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Abstract: Coding theory is the study of the properties of codes and their respective fitness for specific
applications. Codes are used for data compression, cryptography, error detection, error correction,
data transmission, and data storage. Codes are studied by various scientific disciplines, such as
information theory, electrical engineering, mathematics, linguistics, and computer science, to design
efficient and reliable data transmission methods. Many authors in the previous literature have
discussed codes over finite fields, Gaussian integers, quaternion integers, etc. In this article, the
author defines octonion integers, fundamental theorems related to octonion integers, encoding, and
decoding of cyclic codes over the residue class of octonion integers with respect to the octonion
Mannheim weight one. The comparison of primes, lengths, cardinality, dimension, and code rate
with respect to Quaternion Integers and Octonion Integers will be discussed.
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1. Introduction

Coding theory is a branch of mathematics that has many applications in information
theory. Many types of codes and their parameters have been extensively studied. As one of
the essential parameters of the code, the distance-related (Hamming, Lee, Mannheim, and
so on) are also examined for many types of codes, and the expression for the minimum or
maximum values of distances have been found [1,2].

A portion of these codes, which have gone through huge improvement in recent years,
are Integer Codes. Integer Codes will be codes characterized over limited rings of whole
numbers modulo m, m € Z, and enjoy a few upper hands over the customary block codes.
One of these benefits is that integer codes are fit for rectifying a predetermined number of
blunder designs which happen most often, while the ordinary codes plan to address all
conceivable error designs, without completely succeeding. In real communication systems,
integer codes have a low encoding and decoding complexity for a suitable application [3].
There are a few different codes like the Integer Codes, such as codes over Gaussian integers,
Eisenstein—Jacobi integers [4—6], a class of mistake-revising codes given a summed-up Lee
distance [7], codes over Hurwitz numbers [8], and so forth, which have been seriously
contemplated as of late.

Quadrature amplitude modulation is used in various digital data radio communica-
tions and data communication applications. The most well-known errors which show up in
numerous advanced information radio correspondences and information correspondence
applications are those which change a point into its closest neighbor. The Hamming and
the Lee distance cannot correct these errors in a QAM signal. In [5], Huber developed codes
over Gaussian integers with another distance to advance the present circumstance, called
the Mannheim distance. He demonstrated that these codes could address the Mannheim
error of weight 1 and utilized this new distance to track down the properties of these codes
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(see [9] for additional subtleties). Furthermore, in [7], the authors presented another dis-
tance that summed up the Lee distance and built codes fit for adjusting errors of summed
up Lee weight one or two.

Notwithstanding, Neto et al. [10] got cyclic codes over Euclidean quadratic field
Q {\/ﬂ , whered = -1, -2, -3, —7, —11, by utilizing the Mannheim metric. They addi-
tionally offered decoding procedures to address errors of any Mannheim weight upsetting
one and two coordinates of a cyclic code vector. Cyclic codes over finite rings regarding
the Mannheim metric were acquired by involving Gaussian integers in [10]. Afterward,
in [11], Ozen and Giizeltepe utilized quaternion Mannheim metric perfect codes over finite
quaternion rings were gotten and decoded these codes. Ozen and Giizeltepe [12] treated
the error of amendment of cyclic codes over quaternion numbers for quaternion Mannheim
weight one. Shah and Rasool [13] got the decoding algorithms for the correction of errors of
quaternion Mannheim weight two. Ozen and Giizeltepe [14] got the cyclic codes over finite
quaternion integer rings. Shah and Khan have constructed codes over semi-group-ring
in [15]. Sajjad and Shah got quaternion integers based on higher-length cyclic codes and
their decoding algorithm in [16].

In the present paper, the author defines octonion integers, fundamental theorems
related to octonion integers, encoding, and decoding of cyclic codes over the residue class
of octonion integers with respect to the octonion Mannheim weight one. The comparison of
primes, lengths, cardinality, dimension, and code rate with respect to Quaternion Integers
and Octonion Integers will be discussed.

