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Abstract: In this paper, a model for the transmission of respiratory syncytial virus (RSV) in a constant
human population in which there exist super spreading infected individuals (who infect many people
during a single encounter) is considered. It has been observed in the epidemiological data for the
diseases caused by this virus that there are cases where some individuals are super-spreaders of
the virus. We formulate a simply SEIrIsR (susceptible–exposed–regular infected–super-spreading
infected–recovered) mathematical model to describe the dynamics of the transmission of this disease.
The proposed model is analyzed using the standard stability method by using Routh-Hurwitz criteria.
We obtain the basic reproductive number (R0) using the next generation method. We establish
that when R0 < 1, the disease-free state is locally asymptotically stable and the disease endemic
state is unstable. The reverse is true when R0 > 1, the disease endemic state becomes the locally
asymptotically stable state and the disease-free state becomes unstable. It is also established that the
two equilibrium states are globally asymptotically stable. The numerical simulations show how the
dynamics of the disease change as values of the parameters in the SEIrIsR are varied.

Keywords: global dynamical modeling method; Lyapunov function method; next generation matrix;
respiratory syncytial virus (RSV); basic reproduction number

1. Introduction

Respiratory syncytial virus (RSV) (a single-stranded RNA virus) is a common respi-
ratory virus. RSV causes respiratory tract diseases such as infection of the airway, of the
lungs, and of the middle ear. It is the most common cause of the common cold, Bronchitis,
Croup, Bronchiolitis, and of Pneumonia. This virus usually causes severe infection in some
people, especially in premature babies, older adults, infants, and adults with heart and
lung disease, and in anyone who has a very weak immune system [1–6]. The virus can
be transmitted by direct contact with infectious secretions or be spread by droplets from
the cough of infected people. It can be accidentally transmitted by contact with hands
that have been contaminated by touching eating utensils or any articles that have been
freshly soiled by nasal or throat discharges of an infected person. In other words, the
virus is easily spread. The incubation period is 1–10 days, usually 5–7 days. The infec-
tion usually subsides in about 1–2 weeks. Most cases are mild and the patients can be
managed with standard treatment. Severe cases may however need oxygen therapy and
tube feeding [1–4,7,8]. Antiviral agents should be considered for patients with congenital
heart or lung diseases. Antibiotics may be needed only if there are bacterial complications
such as pneumonia, sinusitis, or otitis media. Respiratory disease causes an immense
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worldwide health burden. It is estimated that 235 million people suffer from asthma, more
than 200 million people have chronic obstructive pulmonary disease (COPD), 65 million
moderate-to-severe COPD, 1–6% of the adult population (more than 100 million people)
experience tumultuous millions with pulmonary hypertension, and more than 50 million
people struggle with occupational lung diseases. In total, more than 1 billion persons
suffer from chronic respiratory conditions. It is estimated that illnesses associated with RSV
infections cause about 24.8 million cases and 76,600 deaths annually [1–4,9–12].

This study aims to systematically aggregate and analyze the published epidemiological
data regarding respiratory tract infections. The published data for some of the diseases
caused by some of the respiratory syncytial virus indicate the existence of super-spreaders
of the diseases, i.e., individuals who infect many other people, not just one or two. These
were first seen at the start of the SARS (severe acute respiratory syndrome) epidemic
where a single medical doctor infected the 11 other people on an elevator in Hong Kong
in 2003 [12]. This type of individual was again seen during the Middle East Respiratory
Syndrome (MERS) epidemic in Korea in 2016 and in patients with acute Middle East
syndrome coronavirus (MERS-CoV) pneumonia in 2018 [13–15]. In both cases, the illnesses
were caused by the corona-virus. In the present pandemic which is caused by the COVID-
19 virus, situations where many individuals are infected are referred to as a superinfection
event. At these events, a person with a high viral load would have been present. We will
refer to this type of infected person as Is, a person having a high viral load. When this person
coughs, a large amount of the corona virus is introduced into the environment. We adopt a
SEIrIsR (susceptible–exposed–regular infected–super-spreading infected–recovered) model
for two infection groups in this model, where the transmission rate in humans will be one of
the control factors [10,16–18]. A study of the possible behaviors simulated by numerically
solving the mathematical models as the values of the parameters used in the model are
varied will allow to control the epidemic caused by Respiratory syncytial virus (RSV).

2. Materials and Methods

Based on the epidemic SIR (susceptible–infected–recovered) model implemented by
Youngmin Kim and Namsuk Cho [18–24] and Zhen Jin and Pongsumpun et al. [13–15,24],
we have developed this SIR model by adding exposed individuals (E) as well as two classes
of infected individuals (Ir and Is) to create the SEIrIsR model. The respiratory syncytial
virus may die or multiply into a normal amount or high amount of new RSV’s in the person
depending on the immunological status of the individual. This means that the exposed
person can become a R, Ir, or Is. What occurs to a particular exposed individual can only
be determined after it happens. Taking into account what we have just mentioned, we
propose the following SEIR model to describe the dynamics of four sub population (classes):
susceptible, exposed, normal infectious, super infectious, and recovered individuals, whose
flow charts are shown on Figure 1.

