1b—X-chart).

• The behavioral domain in the Gajski–Kuhn Y-chart presents the function of a given
circuit without knowing the components that are included for its implementation. In
this domain, the electronic circuit is seen as a “black box”, in which only its inputs and
outputs are known.

• The structural domain defines how the circuit is built. It considers the circuit structure,
building components and the connections between them. The structural domain
provides one of the possible transformations of the behavioral description into a
set of components and relationships between them, which satisfies the predefined
user specification.

• The physical domain shows exactly how the circuit has to be implemented on the
board layout in order to ensure the desired behavior of the circuit. The main problems
here concern the component placement on the PCB and their routing, taking into
account the constraints of the limited chip area, the specific features of the components
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and their physical geometry, the routing collisions, and congestion. Physical design is
a complex task and is currently performed in several steps: macro placement, global
placement, detailed placement, global routing, and detailed routing.
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Figure 1. Design process depicted by: (a) Gajski-Kuhn Y-chart [22]; (b) proposed X-chart for analog
design through machine learning.

In the proposed X-chart, the design process is supported through usage of machine
learning as a new domain of machine learning is added. At the behavioral domain in the
X-chart, the stage, device, or module are examined as a “black box” and the designer is
interested only in their input and output, but not in the circuit structure. The structural
domain explains the exact circuit topology of stages, devices, and modules as a given
stage is created through components (transistors, resistors, capacitors, diodes, etc.). One
device can be built through one or several stages and a module includes more than one
device. The physical domain presents the best placement of the components, stages,
devices, and modules on the PCB and their routing, forming printed circuit board assembly
(PCBA). The machine learning domain shows the supportive role of machine learning
algorithms in the design process, assisting the designers to accurately solve the specified
problem and to make the correct decisions. This domain reveals the capability of machine
learning in the prediction/classification of suitable components for realization of a stage,
prediction/classification of possible stages for an electronic circuit design of a device, and
prediction/classification of the possible devices on the PCB that form a module. For a
given behavior of the circuit, several structural and physical implementations are possible
and machine learning is applied to find possible solutions and the best approach. For this
purpose, libraries with open machine learning models of circuits are prepared and used to
shorten the design process and increase the design quality.

The chosen design strategy in this research is from bottom to top with hierarchical
dependence between its four phases. The framework for circuit design through machine
learning is shown in Figure 2:

(1) The first phase identifies suitable components for analog circuit creation. The common
added components are transistors, resistors, capacitors, diodes, etc., which are orga-
nized in libraries. The electrical behavior of components is described with equations.
The created machine learning (ML) models, which are also organized in libraries, are
capable of predicting and classifying possible components for circuit implementation
of a given stage.

(2) The second phase determines the appropriate stages that can form the circuit device.
In the case of amplifier design, the circuit can be built from one stage, which is called a
single-stage amplifier; a circuit built from two stages is known as a two-stage amplifier;
and a circuit built from more stages is known as a multi-stage amplifier. An amplifier
stage includes an amplifier element (here are considered just transistors), a circuit
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for connecting to the signal source, a power supply circuit, a circuit for ensuring the
constant current mode, and a circuit for connecting to the load. It may also contain
a circuit for implementing feedback in order to improve or change the parameters
and characteristics of the stage. The schematics of all stages are organized in libraries.
Machine learning is used for predicting/classifying the behavior, and the structure of
possible stages through equations and transfer functions, as machine learning models
are placed in a library.

(3) The third phase connects the identified stages forming a device. Some additional
circuits may be added as common feedback or circuits for correction. The most com-
monly used devices form device libraries. Machine learning models predict/classify
the behavior and structure of the device, in addition to its placement and routing on
the PCB, taking into account the device function.