This article is structured in the following Sections: In Section 2, octonion integers and
some important algebraic notions are discussed. In Section 3, cyclic codes over octonion
integer rings regarding the Octonion Mannheim metric are deliberated. Theorem 3 shows
how to construct cyclic codes by using Proposition 1 and Theorem 2. In Proposition 3, the
algebraic background is shown, which is important for constructing cyclic codes over the
finite rings. Theorem 4, shows how to construct cyclic codes over the finite rings, and at the
end decoding of the cyclic codes over octonion integers of octonion Mannheim weight one.
A comparison of the proposed work with some existing works is described in Section 4.
The conclusion and future directions are given in Section 5.

2. Octonion Integers

Definition 1. An octonion algebra O(R) over the set of real numbers (R) is non-associative until

algebra by the following conditions:

e O(R)= {ao + 2]7:1 ajij: aj € R} is free R-module over 1,1y, iy, i3, i4, is, i and iy.

o 1isa Multiplicative unit.

° ilz = i22 = i32 = i42 = i52 = i62 = i72 = —1, l]lk = —Zk1] = iq, ] # k, j, k €
{1,2,3,4,5,6,7}, where, g = j @ kis “ x —or” for j, k.

The set O(Z) = {ao + Z]7=1 ajij: aj € Z} is a subset of octonion algebra O(R). If

0=ay+ 2]7:1 ajij is an octonion integer, then its octonion conjugate is 0 = ap — 2]7:1 aji;.
Thenormof 0is N(0) = p = 00 = af + a + a} + af + a] + a2 + a2 + 4} An
octonion integer contains two parts: one is the real part and the other is the imaginary part.
Leto =ap + 217:1 aji; be an octonion integer, then its real part is a9, and the imaginary part

is ]7:1 ajij. The commutative and associative property of multiplication does not hold for
octonion integers. The commutative and associative property of multiplication for octonion
integers holds only if the imaginary part of two octonion integers is parallel to each other.

Define O(K):
O(K) = {c—f—d(iij) e, de Z},
j=1



Computation 2022, 10, 219

30f12

Contains octonion integers. Thus, the commutative and associative property of multi-
plication holds for O(K).
Theorems 1 and 2 show the relation between octonion integers and prime integers.

Theorem 1. In [16], (Theorem 2.5.9), For every odd, rational prime p € N, there exists a
prime § € O(Z), such that N(8) = p = 65. In particular, p is not prime in O(Z).

Theorem 2. In [17,18], (Theorem 2.5.10), Let ¢ be the element of O(Z) is a prime in O(Z) if and
only if N(0) is prime in Z.

3. Cyclic Codes Based on Octonion Integers

The following Theorem is the modification of quaternion integers [15] to octonion integers.

Theorem 3. If c and d are two integers and are relatively prime to each other, then O(K)/ < c+
d(z;zl ij> > is isomorphic to L g2

Proof. We can suppose without loss of generality c and d are positive integers. Then, the
greatest common divisor of b and ZCZ oy is 1, thus, d~1 exists in ZC2 7 Since ¢2 + 7d? =

0(mod ¢* +7d%), > = —7d*(mod c* + 7d?), then, (cd‘l)2 = —7(mod c* 4+ 7d?). Define
0: O(K) = Za_ 7 by G(x + y(Z]Ll i]->> = x— (cd~Y)y(mod c* + 7d?), 0 is surjective
and preserves addition.

Let 1 = x1 +y1 X4 (ij) and o = xa + y2 14 (i)
Since

0 Observes multiplication. Moreover, because ¢ + d 2]7:1 (i) = c—(cd1)d = 0,
c+d 2]7:1 (ij) C Ker(6), where < . > represents an ideal generated by ¢ + d 2]7:1 (ij), and
ker (0) represents the kernel of the function 6. Let m + n 2]7:1 (i) =c+d (2]7:1 (ij)> (x +
y(Z]Ll (i]-)), where x and y are two rational numbers. Since, 0 = m + ”217:1 (i) =
m — (cd=1)n, 0 = dm — cn, which by

(ern 2/7,1(1‘]'))

7 — N =N/
<x+y]§1(11‘)>  (erax (i)

_ cm+7dn + £1(11)> cn—dm
=

24742 24742

makes y is an integer. Multiply cd by equation 0 = dm — cn, which implies that 0 = cd?m — c?dn,
which implies that 0 = cm — c?d~2dn. from (cd‘l)2 = —7, we have 0 = cm + 7dn,
thus x is also an integer. We conclude < c+d 2]7:1 (ij) > D Ker(6), which means that
<c+ dZ]Ll (ij) > = Ker(0). Hence, it is proven that O(K)/< c+d 2]7:1 (ij) > is isomor-
phicto Zg 7. U
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3.1. Residue Class of Octonion Integers

