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Abstract: Fully Homomorphic Encryption (FHE) permits processing information in the form of
ciphertexts without decryption. It can ensure the security of information in common technologies
used today, such as cloud computing, the Internet of Things, and machine learning, among others. A
primary disadvantage for its practical application is the low efficiency of sign and comparison opera-
tions. Several FHE schemes use the Residue Number System (RNS) to decrease the time complexity
of these operations. Converting from the RNS to the positional number system and calculating the
positional characteristic of a number are standard approaches for both operations in the RNS domain.
In this paper, we propose a new method for comparing numbers and determining the sign of a num-
ber in RNS. We focus on the even ranges that are computationally simple due to their peculiarities.
We compare the performance of several state-of-art algorithms based on an implementation in C++
and relatively simple moduli with a bit depth from 24 to 64 bits. The experimental analysis shows a
better performance of our approach for all the test cases; it improves the sign detection between 1.93
and 15.3 times and the number comparison within 1.55-11.35 times with respect to all the methods
and configurations.

Keywords: residue number system; weighted number system; approximate method; parity number;
core functions; mixed number system; non-modular operations; determining the sign of a number

1. Introduction

Number comparison and sign detection are simple and basic operations for calculation
in computing systems. Both operations are necessary for almost any application area in
computing technology: mathematical calculations, rendering, data storage, data transfer,
data retrieval, encryption, machine learning, etc. Unfortunately, their application for
encrypted data exhibits several limitations.

Sign detection and comparison of numbers in the Residue Number System (RNS) are
based on the calculation of the positional characteristic. The algorithms for both operations
in RNS are computationally complex because RNS is not a Weighted Number System
(WNS). Various methods are used to reduce their computational complexity, such as the
Pirlo and Impedovo function [1], Diagonal Function (DF) [2,3], Modified Diagonal Function
(MDF) [4], Approximate Method (AM) [5,6], and Core Function (CF) [7].
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Both operations are fundamental for the applicability of RNS for both hardware and
software implementations. Reducing their computational complexity expands the scope of
RNS for solving problems of computational mathematics and mathematical modeling. For
instance, the use of RNS in software implementation on the GPU increases the performance
of matrix processing [8,9]. Moreover, RNS is a main direction in the implementation of
Homomorphic Encryption (HE) software.

Fully HE (FHE) has gained popularity for its applicability in cryptosystems [10].
Performing simple arithmetic operations (homomorphic addition and multiplication) over
ciphertexts is its main feature. Hence, the processing of encrypted information does
not require its preliminary decryption. This characteristic increases the confidentiality
and reliability of the data processing [11,12], for example, in third-party systems such as
cloud computing [13,14].

However, comparing ciphertext information is a laborious and computationally com-
plex task [15,16]. Cheon-Kim-Kim-Song (CKKS) [17] and Brakerski/Fan—Vercauteren
(BFV) [18] are FHE schemes that use RNS to increase the efficiency of sign detection and
numbers’ comparison [4,6,19-21].

The comparison operation can be performed in a relatively simple way: subtract one
number from another, and if the result of the operation is negative, then the first number
is greater than the second one and vice versa. Many methods in RNS work using this
property. However, they are often ineffective, since they apply division by large numbers
or use computationally complex algorithms to calculate the positional characteristic of
the number.

In this paper, we consider a new algorithm for determining the sign of numbers in an
even range with RNS. The content of the paper is structured as follows. Section 2 briefly
introduces the residue number system. Section 3 describes several methods to determine
the sing of numbers in RNS. The performance evaluation is described in Section 4. Finally,
we conclude and discuss future works in Section 5.

2. Residue Number System

RNS is a not WNS based on Chinese Remainder Theorem (CRT) [22,23]. It is defined
by a vector of coprime numbers called moduli. This vector, also called the RNS basis,
can be denoted as (p1, p2, ---, pn). The basis is determined by the product of all the p;
elements: P =[], p;, where n is the length of the moduli vector. A positional number X
is represented in RNS by the residues (x1, x2, ..., X, ), where

x1 = X(mod p1),

xp = X(mod py),

Xy = X(mod py).

A restriction is imposed on the number X such that X € [0, P — 1]; otherwise, the
residue of the number X will be obtained from the number X/, where X' = X — P. Addi-
tionally, the CRT corollary guarantees the uniqueness of the representation of non-negative
integers within the interval [0, P — 1]. The representation of negative numbers in RNS
considers the radix addition, where —X is represented as —X = P — X. This property is
used to determine the sign of a number based on converting a number from RNS to WNS,
i.e., decimal, binary, etc.

The simplicity to perform basic arithmetic operations is the main advantage of RNS for
computing. Addition, multiplication, and subtraction operations are performed according
to the following general formula:

AxB=(ay,ap,...,a,) % (by,ba, ..., by)

= ((ay * by)mod py), ..., 1)
((gn *bn)THOd pn)r
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where * denotes operations such as addition, multiplication, and subtraction.