From the above flow chart, we see that the transmission dynamics of the respiratory
disease are given by the following set of ordinary differential equations, which are just the
mathematical expressions of the time rate of changes in the number of individuals of each
class being equal to the number entering into the class minus the number leaving:

dS(t)
dt

= bN − β S(t) I(t) − µS(t) (1)

dE(t)
dt

= β S(t) I(t) −
(

1
η

)
p E(t) −

(
1
η

)
( 1 − p) E (t) − µE(t) (2)

dIr(t)
dt

=

(
1
η

)
pE (t) − r1 Ir(t) − µIr (t) (3)

dIs(t)
dt

=

(
1
η

)
( 1 − p) E(t) − r2 Is (t) − µIs (t) (4)
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dR(t)
dt

= r1 Ir(t) + r2 Is(t) − µR(t) (5)

where
b is the birth rate of the human population;
N is the total human population;
µ is the death rate of human population;
β is the transmission rate of virus between human;
η is the incubation time of virus in human;
p is the probability that a new case will be a normal infected human;
(1− p) is the probability that a new case will be a super-spreading infected human;
r1 is the recovery rate of regular infected human;
r2 is the recovery rate of super-spreading infected human.
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Figure 1. Diagram for the dynamical transmission of respiratory disease. In the above flow chart,
the variables are: S is the number of susceptible human population; E is the number of exposed
human population; Ir is the number of normal infected human; Is is the number of super-spreading
infected human; I is the total infected human population, I = Ir + Is; R is the number of recovered
human population.

Proposition 1. Let (S′(t), E′(t), Ir
′(t), Is

′(t), R′(t)) be the solutions of Equations (1)–(5).
Denoting also the invariant set ψ =

{
(S′(t), E′(t), I′r(t), I′s(t), R′(t) ) ∈ R5

+ : N ≤ b
µ

}
.

Then the closed set ψ is positive invariant.

Proof of Proposition 1. We set N (t) = (S′(t) + E′(t) + I′r(t) + I′s(t) + R′(t)) and
assume that N ≤ b

µ . Note that the total population N is non–negative on R5
+. Then

we have:

dN(t)
dt = dS(t)

dt + dE(t)
dt + dIr(t)

dt + dIs(t)
dt + dR(t)

dt
= (bN − βS(t)I(t)− µS(t)) + (βS(t)I(t)−

(
1
η

)
pE(t)−

(
1
η

)
(1− p)E(t)− µE(t))

+(
(

1
η

)
pE(t)− r1 Ir(t)− µIr(t)) + (

(
1
η

)
(1− p)E(t)− r2 Is(t)− µIs(t))+

(r1 Ir(t) + r2 Is(t)− µR(t))
= bN − µ(S(t) + E(t) + Ir(t) + Is(t) + R(t)) ≤ b− µN

Then it follows that dN
dt ≤ 0 on 0 ≤ N (t) ≤ N(0)e−µt + b

µ (1 − eµt). As

t → ∞, e−µt → ∞ and we have lim
t→∞

N (t) ≤ b
µ , N(t) approaches b

µ . Since the region

of all solutions of ψ is in R5
+ [8,10,12]. �
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3. Analysis of the Model
3.1. Equilibrium Points

For this model, there are two equilibrium points: the disease-free equilibrium point
and an endemic equilibrium point. Two equilibrium points are found by setting the right
hand side (RHS) of Equations (1)–(5) to zero [19].

Proposition 2. The equilibrium point is the disease-free steady state ı∗1 = (S∗(t), E∗(t), I∗r (t),
I∗s (t), R∗(t)) ∈ ψ for R0 ≤ 1. For R0 > 1, the equilibrium point is the endemic steady state
ı∗2 = (S∗(t), E∗(t), I∗r (t), I∗s (t), R∗(t)) ∈ ψ and we will E∗(t) 6= 0, I∗r (t) 6= 0 and I∗s (t) 6= 0
Performing the steps of setting the RHS of Equations (1)–(5) to zero, [17–22] we get

A. Disease-free equilibrium pointsζ∗1 = (S∗(t), E∗(t), I∗r (t), I∗s (t), R∗(t)) ∈ ψ

ζ∗1 = (
bN
µ

, 0 , 0, 0 , 0 )

B. Endemic Equilibrium Points ζ∗2 = (S∗(t), E∗(t), I∗r (t), I∗s (t), R∗(t)) ∈ ψ, we obtained

S∗(t) = ( 1 + µ η ) A C

E∗(t) = η (− µ C A + B)