(4) The fourth phase demonstrates the realization of more complex electronic products,
i.e., so-called modules. One module may consist of one or several devices, which
are connected to realize the predefined user specification. Some additional circuits
for parameter improvement and correction can be added. Machine learning pre-
dicts/classifies the behavior and structure of modules and device placement on the
PCB, considering the devices’ transfer functions and the function of the whole module.
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3. Design of Analog Amplifiers

The accent in this work is on the third phase in the design process and on behavioral
and structural modeling of analog amplifiers through machine learning. The components’
prediction/classification and PCBA design will be within the scope of future work. The de-
sign of amplifiers can be carried out considering the specifics of a certain technology [23–25].
The most often used technologies are: bipolar; Bipolar-Field Effect Transistor (BiFET), where
bipolar and MOS elements are formed in a common substrate; and Complementary Metal
Oxide Semiconductor (CMOS), which uses complementary pairs of transistors. Each tech-
nology has its advantages and disadvantages, and is preferred for applications in specific
cases. Bipolar technology is characterized with the possibility to obtain large voltage gain,
small unbalanced input voltage, and very low noise voltage. In BiFET amplifiers, the input
transistors are FETs and the rest of the circuit is made up of bipolar transistors. These
are characterized by a higher rate of rise in the output voltage compared to bipolar and
CMOS amplifiers. The common characteristic of bipolar and BiFET technology is that
they allow for a wider bandwidth compared to CMOS technology. The advantages of
CMOS amplifiers are related to operation at lower supply voltages, using mainly one
supply voltage, and providing an operating range of the input and/or output voltage that
is approximately equal to the supply voltage (rail-to-rail mode), as the consumed current is
kept at a small value. It is obvious that the design process of amplifiers depends on the
features of the technology. In this paper, the design of bipolar amplifiers is examined, and
the CMOS design methodologies, because of their contemporary interest, will be discussed
and explored in future work.

At the beginning, a library with the most common amplifier stages is introduced with
their transfer functions and some parameters. According to a definition, an amplifier is an
electronic device used to amplify an electrical signal in terms of current, voltage, or power.
It is a converter of the electrical energy of the voltage supply source VCC into another type
of electrical energy suitable for delivering to the load in its output circuit. In amplifier
circuits, the signal transmission is carried out from the input to the output, but it is possible
to use one or several feedback circuits. The most important parameters of amplifiers are the
amplification coefficients, and input and output resistance. In multi-stage amplifiers, the
overall transfer function has to be found taking into account the functions of the building
stages, which can be categorized as input, intermediate, and output. Figure 3 presents a
block diagram of a multi-stage amplifier, for which a wide variety of stages can be involved
in its design to satisfy the requirements. In most cases, the aim of the first input stage is
to obtain high gain and good suppression of the common-mode signals so that unwanted
interference is not amplified and propagated to subsequent stages. Another requirement
for the first stage is to provide a high input impedance. There are different variants for
realization of this input stage, but in many cases a differential pair with or without a current
source or through a cascode common emitter (CE)–common base (CB) is used. The role of
the intermediate stage is to increase the amplifier gain, so it is very often realized through
CE or a differential pair with or without a current source. The purpose of the driver stage
is to provide appropriate values of currents and voltages to drive the output transistors.
This requirement also predetermines its construction using a CE transistor or a Darlington
transistor with or without a dynamic load. The output stage must provide a small output
resistance and a certain output power. Therefore, it often involves a push–pull power
amplifier circuit, with the (non-) complementary transistors being single and connected in
a common collector (CC) circuit, or a Darlington transistor circuit can be used. In order to
improve the parameters and characteristics of the amplifier, auxiliary circuits for realization
of feedback and frequency domain correction can be introduced.
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Let us suppose that the library with stages contains the most commonly used stages
in amplifiers, some of which are presented on Figure 4. Their main parameters are sum-
marized in Table 1 and they are: AV—voltage amplification; AI—current amplification;
Ad—differential coefficient of voltage amplification; riA and roA are respectively input and
output resistance of the stage; RC and RE are resistors in collector and emitter circuits,
respectively; rBE and rCE are input and output resistance of a transistor, respectively; gm is
transconductance; CMRR—Common Mode Rejection Ratio.
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Figure 4. (a) Common emitter; (b) common emitter with active load; (c) common collector; (d) dif-
ferential pair with resistive load and emitter resistor; (e) differential pair with resistive load and
current source; (f) differential pair with active load; (g) complementary output pair in class B; (h) com-
plementary output pair in class AB; (i) complementary output pair with Darlington transistors
in class AB.
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Table 1. Parameters of amplifier stages.