The modular arithmetic, or operations in RNS, has several particularities: the value of
the number in each residue does not depend on other residues, and one cycle of the proces-
sor’s numerical processing is enough to perform such operations, since this processing can
be performed in parallel.

Let us prove that the ranges of numbers in RNS and WNS are equal. For example,
for moduli RNS p; = 3, po = 5, p3 = 17, p4 = 257, and p5s = 65537, the RNS range is
pP= H?:l pi = 232 _1and WNS range is 232 1.

Let RNS be given by the basis (p1,p2,...,pn) and the number with residues
X = (x1,x2,...,x,). Then, the number X can be represented in the form.

X = (ynprp2--Pn-1tYn-1Prp2 .. -Pn2+...+y3p1-p2+y2:p1 + y1), where
yiis from 0 to py, and 0 < x < py-p2-...-pr_1(k =1,...,n) are the coefficients of RNS.

The ranges of numbers represented in RNS and WNS coincide; i.e., we can talk about
the presence of a one-to-one correspondence between the set of number representations in
RNS and WNS.

The previous equality can be rewritten as:

X=yi+pi2+pr2s+.. .+ pn-2Un-1+pPa1yn)-..),

thereby translating numbers into WNS. It establishes the basic concepts of RNS, operations,
and translating numbers from WNS to RNS and vice versa.

3. Methods for Determining the Sign of a Number in RNS
3.1. Chinese Remainder Theorem

The following formula is used to convert numbers from RNS to WNS with Chinese
Remainder Theorem (CRT)

X = )

n

Y Pexie [P,
i=0 P
where P; = % and |P;!|,, is a multiplicative inverse of P, modulo p;.

The restored number must be compared with P/2. If X < P/2, then the number is
greater than zero. Two’s complement is the most common method of representing signed
integers. Its half of the range (the upper half) denotes a negative number and vice versa. To
estimate the time complexity, we assume that all RNS moduli are composed of I-bits bit
words, so the time complexity is defined by O (n?-12).

Let us consider an example based on this method.

Example 1. Let the number X be represented in RNS with moduli (3, 5, 7) and residues (2, 2, 3).
Initially, we calculate the dynamic range P = 3 %5+ 7 = 105 and the P; elements:

P 1
p1 3
p= L 10 _o
p2 5
P 1
p=L2 1045
ps3 7

Then, we compute the multiplicative inverse, which consists in finding Plfl, such that
Plfl-Pi = 1 mod p;. Therefore,
|P 1_ ! ‘3 =2,

Pyt s =1,
Pyt =1



Computation 2022, 10, 17 4 of 21

Next, we use Formula (2) to calculate the value of X:
X =35:2:2+21-2:1 4+ 15:3-1}1p5 = |227|95 = 17
Finally, we compare X with P/2; then, 17 < % or 17 < 52.5. Therefore, the number

is positive.
Algorithm 1 presents the pseudocode of the CRT method.

Algorithm 1: CRT Method.

Input: P, (x1,%2,...,%1), (p1,p2,---,pn), and (P, Py, ..., Py)
Output: S

1.sum =20

2.fori =1tondo:

2.1 sum+ = xi‘Pi_l‘ P;
3. X = sum mod P 4
4.if X <P/2:
41S8=1

5. else:

515=0

However, this method has a significant drawback due to the divisions to obtain X.
The division of large numbers by a large P increases the time required for calculations.

3.2. Mixed Radix Conversion Method

The Mixed Radix Conversion (MRC) method consists of a consecutive translation of a
number from RNS to WNS. In addition, a pattern in the number in a generalized form is
traced by y; = (U;-V;) o Where Uj is known as the conversion coefficient and defines an
increasing series

Uy = xq,

U =[xz — x1|,,,
U3 = |X3 — X2 — xlllz‘pl.

Yassin and Moore [24] found that

Vi=1,

1
szi :1/
P1ly,

1
Va=|—1 =1
pip2 P3

Example 2. The initial data are a set of moduli (127, 63, 50, 13), a set of residues (78, 41, 47, 7),
Vi=1Vy=1,Vs=1,and Vy = 1.

First, we find the y; coefficients:
yi=U-V1 =78,

yo = Up-Vy = |41 — 78 5-1 = 26,
y3 = Uz-V3 = |47 — 78 — 127-26|5,-1 = 17,
yy = Uy-Vy = |7 — 78 — 127-26 — 127-63-17|15-1 = 9.
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Second, the number is restored by (2)
X =78+426-127 +17-127-63 + 9-127-633-50 = 3,739, 847.
Finally, we compare X with P/2; then, 3,739,847 < 5,200, 650. Therefore, the number

is positive. Time complexity is O(n?-1?).
Algorithm 2 describes the pseudocode of the MRC method.

Algorithm 2: MRC Method.