Let O(K) s be the residue class of O(K) over modulo 6¥, where k is any positive integer
and ¢ is an octonion prime integer. Conferring to the modulo function, o: Zpr — O(K) 4.
Defined in Equation (1):
00— [ 00% ] sk (1)
5ok
O(K) 4 is isomorphic to Zpt, where p = 65 and p is an odd prime integer. 6% can be
substituted by 016263 . . . J; in Equation (1), where d1,d, 63,. .., d are different octonion
integers. In Equation (1), [.] represents the rounding of the real part and coefficient of the
vector part of the octonion integer to the closest integer. A linear code of length n over
O(K),, of all n-tuples modulo spaces of O(K),, is O(K),,. A cyclic code over octonion
integers of length # is a linear code of length n by the following property:

(CO/ C1, €2, ---, Cn—l) eC
= (¢y-1, €0, --+, Cn—2) €C

In the present case, we have a 1-1, and onto the map:

O(K)y, = O(K),, [x]/ (x" = 1),
(co, €1, €2y ovvy Cp1) = CoFC1x+ X2+ . ey X (27— 1)

()

To put it simply, we write: cg + c1x + cax% + ...+ c,_1x" L for co + c1x + cox? + ... +
cp_1X"" 1+ (x" —1). A non-empty set of O(K)}, is a O(K),, cyclic code iff its image in
Equation (2) is an ideal of O(K),, [x]/(x" —1).

Definition 2. Let , v € O(K)s a =y — B =c+d 2]7:1 (i;) be a prime octonion integer. Then,
the Octonion Mannheim’s (OM) Weight of « defined as

Wom(a) = |c[ +7|d|

An Octonion Mannheim (OM) Distance dpps between  and + is defined as

dom(B, ) = Wom(a)

Proposition 1. Let 6 = ¢ + dz;zl (ij) be a set of primes in O(K), and let p = ¢? + 7d? be

2
prime in Z. If O(K)}, is generated by g, then gw = —1(mod &%), where ¢ represents the Euler
phi function.

Proof. If N () is a prime integer in Z, then the greatest common divisor of the real part
and coefficient of the imaginary part of 62 is 1. Then, Zps is isomorphic to O(K)z (by
Theorem 2). If O(K)}; is generated by g, then g, ¢, ¢°, ..., g‘/’(pz) constitutes a reduced
residue system modulo 52 in O(K) 52- Thus, a positive integer k, such that gk =-1 (mod (52),
where 1 < k < ¢(P?). Hence, we concluded that g** = 1(mod 6%). Since ¢(p?)|2k and
2 < 2k < 2¢(p?), we take ¢(p?) = k or ¢(p?) = 2k. If ¢(p?) is k, then we should have

2|2, but this is a contradiction of fact N(62) > 2. Hence, if O(K)}, is generated by g then
2
g% = —1(mod 6%), where ¢ represents the Euler phi function. [J

The next Proposition is the generalization of Proposition 6.
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Proposition 2. Let 6 = ¢, + dj 2]7:1 (i) be the different primes in O(K) and py = ci + 7d;
are distinct prime integers in Z, where k = 1, 2, 3, ..., m. If O(K)y is generated by g
o(PF

then gT) = —1<mod (Sk).

Proof. If N(4) is a prime in Z, then the greatest common divisor of the real part and
coefficient of the imaginary part 6 is 1. Then, Zp is isomorphic to O(K) s (by Theorem 2).

If O(K)j is generated by g, then g, g%, ¢°, ..., g‘P(pk) constitute a reduced residue system
modulo &¥ in O(K)g. Thus, a positive integer s, such that ¢° = —1 (mod (5k), where
1 <s < (p(Pk). Hence, we concluded thatinline-formula> ng = 1(mod (Sk). Since
(p(Pk) ‘25 and 2 < 25 < 2¢(Pk), we take (p(Pz) =sor go(Pk) =2s. If go(Pk) is s, we

should have &¥|2, but this is a contradiction of fact N(6%) > 2. O

The next Theorem shows the cyclic code of length n = ¢ (p?) /2 over the ring O(K) .

