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Abstract: This paper addresses the modeling and the control of an autonomous bicycle robot where
the reference point is the center of gravity. The controls are based on the wheel heading’s angular
velocity and the steering’s angular velocity. They have been developed to drive the autonomous
bicycle robot from a given initial state to a final state, so that the total running cost is minimized.
To solve the problem, the following approach was used: after having computed the control system
Hamiltonian, Pontryagin’s Minimum Principle was applied to derive the feasible controls and the
costate system of ordinary differential equations. The feasible controls, derived as functions of the
state and costate variables, were substituted into the combined nonlinear state–costate system of
ordinary differential equations and yielded a control-free, state–costate system of ordinary differential
equations. Such a system was judiciously vectorized to easily enable the application of any computer
program written in Matlab, Octave or Scilab. A Matlab computer program, set as the main program,
was developed to call a Runge–Kutta function coded into Matlab to solve the combined control-free,
state–costate system of ordinary differential equations coded into a Matlab function. After running
the program, the following results were obtained: seven feasible state functions from which the
feasible trajectory of the robot is derived, seven feasible costate functions, and two feasible control
functions. Computational simulations were developed and provided in order to persuade the readers
of the effectiveness and the reliability of the approach.

Keywords: autonomous vehicle; bicycle robot; center of gravity; modeling; optimal control; path
planning; differential equation; initial value problem; Runge–Kutta; scientific computing

1. Introduction

An autonomous bicycle is a high-efficiency vehicle robot that needs optimal manage-
ment. It is easy and cheap to utilize, but its utilization involves significant and considerable
challenges, which need to be addressed in very judicious, efficient and optimal ways. Some
of the associated challenges concern its stability, its controllability, its observability, its
robustness, etc. To overcome those challenges, robotics and automation have emerged as
critical, current, relevant and innovative methods. Autonomous vehicles are becoming
increasingly involved in humans’ daily lives and create business opportunities for indus-
tries and research opportunities for universities. Researchers are undertaking modeling
and computer simulation and many other experiments. The modeling and control of
autonomous vehicles have become long-standing goals in applied mathematics, computer
sciences and engineering. In each of the above-cited fields, researchers design research
projects to address societal challenges and to meet societal demands. Research projects
are also based on available funds as well as researchers’ abilities, capabilities, experiences
and expertise. There have been a considerable number of innovations and breakthroughs
in robotics and automation, requiring governments to train people to not only behave as
followers (in order to handle innovation) but also to behave as leaders regarding some
aspects of innovation. In each of the research areas, work can be and is being carried out,
and each study has its own hypothesis and objectives. Autonomous vehicle technology
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impacts human life in a way that reduces transport costs, the number of car accidents and
the number of deaths, as well as minimizing financial risk. Reports made by the transport
departments of certain countries have shown that autonomous vehicles can minimize the
number of deaths caused by car crashes [1], thus contributing to optimal fuel management
and storage, contributing to the minimization of transport costs and saving approximately
hundreds of billions of dollars for society as a whole. Despite the fact that robotics signifi-
cantly and considerably impact human activities, human assistance during robot motion
still remains relevant because of certain technical issues, which may suddenly arise during
vehicle motion and are beyond the provided and embedded software and hardware.

