
Citation: Fedoseev, P.; Zhukov, K.;

Kaplun, D.; Vybornov, N.; Andreev, V.

Parallelization of Runge–Kutta

Methods for Hardware

Implementation. Computation 2022,

10, 215. https://doi.org/10.3390/

computation10120215

Academic Editor: Alexander

Pchelintsev

Received: 22 October 2022

Accepted: 3 December 2022

Published: 7 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Parallelization of Runge–Kutta Methods for
Hardware Implementation
Petr Fedoseev 1 , Konstantin Zhukov 1, Dmitry Kaplun 2 , Nikita Vybornov 3 and Valery Andreev 1,*

1 Department of Computer-Aided Design, Saint Petersburg Electrotechnical University “LETI”, 5, Professora
Popova St., Saint Petersburg 197376, Russia

2 Department of Automation and Control Processes, Saint Petersburg Electrotechnical University ”LETI”, 5,
Professora Popova St., Saint Petersburg 197376, Russia

3 Department of Computer Systems and Networks, Saint-Petersburg State University of Aerospace
Instrumentation, 67, Bolshaya Morskaya St., Saint Petersburg 190000, Russia

* Correspondence: vsandreev@etu.ru; Tel.: +7-904-633-5790

Abstract: Parallel numerical integration is a valuable tool used in many applications requiring high-
performance numerical solvers, which is of great interest nowadays due to the increasing difficulty
and complexity in differential problems. One of the possible approaches to increase the efficiency of
ODE solvers is to parallelize recurrent numerical methods, making them more suitable for execution
in hardware with natural parallelism, e.g., field-programmable gate arrays (FPGAs) or graphical
processing units (GPUs). Some of the simplest and most popular ODE solvers are explicit Runge–
Kutta methods. Despite the high implementability and overall simplicity of the Runge–Kutta schemes,
recurrent algorithms remain weakly suitable for execution in parallel computers. In this paper, we
propose an approach for parallelizing classical explicit Runge–Kutta methods to construct efficient
ODE solvers with pipeline architecture. A novel technique to obtain parallel finite-difference models
based on Runge–Kutta integration is described. Three test initial value problems are considered
to evaluate the properties of the obtained solvers. It is shown that the truncation error of the
parallelized Runge–Kutta method does not significantly change after its known recurrent version. A
possible speed up in calculations is estimated using Amdahl’s law and is approximately 2.5–3-times.
Block diagrams of fixed-point parallel ODE solvers suitable for hardware implementation on FPGA
are given.

Keywords: numerical integration; Runge–Kutta methods; parallel computing; pipelining calculations;
hardware-targeted methods

1. Introduction

Simulating continuous systems in discrete computers usually requires the numerical
solution of ordinary differential equations (ODEs), which is usually performed using nu-
merical integration methods [1–4]. Software implementing numerical integration methods
is called an ODE solver. One of the critical characteristics of the ODE solver is its com-
putational efficiency, usually determined as the dependence between the precision of the
achieved solution and the time taken to obtain it [5]. Explicit Runge–Kutta (RK) methods
are among the most popular solvers and belong to the broad class of single-step integration.
They possess satisfactory numerical stability and high computational efficiency, being a
reliable and straightforward tool for simulation software [6]. However, the hardware im-
plementation of high-order RK methods is complicated due to the recurrent nature of their
algorithms. This especially stands for hardware platforms operating with short and\or
fixed-point data types where scaling procedures become complicated. Moreover, the above-
mentioned issue makes RK methods relatively poorly suitable for parallel computing and
limits their application mainly to CPU-based software solutions.

Computation 2022, 10, 215. https://doi.org/10.3390/computation10120215 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation10120215
https://doi.org/10.3390/computation10120215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0001-9878-4568
https://orcid.org/0000-0003-2765-4509
https://orcid.org/0000-0003-2394-0065
https://doi.org/10.3390/computation10120215
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation10120215?type=check_update&version=1

Computation 2022, 10, 215 2 of 15

Recently, so-called hardware-targeted methods gained great attention from scholars.
Butusov et al. proposed a semi-implicit modification of extrapolation methods [7,8], which
assumes method-based parallelism following the Aitken–Neville extrapolation. One of the
most popular hardware platforms for implementing ODE solvers is a field-programmable
gate array (FPGA), which possesses hardware-level calculation parallelism [9,10].

Many authors aimed to develop parallel versions of standard Runge–Kutta methods.
Liu et al. proposed a variant of the parallel fourth-order explicit RK method [11]. Ding et al.
proved the convergence of parallel Runge–Kutta methods and studied their application for
solving delay differential equations (DDEs) [12]. Fei et al. developed a new class of parallel
Runge–Kutta methods for solving differential-algebraic equations (DAEs) [13]. However,
the abovementioned authors did not consider the hardware-targeted ODE solvers based on
parallel RK methods and their applications.

Meanwhile, there are many practical applications of parallel ODE solvers based
on RK methods known from the literature. The parallel implementation of the Runge–
Kutta method was used, for example, in [14] for the numerical study of super-conducting
processes in a system of Josephson junctions. Volokhova et al. applied parallel RK methods
for computer simulation of the passage of a multicomponent gas-condensate mixture
through a porous medium [15] and many others. Therefore, developing new techniques to
parallelize RK methods is of particular interest in the field.

In this paper, we present an approach to parallelize explicit Runge–Kutta methods,
following more general ideas by Tang et al. [16]. We explicitly show that the proposed
solution is suitable for both software and hardware implementation. The rest of the paper
is organized as follows. In Section 2, a brief description of the streaming problem is given
and the pipeline processing principle is described. In Section 3, we describe the proposed
technique using two representative examples. The truncation error of the parallelized RK
method is compared with the original recurrent version of the solver and the possible
calculations’ speedup is estimated. Finally, Section 4 provides some conclusions. In
addition, some figures depicting the structure of designed double-precision and fixed-point
ODE solvers are shown in the Appendix A.

2. Materials and Methods

In this paper, we propose a technique for modifying explicit Runge–Kutta solvers to be
more suitable for parallel implementation. Let us allocate a class of streaming algorithms
and some computational techniques first.

In the general case, the problem of streaming algorithms can be formulated as follows.
Suppose there is an ordered set of vector data Di

〈
di

1, di
2, . . . , di

k
〉
, (i = 1, 2, . . . , N), all ele-

ments of which must be processed by an algorithm, visually represented by graph G(V,X)
(Figure 1), where every vertex vj ∈ V is assigned an operation Oj from an array of possible
operations O. Arcs

(
vj, vj+1

)
∈ X of the mentioned graph are directed edges, which state

that result, obtained from operation Oj is simultaneously an input of an operation Oj+1.
The main idea of streaming algorithms is to transform input data vector

Di (i = 1, 2, . . . , N) into resulting output vector of data Ri

〈
ri

1, ri
2, . . . , ri

p

〉
, (i = 1, 2, . . . , N)

according to the algorithm graph G(V,X).
Processors based on streaming algorithms with no integrated parallelism are being

programmed to sequentially execute operations Oj(i = 1, 2, . . . , M) based on input vector
Di (i = 1, 2, . . . , N) (Figure 2).