Theorem 4. Let 6 = ¢+ d[‘,;zl (ij) be a set of primes in O(K) and p = c* 4 7d? is a prime

2
integer Z, where c, d € Z. Then, there exists a @ length cyclic code over the ring O(K) .

Proof. O(K), has a generator since Zy = O(K)sz. Let g be a generator. Then, e(p?) =1
By Propositions 1 and 2; g(P(VZ)/z — —1. Hence, x?(7")/2 41 can be written

x?/2 41 = (x — g)Q(x) (mod ) (for x = g). ®)

2
In this case, the Ideal of O(K)z[x]|/< g%*l > is (x — g). Hence, cyclic code is
generated. [

If we chose g(x) generator polynomial as a monic polynomial, then any row of
generator matrix G consists without zero divisors.

Propositions 3 and 4 showed the isomorphic relation between two or more residue
classes of octonion integers.

Proposition 3. Let §; = ¢ + dzjll (ij) and 6, = a+b 217:1 (ij) be the two prime integers in
O(K) and p1 = ¢ +7d%, py = a® + 7b* are two prime integers in Z. Then, two elements of
O(K)j 5, such that e?(P2) = 1(mod 616,) and f7P1) = 1(mod 6,5,).

Proof. Since the greatest common divisor of P; and P, is 1 in Z, the greatest common
divisor of 4 and &, is 1 in O(K). Using the simple algebraic concepts and the function (1),

Zp, = O(K);,, Zp, = O(K);,, and Zp,p, = O(K);5,.

1

Furthermore, we get the following:

O(K)j,5,)(01) = Zp p, (P1) = Zj, = O(K)y,,
O(K)s,5,)(02) = Zp, p, (P2) = Zp, = O(K)§,

Since J; is a prime octonion integer, by previous Proposition O(I():;2 is a cyclic group.
Then, O(K);2 has a generator.

Thus O(K):;] 5,(01) has a generator too. Let O(K);2 is generated by 7. Then , 7#(P2) =
1(mod 616,). In the same way, O(K)§152 (62) has a generator. Suppose that O(K):;l(;z) (62) has
a generator f. Then, f¢(P1) = 1(mod 6,6)). O
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Proposition 4. Let 6, = ¢ + dy 2]7:1 (i) be the different primes in O(K) and py = ci + 7d;

are different prime integers in Z, Then, T be the element of O(K);1 5y...8,7 SUch that 707K =
1(m0d5152...5k),k = 1, 2, 3, cee, ML

Proof. It is proved by mathematical induction using Proposition 3. [J

7
Theorem 5. Let 61 = ¢ + dZ]Ll (ij) and 6y = a+ b Y- (ij) be the two different prime integers in
j=1

O(K) and py = ¢* + 7d?, py = a* + 7b? are two different odd prime integers in 7. Then, there
exist ¢(p1) and ¢(p2) lengths cyclic codes over O(K)s s,

Proof. By Proposition 3, we can find an element of O(K) 5 5,, such that 2(P1) = 1(mod 616,).
Thus, x?(P1) — 1 factorizes the polynomial over O(K)g,s, as x?(P1) —1 = (x — 7)D(x) (mod 6,5,).
If we chose g(x) = x — T generator polynomial, then g(x) forms the generator matrix G,
which consists of all elements of any rows without zero divisors. Thus, we get ¢(P;)
length code C, and it is generated by x — 7. In the same techniques, we can get ¢(P)
length code. OJ

Remark 1. The cyclic code C generated by G consists of all linear combinations of the rows of the
generator matrix G. So, the cardinality of cyclic codes over octonion integers is p*. Additionally, the
dimension of cyclic codes is k, which consists of all linearly independent rows of generator matrix G.

3.2. Decoding Procedure of Cyclic Codes for Error of One Octonion Mannheim Weight

Let r be the received vector, and S be the syndrome with the parity check matrix H
and the transpose of the received vectorras S = H rt. If the syndrome is zero, then there
will be no error in the received vector during transmission, but if the syndrome is not
zero, then an error will occur in the received vector during transmission. Let syndrome

S = Hrl = [w’}, I = g(mod n). It means an error occurred in a received vector at the

(q + 1)th place, and the error value is computed by z—;

The following examples show the whole finding of all Theorems, Propositions, and
Corollaries of this article.

