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Abstract: This paper reports the development of a model for continuous simulation of the power
flow into AC–DC hybrid microgrids operating for different generation–consumption scenarios. The
proposed application was assembled using a multiple-input multiple-output model which was
built using blocks containing simplified models of photovoltaic (PV) modules, wind turbines (WT),
battery arrays (energy storage units, ESU), and power loads. The average power was used as the
input/output variable of the blocks, allowing flexibility for easy reconfiguration of the microgrid and
its control. By defining a generation profile, PV and WT were modeled considering environmental
conditions and efficiency profiles of the maximum power point tracking (MPPT) algorithms. ESUs
were modeled from intrinsic characteristics of the batteries, considering a constant power charge
regime and using the State of Energy (SoE) approach to compute autonomy. To define a consumption
profile, DC and AC loads were modeled as a constant real power. As an innovative characteristic,
unidirectional and bidirectional power conversion stages were modeled using efficiency profiles,
which can be obtained from experiments applied to the real converters. The outputs of the models of
generation, consumption, and storage units were integrated as inputs of the mathematical expressions
computing the power balance of the buses of the microgrid. The proposed model is suitable to analyze
efficiency for different configurations of the same microgrid architecture, and can be extended by
integrating additional elements. The model was implemented in LabVIEW software and three
examples were developed to test its correct operation.

Keywords: real-time simulation; continuous simulation; hybrid microgrids

1. Introduction

Electric energy consumption has shown accelerated growth in recent years. Simultane-
ously, there has been a constant development of technologies to ensure efficient generation
and distribution. As a consequence, the conventional centralized energy system archi-
tecture has evolved to a distributed architecture involving localized generation based on
microgrids [1,2]. Microgrids are structures capable of supplying energy to local loads with
or without a connection to a main grid. Among their multiple applications, microgrids
can solve the energy availability problem in rural or remote zones and contribute to the
increased use of renewable resources in urban zones [3–6]. Microgrids use renewable re-
sources to supply the energy demanded by the loads, and they require storage technologies
to provide autonomy due to the intermittence of solar and wind energy. Considering their
advantages, microgrids permanently attract the interest of researchers and industrialists
around the world [7–9].

The nature of the voltage in the points of common connection of a microgrid named as
nodes or buses allow the classification of microgrids as either DC, AC, or hybrid DC–AC,
i.e., having DC or AC coupling capability. Hybrid microgrids have become popular in
recent years because they provide the flexibility and modularity that AC and DC microgrids
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cannot provide separately [10–14]. Therefore, several research efforts are devoted to solving
the challenges related to the development of these kinds of systems.

Microgrids have been simulated to facilitate their study in both academic and research
environments. The vast majority of research on the modelling and control of microgrids,
whether DC or AC, has been carried out using MATLAB/Simulink as a simulation tool.
For instance, in [15], the power management system for a microgrid consisting of a wind
turbine farm, a solar PV farm, and AC loads is validated for various operating conditions.
Additionally, in [16], modelling and control of a hybrid microgrid is developed using
simulations to validate the correct operation of the system under transient and stationary
conditions. In [17], the Stateflow toolbox of Simulink is used to validate a power balance
control strategy developed using the Petri Nets formalism. Moreover, there are other
simulation tools that have been successfully used in the study of microgrids, such as
PSCAD [18–20] and DigSILENT Power Factory [21,22]. It is also relevant to mention the
existence of software such as HOMER, which allows the economic study of microgrids
beyond technical aspects [23,24]. In general, researchers develop simulations focused
on a particular case study, and only some works are devoted to study generalized or
flexible architectures. Another important approach regarding microgrid simulation is the
use of hardware in the loop (HIL) techniques, which advantageously utilize a dedicated
platform, enabling a real-time simulation. For this, hardware systems such as Typhoon,
OPAL-RT, or RTDS are necessary, unbalancing the cost–benefit ratio when the object of
the simulation is validated for academic purposes [25–30]. As a particular case, in [31], a
behavioral simulator modelling several types of power loads is presented, demonstrating
that good results (regarding precision and time of simulation) can be obtained in simulation
of operation scenarios of microgrids without the need for complex physical models of loads.
Although this work is focused on a shipboard microgrid, its use can be extended to other
kind of microgrids.