There is work that has been carried out on the modeling and control of autonomous
bicycles. Reference [2] aimed at designing an algorithm to self-stabilize an unmanned
electric bicycle. Study [3] aimed at examining the impact of the reaction wheels on the
stability of an autonomous bicycle. Reference [4] aimed at developing an under-actuated
dynamic model for a tractor–trailer bicycle by using the Chaplygin equation. Inverse
dynamics and a virtual prototype simulation were derived in order to prove the reliability
of the developed dynamical model. Study [5] aimed at constructing a non-smooth dynamic
model to plan the trajectory of a bicycle. A numerical solution algorithm was developed
to show that a correct braking balance may considerably and significantly contribute
to the stabilization of the vehicle. Reference [6] aimed at designing a path-following
and a balance control algorithm for an autonomous motorcycle. Reference [7] aimed
at studying the implications of braking style on the stability of a motorcycle. Stability
analysis was performed and demonstrated that effective braking balance was able to
considerably and significantly contribute to the stabilization of the vehicle. Study [8] aimed
at designing a closed-loop control system for the motion of a bicycle. Reference [9] aimed at
analyzing the dynamic model of autonomous bicycles using a control moment gyroscope
(CMG). Reference [10] aimed at designing a steering controller to control bicycles under
certain velocity conditions. Study [11] aimed at modelling an autonomous motorcycle and
designing a control to follow a prescribed trajectory. Reference [12] aimed at modeling
and designing control policies to stabilize a two-wheel bicycle. The experimental results
confirmed that the bicycle robot was able to drive correctly. Reference [13] aimed at
controlling an autonomous bicycle robot in which the slip is considered and an optimal
feedback control is designed to drive the bicycle straight and stably. Reference [14] aimed at
designing control policies to stabilize a two-wheeled autonomous vehicle. Study [15] aimed
at developing a stationary self-sustaining two-wheeled vehicle. Reference [16] aimed at
ameliorating an autonomous bicycle running stability in low-speed range. Study [17] aimed
at examining the robust stabilization and path-following problems of riderless bicycles.
Reference [18] aimed at developing a linear dynamic model for a bicycle robot with the
purpose of driving the bicycle at a high speed. The open-loop stability was analyzed, and
the controllability of the linear dynamic model was verified. Reference [19] developed an
optimal control model to optimize the finacing operation. The associated dynamical system
of the problem involves switching times. All the above-cited papers are relevant to the
topic of this paper because they are explicitly or implicitly concerned with control.

To the best of my knowledge, no paper considers the control of an autonomous
bicycle robot in which the optimal control theory methods are applied explicitly, and in
which the state functions of the system are optimally predicted. When optimal control
theory is applied, the system is weakened so that it can be handled easily. Most of time,
assumptions are made to simplify and linearize a nonlinear system so that it can easily
undergo certain operations, such as developing a quadratic regulator. However, when
a control system is linearized and simplified, if no strategy is adopted to minimize the
loss of information, the results will not be correct. In this paper, the system is highly
nonlinear and has been examined as it is. No other paper has considered minimizing
the running energy. No paper has considered the derivation of a new system consisting
of the costate system of equations adjoining the state system. No paper has considered
the impact of the adjoining system on the output of the state system. So, most of the
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above-mentioned papers and those remaining in the list of references addressed the bicycle
stability problem, the tracking problem, etc., without considering the minimization of the
running costs. This paper focuses on the control of the kinematics of a bicycle robot where
the reference point is the center of gravity. Such an autonomous bicycle is a highly nonlinear
control system. The control of an autonomous bicycle is a rich topic in the way that it
offers a number of significant, attractive and provocative problems associated with current
research interests in the fields of mechatronics, applied mathematics, computer science,
etc. An autonomous bicycle is a dynamical system subject to nonholonomic constraints
on the contact wheels. It is naturally unstable. Its structure inspires a significant number
of problems that researchers can address mathematically and computationally. In the
literature, I discovered a set of rich and beautiful mathematical models requiring the reader
to deal with a lot of mathematics. After combining these with my models, the kinematics
is given by a nonlinear control system of seven ordinary differential equations involving
seven state variables and two control variables. The state variables are the robot position
with respect to the x- and the y-axis coordinates, the heading angle (which is the angle
between the robot and the x axis), the steering angle, the heading angular velocity and the
slipping angular velocity. The controls are based on the heading’s angular acceleration
and the steering’s angular acceleration. Pontryagin’s Minimum Principle is applied, and it
derived the first-order necessary conditions for optimality from which a computer program
is written and provided the feasible state functions, the feasible costate functions and the
feasible control strategies.