Example for the residue class of octonion integers and encoding of cyclic codes over

_ 9(r*)

Octonion Integers: Let § = 2 + 217:1 (i) and n = =5~. By using Theorem 3.5, x> + 1
polynomial can be factorized over O(K) . as

P41l =(x—w) <x54 +wx® + W% 4+ wPx+ w54), Where w = —1 — 2]7:1 (i)

If we take g(x) = x — w generator polynomial, then generator matrix (G) is

G = ailgy 55
7
1= 1)) 1 0 0--0 0
j=
7
0 ~1- ¥ (i) 1 0---0 0
=1
7
G 0 0 1= E() 10 0
0000---10
7
0000---—1- ¥ (ij) 1

j=1
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The cyclic code generated by G is consists of all linear combinations of the rows
of generator matrix G. Thus, the cardinality of cyclic codes over octonion integers is
pF = 11%%. Additionally, the dimension of cyclic codes is k = 54, which consists of all
linearly independent rows of generator matrix G.

Example for Error corrections of octonion Mannheim weight one: Let § = 2+

2
Y71 (ij), and n = @. By using Theorem 3.5, x> + 1 polynomial can be factorized

over O(K) as:

B +1 = (x—w) (O +wx® 4+ w?x? 4+ wBx+0™) = g(x) xh(x), h(x) =

x4 4+ wx® + w?x5? + .+ wBx + WD is the check polynomial. Parity check matrix H is
defined by check polynomial as

5 w57 W% WP .. WP 1)

H=(w* o’ o®w 1x55

= (—1+ 27 () 12— 6T (i) 24+4750 () -+ 45157, () 1), _
Letr=(11+ 217:1 ({)0...-1 0),, 55 De a received vector during transmission.

Then, the syndrome S = Hr! = w108 (See Table 1), and the error occurred in the
received vector r at position 108 = 53(mod 55), so that the error value = ¢ = % =-1

(from Table 1). Thus, the octonion mannhein weight of error is 1. Hence, the corrected code
word is

c:r—e:(ll—l—Z;:l(ij)O...00) @)

1x55

Table 1. Cyclic group over the residue class of octonion integers generated by w.

u w*

1 1—iy —ip—iz— iy —i5—ig— iy

2 —12 + 6i1 + 6ip + 6i3 + 614 + 615 + 616 + 617

3 —12 — 47y — 47ip — 47i3 — A7iy — A7i5 — 47i¢ — 47i7
4 —14 4 13iy + 13ip + 13i3 + 1314 + 13i5 + 13i6 + 13i7
5 —7 + 18i1 + 18ip + 18i3 + 18iy + 18i5 + 18i¢ + 181
6 —56 — 24iy — 24ip — 24i5 — 24iy — 24is — 24ig — 24i7
7 —40 — 52i1 — 52iy — 52i3 — 52i4 — 52i5 — 52ig — 52i7
8 —30 + 54iy + 54ip + 54i3 + 54iy + 54is + 54ig + 5diy
9 9 + 52iy + 52iy + 52i3 + 52i4 + 52i5 + 52ig + 52iy
10 51 — 52y — 52ip — 52i3 — 52iy — 52i5 — 52ig — 52i7
11 —36 + 52i; + 52ip + 52i3 + 52i4 + 52i5 + 52ig + 52i7
12 42 — 55iy — 55iy — 55i3 — 55i4 — 55i5 — 55ig — 55iy
13 40 — 43i; — 43iy — 43i5 — 43iy — 43i5 — 43ig — 43i7
14 54 —19i7 — 19ip — 19i3 — 19i4 — 19i5 — 19ig — 19iy
15 54 4 32iy + 32ip + 32i3 + 32i4 + 32i5 + 32ig + 32iy
16 —60 — 15i1 — 15iy — 15i3 — 15i4 — 15i5 — 15ig — 15i7
17 —8 — 3iy — 3iy — 3i3 — 3iy — 3i5 — 3ig — 3i7