A potential solution to facilitate understanding of the fundamentals of microgrid
operation is the use of simplified models capable of supporting the configuration of real
parameters (environmental conditions), real scenarios (generation and consumption), and
accurate modelling of conversion devices. In [32], authors introduce a modular simulation
which can be used as testbed in the study of management strategies of hybrid microgrids
regarding the formalism of the energetic macroscopic representation. One of the notable
features of this development is the use of MATLAB/Simulink without the requirement of
additional toolboxes, which allows accessibility to a wider community. In this work, models
for PV modules, batteries, fuel cells, ultracapacitors, generators, and power converters
are developed, and control loops are implemented. In [33], a simulation of a DC-coupled
AC/DC hybrid microgrid is implemented in MATLAB, providing various possible con-
figurations. In this case, the connection of three microgrids is tested based on the 14-bus
bar IEEE standard. A relevant feature of this work is the simulated interconnection of
multiple microgrids with AC and DC nature. This simulation allows the study of power
quality indexes into the AC side, such as THD, and power factor, which is advantageous,
although it adds complexity. A system-level simulation is developed in [34], proposing
alternative models for different components of the microgrid. In this work, the models
proposed for converters are very accurate with respect to experimental results. This is
possibly due to the inclusion of accurate models of the efficiency behavior of the converters,
which increased the accuracy of the simulation. In [35], a simplified modelling approach
is developed to study the behavior of microgrids in islanding operations. The authors
demonstrated that the complexity of the proposed models is reduced and the correspond-
ing algorithms are easy to implement in any general-purpose software. A comparison
with simulations developed in PSCAD-EMTDC is provided, confirming the validity of the
approach. On the contrary, modelling presented in [36] proposes a complex representation
of the microgrid using neural networks, which integrates different components treated
separately as autonomous systems. Although this approach showed a good performance,
it is far from simple or flexible. To summarize, an interesting comparison of microgrid
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simulators is performed in [37], where simulators are classified according to two groups:
deterministic and probabilistic. In this work, different comparison features are evaluated,
such as demand response, generator efficiency, tariffs and incomes, life-cycle costing, rule-
based dispatch, separate energy manager model, economic dispatch, and the possibility to
kink with MATLAB. The HOMER simulator seems to be ideal for simulations involving
economic aspects, while GridLAB-D is a good option to analyze power flow between nodes
at the distribution level. However, similar to the development proposed in this paper, the
approach developed in [38] proposes a small-scale microgrid simulation implemented in
LabVIEW software involving photovoltaic generation, wind generation, and energy storage
integrated into a bus feeding power loads.

Diverging from the previously published approaches, this paper describes the devel-
opment of a model for continuous simulation of a flexible architecture of hybrid microgrids
integrating two DC buses and AC distribution. The main feature distinguishing the pro-
posed simulation from those previously described is the simplicity of the used models,
which are standardized to share power values as input and output variables. The pro-
gramming of the block-based definition of the models allows the integration of multiple
generators, energy storage units (ESU), and loads, configuring a control plant with a
multiple-input multiple-output (MIMO) model able to apply different control approaches
and validate its behavior. Additionally, because the model is focused on the real power
flow, efficiency analysis of the microgrid can be easily derived.

The rest of the paper is organized as follows: Section 2 presents a description of the
hybrid microgrid architecture selected as a case study. Section 3 details the modelling of the
elements comprising the microgrid, and a detailed implementation description is presented
in Section 4. Simulation results for different operation scenarios are provided, validating
the correctness of the computation and the usefulness of the simulation application, in
Section 5. Finally, conclusions and future work are summarized in Section 6.

2. Description of the Selected Microgrid Architecture

The model was developed considering a flexible architecture in which the majority
of the concepts applied in microgrids can be studied. Because of this main feature, it also
serves as a flexible basis for simulation of other simpler architectures of microgrids. The
microgrid is composed of two DC distribution buses with different voltage levels and
an AC bus. The AC bus is a standard single-phase point of common connection (PCC)
interconnecting the microgrid, the grid, and AC loads. In Figure 1, the architecture of the
hybrid microgrid selected as a case study is depicted.
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Both DC buses of the microgrid are nodes integrating renewable generators, energy
storage, and local loads. Photovoltaic modules (PV) and Wind Turbines (WT) are considered
among the existing renewable energies. Each bus can integrate several generators, allowing
the study of multiple control and energy management strategies. The microgrid uses energy
storage units (ESU) connected to one of the DC buses; each DC bus can integrate multiple
ESU. The loads connected to the buses are represented with a constant power behavior.
The loads connected to the AC side can be fed by either the grid or the microgrid. They
can be fed by the microgrid by using power converters taking the required energy from
one or both DC buses. The exchange of energy between DC buses is enabled using one
or two paralleled bidirectional DC–DC converters, named interlinking converters (ILC).
The interaction between the DC buses and the AC bus is enabled by using bidirectional
DC–AC converters, named as interfacing converters (IFC). Fundamentals considered in
the architecture selection take the basis of the overview of power and control architectures
presented in [10]. From a generalized perspective, the selected architecture allows the study
of multiple alternatives for power flow into the microgrid, which are defined by the user
through the rules programmed into the external decision algorithm as control. In this paper,
we focus on the mathematical modelling of a hybrid microgrid as a plant with the aim to
provide flexibility to the study’s multiple control strategies.

3. Modelling

The proposed model was built considering each component of the microgrid as a
module with a mathematic model representing a power source or a power load. These
modules were integrated through a generalized mathematic model of the microgrid buses
and the control algorithms. For example, a battery module has a source behavior during
the discharge process and a load behavior during the charging process, requiring that
their model can consider bidirectional flow and different modes of operations. Similarly,
although generators have a unidirectional power flow, they are composed of a chain of
modules involving power production, efficiency profiles of the power converters, and the
maximum power point tracking algorithms.