Input: (x1,x,...,%;) and (p1, p2,-.., Pn)
Output: S
1.Uy=x1,ki=0h=1,and P =1

2. fori=2tondo

21h*x=mn;_4

22 Ui = (xi — X1 — kifl) mod pPi

23 k,‘ = Ui * h — kifl

3. sum+ = U; mod p;

4. fori=1tondo

4.1 Px =p;

4.2 sum+ = P * (U;) mod p;
5X =sum

6if X < P/2:

615=1

7. else:

71 5=0

Effective implementation of this method allows avoiding division by a large P. How-
ever, the method uses many modular operations related to the vector (p1, pa, ..., Pn)-

3.3. Approximate Method

The algorithm for finding the Euclidean division by the range RNS is computationally
complex. To reduce the computational complexity of the Approximate Method (AM), it is
proposed to use weighted coefficients, which allow replacing the operation of Euclidean
division with the operation of taking a fractional part.

AM is based on the mapping from [0, P — 1] to [0,2) to avoid the division by a large P.

The mapping allows calculating the positional characteristic of the number, hence, to
determine the sign of the number or compare numbers with each other. The positional
characteristic is originally calculated as:

) | . ®
27N,

However, the use of (3) as a positional characteristic requires the use of rational
fractions or their approximation using numbers with a fixed precision, which increases the
computational complexity of the algorithm. In [25], a modification of the methods from [5]
was proposed, which allows retaining the advantages of the method from [5] but at the
same time avoiding the use of rational numbers.

n

Z(;’ P i
1

i=1

V(X) =

VC(X) = , @

2N

n
Z Wi-xi
i=1

where W; = [2N|Pl._1|p,./pi1, with N = [log,(Pp)], and p = —n+ Y p;. If
VC(X) < 2N~ then X > Oelse X < 0. Time complexity is O((n + 1)I-log, ((n + 1)I)).
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Example 3. X = (1, 2, 3), moduli RNS: (11, 12, 13), P = py-p2-p3 = 1716, P, = p—Pl = 156,

Py=J =143, P3 = - =132,p = —3+ 11+ 12+ 13 = 33, and N = [logy(331716)] = 16.

We calculate the coefficients W;:

N |p-—-1
Wl — ’72 ‘Pl |P1

21611561 2N | p1 21611431
_ | 11 — 35,747, W, = 2V 1P | = u = 60,075,
11 p2 12

2N |p;1 21611321
W3 _ ’7 | 3 |F’3“ — ’V ‘ 1 ’13 — 35,289
ps3 3

Thus, we can translate the number based on the coefficients
VC(X) = |35,747-1 + 60,075-2 + 35,289-3|,16 = 65,156

Therefore, the number is negative because 65,156 > 215.
Algorithm 3 shows the pseudocode of the AM.

Algorithm 3: AM Method.

Input: (x1,x2,..., %), (W1, Wp,...,Wy), and N
Output: S

1. fori =1ton do

1.1 sum+ = W;-x;

2 X = sum mod 2N

3if(X>»(N-1))==1:

315=1
4. else:
41 S=0

3.4. Diagonal Function

The positional characteristic of a number in RNS can be also determined by the so-
called Diagonal Function (DF), which is defined by D(X) = Y ; {%J [2]. To calculate
D(X) using moduli RNS, use the following formula:

n
D(X) = |Y kx| (5)
i=1 SQ
where k¥ = |[—P [s0, SQ =Py + P, +...+ Py.

The sign of the number depends on the comparison of D(X) and SQ/2. Let us
look at an example of comparing numbers. The time complexity of the algorithm is

O(((n —1)I +log, n)z).

Example 4. We consider the numbers of previous examples, X = (2, 2, 3) and moduli (3, 5, 7).
First, we calculate the values SQ = 35+ 21+ 15 =71 and k.

kKi=|-ptn=|-3"n=47
k3= |-pytln=|-5"n=14

k5= |-p3'ln=|-7"n=10.
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Then, we find the value of the DF:
D(X) = |2:47 +2-14 4 3-10|,, = 10.

Since 10 < 71/2, then X is positive.
Algorithm 4 describes the pseudocode of the DF method.

Algorithm 4: DF Method.

Input: SQ, (x1,x2,...,%,), and (ki,k5,...,k}))
Output: S

1.fori =1tondo

11 sum+ = ki -x;

2 X = sum mod SQ

3.if X < SQ/2:

315=1

4. else:

415=0

3.5. Core Function

Burgess [26] proposed the minimal Akushsky Core Function (CF) based on the result
obtained in [27,28]. This approach is similar to the DF method, and it does not need to
calculate the critical cores.

The analytical form of the Pirlo function is calculated as:

, (6)

|P 1'71 ‘n,' -P;
|
If Pi(X) < P,/2, then the number is positive, since the function under study is
monotonically increasing. Time complexity is O((n — 1)%12).
Let us consider an example of comparing numbers.

where ki =

Example 5. We take the numbers of previous examples, X = (2, 2, 3) and moduli (3, 5, 7). First,
let us calculate the values Py = 15 and k}™ as:

-1

e L _’2‘35’_10,
3 7

e _ | 1P e Pa| ‘1-21‘ =3

1 — - —
ps 7

pe _ | 1Pt lpsPs| _ ‘1-15‘ —2

- = =2
ps 7

Then, we compute the Pirlo function:
Pi(X) = [2:104+2:343-2|;5 = 2.