Ir
∗ (t) =

p (− B + µ A C )

r1 + µ

Is
∗(t) =

B ( − 1 + p ) (−1 + µ A C )

r2 + µ

R∗(t) =
(−B + µ A C ) ( − (− 1 + p) r2 µ + r1 (r2 + pµ)

µ C

where
A =

1
β (r1 − p r1 + p r2 + µ)

, B =
bN

1 + η
, C = (r1 + µ)(r2 + µ)

3.2. Basic Reproductive Number

The basic reproductive number (R0) is an important threshold in mathematical epi-
demiology. It can be obtained by the next generation method and is the spectral radius
(Van den Driessche and Watmough, 2002) [19–21]. We now rewrite the equations in the
matrix from

dX
dt

= F(x) − V(x)

where, F(x) is the matrix of new infectious and V(x) is the matrix for the transfers between
the compartments in the infective equations. Doing this, we have;

X =


S(t)
E(t)
Ir(t)
Is(t)
R(t)

 , F(x) =


0

β S(t) I(t)
0
0
0

 and

V(x) =



−bN + β S(t) I(t) + µ S (t)(
1
η

)
p E(t) +

(
1
η

)
( 1 − p) E(t) + µ E (t)

−
(

1
η

)
p E(t) + r1 Ir(t) + µ Ir(t)

−
(

1
η

)
E (t)−

(
1
η

)
pE(t) + r2 Is(t) + µ Is(t)

−r1 Ir(t) − r2 Is (t) + µ R(t)


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We now evaluate the Jacobian of F(x) and V(x) at the first equilibrium point
ζ∗1 = ( b

µ , 0 , 0, 0 , 0 ) , and put them into the form DF (x) = F and DV (x) = V.
We now define R0 as the threshold for the stability of the disease-free equilibrium ζ∗1 .

It will now have the matrix form

R0 = ρ(FV−1)

where ρ is defined as the spectral radius of the next generation matrix FV−1. For our model,
the Jacobian matrix [21] becomes

F(ζ1) =


0 0 0 0 0

β I(t) 0 β S(t) β S(t) 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and

V(ζ1) =



β I + µ 0 β S(t) β S(t) 0
0

(
1
η

)
p +

(
1
η

)
( 1 − p) + µ 0 0 0

0 −
(

1
η

)
p r1 + µ 0 0

0 −
(

1
η

)
−
(

1
η

)
p 0 r2 + µ 0

0 0 −r1 −r2 µ


Therefore, the next generation matrix is given as follows:

FV−1 =



0 0 − b2β2(r1+pr1+pr2+µ+2pµ)
µ3(r1 +µ)(r2+µ)(1+µ η)

− b2β2(r1+pr1+pr2+µ+2pµ)
µ3(r1 +µ)(r2+µ)(1+µ η)

0

0 0 bβ η

µ+µ2η

bβ η

µ+µ2η
0

0 0 b pβ
µ(r1 +µ)(1+µ η)

b pβ
µ(r1 +µ)(1+µ η)

0

0 0 b(1+p)β
µ(r2+µ)(1+µ η)

b(1+p)β
µ(r2+µ)(1+µ η)

0

0 0 bβ((1+p)r2 µ + r1(r2 + 2pr2+pµ))
µ2(r1+µ) (r2+µ)(1+µ η)

bβ((1+p)r2 µ + r1(r2 + 2pr2+pµ))
µ2(r1+µ) (r2+µ)(1+µ η)

0


The spectral radius of FV−1 is given as ρ (FV−1)

ρ(FV−1) =



−λ 0 − b2β2(r1+pr1+pr2+µ+2pµ)
µ3(r1 +µ)(r2+µ)(1+µ η)

− b2β2(r1+pr1+pr2+µ+2pµ)
µ3(r1 +µ)(r2+µ)(1+µ η)

0

0 −λ
bβ η

µ+µ2η

bβ η

µ+µ2η
0

0 0
(

b pβ
µ(r1 +µ)(1+µ η)

)
− λ

b pβ
µ(r1 +µ)(1+µ η)

0

0 0 b(1+p)β
µ(r2+µ)(1+µ η)

(
b(1+p)β

µ(r2+µ)(1+µ η)

)
− λ 0

0 0 bβ((1+p)r2 µ + r1(r2 + 2pr2+pµ))
µ2(r1+µ) (r2+µ)(1+µ η)

bβ((1+p)r2 µ + r1(r2 + 2pr2+pµ))
µ2(r1+µ) (r2+µ)(1+µ η)

−λ


where

ρ(FV−1) = µ(r1 + µ)(r2 + µ)(1 + µ η)

We obtain

R0 =
b β(r1 + p r1 + pr2 + µ + 2 pµ)

µ (r1 + µ) (r2 + µ) (1 + µη)
(6)

As it appears in (6), the basic reproductive number of systems defined by
Equations (1)–(5) depends on the parameter appearing in the system of equations.