Mathematical expressions modelling different modules use numerical variables Npqxn−z
(taking values 0 and 1), allowing the configuration of different modes of operation. The
sub-indexes p and q define the type of unit (PV: photovoltaic, WT: Wind, ES: Energy Stor-
age), while x denotes the bus in which a unit is connected (1, 2 or 3), n defines the index
if more than one unit of the same nature is connected to the same bus (1, 2, . . . ), and
z allows the differentiation of functions for each unit (a, b, and c, if required). Using these
signals, an external decision algorithm can control the power given or absorbed by each
module. Similarly, the power variables are defined using the same convention with an
added sub-index to identify the power in a conversion chain (1, 2 and 3).

The block diagrams used within the paper consider the results of computations at the
right side of the blocks from the values available at the left side and the parameters selecting
the operation modes. If computations consider the output value also as an input, the value
corresponding to the previous sampling period is used as an input. The modelling for all
modules used in the simulation is presented below.

3.1. Modelling of the PVG

The power delivered by a PV generator depends on a chain composed by three
modules: the solar panel, the maximum power point tracking (MPPT) algorithm, and one
unidirectional DC–DC power converter. Integrated to a DC bus in the microgrid, each
generator can operate in the three modes listed in Table 1. In the modes 0 and 3, the
generator is deactivated and its power contribution is zero. Operating in the mode 1, the PV
module delivers the maximum available power, which is affected by the MPPT efficiency
and the DC–DC converter efficiency. Contrarily, operating in the mode 2, the solar panel
delivers a fraction of the available power, tracking an external power reference given by a
superior level of the control hierarchy of the microgrid. In mode 2, the power delivered
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by the solar panels is affected only by the efficiency of the DC–DC converter, as the MPPT
algorithm does not operate (in this mode the MPPT efficiency is settled to 100%).

Table 1. Operation modes of PV generators.

Mode Mode Convention
Parameters

Npvxn−a Npvxn−b

0 Module OFF OFF 0 0
1 MPPT MPP 1 0
2 Limited power REF 0 1
3 Module OFF OFF 1 1

3.1.1. Solar Panel Model

A general but simple model of a photovoltaic panel calculating the maximum output
power for specific irradiance and temperature values is given by the following expression:

Ppvxn−max =
Spv

Sre f
Ppvxn−nom

[
1 + γ

(
Tpv − Tre f

)]
(1)

where Ppvxn−max is the rated power of the PV module, Spv is the instantaneous irradiance,
Sre f is the irradiance reference (1000 W/m2), Tpv is the instantaneous temperature, Tre f
is the temperature reference (25 ◦C), and γ is the maximum power correction factor for
temperature, which takes values around −0.005, depending on the material employed to
build the panel [39]. Ppvxn−nom is the nominal power of the generator applied for both the PV
module and power converter. Then, for a set of environmental conditions, this model provides
the value of the maximum allowable power which can be extracted either totally or partially.

3.1.2. MPPT Algorithm

Conventionally, the efficiency of the MPPT algorithms used in PV applications depends
on the irradiance level or consequently on the extracted power. This efficiency value can
range from 80% to 99.9% in the more active MPPT algorithms [40,41]. Then, the efficiency
of the MPPT is represented as a function of the maximum allowable power provided by the
model of the PV module. As mentioned previously, the efficiency of the MPPT is settled
to 100% when operating in the limited power mode. The MPPT efficiency profile of the
PV generators can be loaded separately for each generator or unified for all generators
integrated to a DC bus. The efficiency profile is defined by means of the coefficients Apvxn−1
and Apvxn−0 of the first order polynomial in (2), which depends on the relationship between
the available power Ppvxn−1 and the nominal power Ppvxn−nom.

ηpvxn−mpp
(

Ppvxn−1
)
= Apvxn−1

Ppvxn−1

Ppvxn−nom
+ Apvxn−0 (2)

3.1.3. DC–DC Converter

To integrate PV generators into a DC bus of the microgrid, at least one DC–DC conversion
stage is required. Regardless of the studied bus, the efficiency profiles of the converters are
represented using static gains defined by first-order polynomials depending on the converted
power. These profiles can be obtained from the results of laboratory tests measuring the
efficiency of the converter for different output power values. The efficiency profile is defined
by means of the coefficients Bpvxn−1 and Bpvxn−0 of the expression in (3), which depends on
the relationship between the extracted power Ppvxn−2 and the nominal power Ppvxn−nom.

ηpvxn−dc
(

Ppvxn−2
)
= Bpvxn−1

Ppvxn−2

Ppvxn−nom
+ Bpvxn−0 (3)
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At this point, it is also possible to compute the maximum power that can be provided
by a PV generator in the mode 2 which corresponds to the maximum power at a defined
operation point directly affected by the efficiency of the converter ηpv12−dc1. It is important
to mention that the generator may be unable to provide the power defined by the external
reference, in which case it will provide a power near to the maximum allowable.