The main contributions of this paper are the development of a mathematical model
defined by the system of ordinary differential equations governing the reference commands
(controls), the computation of the two feasible control strategies and the computation of the
solution of the system defined by Equations (38)–(51). Such a solution gives seven feasible
state functions (representing the feasible system responses to input controls) and seven
costate (adjoint) functions. All the computations are performed by the three underlying
computer programs developed in Matlab. The first computer program is used to code
the system combining the state and the costate ordinary differential equations into a
Matlab function. The second computer program is used to code a fourth-order Runge–
Kutta numerical method into a Matlab function, and the third computer program, set
as the main program, is used to code all the input and output operations as well as the
operation consisting of calling the numerical method to solve the system of ordinary
differential equations.

This paper is organized as follows: Section 2 develops different mathematical models
and formulates the problem as an optimal control problem. Section 3 computes the Hamil-
tonian of the control system and solves the normal equations of optimality to obtain the
expressions of the control functions. Section 4 applies Pontryagin’s Minimum Principle
to determine all relevant equations yielding the solutions. Section 5 develops relevant
computer programs to determine the feasible control strategies, the corresponding feasible
state functions and the feasible costate functions.

2. Mathematical Models
2.1. Objective Functional

In this paper, the total running energy to minimize is as follows:

J(Ω) = J(Ω1, Ω2) =
∫ t f

t0

(
Ω1

2 + Ω2
2
)

dt (1)

where t0 and t f are the bicycle motion’s start and end times, respectively. Ω1 ∈ R and
Ω2 ∈ R are the reference commands regulating the bicycle heading angular velocity
and the steering angular velocity, respectively, and correspond to the control variables.
h(t) = Ω1

2 + Ω2
2 ∈ R+ is the cost rate.
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2.2. Control System, Kinematic Model

The bicycle model is given by the following diagram:
Based on nonholonomic constraints and the below Geometric model given by Figure 1,

the motion of an autonomous bicycle is kinematically modelled as follows:

dx
dt

= c1ωcos(θ + β) (2)

dy
dt

= c1ωsin(θ + β) (3)

dθ

dt
= c3ωtan(δ)cos(β) (4)

dδ

dt
= ϕ (5)

dβ

dt
= c2 ϕ(cos(β)/ cos(δ))2 (6)

where c1 = R ∈ R+, c2 = lr
L ∈ R+ and c3 = R

L ∈ R+ are the constants of proportionality
where R, L and lr with ( R < lr < L) are the radius of each wheel, the distance between
the centre of the rear wheel and the center of the front wheel and the distance between the
rear-axle and the center of gravity, respectively. (x, y) are the coordinates of the projection
of the center of gravity on the horizontal plane, θ ∈ R is the heading angle, δ ∈ R is the
steering angle, β ∈ R is the slip angle, ϕ ∈ R is the steering angular velocity and ω ∈ R is
the heading angular velocity of the wheels, and S is the length of the left-hand side of the
bigger triangle.

Computation 2022, 10, x FOR PEER REVIEW 4 of 22 
 

 

the steering angular velocity, respectively, and correspond to the control variables. ℎ(𝑡) =Ωଵଶ + Ωଶଶ ∈  ℝା is the cost rate.  

2.2. Control System, Kinematic Model 
The bicycle model is given by the following diagram: 
Based on nonholonomic constraints and the below Geometric model given by Figure 

1, the motion of an autonomous bicycle is kinematically modelled as follows: 𝑑𝑥𝑑𝑡 = 𝑐ଵ𝜔𝑐𝑜𝑠(𝜃 + 𝛽) (2)𝑑𝑦𝑑𝑡 = 𝑐ଵ𝜔𝑠𝑖𝑛(𝜃 + 𝛽) (3)𝑑𝜃𝑑𝑡 = 𝑐ଷ𝜔𝑡𝑎𝑛(𝛿)𝑐𝑜𝑠(𝛽) (4)𝑑𝛿𝑑𝑡 = 𝜑 (5)𝑑𝛽𝑑𝑡 = 𝑐ଶ𝜑(cos (𝛽)/cos (𝛿))ଶ (6)