Stage Parameters Function Type

(a) Stage 1: common emitter

AV = −gm(rCE||RC ||RL) = −gmR
′
oA¯high

AI =
iL
ii
= − ri

R′oA
AV ¯high

riA = RB||ri ≈ rBE¯medium
roA = ro ||RC ≈ RC —medium

Amplifies voltage, current, and
power, inverts the phase of the

input voltage by 180◦
Intermediate

(b) Stage 2: common emitter
with active load

AV = −gm(rCE1

∣∣∣∣rCE2 )¯higher
AI¯high

riA = rBE1 ¯medium
roA = rCE1

∣∣∣∣rCE2 —high

Amplifies voltage, current, and
power, possesses increased

amplification gains
Intermediate

(c) Stage 3: common collector

AV ≈ gm RE
1+gm RE

< 1¯does not amplify
AI ≈ h21e¯high

riA ≈ RB||h21eRE)¯high

roA =
(

1
gm

+ RG
h21e

)∣∣∣∣∣∣RE —low

Repeats the input voltage
(voltage follower), but
amplifies the current

and power

Output

(d) Stage 4: differential pair
with resistive load and

emitter resistor

Ad ≈ gmRC

∣∣∣∣∣∣ RL
2 ¯high

rid ≈ 2rbe¯high
rod≈2RC¯medium

CMRR ≈ 2gmRE—high

Amplifies the difference
between both inputs Input

(e) Stage 5: differential pair
with resistive load and

current source;
CMRR =

2gm3 (1+gm3 R3)
h22

—higher
Better suppression of common

mode signals Input

(f) Stage 6: differential pair
with active load Ad ≈ (r02||r04||RL)—higher

Higher differential gain is
achieved through adding

active load
Input

(g) Stage 7: push-pull stage
with complementary output

pair in class B

AV < 1¯does not amplify
PL = 1

2 UL IL = 1
2 I2

LRL

η = PL
PCC

= π
4

UL
UCC

ηmax = π
4

ULmax
UCC

= π
4 ≈ 0.785 or 78.5%

Each of the transistors operates
in an CC circuit, which

achieves high input and low
output resistance, high current

gain and low distortion.

Output

(h) Stage 8: complementary
output pair in class AB

Pomax = 2UCC−UBE
R1,2

η ≈ 40–50%

The resistor R3 is used for
creating a bias voltage on the
bases of transistors T1 and T2

Output

(i) Stage 9: complementary
output pair with Darlington

transistors in class AB
η ≈ 40–50%

The two diodes, in addition to
creating a bias voltage on the
bases of transistors T1 and T2,
are also used to stabilize their

operating current

Output

4. Proposed Method

Behavioral design of amplifiers sees stages as “black boxes” and is not interested in
exactly how they are implemented. It is important only to know the input and output
parameters. Structural design is related to explanation of the possible structure and this task
is multi-variant. Following the configuration from Figure 3, the amplifier has to possess
input, intermediate, and output stages. It is known that the output stage does not amplify
the voltage signal, but it is responsible for small output resistance. This means that the
input and intermediate stages have to deliver the required amplification. The feedback
configuration is considered to be the same in the amplifier design.

Machine learning algorithms as a part of artificial intelligence have recently been
utilized to assist in the engineering tasks related to the design process in electronics,
integrating some approaches in EDA software. Huang et al. explored the contemporary
scientific achievements in this area and reported enormous interest in automating a wide
variety of engineering activities through the usage of machine learning in different EDA
tools [26]. Ren noted the role of machine learning in solving multiple EDA problems [27].
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He summarized the applications of various machine learning algorithms for more efficient
workability of EDA software and for improving designer efficacy.