Since 2 < 15/2, the number is positive.
Algorithm 5 describes the pseudocode of the CF method.
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Algorithm 5: CF Method.

Input: Py, (x1,%2,...,%,), and (ki*, k3%, ... ki)
Output: S

l.fori=1tondo

1.1 sum+ = ki*-x;

2. X = sum mod Py,

3.if X < P,/2:

315=1

4. else:

41 S=0

3.6. Determining the Sign of a Number

Knowing the sign of a number can increase the performance of number comparison
in RNS; the difference between numbers X and Y provides information about their com-
parison. Determining the Sign of a Number (DSN) in RNS is based on the fact that the
residues ¥; of the negative number X are the complement of x; to the modulus p;. Hence,
the following relationship holds:

_foifo<Xx < B,
ﬂm_{Lqﬁ4<X<R @

The formula based on CRT and an AM allows determining the sign of the number
based on the following equation [29].

X |P 1 \pl

®)

5=z

X > 0 if the equation holds; otherwise, X < 0.
Let us consider the algorithm for comparing numbers in RNS based on DSN.

Example 6. Let the number in RNS be (1, 0, 4) with the basis (3, 5, 7). We determine the sign of
the number by calculating Formula (8):

3 xl |P 1|p/

=L

i=1 pi

_ 2

= <
L2

N\H

1

So, the number is positive.
Algorithm 6 shows the pseudocode of the DSN method.

Algorithm 6: DSN Method.

Input: (x1,x2,...,%1), (P1,P2,---,Pn), and (\Pl_1 Iprr \Pz_l lpareees [Pt lp, )
Output: S
l.fori=1to qldo:

x;(P;
1JS+:4—ﬁ—ﬂ
2.S=Smod1
3.ifS < 1
315=1
4. else:
415=0

3.7. Modified Diagonal Function

The Modified Diagonal Function (MDF) method reduces the computational complexity
of comparing numbers in the RNS [5]. It proposes a new positional characteristic based on
the DF and an AM. The essence of the MDF method is to calculate the relative value of the



Computation 2022, 10,17

9 of 21

DF to SQ, which allows replacing the computationally complex operation of finding the
residue of division by SQ by taking the fractional part of the number, and the coefficients
k} are replaced by the relative value k; of SQ in Formula (5).

’ ©)

where k; = [kfzg]—g}, Ny > [log,(5Q-(m —1))],and m = max p;.

Let us look at an example of comparing numbers. Time complexity is

O(((n — 1)1 +log, n) log,((n — 1)l + log, n)).

Example 7. We use the previously numbers X = (2, 2, 3) and moduli (3, 5, 7). Then, we take
2NM = 8.755 and value k} from the diagonal function:

SQ=35+21+15="71,

K= 1-ptln=1-3"n=47,
k= 1-py'ln=[-5"n=14
We calculate k;
R 8.755
ky=47-—— =57
1 7 5.795,
N 8.755
ky = 14-7 =1.722,

A 8.755

We find the value of the MDEF:
D’(X) = |2:5.795 + 2:1.722 + 3-1.23|g 55 = 1.214.

The number is positive, since 1.214 < 8.755/2. Algorithm 7 shows the pseudocode of
the MDF method.

Algorithm 7: MDF Method.

Input: (x1,x2,...,%n), <IA<1,122, .. .,IAcn>, and 2Nm
Output: S

1.fori =1tondo

1.1 sum+ = lAcfxi

2. X = sum mod 2Num

3.if X < 2Nm/2:

31§=1
4. else :
41 S=0

3.8. Determining the Sign of a Number in RNS with an Even Range

Here, we propose the efficient method Determining the Sign of a Number (DSN) in
RNS with an Even Range (DSN-EN) for comparing numbers and determining the sign of a
number for the case of an even RNS range.
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Since the RNS range is an Even Number (EN), one of the RNS moduli is an EN.
Without loss of generality, we assume that the module p;, is even; then, using the property

a

MbJJ = {%J , the determination of a sign is reduced to a two-stage algorithm.

The first stage is dividing by an integer P,, = p% The second stage is dividing by an
integer £
Formally, it is determined by the following formula:

2-X X| 2
s =7 = Hp,iJ'an- 10)
The correctness of (10) follows from the proof of the following Theorem 1.

Theorem 1. If X, a, and b are integer numbers with a,b > 2, then the equality holds:

HERET

Proof. Due to % = ——4, Equality (11) takes the form:

BN

We represent X in the form X = a-b- {%J + |X|,.;- Substituting it in (12), we have:

525 =[]+ [ )

Let X = w-a+ v, where 0 < v < a — 1, we obtain:

w-a w
|w-al|,, = w-a— {EJ a-b = a(w - {?J -b) = a-|w|y,. (14)
Considering that 0 < |w|, < b —1, then
0<a|w|,+y<a(b-1)+a—-1=ab-1

and
1 Xpp = lwa+7,p = llwal,+ 70, = la|wl, + 7], = alwl, + 7.