Total processing time for N input vectors can be calculated using the following formula:

Tcomp = N
M

∑
i=1

f (Oi)τ, (1)

where M = |V| is the number of vertices on algorithm graph G(V, X); f (Oi) is the number
of computer cycles required to perform operation Oi; τ is the duration of one cycle.

Computation 2022, 10, 215 3 of 15Computation 2022, 10, x FOR PEER REVIEW 3 of 16

O1

O2

O3

Oj+k

Oj+k+1

Ok

OM

...

Figure 1. Streaming algorithm graph.

Processors based on streaming algorithms with no integrated parallelism are being
programmed to sequentially execute operations 𝑂 (𝑖 = 1,2, … , 𝑀) based on input vector 𝐷 (𝑖 = 1,2, … , 𝑁) (Figure 2).

Processor

Figure 2. Operations in typical computer with von Neumann architecture.

Total processing time for N input vectors can be calculated using the following for-
mula: 𝑇 = 𝑁 𝑓(𝑂)𝜏, (1)

where 𝑀 = |𝑉| is the number of vertices on algorithm graph 𝐺(𝑉, 𝑋); 𝑓(𝑂) is the num-
ber of computer cycles required to perform operation 𝑂 ; 𝜏 is the duration of one cycle.

The main idea used to decrease computation time is to split the set of input vectors 𝐷 (𝑖 = 1,2, … , 𝑁) into N/C disjoint subsets, where C is the number of processors 𝑃 (𝑖 =1,2, … , 𝐶). Every processor 𝑃 (𝑖 = 1,2, … , 𝐶) is configured to work with the set of opera-
tions 𝑂 (𝑖 = 1,2, … , 𝑚) and can be used to process one of the disjoint subsets inde-
pendently. This allows for performing parallel computing on both software and hardware
implementations of algorithms (Figure 3).

P1

P2

PC

...

D1 , … ,DN/C

DN/C+1 , … ,D2N/C

D(C-1)/C + 1 , … ,DN

R1 , … ,RN/C

RN/C+1 , … ,R2N/C

R(C-1)/C + 1 , … ,RN

Figure 3. Scheme representing a parallel computing process.

Figure 1. Streaming algorithm graph.

Computation 2022, 10, x FOR PEER REVIEW 3 of 16

O1

O2

O3

Oj+k

Oj+k+1

Ok

OM

...

Figure 1. Streaming algorithm graph.

Processors based on streaming algorithms with no integrated parallelism are being
programmed to sequentially execute operations 𝑂 (𝑖 = 1,2, … , 𝑀) based on input vector 𝐷 (𝑖 = 1,2, … , 𝑁) (Figure 2).

Processor

Figure 2. Operations in typical computer with von Neumann architecture.

Total processing time for N input vectors can be calculated using the following for-
mula: 𝑇 = 𝑁 𝑓(𝑂)𝜏, (1)

where 𝑀 = |𝑉| is the number of vertices on algorithm graph 𝐺(𝑉, 𝑋); 𝑓(𝑂) is the num-
ber of computer cycles required to perform operation 𝑂 ; 𝜏 is the duration of one cycle.

The main idea used to decrease computation time is to split the set of input vectors 𝐷 (𝑖 = 1,2, … , 𝑁) into N/C disjoint subsets, where C is the number of processors 𝑃 (𝑖 =1,2, … , 𝐶). Every processor 𝑃 (𝑖 = 1,2, … , 𝐶) is configured to work with the set of opera-
tions 𝑂 (𝑖 = 1,2, … , 𝑚) and can be used to process one of the disjoint subsets inde-
pendently. This allows for performing parallel computing on both software and hardware
implementations of algorithms (Figure 3).

P1

P2

PC

...

D1 , … ,DN/C

DN/C+1 , … ,D2N/C

D(C-1)/C + 1 , … ,DN

R1 , … ,RN/C

RN/C+1 , … ,R2N/C

R(C-1)/C + 1 , … ,RN

Figure 3. Scheme representing a parallel computing process.

Figure 2. Operations in typical computer with von Neumann architecture.

The main idea used to decrease computation time is to split the set of input vec-
tors Di (i = 1, 2, . . . , N) into N/C disjoint subsets, where C is the number of processors
Pi (i = 1, 2, . . . , C). Every processor Pi (i = 1, 2, . . . , C) is configured to work with the set of
operations Oj(i = 1, 2, . . . , m) and can be used to process one of the disjoint subsets inde-
pendently. This allows for performing parallel computing on both software and hardware
implementations of algorithms (Figure 3).

Computation 2022, 10, x FOR PEER REVIEW 3 of 16

O1

O2

O3

Oj+k

Oj+k+1

Ok

OM

...

Figure 1. Streaming algorithm graph.

Processors based on streaming algorithms with no integrated parallelism are being
programmed to sequentially execute operations 𝑂 (𝑖 = 1,2, … , 𝑀) based on input vector 𝐷 (𝑖 = 1,2, … , 𝑁) (Figure 2).

Processor

Figure 2. Operations in typical computer with von Neumann architecture.

Total processing time for N input vectors can be calculated using the following for-
mula: 𝑇 = 𝑁 𝑓(𝑂)𝜏, (1)

where 𝑀 = |𝑉| is the number of vertices on algorithm graph 𝐺(𝑉, 𝑋); 𝑓(𝑂) is the num-
ber of computer cycles required to perform operation 𝑂 ; 𝜏 is the duration of one cycle.

The main idea used to decrease computation time is to split the set of input vectors 𝐷 (𝑖 = 1,2, … , 𝑁) into N/C disjoint subsets, where C is the number of processors 𝑃 (𝑖 =1,2, … , 𝐶). Every processor 𝑃 (𝑖 = 1,2, … , 𝐶) is configured to work with the set of opera-
tions 𝑂 (𝑖 = 1,2, … , 𝑚) and can be used to process one of the disjoint subsets inde-
pendently. This allows for performing parallel computing on both software and hardware
implementations of algorithms (Figure 3).

P1

P2

PC

...

D1 , … ,DN/C

DN/C+1 , … ,D2N/C

D(C-1)/C + 1 , … ,DN

R1 , … ,RN/C

RN/C+1 , … ,R2N/C

R(C-1)/C + 1 , … ,RN

Figure 3. Scheme representing a parallel computing process. Figure 3. Scheme representing a parallel computing process.