18 44 +- 250y + 251 + 25i3 + 25i4 + 25i5 + 25ig + 25iy
19 42i1 + 42ip + 42i5 + 42iy + 42i5 + 42ig + 42i7

20 2 + 28i1 + 28ip + 28i3 + 2814 + 28i5 + 28ig + 28iy
21 —7 +17iy + 17ip + 17i3 + 171y + 17i5 + 17ig + 1717
22 52 — 17iy — 17ip — 17i3 — 17iy — 17i5 — 17ig — 17i7
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Table 1. Cont.

u

u w

23 —40 + 167 + 16iy 4 16i3 + 16i4 + 16i5 + 16ig -+ 16i7
24 —32 — iy — Tip — iy — Tiy — Ti5 — 7sg — 757

25 16 + 57iy + 57iy + 57i3 -+ 57i4 -+ 57i5 + 57i¢ + 57i7
26 2+ 27iy + 27iy + 27i3 + 27iy + 27i5 + 2716 + 27i7
27 —20 + 24i; + 24iy + 24i3 + 24iy + 24i5 + 24ig + 24iy
28 52+ 51i1 + 51iy + 51i3 + 51ig + 51i5 + 5lig + 51i7
29 —42 — 45i; — 45iy — 45i5 — 45is — 45i5 — 45i¢ — 45i7
30 —25 — iy — 2ip — 2i3 — 2y — 2i5 — 2ig — 2i7

31 —33 + 15i; + 15i + 15i3 + 15i4 + 15i5 + 15i¢ + 15i7
32 18 — iy — iy — iy — iy — i5 — ig — i7

33 —10 + 9iy 4 9ip + 9i3 + 9iy + 9is + 9ig + 9i7

34 —30 + 49i; + 49i5 + 49i3 + 49i4 + 49i5 + 49ig + 49iy
35 —28i1 — 28iy — 28i5 — 28iy — 28i5 — 28is — 28i7
36 9 —19i; — 19, — 19i3 — 19i4 — 19i5 — 19ig — 19i7
37 45 + 29i1 + 29iy + 29i3 + 29iy + 29i5 + 29i + 29i7
38 16 4 11iy 4 11ip + 11i3 + 11ig + 11is + 11ig + 1147
39 4+ 33iy + 33y + 33i3 + 33i4 + 33i5 + 33ig + 33i7
40 —30 — 21y — 21ip — 21i5 — 21ig — 21i5 — 21ig — 21i7
41 7 + 4601 + 46i5 + 46i3 + 4614 + 46i5 + 46i¢ + 46i7
42 —60 — 7iy — Tip — iy — 7ig — 7is — Zig — 7i

43 9 + 57iy 4 57iy + 57i3 + 57iy + 57i5 + 57i¢ + 57i7
44 60 + 28 + 28iy + 28i3 + 28iy + 28i5 + 28ig + 28i;
45 6 -+ 19 + 19i5 + 19i3 + 19iy + 19i5 + 19ig + 19i7
46 —39 — 32i; — 32i, — 32i3 — 32is — 32i5 — 32i¢ — 32i7
47 —55 + 12i; + 12iy + 12i3 + 12ig + 12i5 + 12ig + 12i7
48 —31 + 26i7 + 26iy 4 26i3 + 26i4 + 26i5 + 26ig -+ 26i7
49 17 4 34iy + 34iy + 34is + 34iy + 3dis + 34ic + 34i
50 —13 — 29i; — 29i5 — 293 — 294 — 29i5 — 29ig — 29i7
51 —8—11i; — 11ip — 11i3 — 11iy — 11i5 — 11ig — 11i7
52 60 — 35i; — 35i, — 35i3 — 35is — 35i5 — 35i¢ — 35i7
53 17 + 39i1 + 39iy + 39i3 + 39i4 + 39i5 + 39ig + 397
54 —4+ 51iy 4 51ip + 51i3 + 51iy + 51i5 + 51ig + 51i7
55 ~1