In this work, a machine learning-driven approach was used to study data about the
stage type—input, intermediate, and output—assisting the designer to make a choice about
the type of the most suitable stages for realization of a three-stage amplifier. Moreover,
machine learning models predict some important parameters of each stage type. The
proposed method for amplifier design through machine learning is presented on Figure 5.
It is a two-step predictive method: in the first step, the stage type is predicted, and in the
second step, some typical parameters for each stage type are forecasted. The suggestion is
that a library with amplifier stages exists and data regarding the function and structure of
each stage are gathered. Datasets are learnt by supervised machine learning algorithms,
including those for rules extraction, which results in models capable of predicting the stage
type (input, intermediate, output) and some main parameters of each stage.
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Figure 5. Method for amplifier design through machine learning.

Datasets Preparation

The dataset, presented in Table 2, is formed considering 30 different stages and their
main parameters. It is used in the first step from the proposed method to predict the stage
type and stage logic.

Table 2. Dataset for prediction of the stage type.

AV AI rid rod CMRR PL Circuit Stage Type

high n/a high medium high n/a diff. pair with resistive load input
higher n/a high medium high n/a diff. pair with active load input
high n/a high medium higher n/a diff. pair with current source input
high high medium medium n/a n/a common emitter intermediate

higher high medium high n/a n/a common emitter with
active load intermediate

does not amplify high high Low n/a medium push-pull class AB output
. . . . . . . . . . . . . . . . . . . . . . . .

For realization of the second step of the method, datasets of the parameters included
in the library stages are prepared. All values of parameters are received after mathematical
calculations and certain methodologies for analog design with bipolar transistors, as
follows [28–31]. The used methodologies are summarized through different algorithms.
For example, Algorithm 1 shows the main calculations for obtaining the parameters of
output stage 8. Algorithm 2 is applied for collecting the data for intermediate stage 2 and
Algorithm 3 for the input stage 4. Respectively, Tables 3–5 present a part of the gathered
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datasets for output stage 8 (with 161 records), intermediate stage 2 (with 988 records),
and input stage 4 (451 records) according to defined Algorithms 1–3. The datasets for
other stages are gathered in a similar way. For demonstration, the power transistors
2SCR587D3 and 2SAR586D3 [32,33] (for output stage), middle power transistors 2SCR563F3
and 2SAR563F3 [34,35] (for intermediate stage), low power transistor 2N3904 [36] (for input
stage), and diode 1N5819 [37] are chosen.

Table 3. Parameters of output stage.

VR1, V VR2, V ILm, A R1, Ω R2, Ω R3,Ω

1.2 1.2 1.58 0.75 0.75 24
1.1 1.1 1.58 0.69 0.69 23
1 1 1.58 0.63 0.63 22

. . . . . . . . . . . . . . . . . .

Table 4. Parameters of intermediate stage.

IE1, mA IE2, mA RE1,kΩ RE2, kΩ R1, kΩ R2, kΩ

14.7 14.7 1.63 1.63 42 42
15.19 15.19 1.57 1.57 42 42
15.68 15.68 1.53 1.53 42 42

. . . . . . . . . . . . . . . . . .

Table 5. Parameters of differential pair.

RE, kΩ IE, mA RC, kΩ gm, mS Ad rid, kΩ rod, kΩ

22.6 0.5 5.4 19.23 67.432 12 10.8
18.833 0.6 4.5 23.076 71.618 13 9
16.142 0.7 3.857 26.923 74.941 14 7.714
14.125 0.8 3.375 30.769 77.641 15 6.75
12.555 0.9 3 34.615 79.881 16 6

11.3 1 2.7 38.461 81.768 18 5.4
. . . . . . . . . . . . . . . . . . . . .

Algorithm 1: Design of output stage
Preliminary data: load resistance RL = 8 Ω, output power PL = 10 W, voltage supply VCC = 12 V;
choice of power transistors and their parameters, taken from datasheet specifications [32,33]

1. Calculating the voltage on the load VLm =
√

2PLRL;
2. Calculating the current through the load ILm = 2PL

VLm
;

3. Calculating R1,2 = VR1,2
ILm

(VR1,2 ≤ 0.1VLm);

4. Calculating R3 = VR3
IC,Q−IC,Q/h21,Q

,
(

IC,Q = (0.01÷ 0.05)ILm
)
.