Thus, the total computation time required to obtain a solution can be calculated
as follows:

Tcomp = N/C
M

∑
i=1

f (Oi)τ, (2)

which is theoretically C-times less than the time required to obtain the same result without
using parallel computing.

Computation 2022, 10, 215 4 of 15

The computational efficiency can also be improved by using pipeline processing. The
resulting structure can be described as an algorithm being divided into H consecutive
operational stages. Thus, the amount of input and output data channels is decreased, but
the whole process requires having a continuous flow of input data to the first operational
stage, while it simultaneously does not have much effect on algorithms that have M � N.

If one wants to increase the computation speed of an algorithm and maintain the
pipelining benefits, it is possible to improve the algorithm by adding parallelism to every
operational stage (Figure 4).

Computation 2022, 10, x FOR PEER REVIEW 4 of 16

Thus, the total computation time required to obtain a solution can be calculated as
follows: 𝑇 = 𝑁/𝐶 𝑓(𝑂)𝜏, (2)

which is theoretically C-times less than the time required to obtain the same result without
using parallel computing.

The computational efficiency can also be improved by using pipeline processing. The re-
sulting structure can be described as an algorithm being divided into H consecutive opera-
tional stages. Thus, the amount of input and output data channels is decreased, but the
whole process requires having a continuous flow of input data to the first operational stage,
while it simultaneously does not have much effect on algorithms that have 𝑀 ≫ 𝑁.

If one wants to increase the computation speed of an algorithm and maintain the
pipelining benefits, it is possible to improve the algorithm by adding parallelism to every
operational stage (Figure 4).

P11

P12

P1M1

...

P21

P22

P2M2

...

PH1

PH2

PHMH

...

Figure 4. The use of parallel processors in relation to pipeline strategy.

Thus, the final computation time can be calculated as follows: 𝑇 = (𝑁 + 𝐻 − 1)∆𝑇, (3)
and for the proposed example can be summarized as ∆𝑇 = 𝑚𝑎𝑥… 𝑇 = 𝑚𝑎𝑥… 𝑚𝑎𝑥… 𝑓 𝑂 𝜏 = 𝑚𝑎𝑥… 𝑓(𝑂)𝜏, (4)

where 𝑚𝑎𝑥… 𝑓(𝑂)—is the most computationally demanding operation.

In case when N is significantly large and 𝑀 ≈ , Equation (4) can be reorganized as: 𝑇 = 𝑁 ∑ 𝑓(𝑂)𝜏𝐻𝑀𝐻 = 𝐻𝑁 𝑓(𝑂)𝜏. (5)

Thus, the total computation time can potentially be reduced by times, where M is
the number of vertices of G(V,X) and H is the number of operational stages. The proposed
scheme will be effective only in cases when all the vertices of the subgraph 𝐺(𝑉 , 𝑋) are
informationally independent and can be implemented simultaneously (parallel).

In the general case, the operational vertices of subgraphs 𝐺(𝑉 , 𝑋) are information
dependent, which means that some vertices 𝑣 ∈ 𝑉 cannot be realized until the result of
the vertex 𝑣 ∈ 𝑉 realization is obtained. Therefore, the maximum rate of pipeline pro-
cessing and, as a consequence, the 𝑇 of processing the entire set of input data can be
ensured if the structure of connections between the stages of the pipeline is fully adequate
to the topology of connections of vertices in the algorithm graph 𝐺(𝑉, 𝑋).

This way of organizing pipelined computations is called structural. The maximum pro-
cessing rate can be achieved if each operational vertex 𝑣 (𝑖 = 1,2, … , 𝑀) of the algorithm
graph is assigned its own processor element 𝑃 (𝑖 = 1,2, … , 𝑀) and links between 𝑃 are
provided according to the topology information arcs of the graph 𝐺(𝑉, 𝑋) (Figure 5).

If the vectors 𝐷 (𝑖 = 1,2, … , 𝑁) of the input set are sequentially fed to the input of
such a computational structure, then their processing time will be 𝑇 = (𝑁 + 𝐻 −

Figure 4. The use of parallel processors in relation to pipeline strategy.

Thus, the final computation time can be calculated as follows:

Tcomp = (N + H − 1)∆T, (3)

and for the proposed example can be summarized as

∆T = max
i=1...H

(
Ti

comp

)
= max

i=1...H

(
max

j=1...M
f
(

Oi
j

)
τ

)
= max

i=1...M
f (Oi)τ, (4)

where max
i=1...M

f (Oi)—is the most computationally demanding operation.

In case when N is significantly large and Mi ≈ M
H , Equation (4) can be reorganized as:

Tcomp = N
∑M

j=1 f
(
Oj
)
τ

HM
H

=
H
N

M

∑
j=1

f
(
Oj
)
τ. (5)

Thus, the total computation time can potentially be reduced by M
H times, where M is

the number of vertices of G(V,X) and H is the number of operational stages. The proposed
scheme will be effective only in cases when all the vertices of the subgraph G(Vi, Xi) are
informationally independent and can be implemented simultaneously (parallel).

In the general case, the operational vertices of subgraphs G(Vi, Xi) are information
dependent, which means that some vertices vj ∈ Vi cannot be realized until the result
of the vertex vj−1 ∈ Vi realization is obtained. Therefore, the maximum rate of pipeline
processing and, as a consequence, the Tcomp of processing the entire set of input data can be
ensured if the structure of connections between the stages of the pipeline is fully adequate
to the topology of connections of vertices in the algorithm graph G(V, X).

This way of organizing pipelined computations is called structural. The maximum pro-
cessing rate can be achieved if each operational vertex vi(i = 1, 2, . . . , M) of the algorithm
graph is assigned its own processor element Pi(i = 1, 2, . . . , M) and links between Pi are
provided according to the topology information arcs of the graph G(V, X) (Figure 5).

Computation 2022, 10, 215 5 of 15

Computation 2022, 10, x FOR PEER REVIEW 5 of 16

1)∆𝑇, where 𝐻 is the number of vertices on the critical path in the graph 𝐺(𝑉, 𝑋). The
critical path is the path for which the value of ∑ 𝑓 𝑂 𝜏 is maximum; 𝑂 (𝑗 = 1,2, … , 𝑘)
are the operations belonging to the vertices of the critical path. ∆𝑇 = 𝑚𝑎𝑥… 𝑓 𝑂 𝜏 is the execution time of the longest operation belonging to the ver-

tices of the critical path. With a large value of N and considering that ∆𝑇 =max, ,…, 𝑓(𝑂) ≈ 𝑁 ∑ , one can obtain:

𝑇 = 𝑁𝑀 𝑓(𝑂)𝜏. (6)

Analyzing Equation (6), one can conclude that using the structural method of organ-
ization, it is possible to minimize the computation time in comparison with the other
methods of organizing computing systems considered above (see (1), (2), (5)).