Hence, |X|,;, — |X|, = a-|w|, + 7 — 7 = a-|w|, and

Substituting this result in (13), we have:
XX, | _| X
a-b - lab)’

Corollary 1. Equation (10) is correct.

The theorem is proved. [
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Proof. Leta = P,and b = % Since p; is an even number, then %” is an integer number.
Therefore, the conditions of Theorem 1 are satisfied and the corollary is proved. The time
complexity of the algorithm is O(n?]). O

Example 8. Let the RNS be given by the moduli py = 17, p, = 19, py = 23, and py = 32. We
determine the sign of a number X = (16, 18, 22, 15) and Y = (0, 0, 0, 16). Let us calculate the
synoptic weights:

_ 1
w1 = |P11|Pz = ‘17‘19 =9,

1

wiz = |pytlp = ’17 19,

’23

B 1
wig = |py ", = ’17‘32 =17,

_ 1
wy3 = \P21|p3 = ‘19’23 =17,

. 1
w24 = [Py Ipy = |19

_ 1
wig = |p3 " lps = ‘23‘32 =7

The number X is positive since

and Y is negative because

(3)
S(Y) = {2-ys4J - {zégJ ~1.

Algorithm 8 shows the pseudocode of the DSN with the EN method.

Algorithm 8: DSN-EN.

Input: (x1,%2,...,%4), (P1,P2,---,Pn), and (w12, w13,..., Wnn)
Output: S

1fori=1tondo

l1lforj=i+1tondo

1.1.1 X] = ‘ <x] — x,-) ~wi/j

. Xy
2. if )zﬁ
215=1

4. else :
41 S=0

Pj
<1

4. Performance Evaluation

The proposed algorithm described in Section 3.8 has the advantage among the methods
described in Section 3.

To confirm the properties, we implement all the algorithms using the high-level lan-
guage C++ and compare their performance. The experiments are carried out on operating
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—&— CRT ——8— MRC
—e—CF —&— MDF
0.06
0.0
. 0.04
g
5 0.03
£
&

systems Windows 10 Home Edition on a computer with Intel Core i5-8250U 1.60 GHz,
RAM DDR4 8 GB 1196 MHz, and SSD 512 GB.

For the analysis, we use a 128-bit number transferred to RNS, a set of six RNS moduli,
and a width of 24 to 64 bits. We vary a vector length of 3 to 8 moduli with a 32-bit width.

The experimental results report the maximum, minimum, and average of 10,000 runs
of each method. Additionally, we incorporate the average calculated based on the maximum
and minimum values.

The information of the execution is presented in Appendix A. For simplicity, we only
analyze the significant discoveries of the results. The average values have stable linear
growth. The minimum values are prevailing because the average values of each method
are very close to them. Hence, the maximum values are not common causes.

To avoid time measuring biases, the mean values are calculated as the average of
10,000 measuring of the maximum values and 10,000 measuring of the minimum values.
We also consider the medium values of all methods to determine the most efficient ones.

Comparative Analysis

The performance of all methods for the operations of determining the sign of a number
and number comparison is presented in Figure 1. DSN-EN has the highest performance for
both operations with different numbers of modules p and dynamic bit width. AM, DF, and
MDF are in the group of the second most efficient methods for all operations.

—e— AM DF —@— CRT ~—8— MRC —e— AM DF
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— o o g — * o o —e

0 0
3 4 6 7 8 3 4 5 6 7 8

Modules Modules
(c) Sign (d) Comparison

Figure 1. Performance of all methods to (a) determine the number’s sign with the dynamic number
of modules p, (b) compare dynamic numbers of modules p, (c) determine the number’s sign with a
dynamic bit width, and (d) compare numbers with a dynamic bit width.

The results with a different number of modules p show: Considering the sign detec-
tion with respect to DSN-EN, the efficiency of AM is between 1.93 and 5.64 times worst.
Likewise, DF and MDF are from 2.44 to 6.1 and from 2.11 to 5.64 times worst, respec-
tively. Similar results present the comparison of numbers, DSN-EN improves AM within
1.55-4.6 times, DF among 1.75-4.47 times, and MDF within 1.93-4.57 times.
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Times

=@ Number’s sign

The results of comparison with different dynamic bit widths exhibit that DSN-EN
is more efficient than MDF from 2.68 to 3.61 times, AM within 2.93-3.46 times, and MD
between 2.97 and 3.44 times. For comparison of numbers, the differences are in 2.45-3.47,
2.48-3.47, and 2.56-3.43 for AM, DF, and MDF, respectively.

Figure 2 present a comparison between DSN-EN and AM, both methods with the best
overall performance. From Figure 2a, we observe that the time difference is increased with
respect to the number of modules for both operations. Figure 2b shows the execution time
varying a dynamic bit width.