ηpvxn−dc1
(

Ppvxn−max
)
= Dpvxn−1

Ppvxn−max

Ppvxn−nom
+ Dpvxn−0 (4)

Ppvxn−aux = max
{

Ppvxn−maxηpvxn−dc1
(

Ppvxn−max
)
, Ppvxn−re f

}
(5)

The complete modelling of the PV generators is synthesized in Expressions (6)–(8)
computing the output of each block. Ppvxn−re f is a power reference given by an outer loop
regulating the bus voltage or by a superior layer in the hierarchical architecture of the
microgrid control.

Ppvxn−1(k) = Ppvxn−max Npvxn−a + Ppvxn−2(k− 1)Npvxn−b (6)

Ppvxn−2(k) = Ppvxn−1ηpvxn−mppNpvxn−a + Ppvxn−3(k− 1)/ηpvxn−dcNpvxn−b (7)

Ppvxn−3(k) = Ppvxn−2ηpvxn−dcNpvxn−a + Ppvxn−aux(k− 1)Npvxn−b (8)

The resulting assembly of blocks conforming PV generators is depicted in Figure 2,
showing the causal flow of the required computations.
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3.2. Modelling of the WTG

The power delivered by a wind generator depends on the chain composed of the
following three modules: the wind turbine, the MPPT algorithm, and the power converter
which is composed of an AC–DC stage and a DC–DC stage. The wind generator can
operate in the modes listed in Table 2. In the modes 0 and 3, the generator is deactivated
and its power contribution is zero. In the MPPT mode (namely mode 1), the generator
delivers the maximum available power, which is affected by the MPPT efficiency and the
AC–DC–DC converter efficiency. Operating in the mode 2, the wind generator delivers
a fraction of the available power, tracking an external power reference. In this mode, the
power delivered is affected only by the efficiency of the AC–DC–DC converter.

Table 2. Operation modes of wind generators.

Mode Name Convention
Parameters

Nwtxn−a Nwtxn−b

0 Module OFF OFF 0 0
1 MPPT MPP 1 0
2 Limited power REF 0 1
3 Module OFF OFF 1 1
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3.2.1. Wind Turbine

The wind turbine static behavior can be modelled by the piece-wise function in
Expression (9) defining the produced power as a function of the wind speed besides some
parameters from the geometry and size of the turbine. The conventional model defining
this curve requires the cut-in speed (vcin), the nominal speed (vrat), and the cut-out speed
(vcout) of the turbine as follows:

PWT =


0 0 < v ≤ vcin

0.5ρACpv3 vcin < v ≤ vrat

Prat vrat < v ≤ vcout

(9)

where v is the wind speed, ρ the air density, A the area swept by the rotor blades, Cp the
power coefficient of the turbine, and Prat the nominal power [42]. A simplified version of
this model is obtained following the shape of the saturation function as follows:

Pwtxn =


0 0 < v < Vmin(

Pmax
Vmax−Vmin

)
v− PmaxVmin

Vmax−Vmin
Vmin ≤ v ≤ Vmax

Pmax V ≥ Vmax

(10)

where the resulting piecewise model is defined by the coordinates (Vmin, 0) and (Vmax, Pmax).

3.2.2. MPPT Algorithm

The efficiency of the MPPT algorithms for wind generators depends on the wind speed
or consequently depends on the extracted power. In a practical sense, the same algorithms
used for PV generators can be used for wind turbines. The first order expression in (11)
models the efficiency of that algorithm as a function of the rated power.

ηwtxn−mpp(Pwtxn−1) = Awtxn−1
Pwtxn−1

Pwtxn−nom
+ Awtxn−0 (11)

3.2.3. AC–DC–DC Converter

Low-power wind generators are commonly built integrating a Permanent Magnet
Synchronous Generator (PMSG) to provide the conversion of mechanical energy into
electrical energy. These generators have a three-phase AC output whose voltage and power
depend on the wind speed and the connected load. Therefore, to integrate a wind generator
into a DC bus of the microgrid, an AC–DC converter is required. The simpler topology is a
two-stage power conversion chain composed by a three-phase diode bridge rectifier and a
boost-type DC–DC converter, the second allowing the control of the extracted power. The
efficiency profile is defined by means of the coefficients Bwtxn−1 and Bwtxn−0 of the first
order polynomial in (12), which depends on the relationship between the extracted power
Ppvxn−2 and the nominal power Pwtxn−nom.

ηwtxn−dc(Pwtxn−2) = Bwtxn−1
Pwtxn−2

Pwtxn−nom
+ Bwtxn−0 (12)

At this point, it is possible also to compute the maximum power that can be provided
by the WT generator in the mode 2, which corresponds to the maximum power at a defined
operation point directly affected by the efficiency of the converter ηwtxn−dc1. It is important
to mention that the generator may be unable to provide the power defined by the external
reference, in which case it will provide a power near to the maximum allowable.

ηwtxn−1(Pwtxn−max) = Bwtxn−1
Pwtxn−max

Pwtxn−nom
+ Bwtxn−0 (13)

Pwtxn−aux = max
{

Pwtxn−maxηpvxn−1(Pwtxn−max), Pwtxn−re f

}
(14)
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The complete modelling of the WT generators can be synthesized in Expressions
(15)–(17), computing the output of each block. Pwtxn−R is a power reference given by an
outer control loop.