The scheme shown in Figure 5 represents the proposed computational structure,
which combines both parallel and pipelined methods of processing since the input data
are processed simultaneously along different pipelined processor chains. The proposed
structure is called a multi-pipeline computational structure and is considered the most
efficient for solving stream problems [17].

...

P1

P2

P3

Pk

Pk+1

PM

Figure 5. The proposed multi-pipeline computational structure.

3. Results
In this study, we consider a parallel modification of RK4—explicit Runge–Kutta

method of accuracy order 4 [18,19], which is a standard ODE solver in most popular sim-
ulation packages, e.g., MATLAB, Wolfram Mathematica, and NI LabVIEW software.

3.1. Test Problem 1: A Simple Linear System
Let an initial value problem (IVP) be specified as follows: 𝑑𝑦𝑑𝑡 = 𝑓(𝑦, 𝑡), 𝑦(0) = 𝑦 . (7)

Pick a step size ℎ > 0 and use recurrent formulas of the RK4 method as follows: 𝑘 = 𝑓(𝑦 , 𝑡); (8) 𝑘 = 𝑓 𝑦 + ℎ2 𝑘 , 𝑡 + ℎ2 ; (9)

𝑘 = 𝑓 𝑦 + ℎ2 𝑘 , 𝑡 + ℎ2 ; (10) 𝑘 = 𝑓(𝑦 + ℎ𝑘 , 𝑡 + ℎ); (11)

Figure 5. The proposed multi-pipeline computational structure.

If the vectors Di(i = 1, 2, . . . , N) of the input set are sequentially fed to the input of such
a computational structure, then their processing time will be Tcomp = (N + Hmax − 1)∆T,
where Hmax is the number of vertices on the critical path in the graph G(V, X). The critical
path is the path for which the value of ∑M

j=1 f
(
Oj
)
τ is maximum; Oj(j = 1, 2, . . . , k) are the

operations belonging to the vertices of the critical path.
∆T = max

j=1...H
f
(
Oj
)
τ is the execution time of the longest operation belonging to the ver-

tices of the critical path. With a large value of N and considering that

∆T = max
i=1,2,...,Hm

f
(
Oj
)
≈ N

∑M
j=1 f

(
Oi

j

)
M , one can obtain:

Tcomp =
N
M

M

∑
j=1

f
(
Oj
)
τ. (6)

Analyzing Equation (6), one can conclude that using the structural method of orga-
nization, it is possible to minimize the computation time in comparison with the other
methods of organizing computing systems considered above (see (1), (2) and (5)).

The scheme shown in Figure 5 represents the proposed computational structure,
which combines both parallel and pipelined methods of processing since the input data
are processed simultaneously along different pipelined processor chains. The proposed
structure is called a multi-pipeline computational structure and is considered the most
efficient for solving stream problems [17].

3. Results

In this study, we consider a parallel modification of RK4—explicit Runge–Kutta
method of accuracy order 4 [18,19], which is a standard ODE solver in most popular
simulation packages, e.g., MATLAB, Wolfram Mathematica, and NI LabVIEW software.

3.1. Test Problem 1: A Simple Linear System

Let an initial value problem (IVP) be specified as follows:

dy
dt

= f (y, t), y(0) = y0. (7)

Pick a step size h > 0 and use recurrent formulas of the RK4 method as follows:

k1 = f (yi, ti); (8)

k2 = f
(

yi +
h
2

k1, ti +
h
2

)
; (9)

Computation 2022, 10, 215 6 of 15

k3 = f
(

yi +
h
2

k2, ti +
h
2

)
; (10)

k4 = f (yi + hk3, ti + h); (11)

yi+1 = yi +
h
6
(k1 + 2k2 + k3 + k4). (12)

One can see that every formula from Equations (8)–(12) should be calculated sequen-
tially, which excludes the possibility to organize parallel computing. Let us transform
Equation (12) by substituting k1 into the right side of (9), then substituting the calculated
k2 into (10), etc. To simplify the case, let us consider a simple ODE, which can be written
as follows:

f (y, t) = ay + bx(t), (13)

where x(t) = t, y0 = 1, a = 1 and b = 1. For this expression, Equation (12) can be rewritten
taking (7) as (13) and expressing a common denominator:

yi+1 = a4h4

24 yi +
a3bh4

24 xi +
a3h3

6 yi +
a2bh3

12

(
xi +

h
2

)
+ a2bh3

12 xi +
a2h2

2 yi +
abh2

3

(
xi +

h
2

)
+ abh2

6 xi + ahyi +
bh
6 (xi + h) + 2bh

3

(
xi +

h
2

)
+ bhxi + yi.

(14)

Now, it is possible to express another common denominator to slightly decrease the
number of mathematical operations and obtain the correct form, which can then be used
for parallel hardware implementation:

yi+1 = yi

(
a4h4

24 + a3h3

6 + a2h2

2 + ah
)
+ xi

(
a3bh4

24 + a2bh3

12 + abh2

6 + bh
)

+
(

xi +
h
2

)(
a2bh3

12 + abh2

3 + 2bh
3

)
+ bh

6 (xi + h) + yi.
(15)

One can see that Equation (15) contains constants that can be excluded from paren-
theses and calculated preliminarily. This not only decreases the number of mathematical
operations on every step of integration but allows one to use the proposed algorithm within
the multi-pipeline computational structure (Figure A1).

ODE (13) can be solved analytically:

y(t) =
b
(
−at + eat − 1

)
a2 + eat.

This analytical solution will be used to compare the original Runge–Kutta 4 method
implementation with the proposed scheme. One can see from Figure 6 that the proposed
parallel implementation maintains the truncation error of the conventional method.

One can see that the proposed structure (Figure 5) is suitable for hardware implementa-
tion using programmable logic devices and allows for organizing the computational process
following the general principles of parallelism. In our study, we developed the concept of a
hardware parallel ODE solver using NI FPGA technology. However, to perform this, one
needs to apply a scaling procedure and turn the algorithm to using fixed-point arithmetic.

Conversion of the developed ODE solver with double data type (see Appendix A,
Figure A1) to the solver with the fixed-point data type (Figure A2) was carried out using the
scaling technique, previously reported in other works [20,21]. Following this methodology,
in order to set the size of the integer and fractional parts, it is first necessary to determine
the minimum and maximum possible value of each variable for the state of the system. To
achieve this, a preliminary simulation of the system with the ODE solver of the double
data type was carried out. Since the solution is exponential, it was decided to introduce
restrictions on the simulation time for the integer ODE solver. In the course of the prelimi-
nary simulation, it was found that the optimal simulation time for a data type with a 32-bit
machine word is an interval from 0 to 10 s. At this time interval of the solution, 17 bits
are required to store the integer part of the state variables and parameters. Thus, all state
variables and constant solver coefficients were converted to the FXP data type, where 1 bit

Computation 2022, 10, 215 7 of 15

is allocated to store the sign of the number, 17 bits are allocated to store the integer part,
and the remaining bits are allocated to the fractional part. In the case of the fixed-point
data type with a word length of 32 bits, 14 bits are allocated to the fractional part, which
ensures that the solution’s accuracy compared to the original solver of the double data type
will equal approximately 10−4.