3.3. Local Asymptotical Stability

Theorem 1. (i) The disease-free steady state is locally asymptotically stable if.
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Proof of Theorem 1. We apply the Routh–Hurwitz criterion. First, we calculate the Jacobian
matrix at the disease-free steady state and obtain

J0 =


(− µ)− λ 0 − β ( b

µ ) − β ( b
µ )

0 (−
(

1
η

)
p −

(
1
η

)
( 1 − p) − µ)− λ β ( b

µ ) β ( b
µ )

0
(

1
η

)
p ( − r1 − µ )− λ 0

0
(

1
η

)
( 1 − p) 0 (− r2 − µ )− λ

 = 0 (7)

The eigenvalues of the J0 are obtained by solving det(J0 − λI = 0). We obtained the character-
istic Equation (7):

(λ + µ)(λ3 + a1λ2 + a2λ + a3) = 0

where:

a1 =
µ + r1 µ η + r2 µ η + 3 µ3 η

µ η

a2 =
1

µ η
(−bβ + µ(r1 + r2 + 2µ + (r1r2 + 2(r1 + r2)µ + 3µ3)η))

a3 =
1

µ η
(bβ ((−1 + p ) r1 − pr2 − µ ) + µ (r1 + µ) (r2 + µ) (1 + µ η)

Under the assumption b > µ, that the birth rate is greater than the death rate. According to
the Routh–Hurwitz criterion [10,16,25], the following three conditions have to be satisfied: [16,19]

a1 > 0, a3 > 0, a1a2 > a3

It is seen that a1 > 0 if R0 < 1. This is the case for the second condition that a3 > 0. For the
last condition, we have

a1 a2 =
1

µη2 (1 + (r1 + r2 + 3µ)η(−bβ + µ(r1 + r2 + 2µ + (r r2 + 2(r1 + r2) µ + 3µ3)η)).

We can see that a1a2 > a3 for R0 < 1, and so based on the Routh–Hurwitz criterion, the
disease-free steady state is locally asymptotically stable if and only if R0 < 1.

(ii) The disease endemic steady state is locally asymptotically stable if R0 ≥ 1. At the disease
endemic equilibrium point ζ∗2 = (S∗, E∗, I∗r , I∗s , R∗) the Jacobian is given by

J1 =


(− β( Ir

∗ + Is
∗) − µ)− λ 0 − β S∗ − β S∗

β S ( Ir
∗ + Is

∗) (−
(

1
η

)
p −

(
1
η

)
( 1 − p) − µ)− λ β S∗ β S∗

0
(

1
η

)
p ( − r1 − µ )− λ 0

0
(

1
η

)
( 1 − p) 0 (− r2 − µ )− λ

 = 0.

The characteristic equation of the above matrix is

λ4 + c1λ3 + c2λ2 + c3λ + c4 = 0

where
c1 = (Ir

∗(t) + Is
∗(t))β + r1 + r2 + 4µ +

1
η

c2 =
(

1
η

)
(((Ir

∗(t) + Is
∗(t)− S∗(t))β + r1 + r2 + 3µ + ( r1r2 + 3 (r1 + r2 )µ + 6µ2 + Ir

∗(t) β ( r1 + r2 + 3µ) +

Is
∗(t)β ( r1 + r2 + 3µ) )η)

c3 =
(

1
η

)
(−S∗(t)β r1 + p S∗(t)β r1 − p S∗(t)β r2 + r1 r2 − 2 S∗(t)β µ + 2r1 µ + 2 r2 µ + 3µ3 +

µ ( 2r1 r2 + 3 (r1 + r2 ) µ + 4 µ2 ) η + Ir
∗(t) β( r1 + r2 + 2µ + (r1 r2 + 2 (r1 + r2 )

µ + 3µ2 )η) + Is
∗(t)β (r1 + r2 + 2µ + (r1 r2 + 2 (r1 + r2 ) µ + 3µ2)η))



Computation 2022, 10, 120 7 of 15

c4 =
(

1
η

)
(Ir
∗(t)β (r1 + µ) ( r2 + µ) (1 + µ η) + Is

∗(t)β (r1 + µ) ( r2 + µ) (1 + µ η)

+ µ (S∗ (t)β ((−1 + p) r1 − p r2 − µ ) + (r1 + µ) ( r2 + µ) (1 + µ η) ))

The four eigenvalues of λ4 + c1λ3 + c2λ2 + c3λ + c4 = 0 will have a negative real part if
they satisfy the Routh–Hurwitz criteria. Thus, ζ∗2 will be locally asymptotically stable for R0 ≥ 1 if
the following conditions are satisfied:

c1 > 0, c3 > 0, c4 > 0, c1c2c3 > c3
2 + c1

2c4

It can be easily seen that the four conditions are satisfied and so the endemic equilibrium state
ζ∗2 = (S∗(t), E∗(t), I∗r (t), I∗s (t), R∗(t)) ∈ ψ is locally asymptotically stable when R0 > 1.