Pwtxn−1(k) = Pwtxn(v, T)Nwtxn−a + Pwtxn−2(k− 1)Nwtxn−b (15)

Pwtxn−2(k) = Pwtxn−1ηmppt + Pwtxn−2(k− 1)/ηwtxn−dcNwtxn−b (16)

Pwtxn−3(k) = Pwtxn−2ηwtxn−dcNwtxn−a + Pwtxn−aux(k− 1)Nwtxn−b (17)

By assembling the three described modules, the wind generators (WTG) are modelled
as depicted in the block diagram presented in Figure 3. Equivalent to the PV generators,
the x sub-index defines the bus in which the generator is connected, and the n sub-index
differentiates the generators connected to the same bus.
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3.3. Modelling of the ESU

An Energy Storage Unit (ESU) is composed of a battery array and a bidirectional
DC–DC converter which controls its charge/discharge regimes. An ESU can operate in
the modes listed in Table 3. In the modes 0 and 3, ESU is deactivated. In the mode 1,
batteries are charging according to the external power reference given by control. The
maximum power injected is normally defined as a percentage of the nominal capacity
given in Amperes multiplied by the charging voltage. This mode can remain active until
the battery is charged to a desired level. In the mode 2, batteries are discharged, injecting
power into the bus in which the ESU is connected. In this mode, the amount of power
delivered by the ESU is defined by an outer reference which can be used to establish the
power balance on the bus.

Table 3. Operation modes of the ESU.

Mode Name Convention
Parameters

Nesxn−a Nesxn−b

0 Unit OFF OFF 0 0
1 Charging CCH 1 0
2 Discharging DCH 0 1
3 Unit OFF OFF 1 1

3.3.1. Batteries

To model the ESU, the State of Energy (SoE) indicator is selected [43]. As it can be
shown in (18), the battery power is affected by the efficiency factor ηe into the integral term,
which allows the establishment of the similitude with the previously defined models of the
simulation. The SoE can be defined as:

SoE =

[
1 +

∫ t1
0 ηeP(t)

En

]
· 100% (18)
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3.3.2. Bidirectional DC–DC Converter

The bidirectional DC–DC converter used in the ESU can transfer power from the bus
to the battery and from the battery to the bus. Normally, the charging process requires a
predefined amount of power established by the charge regime (constant current or constant
power), but it can also be made using a different amount of power if the ESU regulates
the voltage of the bus. The efficiency profile of the converter is separately defined for
each power flow direction, as normally the voltage level of the buses differs from the
voltage level of the battery array. Then, simulation differentiates the efficiency profiles
ηdcdc2(Pbtxn−1) and ηdcdc1(Pbtxn−2) for charging and discharging modes, respectively, using
expressions with the form of (3). The complete modelling of the ESU can be synthesized in
Expressions (19) and (20) computing the output of each block. Pbtxn−R is a power reference
given by an outer loop regulating charge and discharge processes.

Pesxn−1(k) = −Pesxn(Ich−max, Vbat)Nesxn−a − Pesxn−2/ηdcdc1Nesxn−b (19)

Pesxn−2(k) = −Pesxn−1/ηdcdc2Nbtxn−a + Pesxn−R(k− 1)Nbtxn−b (20)

By assembling the two described modules, an ESU is modelled as it is depicted in the
block diagram presented in Figure 4.
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3.4. Modelling of the Power Consumption

The DC loads can be classified into three types: constant resistive load (CRL [44]),
constant current load (CCL [45]), and constant power load (CPL [46]). The AC loads are
classified into resistive, inductive, capacitive, or nonlinear groups [47]. The simulation
considers the real power consumption of the loads in both DC and AC buses as a constant
value that can suffer changes representing connection or disconnection of loads. The
convention used by the model is PLx.

3.5. Modelling of the ILCs

The DC buses 1 and 2 can exchange power through the ILCs. Therefore, these con-
verters are able to operate with bidirectional power flow. Considering voltage levels of
the DC buses are regulated, the efficiency profile of these converters are defined by two
curves with the form defined by (3). The possible modes of operation of this converter are
listed in Table 4. When the IFC is operating in mode 0, the DC buses of the microgrid are
disconnected, which in fact decouples their operation. In the modes 1 and 2, the converter
transfers power from one DC bus to the other.

Table 4. Operation modes of the ILCs.

Mode Name Convention NiLm−a NiLm−b

0 Converter OFF OFF 0 0
1 Bus 1 priority ILP1 1 0
2 Bus 2 priority ILP2 0 1
3 Converter OFF OFF 1 1
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The simulation differentiates the efficiency profiles ηdcdc1(PiLm−1) and ηdcdc2(PiLm−2)
for different modes, respectively. The following set of expressions allows the computation
of the power at both ports of one ILC.