Computation 2022, 10, x FOR PEER REVIEW 6 of 16

𝑦 = 𝑦 + ℎ6 (𝑘 + 2𝑘 + 𝑘 + 𝑘). (12)

One can see that every formula from Equations (8)–(12) should be calculated sequen-
tially, which excludes the possibility to organize parallel computing. Let us transform
Equation (12) by substituting 𝑘 into the right side of (9), then substituting the calculated 𝑘 into (10), etc. To simplify the case, let us consider a simple ODE, which can be written
as follows: 𝑓(𝑦, 𝑡) = 𝑎𝑦 + 𝑏𝑥(𝑡), (13)
where 𝑥(𝑡) = 𝑡, 𝑦 = 1, a=1 and b=1. For this expression, Equation (12) can be rewritten
taking (7) as (13) and expressing a common denominator: 𝑦 = 𝑦 + 𝑥 + 𝑦 + 𝑥 + + 𝑥 + 𝑦 +𝑥 + + 𝑥 + 𝑎ℎ𝑦 + (𝑥 + ℎ) + 𝑥 + + 𝑏ℎ𝑥 + 𝑦 .

(14)

Now, it is possible to express another common denominator to slightly decrease the
number of mathematical operations and obtain the correct form, which can then be used
for parallel hardware implementation: 𝑦 = 𝑦 (+ + + 𝑎ℎ) + 𝑥 (+ + + 𝑏ℎ) +𝑥 + (+ +) + (𝑥 + ℎ) + 𝑦 .

(15)

One can see that Equation (15) contains constants that can be excluded from paren-
theses and calculated preliminarily. This not only decreases the number of mathematical
operations on every step of integration but allows one to use the proposed algorithm
within the multi-pipeline computational structure (Figure A1).

ODE (13) can be solved analytically: 𝑦(𝑡) = + 𝑒 .

This analytical solution will be used to compare the original Runge–Kutta 4 method
implementation with the proposed scheme. One can see from Figure 6 that the proposed
parallel implementation maintains the truncation error of the conventional method.

(a) (b)

Figure 6. Absolute truncation error plots given relatively to the analytical solution for classical serial
Runge–Kutta method and proposed parallel scheme (a). Difference between the truncation errors
of parallel and serial solvers (b). Simulation time 5 s, step value 0.001 s.

One can see that the proposed structure (Figure 5) is suitable for hardware imple-
mentation using programmable logic devices and allows for organizing the computa-
tional process following the general principles of parallelism. In our study, we developed
the concept of a hardware parallel ODE solver using NI FPGA technology. However, to
perform this, one needs to apply a scaling procedure and turn the algorithm to using
fixed-point arithmetic.

Figure 6. Absolute truncation error plots given relatively to the analytical solution for classical serial
Runge–Kutta method and proposed parallel scheme (a). Difference between the truncation errors of
parallel and serial solvers (b). Simulation time 5 s, step value 0.001 s.

The proposed scheme (Figure A2) allows one to significantly increase computational
efficiency, arranging six processors, five of which work parallel, in a cascade manner. How-
ever, it is impossible to directly compare the performance of a serial solver implemented
on a PC and parallel solver implemented in a FPGA. Thus, we used Amdahl’s law [22] to
theoretically assess a possible increase in computational efficiency:

Sp =
1

α + 1−α
p

, (16)

where α is the percent of non-parallelizable operations and p is the number of processors. In
the considered case, we have six processors, which are performing mathematical operations,
while five of them are parallel and one uses their output data vectors and cannot be
parallelized. To simplify calculations, let us state that they are performing the same
operation of vector multiplication. Thus, using Formula (16), one can state that the potential
increase in efficiency for a single non-parallel operation out of six operations performed by
six different processors is:

Sp =
1

0.16 + 1−0.16
6

,

which gives 3.(33) for one step of integration. The obtained results show that the proposed
technique allows one to significantly increase the performance of explicit Runge–Kutta
solvers implemented in computers with non-von Neuman architecture. By comparing
the performance of solvers for the IVP in the form of (13), one can make a general as-
sumption on the potential performance increase. The explicit RK4 method in this case
requires three non-parallelizable operations for every evaluation of the RHS function; thus,
all four steps of the recurrent calculation plus the final step of yn+1 point evaluation re-
quire 3 + 5 + 5 + 4 + 7 = 24 subsequent mathematical operations. The proposed scheme
(Figure A2) divides the process into five parallelizable blocks of operations, where the most
time and resource consuming blocks #2 and #3 require five operations each; thus, according
to the idea of multi-pipeline structure, the general time to calculate 14 operations will be
the same as it takes for 5 operations. The total amount of subsequent operations in that case
equals 5 + 4 = 9. Considering that time required to perform a single operation of either
addition or multiplication on a middle-end machine with 8 core CPU is around 1,3E-6 s,
one can make a general assumption on the possible performance increase by calculating
the total time for a one-step evaluation using both classical and parallel implementations.

Computation 2022, 10, 215 8 of 15

Thus, for an IVP (13), total time elapsed on one evaluation step is around 0.0000312 and
0.0000117 s for classical and proposed parallel implementations of RK accordingly, which
leads to a conclusion that the performance increase in the case of a linear system (13) will
be about 2.(66)-times in comparison with the original scheme.

The solution of the previous sample ODE is an exponentially growing function, but
the proposed technique can be used for any kind of IVP. Thus, let us consider another
example—the oscillator case.

3.2. Test Problem 2: System with Periodic Solution

One can apply the proposed parallelizing technique when solving classical ODE
systems with periodical solution: {

dx
dt = y

dy
dt = −x

. (17)

First, expand Runge–Kutta recurrent formulas for Equation (17):

xn+1 = xn −
h
6

(
h
(

xn +
h
2

yn

)
+

(
h
(

xn +
h
2

(
yn −

h
2

xn

))
+ (hxn − 6yn)

))

yn+1 = yn −
h
6

(
h
(

yn −
h
2

xn

)
+

(
h
(

yn −
h
2

(
xn +

h
2

y
))

+ (hyn + 6xn)

))
xn+1 = xn + hyn −

h2xn

2
− h3yn

6
+

h4xn

24

yn+1 = yn − hxn −
h2yn

2
+

h3xn

6
+

h4yn

24
,

and simplify it one more time to further reduce the amount of mathematical operations:

xn+1 = xn + yn

(
h− h3

6

)
+ xn

(
h4

24
− h2

2

)

yn+1 = yn + xn

(
h3

6
− h
)
+ yn

(
h4

24
− h2

2

)
,

which leaves us with three coefficients:

a1 =

(
h− h3

6

)
,

a2 =

(
h3

6
− h
)

,

a3 =

(
h4

24
− h2

2

)
.

a1, a2, and a3 can be used in multi-pipeline computation, as shown in Figure A3, or be
pre-calculated outside of the integration cycle to further increase computational efficiency,
allowing one step of integration to be performed in eight sequential operations (von
Neumann architecture, processors #3 and #4 in Figure A3) or two-times faster, having two
processors computing results simultaneously (parallel hardware implementation in FPGA).