where 𝑐ଵ = 𝑅 ∈ ℝା , 𝑐ଶ = ௟ೝ௅ ∈ ℝା  and 𝑐ଷ = ோ௅ ∈ ℝା  are the constants of proportionality 
where 𝑅, 𝐿 and 𝑙௥ with ( 𝑅 < 𝑙௥ < 𝐿) are the radius of each wheel, the distance between 
the centre of the rear wheel and the center of the front wheel and the distance between the 
rear-axle and the center of gravity, respectively. (𝑥, 𝑦)  are the coordinates of the 
projection of the center of gravity on the horizontal plane, 𝜃 ∈  ℝ is the heading angle, 𝛿 ∈ ℝ is the steering angle, 𝛽 ∈ ℝ is the slip angle, 𝜑 ∈ ℝ is the steering angular velocity 
and 𝜔 ∈ ℝ is the heading angular velocity of the wheels, and 𝑆 is the length of the left-
hand side of the bigger triangle.  

 
Figure 1. Geometric Model of a Center of Gravity-based autonomous Bicycle Robot. 

The reference commands which regulate the bicycle’s wheels’ angular velocity and 
the slip angular velocity are given by the following closed-loop system of ordinary 
differential equations: 𝑑𝜔𝑑𝑡 = −𝑎ଵ𝜔+𝑎ଵΩଵ (7)𝑑𝜑𝑑𝑡 = −𝑎ଶ𝜑+𝑎ଶΩଶ (8)

where Ωଵ  and Ωଶ  are the reference commands, and 𝑎ଵ  and 𝑎ଶ  are parameters of 
proportionality. 

Figure 1. Geometric Model of a Center of Gravity-based autonomous Bicycle Robot.

The reference commands which regulate the bicycle’s wheels’ angular velocity and the
slip angular velocity are given by the following closed-loop system of ordinary
differential equations:

dω

dt
= −a1ω + a1Ω1 (7)

dϕ

dt
= −a2 ϕ + a2Ω2 (8)

where Ω1 and Ω2 are the reference commands, and a1 and a2 are parameters of proportionality.
By letting z1 = x, z2 = y, z3 = θ, z4 = δ, z5 = β, z6 = ω and z7 = ϕ be state variables

and Ω1 and Ω2 be control variables, then the above models can be reformulated as:

J(Ω) = J(Ω1, Ω2) =
∫ t f

t0

(
Ω1

2 + Ω2
2
)

dt (9)
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and

dz1

dt
= c1z6cos(z3 + z5) (10)

dz2

dt
= c1z6sin(z3 + z5) (11)

dz3

dt
= c3z6tan(z4)cos(z5) (12)

dz4

dt
= z7 (13)

dz5

dt
= c2z7cos2(z5)/cos2(z4) (14)

dz6

dt
= −a1z6 + a1Ω1 (15)

dz7

dt
= −a2z7 + a2Ω2 (16)

2.3. Problem Formulation

From all that precedes, the problem can be formulated as follows:
For a given time interval

[
t0, t f

]
⊂ R+ and initial states z1(0) = z01, z2(0) = z02,

z3(0) = z03, z4(0) = z04, z5(0) = z05, z6(0) = z06 and z7(0) = z07, compute the feasible
control strategies Ω1(t) and Ω2(t) as well as the corresponding feasible system responses,
which must be defined by the state functions z1(t), z2(t), z3(t), z4(t), z5(t), z6(t) and
z7(t), so that the autonomous bicycle robot can move from a given state to a final state such
that the total running cost of energy spent by the bicycle is minimized. The kinematics of
the robot’s motion is then given by the system of ordinary differential Equations (10)–(16).
Optimal control theory emerges as a relevant approach to solve the problem (9)–(16) because
it has many strong and convincing theorems. We will focus on the design of open-loop
control strategies.