PiLm−1(k) = PiLm−R1NiLm−a + PiLm−2(k)/ηdcdc2NiLm−b (21)

PiLm−2(k) = PiLm−1(k)/ηdcdc1NiLm−a + PiLm−R2NiLm−b (22)

where PiLm−R1 and PiL−R2 are the power references given by an outer control loop to define
the amount of power transferred by one ILC. Parameters NiLm−a and NiLm−b define the
priority of the ILCs, indicating which of the two ports fixes the required or demanded
power and allowing the computation of the power in the other port. A block diagram of
the model of the ILCs is depicted in Figure 5.
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3.6. Modelling of the IFCs

The DC buses are connected to the AC side of the microgrid through the IFCs. These
converters are able to operate with bidirectional power flow. However, when they operate
connected to the auxiliary generator, the flow is limited to transfer power from the generator
to the microgrid. As shown in Table 5, these converters have four operation modes. When
the converter is OFF, the AC loads can only be fed directly from the grid or the generator.
When the IFCs are operating in stand-alone mode (mode 1), they feed the AC loads. In
modes 2 and 3, the IFCs are connected to the auxiliary generator or to the grid, and they
establish the power balance of the DC buses.

Table 5. Operation modes of the IFCs.

Mode Name Convention Nifcx−a Nifcx−b Nifcx−c

0 Converter
OFF OFF 0 0 0

1 Stand-alone SAC 1 0 0
2 Rectifier IFR 0 1 0
3 Inverter IFS 0 0 1

A conditional logic was designed to avoid other possible modes resulting from un-
desired combinations of the Ni f cx−a values. The efficiency profiles of the IFCs are defined
separately for operation in the two possible power directions. The efficiency profiles
ηdcacx(PiFx−1) and ηacdcx(PiFx−2) have the form defined by Expression (3). The following
set of expressions allows for the computation of the power at both ports of the IFCs.

PiFx−1(k) = −PiFx−2L/ηacdcNiFx−a + PiFx−R1(k)(−NiFx−b + NiFx−c) (23)

PiFx−2(k) = PiFx−2L(k)NiFx−a + PiFx−R1(k)/ηacdcNiFx−b − PiFx−R1(k)ηdcacNiFx−c (24)

where Pi f cx−1R is the power reference given by the control to define the amount of power
transferred by the IFCs to or from a DC port and PiFx−2L is the power load fed at the AC
side (see Expressions (25) and (26)). Parameter NiFx−a indicates if one IFC is operating in
SAC mode while parameters NiFx−b and NiFx−c define the priority of the ILCs, indicating
which of the two ports fixes the demanded or delivered power. A block diagram of the
model of the IFCs is depicted in Figure 6.
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3.7. Modelling of the DC Buses

The DC buses allow the interconnection of the generation, storage, and consumption
units. Each DC bus also integrates the power injected or extracted by one IFC and two ILCs.
The model of each bus computes the instantaneous power balance defined by the variable
∆P1 providing information to define the references of the control. A block diagram of the
model corresponding to the DC bus 1 is depicted in Figure 7.
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3.8. Modelling of the AC Side Interconnection

In the studied microgrid architecture, it is possible to feed the AC power consumption
from three sources: the AC grid, an auxiliary fuel generator, and the DC buses through the
IFCs operating in SAC mode. The presence of the AC grid and the auxiliary generator will
determine if the AC load consumption PL3 will be covered directly from them or indirectly
through one or both of the IFCs. The following expressions allow modelling of the AC side
of the microgrid:

PiF1−2L(k) = PL3Nac2KL (25)

PiF2−2L(k) = PL3Nac2(1− KL) (26)

The parameter KL is defined as the sharing index taking values between zero and one
and defines the percentage of contribution of the IFCs operating as SAC feeding the loads.
Nac3 is an integer variable taking values into the set {0, 1} and defining the operation of
the IFC in SAC mode. The power of the AC sources is defined by:

Pgr(k) = PL3Nac2 +
(

Pi f c1−2(k) + Pi f c2−2(k)
)

Nac1 (27)

Parameter Nacx defines which AC source fed the loads. Table 6 summarizes the
connection/disconnection logic of the AC side.

Table 6. Modes of operation at the AC side.

Mode Mode (Convention) Voltage Source Nac1 Nac2

0 AC off Any 0 0
1 Islanded IFCs 0 1
2 Grid-connected Grid 1 0
3 AC off Any 1 1

A block diagram of the model of the AC side is depicted in Figure 8.
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3.9. Modes of Operation and Special Features of the Simulated Microgrid

By considering the multiple modes of operation of the different units of the microgrid,
the whole operation can be configured, but is not limited to operate in the following modes:

• Islanded/DC (ISL-DCO): There is no AC source and the microgrid cannot produce
enough energy to feed the AC loads, feeding the DC loads as priority.

• Islanded/SAC (ISL-SAC): There is no AC source but the local generation is enough to
feed both the DC and AC loads.

• Grid/Grid (GRD/GRD): In this case, the grid has good quality and shares power con-
sumption with the microgrid, which transfers power through the IFC.

A list of the suggested modes of operation is presented in Table 7 (Tables 1–6 define
the conventions of the modes and the corresponding values of Nxxx for each of them).

Table 7. Suggested modes of operation for components as a function of the microgrid modes.