The comparison of accuracy for serial and parallel RK solvers obtained regarding
analytical solution (18) is presented in Figure 7.

x(t) = cos(t),
y(t) = − sin(t).

(18)

Computation 2022, 10, 215 9 of 15Computation 2022, 10, x FOR PEER REVIEW 9 of 16

(a) (b)

Figure 7. Absolute truncation error plots given relatively to the analytical solution for recurrent
Runge–Kutta method and proposed parallel scheme (a). Difference between the truncation errors
for parallel and serial solvers (b). Simulation time 100 s, step size value 0.001 s.

One can see from Figure 7 that for an oscillatory system of order 2, the proposed
parallel ODE solver does not possess an increased truncation error. Moreover, the ob-
served difference is mostly a phase shift and the amplitude component of error is negligi-
ble. Let us consider an IVP of order 3 as a third test problem.

3.3. Test Problem 3: Third-Order System
It is known that the computation time needed for simulating systems of ODEs strictly

depends on the dimension of the system. Systems of higher order require higher compu-
tation time. This especially stands for a case when all of the mathematical operations are
being performed sequentially, and the higher the order of the system, the more efficient
the proposed parallelization technique becomes due to the increasing amount of calcula-
tions on every step of recurrent formulas we can parallelize. Let us consider an ODE sys-
tem of order 3 to evaluate this.

⎩⎪⎨
⎪⎧𝑑𝑥𝑑𝑡 = 2𝑥 + 𝑦 + 𝑧𝑑𝑦𝑑𝑡 = 𝑥 + 2𝑦 + 𝑧𝑑𝑧𝑑𝑡 = 𝑥 + 𝑦 + 2𝑧 (19)

System (19) requires 27 sequential operations of multiplication and division and 33
operations of addition during the simulation cycle using classic recurrent Runge–Kutta
formulas. Thus, having implemented parallel computation, it is possible to significantly
decrease the computation time, having some of the operations either being performed
outside of the simulation cycle or being computed using the proposed multi-pipeline com-
putational structure. In this case, the parallelized Runge–Kutta formulas can be written as
follows: 𝑥 = 𝑥 + 2ℎ𝑥 + ℎ𝑦 + ℎ𝑧 + 3ℎ 𝑥 + 11ℎ3 𝑥 + 4312 ℎ 𝑥 + 52 ℎ 𝑦+ 72 ℎ 𝑦 + 8524 ℎ 𝑦 + 52 ℎ 𝑧 + 72 ℎ 𝑧 + 8524 ℎ 𝑧 , 𝑦 = 𝑦 + ℎ𝑥 + 2ℎ𝑦 + ℎ𝑧 + 3ℎ 𝑦 + 𝑦 + ℎ 𝑦 + ℎ 𝑥 + ℎ 𝑥 +ℎ 𝑥 + ℎ 𝑧 + ℎ 𝑧 + ℎ 𝑧 , 𝑧 = 𝑧 + ℎ𝑥 + ℎ𝑦 + 2ℎ𝑧 + 3ℎ 𝑧 + 𝑧 + ℎ 𝑧 + ℎ 𝑥 + ℎ 𝑥 +ℎ 𝑥 + ℎ 𝑦 + ℎ 𝑦 + ℎ 𝑦 .

Figure 7. Absolute truncation error plots given relatively to the analytical solution for recurrent
Runge–Kutta method and proposed parallel scheme (a). Difference between the truncation errors for
parallel and serial solvers (b). Simulation time 100 s, step size value 0.001 s.

One can see from Figure 7 that for an oscillatory system of order 2, the proposed
parallel ODE solver does not possess an increased truncation error. Moreover, the observed
difference is mostly a phase shift and the amplitude component of error is negligible. Let
us consider an IVP of order 3 as a third test problem.

3.3. Test Problem 3: Third-Order System

It is known that the computation time needed for simulating systems of ODEs strictly
depends on the dimension of the system. Systems of higher order require higher compu-
tation time. This especially stands for a case when all of the mathematical operations are
being performed sequentially, and the higher the order of the system, the more efficient the
proposed parallelization technique becomes due to the increasing amount of calculations
on every step of recurrent formulas we can parallelize. Let us consider an ODE system of
order 3 to evaluate this.

dx
dt = 2x + y + z
dy
dt = x + 2y + z
dz
dt = x + y + 2z

(19)

System (19) requires 27 sequential operations of multiplication and division and 33
operations of addition during the simulation cycle using classic recurrent Runge–Kutta
formulas. Thus, having implemented parallel computation, it is possible to significantly
decrease the computation time, having some of the operations either being performed
outside of the simulation cycle or being computed using the proposed multi-pipeline
computational structure. In this case, the parallelized Runge–Kutta formulas can be written
as follows:

xn+1 = xn + 2hxn + hyn + hzn + 3h2xn +
11h3

3
xn +

43
12

h4xn +
5
2

h2yn +
7
2

h3yn +
85
24

h4yn +
5
2

h2zn +
7
2

h3zn +
85
24

h4zn,

yn+1 = yn + hxn + 2hyn + hzn + 3h2yn +
11h3

3
yn +

43
12

h4yn +
5
2

h2xn +
7
2

h3xn +
85
24

h4xn +
5
2

h2zn +
7
2

h3zn +
85
24

h4zn,

zn+1 = zn + hxn + hyn + 2hzn + 3h2zn +
11h3

3
zn +

43
12

h4zn +
5
2

h2xn +
7
2

h3xn +
85
24

h4xn +
5
2

h2yn +
7
2

h3yn +
85
24

h4yn.