Algorithm 2: Design of intermediate stage
Preliminary data: taken from datasheet specifications [34,35]

1. Calculating IE1,2 ≈ (3÷ 5) ILm
h21,1,2

;

2. Calculating RE1,2 = VRE1.2
IE1,2

, VRE1,2 ≈ 2UCC;

3. Calculating VD1,2 = VBE1,2 + VRE1,2;

4. Calculating R1,2 = VCC−VD1,2
ID1,2

.
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Algorithm 3: Design of input stage
Preliminary data: choice of low power transistor and its parameters, taken from datasheet
specification: IC, VCE, h11, h21, h22, gm [36]

1. Calculating RE =
VE−(−VCC)

IE
, (VE1 = VE2 = VE = −VBE and IE1 = IE2 = IE ≈ IC);

2. Calculating RC1 = RC2 = RC = VCC−VC
IC

, (VC1 = VC2 = VC = VE + VCE);

3. Calculating Ad = gmRC

∣∣∣∣∣∣ RL
2 ;

4. Calculating rid ≈ 2rbe;
5. Calculating rod ≈ 2RC;
6. Calculating CMRR ≈ 2gmRE.

5. Results

To verify the proposed two-step method and applicability of machine learning in
support of amplifier design, the functions and structure of the stages and the collected data,
as presented in Tables 1–5 and the schematics in Figure 4, are considered. Let us suppose
that the designer is required to build an amplifier with the following parameters: input
resistance riA = 7 kΩ, load resistance RL = 8 Ω, output power PL = 10 W, amplification
A = 1200, voltage supply VCC = 12 V. In the first step, the correct stages have to be
chosen to satisfy the formulated user requirements. For this purpose, the designer can rely
on machine learning predictions regarding which stage is suitable for usage as an input,
intermediate, and output stage. Moreover, logic generated by rule induction algorithms
can support their decision making.

For the dataset from Table 2, the Decision Tree algorithm was applied in the envi-
ronment of RapidMiner Studio [38]. The created model for prediction of the stage type is
characterized with 89.74% accuracy for the ratio of training/testing data of 60%/40%.

Figure 6 presents the probability of correct predictions, which is given through confi-
dence (confidence for predicting input, intermediate, and output stages). A larger value
of confidence (the maximum value is 1 and the minimum value is 0) means a greater
probability of true correct predictions. It can be seen that the confidence of input stages is 1,
while the confidence of intermediate and output stages is smaller than 1.

For the same dataset, two algorithms for rule extraction were applied: Rule induction
and Trees to rules. Through Rule induction machine learning techniques, several formal
rules can be generated in the form if–then–else, driven by the collected data. The advan-
tages of these techniques lead to a better explanation and understanding the logic of the
examined problem [39,40], in our case, the amplifier construction. When the first algorithm
rule induction is applied, the following result is obtained:

If Rout = low, then it is an Output stage;
If Rin = high, then it is an Input stage;
else it is an Intermediate stage.

These extracted rules indicate the stage type according to some typical parameters.
The exploration of the generated logic says that, if the output resistance of a given stage is
low, then this stage is suitable as an output stage; if the input resistance is high, then this is
an input stage, and, in other cases, the stage is intermediate.

At the application of the second algorithm, Trees to rules, the achieved results outline
another rule logic for identification of the stage type. If CMRR is high, then this is the input
stage. If CMRR is not an important parameter for a given stage and input resistance is high,
then the stage is an output stage. If the input resistance has a medium value and CMRR is
not an important parameter, then the stage is intermediate.

If CMRR = high, then it is an Input stage;
If CMRR is not de f ined and Rin = high, then it is an Output stage;
If CMRR is not de f ined and Rin = medium, then it is an Intermediate stage.
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The findings indicate that the algorithms for rules induction are very useful for data
mining and knowledge discovery in the area of electronics, as the generated logic can be a
supportive tool and easily integrated in EDA software. The automatic generation of formal
rules and formalization of the process of analog circuit design can be considered to be an
advantage for designers.

In the second step, four machine learning algorithms are used: Decision Tree, Random
Forest, Gradient Boosted Tree, and Support Vector Machine [41,42], to find the best model
for prediction of the parameters of different types of stages. Machine learning models are
created taking into account the datasets for each stage considering its typical parameters.