56 —1+iy +ip 4 iz +iy +i5+ig + iy

57 +12 — 6i1 — 6ip — 6i5 — 6ig — bi5 — 6ig — 6i7

58 12 4 47i) + 47iy + 47i3 + 4714 + 4715 + 4716 + 4717
59 14 — 13iy — 13iy — 13i3 — 13ig — 13i5 — 13ig — 13i7
60 7 — 18i; — 18iy — 18i3 — 18is — 18i5 — 18ig — 18i7
61 56 + 24i1 + 24iy + 24i3 + 24iy + 245 + 24ig + 24i7
62 40 + 52iy + 52iy + 52i3 + 52iy + 525 + 52ig + 52i7
63 30 — 54iy — 54ip — 54iy — 54iy — 54i5 — 5dig — 54iy
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64 —9 — 524 — 52ip — 52i3 — 52i4 — 52i5 — 52ig — 52i7
65 —51 + 52i; + 52iy + 52i3 + 52ig + 52i5 + 52ig + 52i7
66 36 — 52i; — 52y — 52i3 — 52iy — 52i5 — 52ig — 52i7
67 —42 + 55i; + 551y + 55i3 + 55i4 -+ 55i5 + 55i¢ + 55i7
68 —40 + 43i; + 43y + 43i3 + 43iy + 43i5 + 43ig + 43iy
69 —54 +19i; + 195 + 19i3 + 19ig + 19i5 + 19ig + 19i7
70 —54 — 32i; — 32y — 32i5 — 32ig — 32i5 — 32ig — 32i7
71 60 + 15i; + 15i + 15i3 + 15i4 + 15i5 + 15ig + 15i7
72 8 + 3iy + 3ip + 3i3 + iy + 3i5 + 3ig + 3i7

73 —44 — 25i; — 25iy — 25i5 — 25is — 25i5 — 25ig — 25i7
74 — 420y — 42iy — 42i5 — 421, — A2i5 — 42i — 42i7
75 —2 — 28i — 28ip — 28i3 — 28iy — 28i5 — 28i¢ — 28i7
76 7 — 17y — 17iy — 17i3 — 17ig — 17i5 — 17ig — 17i7
77 —52 + 171y + 17iy + 17i3 + 17ig + 17i5 + 17 + 17iy
78 40 — 16y — 165, — 16i3 — 16i4 + 16i5 — 16ig — 16i7
79 32 + 7iy 4 7ip + 7i3 + 7ig + 7is + Zig + 7iy

80 —16 — 57iy — 57iy — 57i3 — 57iy — 57i5 — 57ig — 57i7
81 —2 = 27iy — 27ip — 27i3 — 27iy — 27i5 — 27ig — 27i7
82 20 — 24iy — 24iy — 24iy — 24iy — 24is — 24ig — 24iy
83 —52 — 51i — 51ip — 51i3 — 51ig — 51i5 — 51ig — 51i7
84 42 + 45i) + 450y + 45i3 + 45iy + 45i5 + 45ig -+ 45i7
85 25 + 2iy + 2iy + 2i3 + 2iy + 2is + 2ig + 2i7

86 33 — 15i1 — 15ip — 15i5 — 15ig — 15i5 — 15ig — 15i7
87 —18+ iy +ip + i3+ iy +i5 + ig + iy

88 10 — 9y — 9ip — 9i3 — 9iy — 9i5 — i — iy

89 30 — 49i; — 49i, — 49i3 — 49i, — 49i5 — 49ig — 49i7
90 281 + 28iy -+ 28i5 + 28iy + 28i5 + 28ig + 28i7

91 —9+19i; 4 190y + 19i3 + 19i4 + 19i5 + 19ig + 19i;
92 —45 — 29i; — 29i5 — 29i5 — 29is — 29i5 — 29i¢ — 29i7
93 —16 — 11i — 11ip — 11i5 — 11ig — 11i5 — 11ig — 11i7
94 —4 — 33i; — 33y — 33i3 — 33is — 33i5 — 335 — 33i7
95 30 + 21iy + 21ip + 21i3 + 21iy + 21i5 + 21ig + 21i7
96 —4 — 46i; — 46y — 46i3 — 465 — 46i5 — 46i5 — 46i;
97 60 + 7iy + 7ip + 7i3 + 7ig + 7is + Zig + 7iy