Comparison =—@— Number’s sign Comparison
0.3

0275
0.25 — T~
0.225 ‘\/'/v
02
5 6 7 8 24 3 40 48 56 64

Modules Size of range

(a) (b)

Times

Figure 2. Comparison of DSN-EN and AM methods for determination of the number’s sign and
comparison with (a) a dynamic number of modules p and (b) a dynamic bit width.

In general, the proposed method is several times more productive than AM, which
was determined as the most efficient of the existing state-of-the-art ones. We consider that
the DSN-EN can be applied efficiently in systems that use RNS.

5. Conclusions

Determining the sign of a number is fundamental for the implementation of several
techniques with privacy preserving in untrusted environments. Current homomorphic
encryption approaches try to make the implementation of this operation more efficient
by using a residual number system. Unfortunately, the methods based on converting a
number to a weight number system and determining the sign are inefficient and slow.
The calculation of positional characteristics is better in performance but not efficient.

We propose a new method to determine the sign of a number in RNS and provide a
theoretical foundation for when one modulo is an even number. We provide its performance
evaluation compared with other determining the sign methods. The results show the advantages
of our approach for different modules numbers and dynamic bit widths. In the future, we will
study determining the sign of a number and comparing numbers in RNS for odd ranges.
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Appendix A

Table Al. Operation time with a dynamic number of modules p (ms).

Table A1 presents the time in milliseconds (ms) needed to determine the number’s sign
and comparison of numbers for considered methods with a dynamic number of modules p
based on the 10,000 measurements.

Number’s Sign Comparison
Method Modules
Max Mean Min Mean-Min Max Mean Min Mean-Min
3 01130 00238  0.0229 0.0009 01876 00370  0.0355 0.0015
4 0.1451 00292  0.0287 0.0005 01562 00534  0.0434 0.0100
5 01547 00398  0.0381 0.0017 0.2381 00534  0.0510 0.0024
CRT 6 02355  0.0411 0.0404 0.0007 0.2471 00622  0.0587 0.0035
7 02090 00488  0.0467 0.0021 02725 00694  0.0665 0.0029
8 02499 00538  0.0520 0.0018 04214 00776  0.0741 0.0035
3 00895 00227 00127 0.0100 00702 00300  0.0100 0.0200
4 0.0988 00278  0.0172 0.0106 00927 00326  0.0124 0.0202
5 00839 00315  0.0208 0.0107 00700  0.0351 0.0146 0.0205
MRC 6 01208 00350  0.0245 0.0105 00933 00375  0.0169 0.0206
7 01400 00389  0.0282 0.0107 01394 00399  0.0193 0.0206
8 01525 00440  0.0329 0.0111 01147 00427  0.0221 0.0206
3 00657 00112  0.0109 0.0003 00617 00153  0.0148 0.0005
4 00917 00132  0.0130 0.0002 0.0921 00189 00183 0.0006
5 0.0902 00154 00151 0.0003 01278 00223  0.0217 0.0006
AM 6 0.0654 00181 0.0173 0.0008 01244 00262  0.0252 0.0010
7 00935 0019  0.0193 0.0003 0.1151 0.0301 0.0286 0.0015
8 01110 00219  0.0214 0.0005 01867 00336  0.0320 0.0016
3 00598 00130 00114 0.0016 00819 00165 00157 0.0008
4 0.0685 00155  0.0134 0.0021 00833 0019  0.0189 0.0007
5 00835 00176  0.0153 0.0023 01270 00229  0.0221 0.0008
DF 6 01092 0019 00173 0.0023 01365 00264  0.0252 0.0012
7 0.1061 0022 00193 0.0029 01575 00295  0.0284 0.0011
8 0.0948 00234  0.0211 0.0023 01969 00328  0.0315 0.0013
3 01025 00194  0.0190 0.0004 01187 00279  0.0271 0.0008
4 01210 00236  0.0230 0.0006 01910 00393  0.0372 0.0021
5 01386 00319  0.0312 0.0007 01840 00418  0.0401 0.0017
CF 6 01769  0.0321 0.0312 0.0009 02156 00505  0.0466 0.0039
7 0.1831 0.0369  0.0361 0.0008 03287 00566  0.0546 0.0020
8 01984 00412  0.0399 0.0013 02907 00634  0.0609 0.0025
3 00817 00125 00118 0.0007 00942 00176  0.0163 0.0013
4 0.0660 00140  0.0138 0.0002 0.0940  0.0201 0.0195 0.0006
5 0.0909 00161 0.0158 0.0003 01493 00244  0.0227 0.0017
MDF 6 00982 00180  0.0178 0.0002 01258 00270  0.0258 0.0012
7 01013 0.0201 0.0197 0.0004 01293 0.0301 0.0290 0.0011
8 01100 00219  0.0217 0.0002 01768 00334  0.0322 0.0012
3 00983 00142 00138 0.0004 01164 00253  0.0241 0.0012
4 01188 00180  0.0178 0.0002 0.1531 00330 00316 0.0014
5 01186 00270  0.0256 0.0014 01809 00414  0.0390 0.0024
SDM 6 01137 00268  0.0262 0.0006 02073 00485  0.0470 0.0015
7 01652 00319  0.0307 0.0012 02289  0.0581 0.0551 0.0030
8 01780 00359  0.0349 0.0010 03036  0.0661 0.0632 0.0029
3 0.0487 00033  0.0033 0.0000 0.0428 00060  0.0059 0.0001
4 00359 00045  0.0042 0.0003 00596 00067  0.0066 0.0001
5 00247 00034  0.0033 0.0001 0.0443 00075  0.0074 0.0001
DSN-EN 6 00384 00038  0.0038 0.0000 0.0675 00066  0.0065 0.0001
7 0.0668 00042  0.0042 0.0000 0.0400 00067  0.0065 0.0002
8 00343 00033  0.0033 0.0000 0.0218 00060  0.0058 0.0002
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of numbers for with a dynamic bit width based on the 10,000 measurements.