Following the abovementioned ideas, one can simplify those formulas further, ending
with 33 operations of multiplication and division and 15 operations of addition:

xn+1 = xn + xn

(
2h + 3h2 +

11
3

h3 +
43
12

h4
)
+ yn

(
5
2

h2 +
7
2

h3 +
85
24

h4 + h
)
+ zn

(
5
2

h2 +
7
2

h3 +
85
24

h4 + h
)

,

yn+1 = yn + xn

(
5
2

h2 +
7
2

h3 +
85
24

h4 + h
)
+ yn

(
2h + 3h2 +

11
3

h3 +
43
12

h4
)
+ zn

(
5
2

h2 +
7
2

h3 +
85
24

h4 + h
)

,

zn+1 = zn + xn

(
5
2

h2 +
7
2

h3 +
85
24

h4 + h
)
+ yn

(
5
2

h2 +
7
2

h3 +
85
24

h4 + h
)
+ zn

(
2h + 3h2 +

11
3

h3 +
43
12

h4
)

.

Computation 2022, 10, 215 10 of 15

Thus, we obtain the coefficients, which can be pre-calculated (in that case, one will
require a total of nine multiplications and nine additions per step, which can then be
split into three separate groups with the possibility of parallel computation for FPGA
implementation) or taken into computation inside of the integration cycle following the
principles of multi-pipelining (Figure A4):

a1 =

(
2h + 3h2 +

11
3

h3 +
43
12

h4
)

,

a2 =

(
5
2

h2 +
7
2

h3 +
85
24

h4 + h
)

.

The analytical solution of the system (19) is known, which helps us to compare the
results of the simulation with both sequential and parallel schemes:

x(t) = et(3e3t − 2
)
,

y(t) = et + e4t,
z(t) = et + e4t.

(20)

It was also of interest to analyze the accuracy order of the proposed scheme with initial
values of x0 = −1, y0 = 2, z0 = 2 (Figure 8).

Computation 2022, 10, x FOR PEER REVIEW 10 of 16

Following the abovementioned ideas, one can simplify those formulas further, end-
ing with 33 operations of multiplication and division and 15 operations of addition: 𝑥 = 𝑥 + 𝑥 2ℎ + 3ℎ + ℎ + ℎ + 𝑦 ℎ + ℎ + ℎ + ℎ +𝑧 ℎ + ℎ + ℎ + ℎ , 𝑦 = 𝑦 + 𝑥 52 ℎ + 72 ℎ + 8524 ℎ + ℎ + 𝑦 2ℎ + 3ℎ + 113 ℎ + 4312 ℎ+ 𝑧 52 ℎ + 72 ℎ + 8524 ℎ + ℎ , 𝑧 = 𝑧 + 𝑥 ℎ + ℎ + ℎ + ℎ + 𝑦 ℎ + ℎ + ℎ + ℎ +𝑧 2ℎ + 3ℎ + ℎ + ℎ .

Thus, we obtain the coefficients, which can be pre-calculated (in that case, one will
require a total of nine multiplications and nine additions per step, which can then be split
into three separate groups with the possibility of parallel computation for FPGA imple-
mentation) or taken into computation inside of the integration cycle following the princi-
ples of multi-pipelining (Figure A4): 𝑎 = 2ℎ + 3ℎ + ℎ + ℎ , 𝑎 = ℎ + ℎ + ℎ + ℎ .

The analytical solution of the system (19) is known, which helps us to compare the
results of the simulation with both sequential and parallel schemes: 𝑥(𝑡) = 𝑒 (3𝑒 − 2), 𝑦(𝑡) = 𝑒 + 𝑒 , 𝑧(𝑡) = 𝑒 + 𝑒 . (20)

It was also of interest to analyze the accuracy order of the proposed scheme with
initial values of 𝑥 = −1, 𝑦 = 2, 𝑧 = 2 (Figure 8).

(a) (b)

Figure 8. Absolute truncation error plots given relatively to the analytical solution for the recurrent
Runge–Kutta method and proposed parallel scheme (a). Difference between the truncation errors
for parallel and serial solvers (b). Simulation time 5 s, step size value 0.001 s.

One can evaluate the potential speedup of the proposed solver in a parallel case using
Amdahl’s law. It is expected to be not less than three times for five-thread pipelining ar-
chitecture. For systems of higher order, the advantage can be even more sufficient. Eval-
uating the strict dependence between the order of the simulated system and the calcula-
tions’ speedup will be the topic of our further research.

Figure 8. Absolute truncation error plots given relatively to the analytical solution for the recurrent
Runge–Kutta method and proposed parallel scheme (a). Difference between the truncation errors for
parallel and serial solvers (b). Simulation time 5 s, step size value 0.001 s.

One can evaluate the potential speedup of the proposed solver in a parallel case using
Amdahl’s law. It is expected to be not less than three times for five-thread pipelining
architecture. For systems of higher order, the advantage can be even more sufficient.
Evaluating the strict dependence between the order of the simulated system and the
calculations’ speedup will be the topic of our further research.

4. Conclusions

In this paper, we proposed a novel technique to parallelize explicit Runge–Kutta
methods for an efficient hardware implementation of ODE solvers within the pipelining
architecture. We described the proposed approach as an algorithm, illustrating it by solving
three representative examples of ODEs.

We used the estimation of the truncation error to prove that the reported parallel
implementation method does not significantly affect the precision of the method. We
demonstrated the possibility of reducing computational costs while fully maintaining
the properties of the original method. A hardware ODE solver architecture for FPGA
implementation was created using the fixed-point scaling technique. It is shown that the
performance gain obtained by parallelizing explicit RK solvers will increase with the order
of simulated systems. It should be noted that the proposed solver architecture significantly
reduces the complexity of converting Runge–Kutta algorithms to fixed-point hardware.

Computation 2022, 10, 215 11 of 15

The obtained results can be applied to the development of high-speed hardware
simulation systems. It is of interest to investigate the possibility of creating a high-precision
control system using the proposed parallelizing approach and developing adaptive step-
size techniques for parallel Runge–Kutta methods. These topics will be the key directions
of our further studies.

Author Contributions: Conceptualization, K.Z.; data curation, V.A. and N.V.; formal analysis, P.F.;
funding acquisition, V.A.; investigation, P.F., N.V. and K.Z.; methodology, P.F., K.Z. and D.K.;
project administration, D.K.; resources, V.A. and N.V.; software, P.F. and V.A.; supervision, V.A.
and D.K.; validation, D.K. and V.A.; visualization, P.F. and N.V.; writing—original draft, P.F. and V.A.;
writing—review and editing, K.Z. and D.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is supported by the Russian Science Foundation, Project Number 22-41-04409.

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Computation 2022, 10, x FOR PEER REVIEW 12 of 16

Appendix A

Figure A1. Graphical code for software ODE solver with parallel 5-processor computational struc-
ture for test problem (13). Double-precision floating point data type used.

Figure A1. Graphical code for software ODE solver with parallel 5-processor computational structure
for test problem (13). Double-precision floating point data type used.

Computation 2022, 10, 215 12 of 15

Computation 2022, 10, x FOR PEER REVIEW 13 of 16

Figure A2. Graphical code of hardware FPGA ODE solver with multi-pipeline parallel computa-
tional structure for test problem (13). Fixed-Point data type with scaling.