Proposition 3. Let (S(t), E(t), Ir(t), Is(t), R(t)) be the solution of (1)–(5) with the initial
condition (S(0), E(0), Ir(0), Is(0), R(0)) and the compact set

ψ =

{
(S(t), E(t), Ir(t), IS(t), R(t)) ∈ R+

5 , P ≤ NT =
b
µ

}
is a positively invariant set that attracts all solutions in R+

5 .

Proof of Proposition 3. We define the Lyapunov function as
P(t) = (P1(t))= ( S(t) + E(t) + Ir(t) + Is(t) + R (t)) being positive on R+

5
and so

dP(t)
dt =

(
dS(t)

dt + dE(t)
dt + dIr(t)

dt + dIs(t)
dt + dR(t)

dt

)
= bN − µ(S(t) + E(t) + Ir(t) + Is(t) + R(t))

We suppose that the total numbers of population are constants. We use the fact that
NT = b

µ . With this in mind, it is not difficult to prove that

dP(t)
dt

= b− µP(t) ≤ 0 for P(t) ≥ b
µ

(8)

From (1)–(5), one has that dP
dt ≤ 0 which refers to it being a positively invariant set.

In other words, by solving (8) on has 0 ≤ P(t) ≤ b
µ + P(0)e−µt where P(0), the initial

condition of P(t) thus, t → ∞ , 0 ≤ P(t) ≤ b
µ = NT and one can conclude that ψ is

an attractive set. �

3.4. Global Stability of the Equilibrium States

Theorem 2. Let ζ∗1 = (S∗(t), E∗(t), I∗r (t), I∗s (t), R∗(t)) = ( b
µ , 0 , 0, 0 , 0 ) ∈ ψ .

If R0 < 1, then the disease-free equilibrium. ζ∗1 is globally stable on ψ.

Proof of Theorem 2. We now introduce ψ, a new Lyapunov function by Lili Liu [22,26,27].

δ(t) = (S(t)− S∗ ln S) + E(t) + Ir(t) + Is(t) + R(t). (9)

The derivative of the new Lyapunov with respect to time yields.

δ(t)
dt = dS(t)

dt (1− S∗
S ) + dE(t)

dt + dIr(t)
dt + dIs(t)

dt + dR(t)
dt

= (bN − β S(t) I(t) − µS(t))
(

1 − S∗
S

)
+
(

β S(t) I(t) −
(

1
η

)
p E (t) −

(
1
η

)
( 1 − p) E(t)− µ E(t)

)
+((

1
η

)
p E(t) − r1 Ir (t)− µ Ir (t)

)
+
((

1
η

)
( 1 − p) E(t) − r2 Is (t) − µ Is (t)

)
+ ( r1 Ir(t) + r2 Is (t) − µ R(t) )

= (bN − β S (t)I (t)− µI(t))
(

1 − S∗
S

)
+ β S(t) I(t) − µ E(t) − µ Ir (t)− µ Is (t)− µ R (t)

= bN
(

1 − S∗
S

)
− β S(t) I(t) + β S(t) I (t)

(
S∗
S

)
− µS(t) + µ S(t)

(
S∗
S

)
+ β S(t) I(t)− µ E(t) − µ Ir(t) − µ Is (t)− µ R(t)

= bN
(

1 − S∗
S

)
+ β I(t) S∗ + µS(t)

(
1 − S∗

S

)
− µ E (t)− µ Ir(t) − µ Is (t)− µ R(t)
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If S∗ = b
µ

= bN
(

1 − S∗
S

)
+ β I(t) S∗ + µS

(
1 − S∗

S

)
− µ E(t) − µ Ir(t) − µ Is (t)− µ R(t)

= bN
(

1 − S∗
S

)
+ bN

(
1 − S

S∗

)
+ β I(t) b

µ − µ E(t) − µ Ir(t) − µ Is (t)− µ R(t)

δ(t)
dt = bN

(
2− S∗

S −
S
S∗

)
− µ E (t)− µ Ir (t)− µ Is(t) − µ R(t)

= −bN (S∗ − S)2

S S∗ − µ E(t) − µ Ir(t) − µ Is(t) − µ R(t)

So δ(t)
dt ≤ 0 by used LaSalle function for Lyapunov S (t) = S∗, E (t) = 0, Ir(t) = 0,