Table A2. Operation time with a dynamic bit width (ms).

Table A2 shows the time (ms) needed to determine the number’s sing and comparison

Number’s Sign Comparison
Method Size
Max Mean Min Mean-Min Max Mean Min Mean-Min
24 02849 00475  0.0415 0.0060 02974 00690  0.0625 0.0065
2 02035 00470  0.0442 0.0028 0.2781 0.0655  0.0627 0.0028
40 01942 00450  0.0433 0.0017 02959 00658  0.0626 0.0032
CRT 48 02344 00474  0.0456 0.0018 03104 00657  0.0626 0.0031
56 02078 00472  0.0455 0.0017 03846 00667  0.0629 0.0038
64 02626 00483  0.0465 0.0018 03443  0.0661 0.0630 0.0031
24 01504 00317  0.0220 0.0097 0.0761 0.0661 0.0155 0.0506
32 01359  0.0251 0.0244 0.0007 00950 00676  0.0169 0.0507
40 01292  0.0261 0.0255 0.0006 00844 00676 00171 0.0505
MRC 48 01137 00273  0.0262 0.0011 0.2031 00683 00177 0.0506
56 01168 00282  0.0270 0.0012 00920 00688  0.0182 0.0506
64 01412 00324  0.0319 0.0005 0.0978 00712  0.0206 0.0506
24 01220 00245 00171 0.0074 01436 00257  0.0250 0.0007
32 00679 00174  0.0172 0.0002 01363 00259  0.0251 0.0008
40 01027 00174 00172 0.0002 0.0979 00259  0.0250 0.0009
AM 48 01103 00174  0.0172 0.0002 01273 00260  0.0250 0.0010
56 00980 00177 00173 0.0004 01488 00263  0.0251 0.0012
64 00990 00175  0.0173 0.0002 01615 00268  0.0251 0.0017
24 01767 00229  0.0172 0.0057 01777 00262  0.0251 0.0011
2 00775 00173 00173 0.0000 01746 00259  0.0251 0.0008
40 01014 00174  0.0172 0.0002 01795  0.0261 0.0251 0.0010
DF 48 00984 00176  0.0172 0.0004 01124 00264  0.0251 0.0013
56 00680 00179  0.0173 0.0006 01250 00260  0.0252 0.0008
64 01006 00179  0.0174 0.0005 01397 00268  0.0252 0.0016
24 07379 00379  0.0334 0.0045 01949 00470  0.0439 0.0031
2 01392 00366  0.0349 0.0017 02062 00486  0.0466 0.0020
40 01810 00390  0.0370 0.0020 04973 00569  0.0544 0.0025
CF 48 0.1391 00349 00342 0.0007 02373 00546  0.0527 0.0019
56 0.1351 0.0350  0.0340 0.0010 02282 00543  0.0521 0.0022
64 0.1467 00393  0.0376 0.0017 02049 00577  0.0548 0.0029
24 01079 00206  0.0194 0.0012 01450 00265  0.0257 0.0008
2 01048 00180  0.0178 0.0002 01303  0.0271 0.0258 0.0013
40 0.1246  0.0181 0.0177 0.0004 0.1711 0.0267  0.0257 0.0010
MDF 48 00723 00180  0.0177 0.0003 01280 00267  0.0257 0.0010
56 0.0964 00180  0.0177 0.0003 0.1211 0.0266  0.0256 0.0010
64 01150 00183  0.0178 0.0005 0.1311 0.0266  0.0258 0.0008
24 01709 00399  0.0286 0.0113 02151 0.0463  0.0444 0.0019
2 01845 00439  0.0401 0.0038 0.1881 0.0489  0.0468 0.0021
40 01227 00287  0.0279 0.0008 02313 00525  0.0505 0.0020
SDM 48 01145 00298  0.0286 0.0012 02429 00549  0.0519 0.0030
56 01317 00294  0.0287 0.0007 02404 00540  0.0519 0.0021
64 01143 00336  0.0314 0.0022 02102 00570  0.0536 0.0034
24 00259 00056  0.0034 0.0022 0.0428 00060  0.0059 0.0001
2 0.0274 00039  0.0038 0.0001 0.0596 00067  0.0066 0.0001
40 00392 00043  0.0042 0.0001 0.0443 00075  0.0074 0.0001
DSN-EN 48 00342 00044  0.0038 0.0006 0.0675 00066  0.0065 0.0001
56 00392 00045  0.0037 0.0008 0.0400 00067  0.0065 0.0002
64 0.0480 00044  0.0034 0.0010 0.0218 00060  0.0058 0.0002
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Figures A1-A8 present the maximum, minimum, and average time in seconds (s) of
sign detection and comparison.