Figure 7 presents only the prediction charts of the created predictive models for input
stage 4. It can be seen that the best solution for this regression task is the Support Vector
Machine algorithm. Similar results are obtained for other stages.

Computation 2022, 10, x FOR PEER REVIEW 13 of 19 
 

 

model for prediction of the parameters of different types of stages. Machine learning mod-
els are created taking into account the datasets for each stage considering its typical pa-
rameters. 

Figure 7 presents only the prediction charts of the created predictive models for input 
stage 4. It can be seen that the best solution for this regression task is the Support Vector 
Machine algorithm. Similar results are obtained for other stages. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Cont.



Computation 2022, 10, 145 13 of 19

Computation 2022, 10, x FOR PEER REVIEW 13 of 19 
 

 

model for prediction of the parameters of different types of stages. Machine learning mod-
els are created taking into account the datasets for each stage considering its typical pa-
rameters. 

Figure 7 presents only the prediction charts of the created predictive models for input 
stage 4. It can be seen that the best solution for this regression task is the Support Vector 
Machine algorithm. Similar results are obtained for other stages. 

 
(a) 

 
(b) 

 
(c) 

Computation 2022, 10, x FOR PEER REVIEW 14 of 19 
 

 

 
(d) 

Figure 7. Prediction charts: (a) Decision Tree; (b) Random Forest; (c) Gradient Boosted Trees; (d) 
Support Vector Machine. 

The learners are compared as they were evaluated using standard metrics for ma-
chine learning through parameters: root mean square error (RMSE), absolute error (AE), 
and squared error (SE) (Figure 8). The smallest errors were obtained for Support Vector 
Machine.  

 
Figure 8. Comparison of the applied learners. 

6. Case Study 
This section demonstrates the amplifier building, taking into account the support re-

ceived by machine learning and the results obtained in previous sections. The amplifier 
design begins at the back and moves forward, i.e., from the design of the output stage to 
the input and intermediate stages. The designer is supported in the first step with charts 
similar to that presented on Figure 9. Here, the designer can gather information about 
suitable stages for usage as output stages. It can be seen that these are: complementary 
output pair in class B, complementary output pair in class AB, and complementary output 
pair with Darlington transistors in class AB. Then, the designer will decide to use the com-
plementary output pair in class AB, because of the obtained information from the rules 
logic created by applying rule induction machine learning algorithms. This decision is 
also in line with the user's predefined specification, in which there are no additionally 
defined parameters for the stage, apart from the output power and the load. This gives 
the designer the possibility of choosing a simpler stage with a smaller number of compo-
nents that is capable of satisfying the user requirements. 

0
0.1
0.2
0.3
0.4

Decision Tree

Random Forest

Gradient Boosted
Trees

Support Vector
Machine

RMSE AE SE

Figure 7. Prediction charts: (a) Decision Tree; (b) Random Forest; (c) Gradient Boosted Trees;
(d) Support Vector Machine.

The learners are compared as they were evaluated using standard metrics for machine
learning through parameters: root mean square error (RMSE), absolute error (AE), and
squared error (SE) (Figure 8). The smallest errors were obtained for Support Vector Machine.
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6. Case Study