Components
PVG1 WTG1 ESU1 ILC1 IFC1 PVG2 WTG2 ESU2 ILC2 IFC2 GRD

Modes

ISL-DCO MPP MPP DCH REF OFF MPP MPP CHG REF OFF OFF
ISL-SAC MPP MPP DCH REF SAC MPP MPP CHG REF SAC OFF

GRD/GRD MPP MPP CHG REF IFI MPP MPP CHG REF IFI ON

4. Simulation Implementation

The simplified model developed in this work was implemented in a virtual instrument
in the LabVIEW platform to obtain the continuous property. The main specifications for
the software development were:

• The user configures the parameters of the models of solar panels, wind turbines
and batteries.

• The user provides the coefficients of efficiency profiles of power converters and
MPPT algorithms.

• The user can change online environmental variables and power consumptions.
• The simulation can interact with other algorithms through global variables.

The microgrid architecture depicted in Figure 9 was selected to provide details of
the model programming. As it can be observed, the example has one PVG and one WTG
integrated in the DC bus 1, one ESU integrated in the DC bus 1, one PVG integrated
in the DC bus 2, one ILC interconnecting the DC bus 1 and the DC bus 2, and one IFC
interconnecting the DC bus 2 with the AC bus. The programed functions developed for
each of these units are shown in Figures 10–14. Please consider that unlike the other
units, programming of the ESU requires the creation of a shift register to obtain the de-
layed sample required to implement the integral function of the SoE (ESS = SoE(k)
and EES1 = SoE(k− 1)).
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5. Numerical Examples
5.1. Parameters of the Simulation

Simulations considered 250 W commercial solar panels [48], 300 W Permanent Magnet
Generator Wind Turbines [49], and 12 V batteries with capacities of 100 Ah [50]. The main
parameters are summarized in Table 8.

Table 8. Parameters used in simulation tests.

PVG in DC buses 1 and 2 (REC250PE)

Convention Irradiance (S) [W/m2] Temperature (T) [◦C] Nominal Power [W]

PVG1 250–1000 25 12 × 250
PVG2 250–1000 25 12 × 250

WTG in the DC bus 1 (Aeolos300)

Convention Wind speed [m/s] Nominal power [W]

WTG1 4–12 10 × 300

To facilitate correctness of the computations in the simulation, the efficiency of the
MPPT and the efficiency profiles of all converters were defined by the following expressions
using only the first order and constant terms:

ηmppt(Px) = ηconverter(Px) = 0.08
Px

Pnom
+ 0.9 (28)

where Pnom is the nominal power of the converter, which is defined as 3 kW.

5.2. Test Using Predefined Scenarios

Three scenarios were chosen for tests providing simulated results: Grid-connected
GRD-GRD (night), Grid-connected GRD-GRD (day), and Islanded mode (ISL-SAC). The
possible configurations of the microgrid to face each scenario are uncountable. A definition
of the modes in which the units must operate to face each one of the selected scenarios is
given in Table 9 (take this configuration only as example).

Table 9. Operation modes of the microgrid elements.

Components
PVG1 WTG1 ESU1 ILC1 PVG2 WTG2 ESU2 ILC2 IFC2 GRD

Simulation Scenarios

Scenario 1 (GRD-GRD) MPP MPP OFF REF MPP OFF CHG OFF REF ON
Scenario 2 (GRD-GRD) MPP MPP DCH REF MPP OFF OFF OFF REF ON
Scenario 3 (ISL-SAC) MPP MPP DCH REF MPP OFF OFF OFF SAC OFF

1. GRD-GRD (night): In this scenario, the complete operation of the microgrid is required
because of the connection of loads to the three buses. The IFCs operate in grid-
connected mode either as inverters or rectifiers. The ESU is settled to charging mode.

2. GRD-GRD (day): Similar to the previous scenario, the complete operation of the
microgrid is required to feed the connected loads. The IFCs operate in grid-connected
mode either as inverters or rectifiers. The ESU is settled to charging mode.

3. ISL-SAC: In this scenario, the microgrid operates without AC power supplied from
the grid but the AC loads are fed by the IFC, which operates as SAC. The IFC cannot
regulate the voltage of the DC bus 2, forcing the ILC to perform this task. As a
consequence, the voltage of the DC bus 1 is regulated by the ESU, which can pass
from a charging mode to a discharging mode depending on the renewable energy
production which operates at MPPT.
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5.2.1. Results for Scenario 1: Operation in GRD-GRD (Night)

In this scenario, the PVGs were off and the WTG contributed to the DC bus 1 with
powers between 1500 and 2500 W. The total consumption of the loads into the microgrid
varied between 2000 and 5000 W. The resulting power values establishing the stable
operation of the microgrid in the example are presented in Table 10.

Table 10. Results for scenario 1 evaluated for the three selected cases.