98 —9 — 57iy — 57iy — 57i5 — 57i4 — 57i5 — 57ig — 57i7
99 —60 — 28i; — 28, — 28i3 — 28is — 28i5 — 28i¢ — 28i7
100 —6—19i; — 19, — 19i3 — 19i5 — 19i5 — 19ig — 19i;
101 39 4 32i1 + 32iy + 32i3 + 32iy + 32is + 32i¢ + 32iz
102 55 — 12y — 12ip — 12i3 — 12iy — 12i5 — 12ig — 12i7
103 31 — 26i; — 26, — 26i3 — 26i5 — 26i5 — 26ig — 26i7
104 —17 — 34i; — 34iy — 34i5 — 34iy — 34is5 — 3dig — 34iy
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105

13 + 29iy + 291y + 29i3 + 2914 + 29i5 + 291 + 29i7

106

8 + 11iy + 11ip + 11i3 + 11iy + 11i5 + 11ig + 1145

107

—60 + 35s1 + 355y + 35s3 + 3554 + 3555 + 3556 + 3557

108

—17 — 39i; — 39y — 39i3 — 39is — 39i5 — 39i¢ — 39i7

109

4 — 51iy — 51ip — 51i3 — 51iq — 51i5 — 51ig — 51iy

110

1

4. Comparison

In [15], the author presented cyclic codes over the residue class of quaternion integer

2
H(K),, m=a+ bZ?Zl (ij) with length n = @ = @, where p = 7T = a® + 3b? and
dimension k. In the present article, the author presented cyclic codes over the residue class

of octonion integer O(K),,, 7w = a+bY.7_; (ij) with different length n; =

o(P*) _ plp-1)
2 2

1

where p = 77t = a? + 7b? with dimension k. The cardinality of code C is |C| = pF, the
code rate (R) for quaternion integers R = % and octonion integers R = ;- are given in the
following Tables 2 and 3, Figures 1 and 2.

Table 2. Primes, length, cardinality, and code rate (R) of code over quaternion integers.

3 - 2
a b m=asbyG) p=nm  n=?P k Icl=pk R=k
j=1
3 20 20
2 1 241y (i],) 7 21 20 6 2
j=1
3 77 77
1 2 1423 (,-j) 13 78 77 13 7
=1
37, 464 464
2 3 243y (11) 31 465 464 31 464
j=1
3 /. 3080 3080
2 5 2153 (z]-) 79 3081 3080 79 2080
=1

Table 3. Primes, length, cardinality, and code rate (R) of code over octonion integers.

7 - 2 k
a b T=a+b)y (i) p=7nT n1=% k ICl =p* R=k
j=1
7 7, 54 54
2 1 241y (1],) 11 55 54 11 3
=1
7. 405 405
1 2 142y (l],) 29 406 405 29 405
=1
7 7, 2211 2210
2 3 243y (z]-) 67 211 2210 67 zu
j=1
7 7. 15,930 15,930
2 5 2457 (1]-) 179 15,931 15930 179 LEA
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Comparison of Quaternion Primes and Octonion Primes

180
160
140
120
100
80
60
40
20
-7 ‘
0
pl p2 p3 p4

W Quaternion Primes ~ m Octonion Primes
Figure 1. Quaternion Primes vs. Octonion Primes.

Code Rate: Quaternion Integers vs Octonion Integers
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04

0.02

pl p2 p3 p4

«=@==Quaternion Integers =@==(ctonion Integers

Figure 2. Quaternion integers Code rate vs. Octonion integers Code rate.

Tables 2 and 3, Figures 1 and 2 for the same a and b of both quaternion and octonion
integers; prime, length, and cardinality of code slightly increased but code rate of code
slightly decreased. If length of the cyclic codes slightly increased with the dimension &,
then the transmission will be slightly slow and the error correction capability of cyclic
codes over the residue class of octonion integers will be better as compared to the cyclic
codes over the residue class of quaternion integers.
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5. Conclusions

In this paper, we had generalized the results of [15], octonion integers, fundamental
theorems related to octonion integers, cyclic codes, and error correction of cyclic codes over
the residue class of octonion integers with respect to the octonion Mannheim distance. If
the prime, length and cardinality of cyclic codes slightly increased with dimension k, then
the transmission will be slightly slow, and the error correction capability of cyclic codes
over the residue class of octonion integers will be better as compared to the cyclic codes
over the residue class of quaternion integers.

Furthermore, the error correction and detection of cyclic codes over octonion integers
may be extended to the error correction and detection of cyclic codes over sedenion integers.
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