3.E-04 5.E-04
2.E-04 4.E-04
4.E-04
| 2E04 b0
2 2.E-04 %3.E-04
£ 1.E-04 £2.E-04
& §.E-05 =2.E-04
— 1.E-04
B0 = 5.E-05 4
0.E+00 0.E+00
3 4 5 6 7 8 3 4 5 6 7 8
Number of modules, number Numbers of modules, number
el CRT Maximum CRT Minimum  e==¢=== CRT Mean e CRT Maximum CRT Minimum === CRT Mean
(a) Sign (b) Comparison
3.E-04 4.E-04
3 E-04 4.E-04
3.E-04
5 2.E-04 § 3.E-04
“ 2.E-04 o 2.E-04
g E
& LE-04 s 2.E-04
1.E-04
5.E-05 —— 5.E-05 ==
0.E+00 0.E+00
24 29 34 39 44 49 54 59 64 24 29 34 39 44 49 54 59 64
Size of range, bit Size of range, bit
el CRT Maximum CRT Minimum  ===#=== CRT Mean e CRT Maximum CRT Minimum  ===#=== CRT Mean
(c) Sign (d) Comparison

Figure A1. Performance of CRT method to (a) determine the number’s sign with a dynamic number
of modules p, (b) compare dynamic numbers of modules p, (c) determine the number’s sign with a
dynamic bit width, and (d) compare numbers with dynamic bit width.
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Figure A2. Performance of MRC method to (a) determine the number’s sign with a dynamic number
of modules p, (b) compare dynamic number of modules p, (c) determine the number’s sign with a
dynamic bit width, and (d) compare numbers with dynamic bit width.
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Figure A3. Performance of the Approximate Method to (a) determine the number’s sign with a
dynamic number of modules p, (b) compare the dynamic number of modules p, (c) determine the
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number’s sign with a dynamic bit width, and (d) compare numbers with dynamic bit width.
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Figure A4. Performance of the Diagonal Method to (a) determine the number’s sign with a dynamic
number of modules p, (b) compare dynamic numbers of modules p, (c) determine the number’s sign
with a dynamic bit width, and (d) compare numbers with dynamic bit width.



Computation 2022, 10, 17

18 of 21

2.E-04
2.E-04 3.E-04
2.E-04 3.E-04
8 1.E-04 o 2E-04
; g
g 9.E-05 G2E04
& 6.E-05 ELE-04
305 g 3.E-05 —
0.E+00 0.E+00
3 4 5 6 7 3 3 4 5 6 7 8
Number of modules, number Number of modules, number
et Core Maximum Core Minimum  s===== Core Mean === Core Maximum Core Minimum  ===#=== Core Mean
(a) Sign (b) Comparison
7.E-04 S.E-04
6.E-04 4E04
5.E-04
g SE-04 g JE04
& 4.E-04 2
E3E04 £ 2E-04
=
2.E-04 ——— LE-04
9.E-05 —
0.E+00 0.E+00
24 29 34 39 44 49 54 59 64 24 29 34 39 44 49 54 59 64
Size of range, bit Size of range, bit
e Core Maximum Core Minimum === Core Mean et Core Maximum Core Minimum === Core Mean
(c) Sign (d) Comparison
Figure A5. Performance of the Core Method to (a) determine the number’s sign with a dynamic
number of modules p, (b) compare dynamic numbers of modules p, (c) determine the number’s sign
with a dynamic bit width, and (d) compare numbers with dynamic bit width.
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Figure A6. Performance of the Modify Diagonal Method to (a) determine the number’s sign with
a dynamic number of modules p, (b) compare dynamic numbers of modules p, (c) determine the
number’s sign with a dynamic bit width, and (d) compare numbers with dynamic bit width.
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Figure A7. Performance of the Sign of Number Method to (a) determine the number’s sign with
a dynamic number of modules p, (b) compare dynamic numbers of modules p, (c) determine the
number’s sign with a dynamic bit width, and (d) compare numbers with dynamic bit width.
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Figure A8. Performance of the DSN-EN method to (a) determine the number’s sign with a dynamic
number of modules p, (b) compare dynamic numbers of modules p, (c) determine the number’s sign
with a dynamic bit width, and (d) compare numbers with dynamic bit width.
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