This section demonstrates the amplifier building, taking into account the support
received by machine learning and the results obtained in previous sections. The amplifier
design begins at the back and moves forward, i.e., from the design of the output stage to
the input and intermediate stages. The designer is supported in the first step with charts
similar to that presented on Figure 9. Here, the designer can gather information about
suitable stages for usage as output stages. It can be seen that these are: complementary
output pair in class B, complementary output pair in class AB, and complementary output
pair with Darlington transistors in class AB. Then, the designer will decide to use the
complementary output pair in class AB, because of the obtained information from the rules
logic created by applying rule induction machine learning algorithms. This decision is also
in line with the user’s predefined specification, in which there are no additionally defined
parameters for the stage, apart from the output power and the load. This gives the designer
the possibility of choosing a simpler stage with a smaller number of components that is
capable of satisfying the user requirements.
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In the second step, for the output stage, PL and RL are known and the designer has
to obtain the values of the included resistors R5, R6, and R7, which can easily be taken
from the prediction chart for the output stage presented in Figure 9. There is no need for
the designer to perform the calculations presented in previous sections or to recreate the
datasets for the stages in the library. Once the machine learning models are created, they
can be used repeatedly. The designer only needs to use the machine learning results and
the predicted values of the parameters. Let us suppose that the voltage value VR5,6 is 1 V;
then, the predicted resistor value R5,6 of 0.63 Ω can be found from the prediction chart
(Figure 10). Using a similar chart, the value of the resistor R7 can be predicted, as here it is
22 Ω considering the operational regime of the transistor T3. In practice some diodes can
be used instead of R7.
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The intermediate stage is designed taking into account Figure 11, where the designer
can see the dependence between predicted resistors RE3,4 at a given current IE3,4. The
resistors RE3,4 are selected from the prediction chart to be 1.63 kΩ at the current of 14.7 mA.
The resistors R3,4 are chosen to have a value of 42 kΩ at a given current through the
diodes D1,2.
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The design of the input stage is facilitated through the predicted chart on Figure 12, in
which the dependence between RC and RE is presented. At the current of IE = 1 mA, the
predicted values of the collector and emitter resistors are respectively 2.7 and 11.3 kΩ.
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Finally, the negative feedback also has to be considered, because the user requires the
amplification to be 1200. The feedback is realized through two resistors, as the resistance
of the first RF1 is chosen by the designer and the second RF2 is calculated according to
the equation: AVF = 1 + RF1

RF2
. The resistors RF1 = Rin are selected with an appropriate

value of 18 kΩ to match the input impedance of the amplifier. Then, RF2 is calculated
from the above-mentioned equation to be 15 Ω. The constructed amplifier according to the
initial user’s requirements and designer’s choices, which are supported through machine
learning, is presented in Figure 13.
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the classification task and achieved the best accuracy of 89.74%. Extracted logic is also 
demonstrated through usage of two different rule induction algorithms. In the second 
step, four machine learning algorithms are employed to learn data about different ampli-
fier stages and to solve a regression task. The smallest errors were found with the use of 
Support Vector Machine.  

The concept of a library of open machine learning models of circuits is introduced to 
assist the designer in the important, complex, and time- and effort-consuming activities 
that are typical for the design process of analog circuits, devices, and modules at struc-
tural, behavioral, and physical levels. 

The Gajski–Kuhn Y-chart is extended to an X-chart, considering the increasing im-
portance of machine learning in the design process of electronic circuits, and is adapted 
to the design of analog circuits. A framework for analog circuit design, taking into account 
the possibility of machine learning to support almost all design phases at behavioral, 
structural, and physical level, is proposed.  
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Figure 13. The constructed amplifier.
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7. Conclusions

The paper presents a two-step method for facilitating the design of analog amplifiers
using machine learning algorithms and rule induction techniques. In the first step, the
designer is assisted with suggestions about the most suitable stages for realization of
amplifiers considering the predictions regarding the stage types and generated rules logic.
In the second step, some parameters of a given stage type are indicated to support the
designer’s choice regarding the most relevant stage according to the predefined user
specifications. The method was verified in the design of a three-stage amplifier, for which
the functions and main parameters of the building stages are known. As a learner in the
first step, the Decision Tree algorithm, from supervised machine learning, was applied
to solve the classification task and achieved the best accuracy of 89.74%. Extracted logic
is also demonstrated through usage of two different rule induction algorithms. In the
second step, four machine learning algorithms are employed to learn data about different
amplifier stages and to solve a regression task. The smallest errors were found with the use
of Support Vector Machine.

The concept of a library of open machine learning models of circuits is introduced to
assist the designer in the important, complex, and time- and effort-consuming activities
that are typical for the design process of analog circuits, devices, and modules at structural,
behavioral, and physical levels.

The Gajski–Kuhn Y-chart is extended to an X-chart, considering the increasing impor-
tance of machine learning in the design process of electronic circuits, and is adapted to the
design of analog circuits. A framework for analog circuit design, taking into account the
possibility of machine learning to support almost all design phases at behavioral, structural,
and physical level, is proposed.
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