Is (t) = 0, R (t) = 0. However, it can be concluded that the disease-free equilibrium,
ζ∗1 , is asymptotically stable in ψ. Next, we consider the global property of the endemic
equilibrium of (1)–(5). �

Theorem 3. If R0 ≥ 1, the endemic equilibrium state ζ∗2 = (S∗(t), E∗(t), I∗r (t), I∗s (t),
R∗(t)) ∈ ψ exists and is globally as asymptotically stable on ψ with assumptions as follow:{

µ = βb
µ − r1

r2 = βb
µ − µ

(10)

Proof of Theorem 3. The new Lyapunov function for the system is:

κ(t) = (S − S′ ln S) + E(t) + Ir(t) + Is(t)

The time derivative yields

dκ(t)
dt = d

dt [ (S − S′ ln S) + E(t) + Ir(t) + Is(t)]
= d

dt (S − S′ ln S) + d E(t)
dt + d Ir(t)

dt + dIs(t)
dt

= dS
dt

(
1 − S′

S

)
+ d E(t)

dt + d Ir(t)
dt + dIs(t)

dt

= (bN − β S(t) I (t)− µS(t))
(

1 − S′
S

)
+
(

β S(t) I(t) −
(

1
η

)
p E(t) −

(
1
η

)
( 1 − p) E (t) − µ E(t)

)
+((

1
η

)
p E(t) − r1 Ir(t) − µ Ir (t)

)
+
((

1
η

)
( 1 − p) E(t) − r2 Is (t) − µ Is(t)

)
= bN

(
1 − S′

S

)
− µS(t)

(
1 − S′

S

)
− β S (t)I(t)

(
S′
S

)
− µ E(t) − r1 Ir (t)− µ Ir(t) − µ Is(t)− r2 Is(t)

= bN
(

1 − S′
S

)
+ µS′

(
1 − S

S′

)
+ β S′ I (t) − µ E (t)− r1 Ir(t) − µ Ir(t) − µ Is(t)− r2 Is(t)

Using b
µ = S′ in Equations (1)–(5), the above becomes

dκ(t)
dt = bN

(
1 − S′

S

)
+ µS′

(
1 − S

S′

)
+ β S′ I − µ E(t) − r1 Ir (t)− µ Ir(t) − µ Is(t)− r2 Is(t)

= bN
(

1 − S′
S

)
+ b

(
1 − S

S′

)
+ β ( Ir(t) + Is(t))

(
b
µ

)
− µ E(t) − (r1 + µ) Ir (t) − ( r2 + µ)Is(t) (β)

= bN
(

1 − S′
S

)
+ bN

(
1 − S

S′

)
− µ E (t) −

(
r1 + µ − βb

µ

)
Ir (t)−

(
r2 + µ− βb

µ

)
Is(t)

= bN
(

2 − S′

S
− S

S′

)
− µ E (t) −

(
r1 + µ − βb

µ

)
Ir(t) −

(
r2 + µ− βb

µ

)
Is(t)

Condition (10) ensures K(t) ≥ 0 for all (S∗(t), E∗(t), I∗r (t), I∗s (t), R∗(t)) ∈ ψ and
κ(t) = 0 if and only if S(t) = S′, E (t) = E′, Ir (t) = I′r and Is (t) = I′s. This
makes the point ζ∗2 belong to the only positive invariant set in the equation that exists in
L = { (S(t), E(t), Ir(t), Is(t), R(t)) , S(t) = S′, E(t) = E′, Ir(t) = I′r, Is(t) = I′s}.
Based on the asymptotically stable theorem, the endemic equilibrium state ζ∗2 satisfies
the Theorem 3 in ψ. �
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4. Numerical Results

The parameters used in the numerical simulation results are given in Table 1. As
we see, there are two numerical values listed (0.01 and 0.0009) except for the value of p,
the percentage of exposed individuals who will develop a normal viral load. Using these
values, these values would lead to R0 = 0.8302 and 745.322. The first values of the basic
reproduction would mean that the equilibrium state would be the disease-free state, while
the second would be the endemic disease state. To see whether these predictions are true,
we have numerically solved Equations (1) to (5) using the numbers listed in Table 1. Picking
the set of lower values, we get the time behaviours in Figure 2, which shows the time
evolutions of the various populations to their equilibrium values.
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Figure 2. Numerical solution of systems (1)–(5), time series of (a) susceptible human population,
(b) exposed human population, (c) normal infected humans, and (d) super-spreading infected humans.
The numerical values of the parameters are listed in Table 1 and these are just possible values and have
no significance. The simulated human populations converge to the disease-free state ζ∗1 (0.2485, 0, 0, 0)
when R0 = 0.8302 < 1.
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When the second set of numerical values, the basic production number becomes
R0 = 745.332, which is greater than one. According to Theorem 3, the disease endemic
state ζ2 will be globally asymptotically stable. Looking a Figure 3, we see that the plots of the
evolutions of susceptible population, exposed population, normal infectious populations,
and the super-spreader infected population show oscillatory behaviours as they approach
their endemic values. Figure 4, show the trajectories of behaviours in two-dimensional
space spiraling into the equilibrium epidemic state. The advantages of mathematical
simulation studies of the behaviours of the endemic are that we can see the consequences
of making changes in the practice of treating the illnesses without endangering the lives
of people.