Power Generation/Consumption (W)

Case
DC Bus 1 DC Bus 2 AC Side

PVG1 WTG1 ESU1 L1 ILC1 PVG2 L2 ILC1 IFC2 IFC2 L3 Grid

1 0 2264.5 −1052.6 −1000 −211.9 0 −1000 189.5 810.5 −925.5 −1000 1925
2 0 2264.5 −1052.6 −2000 788.12 0 −1500 −899.7 2399.7 −2918.7 −1500 4418.7
3 0 1322 −1052.6 −1500 1230.6 0 −250 −1427.7 1677.7 −1980.4 −250 2230.4

In this scenario, voltage regulation of the DC bus 1 was performed by the ILC while
the voltage regulation of the DC bus 2 was performed by the IFC. In the three cases, the
deficit of power was covered from the grid. In the first case, the efficiency was computed
as 91.7%. In the second case, the efficiency was computed as 87.5%. In the third case, the
efficiency was computed as 80%. As expected, these are the results obtained using the
control rules manually provided to the simulation, which do not use the ESU to cover
consumption. Then, for the other set of control rules, for example, the consumption of the
DC bus 1 can be covered from the ESU while the consumption of the DC bus 2 is covered
from the grid.

5.2.2. Results for Scenario 2: Operation in GRD-GRD (Day)

In this scenario, the microgrid fed the same power loads as in the cases of the previous
scenario. The PVGs contributed with powers between 500 and 1500 W and the WTG
contributed to the DC bus 1 with three different powers between 1300 and 2500 W. The
total consumption of the loads into the microgrid varied between 2000 and 5500 W. The
resulting power values establishing the stable operation of the microgrid in the example
are presented in Table 11.

Table 11. Results for scenario 2 evaluated for the three selected cases.

Power Generation/Consumption Profile (W)

Case
DC Bus 1 DC Bus 2 AC Side

PVG1 WTG1 ESU1 L1 ILC1 PVG2 L2 ILC1 IFC2 IFC2 L3 Grid

1 1322 2264.5 −526.3 −1000 −2060.2 1040 −2000 1741 −781 686.5 −2000 1313.5
2 1322 2264.5 −1052.6 −2500 −33.9 1613.4 −1500 30.5 −143.8 128.9 −1500 1371
3 633.7 1322 −1052.6 −1500 596.9 502.7 −250 −676.8 424.1 -478 −250 728

In this scenario, regulation of the buses was performed in the same way as it was
performed for the scenario 1. In the three cases, the deficit of power was covered from
the grid. In the first case, the efficiency was computed as 85.2%. In the second case, the
efficiency was computed as 88%. In the third case, the efficiency was computed as 83.8%.
As expected, these are the results obtained using the control rules manually provided to
the simulation, which do not use the ESU to cover consumption. Then, for the other set of
control rules, for example, the consumption of the DC bus 1 can be covered from the ESU
while the consumption of the DC bus 2 is covered from the grid.
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5.2.3. Results for Scenario 3: Operation in ISL-SAC Mode

In this scenario, the microgrid fed the same power load as in the previous scenarios.
The PVGs contributed with powers between 1000 and 1500 W while the WTG contributed
with powers between 1000 and 2500 W. The resulting power values establishing the stable
operation of the microgrid in the control example are presented in Table 12.

Table 12. Results for scenario 3 evaluated for the three selected cases.

Power Generation/Consumption Profile (W)

Case
DC Bus 1 DC Bus 2 AC Side

PVG1 WTG1 ESU1 L1 ILC1 PVG2 L2 ILC IFC IFC L3 Grid

1 1040 2464.5 −396.9 −2500 −607.6 1613.5 −1000 536.9 −1150.4 1000 −1000 0
2 2225 2464.5 −12.3 −2000 −2677.2 1040 −1500 2218.2 −1758.2 1500 −1500 0
3 1322 970.8 −724.3 −1500 −30.5 502.7 −250 27.4 −280.1 250 −250 0

In this scenario, voltage regulation of the DC bus 1 was performed by the ESU1
while the voltage regulation of the DC bus 2 was performed by the ILC1. The IFC1 was
deactivated while the IFC2 operated as SAC, feeding the AC load. In the three cases, the
power consumption was entirely covered by the microgrid. The efficiency was computed
as 86%, 80.5%, and 84.4% for each case, respectively.

6. Conclusions

A flexible and simple model was proposed in this paper, allowing for the easy simula-
tion of the power flow behavior for hybrid microgrids. The use of simplified models of solar
panels, wind turbines, batteries, and loads and a binary logic to configure the operation
of the microgrid allowed us to considerably reduce the computational cost of the simula-
tion. Complementarily, the use of efficiency profiles to accurately model power-processing
stages and MPPT algorithms increased the accuracy of the simulation without increasing its
complexity, and allowed us to evaluate the efficiency of the entire microgrid for the studied
scenarios and cases, providing elements to analyze how to improve the whole performance
of the system. Simulated models were implemented in LabVIEW software.

Simple control rules ensuring power balances in DC and AC buses were used to test
the functionality of the model in examples for three different scenarios (night and day
operation having grid connection and islanding mode feeding AC loads) and three different
cases in each of them, in which differences were introduced for power production and
consumption. The power flow of the microgrid was analyzed from the power transferred
by the IFC and ILC bidirectional converters.

As a relevant contribution to the study of microgrids, this simulation can operate as a
model with input parameters and variables and output variables able to interact with other
algorithms performing control functions. Moreover, the results showed the potentiality of
the proposed model to serve as a plant to study the application of control algorithms in
both educational and research environments.
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