Figure A2. Graphical code of hardware FPGA ODE solver with multi-pipeline parallel computational
structure for test problem (13). Fixed-Point data type with scaling.

Computation 2022, 10, 215 13 of 15

Computation 2022, 10, x FOR PEER REVIEW 14 of 16

Figure A3. Graphical code for software ODE solver with parallel 2-processor computational struc-
ture for test problem (17). Floating point data type used.

Figure A3. Graphical code for software ODE solver with parallel 2-processor computational structure
for test problem (17). Floating point data type used.

Computation 2022, 10, 215 14 of 15
Computation 2022, 10, x FOR PEER REVIEW 15 of 16

.

Figure A4. Graphical code for software ODE solver with multi-pipeline parallel 3-processor com-
putational structure for test problem (19). Floating-point data type used.

Figure A4. Graphical code for software ODE solver with multi-pipeline parallel 3-processor compu-
tational structure for test problem (19). Floating-point data type used.

Computation 2022, 10, 215 15 of 15

References
1. Rahaman, H.; Hasan, M.K.; Ali, A.; Alam, M.S. Implicit Methods for Numerical Solution of Singular Initial Value Problems. Appl.

Math. Nonlinear Sci. 2021, 6, 1–8. [CrossRef]
2. Liu, D.; He, W. Numerical Simulation Analysis Mathematics of Fluid Mechanics for Semiconductor Circuit Breaker. Appl. Math.

Nonlinear Sci. 2021, 7, 331–342. [CrossRef]
3. Wang, Y. Application of numerical method of functional differential equations in fair value of financial accounting. Appl. Math.

Nonlinear Sci. 2022, 7, 533–540.
4. Xu, L.; Aouad, M. Application of Lane-Emden differential equation numerical method in fair value analysis of financial accounting.

Appl. Math. Nonlinear Sci. 2021, 7, 669–676. [CrossRef]
5. Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I: Nonstiff probleme; Springer: Berlin/Heidelberg,

Germany, 1993.
6. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C++." The Art of Scientific Computing, 2nd ed.;

Cambridge University Press: Cambridge, UK, 2007; p. 1002.
7. Butusov, D.N.; Karimov, A.I.; Tutueva, A.V. Hardware-targeted semi-implicit extrapolation ODE solvers. In Proceedings of the

2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, Russia, 12–14 May 2016.
8. Butusov, D.N.; Ostrovskii, V.Y.; Tutueva, A.V. Simulation of dynamical systems based on parallel numerical integration meth-

ods. In Proceedings of the 2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference
(EIConRusNW), St. Petersburg, Russia, 2–4 February 2015.

9. Saralegui, R.; Sanchez, A.; Martinez-Garcia, M.S.; Novo, J.; de Castro, A. Comparison of numerical methods for hardware-in-the-
loop simulation of switched-mode power supplies. In Proceedings of the 2018 IEEE 19th Workshop on Control and Modeling for
Power Electronics (COMPEL), Padua, Italy, 25–28 June 2018; pp. 1–6. [CrossRef]

10. Farhani Baghlani, F.; Chamgordani, A.E.; Shalmani, A.N. HARDWARE IMPLEMENTATION OF NUMERICAL SOLUTION OF
DIFFERENTIAL EQUATIONS ON FPGA. Sharif J. Mech. Eng. 2017, 33, 93–99.

11. Liu, C.; Wu, H.; Feng, L.; Yang, A. Parallel fourth-order Runge-Kutta method to solve differential equations. In International
Conference on Information Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2011.

12. Ding, X.-H.; Geng, D.-H. The convergence theorem of parallel Runge-Kutta methods for delay differential equation. J. Nat. Sci.
Heilongjiang Univ. 2004, 21, 17–22.

13. Jinggao, F. A class of parallel runge-kutta methods for differential-algebraic systems of index 2. J. Syst. Eng. Electron. 1999, 10, 64–75.
14. Bashashin, M.; Nechaevskiy, A.; Podgainy, D.; Rahmonov, I. Parallel algorithms for studying the system of long Josephson

junctions. In Proceedings of the CEUR Workshop Proceedings, Stuttgart, Germany, 19 February 2019.
15. Volokhova, A.V.; Zemlyanay, E.V.; Kachalov, V.V.; Rikhvitskiy, V.S. Simulation of the gas condensate reservoir depletion. Comput.

Res. Model. 2020, 12, 1081–1095. [CrossRef]
16. Tang, H.C. Parallelizing a Fourth-Order Runge-Kutta Method; US Department of Commerce, Technology Administration, Nation-al

Institute of Standards and Technology: Gaithersburg, MD, USA, 1997.
17. Jiang, W.; Yang, Y.-H.E.; Prasanna, V.K. Scalable multi-pipeline architecture for high performance multi-pattern string matching.

In Proceedings of the 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), Atlanta, GA, USA, 19–23
April 2010.

18. Runge, C. Über die numerische Auflösung von Differentialgleichungen. Math. Ann. 1895, 46, 167–178. [CrossRef]
19. Kutta, W. Beitrag zur naherungsweisen integration totaler differentialgleichungen. Z. Math. Phys. 1901, 46, 435–453.
20. Andreev, V.S.; Goryainov, S.V.; Krasilnikov, A.V.; Sarma, K.K. Scaling techniques for fixed-point chaos generators. In Proceedings

of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg
and Moscow, Russia, 1–3 February 2017.

21. Andreev, V.; Ostrovskii, V.; Karimov, T.; Tutueva, A.; Doynikova, E.; Butusov, D. Synthesis and Analysis of the Fixed-Point
Hodgkin–Huxley Neuron Model. Electronics 2020, 9, 434. [CrossRef]

22. Amdahl, G.M. Validity of the single processor approach to achieving large scale computing capabilities, reprinted from the afips
con-ference proceedings, vol. 30 (atlantic city, nj, apr. 18–20), afips press, reston, va., 1967, pp. 483–485, when dr. amdahl was at
international business machines corporation, sunnyvale, california. IEEE Solid-State Circuits Soc. Newsl. 2007, 12, 19–20.

http://doi.org/10.2478/amns.2020.2.00001
http://doi.org/10.2478/amns.2021.2.00024
http://doi.org/10.2478/amns.2021.1.00094
http://doi.org/10.1109/compel.2018.8460060
http://doi.org/10.20537/2076-7633-2020-12-5-1081-1095
http://doi.org/10.1007/BF01446807
http://doi.org/10.3390/electronics9030434

	Introduction
	Materials and Methods
	Results
	Test Problem 1: A Simple Linear System
	Test Problem 2: System with Periodic Solution
	Test Problem 3: Third-Order System

	Conclusions
	Appendix A
	References