Figure 4 shows the course of the VSM endemic in various 2D space when the parame-
ters in the mathematical description of the disease take on representative values. In the
present case, we are looking at what happens when the percentage of exposed individ-
uals become normal infected (develop into infected individuals having a normal (low)
viral load).

Table 1. Parameters used in simulation for this model.

Parameters Biological Meaning Value

b birth rate of human population 1/(365 × 75.65) per day [1]
µ death rate of human population 1/(365 × 75.65) per day [1]

β transmission rate of virus between humans 0.1–0.9 per day
[1] or [11] or [20,21]

η incubation time of virus in humans 0.1–0.9 per day
[1] or [11] or [20,21]

P probability that a new case will be a regulated infected human 0.01–0.0009 [20–22]
(1 − p) probability that a new case will be a super-spreading infected human 0.1–0.9999 [20–22]

r1 recovery rate of regular infected humans 0.01–0.9 [20–22]
r2 recovery rate of super-spreading infected humans 0.1–0.7 [20–22]
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Figure 3. Numerical solution of systems (1)–(5), time series of (a) susceptible human population,
(b) exposed human population, (c) regular infected humans, and (d) super-spreading infected humans
to the transmission of respiratory disease. The numerical values of the parameters are values in the
second column in Table 1. The values are representative values and have no medical significance and
were picked in order for R0 = 745.322 > 1. The percentage of exposed individual would became
normal infected individual was set at p = 0.7. As is seen, the simulations have the solutions converging
to the disease endemic state, which is true according to Theorem 3. The simulated human populations
converge to the endemic equilibrium states ζ∗2 = (S∗, E∗, I∗r , I∗s ) at (0.59161, 0.00145, 0.07539, 0.00807).

The advantage of introducing the mathematical model of an endemic is that one can
investigate through mathematical simulations the consequences of varying the treatment
of the disease without there being any danger to the patients. One can see what happens if
only some of the citizens are treated, or if some are given expensive treatments (such as
drugs) and others are given inexpensive treatment (quarantine). One possible treatment
would be to prevent exposed individuals (to RSV) from developing into super-spreaders.
To see what the consequence are of lowering the values of p, we have first plotted the
dependence of R0 on the value of p. This dependence is shown in Figure 5. As we see, R0
increases as p increases.

Computation 2022, 10, x FOR PEER REVIEW 13 of 18 
 

 

  
(c) (d) 

Figure 3. Numerical solution of systems (2.1)–(2.5), time series of (a) susceptible human population, 
(b) exposed human population, (c) regular infected humans, and (d) super-spreading infected 
humans to the transmission of respiratory disease. The numerical values of the parameters are 
values in the second column in Table 1. The values are representative values and have no medical 
significance and were picked in order for 1322.7450 >=R . The percentage of exposed individual 
would became normal infected individual was set at p = 0.7. As is seen, the simulations have the 
solutions converging to the disease endemic state, which is true according to Theorem 3. The sim-
ulated human populations converge to the endemic equilibrium states ),,,( *****

2 sr IIES=ζ  at 
(0.59161, 0.00145, 0.07539, 0.00807). 

  
(a) (b) 

Figure 4. Cont.



Computation 2022, 10, 120 12 of 15Computation 2022, 10, x FOR PEER REVIEW 14 of 18 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 4. Trajectories of respiratory disease for the solutions equation approach to the endemic 
state onto (S, E) (a), (S, Ir) (b), (S, IS) (c), (E, Ir) (d), (E,Is) (e), (Ir, IS) (f), respectively. 

Figure 4 shows the course of the VSM endemic in various 2D space when the pa-
rameters in the mathematical description of the disease take on representative values. In 
the present case, we are looking at what happens when the percentage of exposed indi-
viduals become normal infected (develop into infected individuals having a normal (low) 
viral load). 

The advantage of introducing the mathematical model of an endemic is that one can 
investigate through mathematical simulations the consequences of varying the treatment 
of the disease without there being any danger to the patients. One can see what happens 
if only some of the citizens are treated, or if some are given expensive treatments (such as 
drugs) and others are given inexpensive treatment (quarantine). One possible treatment 
would be to prevent exposed individuals (to RSV) from developing into super-spreaders. 
To see what the consequence are of lowering the values of p, we have first plotted the 

Figure 4. Trajectories of respiratory disease for the solutions equation approach to the endemic state
onto (S, E) (a), (S, Ir) (b), (S, IS) (c), (E, Ir) (d), (E,Is) (e), (Ir, IS) (f), respectively.

Computation 2022, 10, x FOR PEER REVIEW 15 of 18 
 

 

dependence of 0R on the value of p. This dependence is shown in Figure 5. As we see, 

0R  increases as p increases. 

 

Figure 5. Dependence of 0R  on p (probability that a new case will be a normal infected human) 

value changes, the 0R  tends to increase. 

Examples of this can be seen in the cases where the diseases are the corona viruses, 
SARS, and MERS. In both of the endemics caused by these two viruses, the su-
per-spreaders occurred when the evaluator was crowded [12] or the patient’s room was 
crowded and there was no ventilation to disperse the virus [13]. Normally, an exposed 
individual would be expected to develop into an individual carrying a normal viral load. 
Some individuals might carry a high viral load and if they meet one person, they would 
transmit the virus to the one person. However, if they get into a crowded situation and 
stay together for an extended period, they would become super-spreaders. 

To show that changing the value of 0R  actually affects the dynamics of the epi-
demic, we have changed the value of p (to 0.04) and simulated the time evolutions of the 
various population classes. This change in the time evolutions of the different numerical 
solutions seen in Figure 5. 

From Figure 6, we see that the solutions converge to the endemic disease state. In-
terestingly, the higher the percentage of exposed individuals becoming super-spreaders 

)1( p− , the longer it takes for the oscillatory behaviour to stop. 

Figure 5. Dependence of R0 on p (probability that a new case will be a normal infected human) value
changes, the R0 tends to increase.



Computation 2022, 10, 120 13 of 15

Examples of this can be seen in the cases where the diseases are the corona viruses,
SARS, and MERS. In both of the endemics caused by these two viruses, the super-spreaders
occurred when the evaluator was crowded [12] or the patient’s room was crowded and
there was no ventilation to disperse the virus [13]. Normally, an exposed individual would
be expected to develop into an individual carrying a normal viral load. Some individuals
might carry a high viral load and if they meet one person, they would transmit the virus
to the one person. However, if they get into a crowded situation and stay together for an
extended period, they would become super-spreaders.

To show that changing the value of R0 actually affects the dynamics of the epidemic,
we have changed the value of p (to 0.04) and simulated the time evolutions of the various
population classes. This change in the time evolutions of the different numerical solutions
seen in Figure 5.

From Figure 6, we see that the solutions converge to the endemic disease state. In-
terestingly, the higher the percentage of exposed individuals becoming super-spreaders
(1 − p), the longer it takes for the oscillatory behaviour to stop.
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ceptible human population, (b) exposed human population, (c) regular infected humans, and
(d) super-spreading infected humans to the transmission of respiratory disease. The simu-
lated human populations converge to the endemic equilibrium states ζ∗2 = (S∗, E∗, I∗r , I∗s ) at
(0.79734, 0.00016, 0.00408, 0.00262).



Computation 2022, 10, 120 14 of 15

5. Discussion and Conclusions

In this study, we have presented a mathematical model for the transmission of the
respiratory syncytial virus (RSV) when there are super-spreader (infected individuals who
can infect many people during one contact) present. We have included a super-infected
class in the SEIR model, making it an SEIrIsR model [23–26,28–30]. We have analyzed
this new model by performing a stability analysis of super-spreading transmission of the
respiratory disease. The global stability of the transmission of respiratory disease was
determined by using Lyapunov functions. We have obtained the basic reproductive number
through the use of the spectral radius of the next generation matrix. The basic reproductive
number is the threshold condition for investigating the stability of the solutions of model,
which are shown in Figure 2. If R0 < 1, then the disease-free equilibrium state is globally
asymptotically stable, see Figures 3, 4, and 6. If R0 > 1, then there is a unique endemic
equilibrium state, which is globally asymptotically stable in the interior of the feasible
region and the disease is present. This value is the approximation to the period of the
solution [26–32]. L. Acedo et al. [9] consider the age structure of respiratory disease, with
a focus on children under one year and children in general. With this model, the seasons
will influence the transformation of this disease. Hogan et al. [29] consider a seasonal
change of RSV by a seasonal forcing function and parameter space. Thus, their model is
sensitive to the birth rate, transmission rate, and seasonality parameters, and can make a
replica of RSV dynamics observed in different countries. From [8,29,31–33], and this model,
the seasons will affect the change in the epidemic. In this case, the model also provided
timely transmission of the inoculum and the body pod for the outbreak. We can see that
the disease can be reduced when the parameters satisfied the conditions given in the
above section.
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