3. Hamiltonian and Feasible Controls

The Hamiltonian of the system is given by:

H(t, Y(t), α(t), Ω1(t), Ω2(t)) = h(t) + ∑7
k=1 αk(t) fk(Y(t), Ω1(t), Ω2(t)) (17)

where:
h(t) = Ω1

2 + Ω2
2 is energy cost rate;

f1(Y(t), Ω1(t), Ω2(t)) = c1z6cos(z3 + z5) is the x component of the linear velocity of
the bicycle;

f2(Y(t), Ω1(t), Ω2(t)) = c1z6sin(z3 + z5) is the y component of the linear velocity of
the bicycle;

f3(Y(t), Ω1(t), Ω2(t)) = c3z6tan(z4)cos(z5) is the heading angular velocity;
f4(Y(t), Ω1(t), Ω2(t)) = z7 is the steering angular velocity;
f5(Y(t), Ω1(t), Ω2(t)) = c2z7cos2(z5)/cos2(z4) is the slipping angular velocity;
f6(Y(t), Ω1(t), Ω2(t)) = −a1z6 + a1Ω1 is the bicycle heading acceleration;
f7(Y(t), Ω1(t), Ω2(t)) = −a2z7 + a2Ω2 is the bicycle steering acceleration;
Y(t) = (x(t), y(t), θ(t), δ(t), β(t), ω(t), ϕ(t)) = (z1(t), z2(t), z3(t), z4(t), z5(t), z6(t),

z7(t)) is the unknown state vector function;
α(t) = (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t), α7(t)) is the unkown costate (adjoint)

vector function; Ω = (Ω1, Ω2) is the control vector.
Each of the functions fi are continuous on

[
t0, t f

]
.

Define z8 = α1, z9 = α2, z10 = α3, z11 = α4, z12 = α5, z13 = α6 and z14 = α7.
The feasible controls’ normal equations for optimality are as follows:
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∂H
∂Ω1

= 2Ω1
∗ + a1α6 = 0 (18)

and
∂H
∂Ω2

= 2Ω2
∗ + a2α7 = 0 (19)

The feasible controls are given by:

Ω1
∗ = −0.5a1α6 (20)

and

Ω2
∗ = −0.5a2α7 (21)

In terms of new variables, the controls’ normal equations are:

∂H
∂Ω1

= 2Ω1
∗ + a1z13 = 0 (22)

and
∂H
∂Ω2

= 2Ω2
∗ + a2z14 = 0 (23)

The feasible controls are given by:

Ω1
∗ = −0.5a1z13 (24)

and

Ω2
∗ = −0.5a2z14 (25)

From (24), notice that the first control strategy function Ω1
∗ = −0.5a1z13 involves

the costate variable z13; z13 is the costate variable adjoint and connected to variable z6.
The variable z6 is involved in the motion of the robot along the x and y axis. x and y
constitute the driving parameters of the autonomous bicycle. Also notice from (25) that the
second control function Ω2

∗ = −0.5a1z14 involves the costate variable z14; z14 is the costate
variable adjoint and connected to variable z7, which is connected to z4.

4. Pontryagin’s Minimum Principle

Pontryagin’s Minimum Principle is a method based on the calculus of variations to
solve optimal control problems with state constraints.

Optimal Control Theory is applied in finance [18,20], engineering [21], biology, geology,
image processing, etc. Some of the problems solved through Pontryagin’s Minimum
Principle (PMP) are the Minimum Time Problem, Minimum Fuel Problem, Minimum
Energy Problem, Minimum Risk Problem, Minimum Cost of Operation and Minimum Loss
Problem. The developed results are for optimal, effective and reliable decision making.

Theorem

The necessary conditions for the pair (x∗(t), u∗(t)) to be optimal [11] is the existence
of a costate vector α∗(t) such that:

dx∗

dt
(t) =

∂H
∂α

(t, x∗(t), u∗(t), α∗(t)) (26)

dα∗

dt
(t) = −∂H

∂α
(t, x∗(t), u∗(t), α∗(t)) (27)

H(t, x∗(t), u∗(t), α∗(t)) ≤ H(t, x∗(t), u(t), α∗(t)) (28)

and the following boundary condition:
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[
∂h
∂x

(
t f , x∗

(
t f

))
− α∗

(
t f

)]T
δx f +

[
H
(

t, x∗
(

t f

)
, u∗
(

t f

)
, α∗
(

t f

))
+

∂h
∂x

(
t f , x∗

(
t f

))]
δt f = 0 (29)

u∗(t) is a control that minimizes H(t, x∗(t), u(t), t, α∗(t)). Notice that the above con-
ditions are necessary and not sufficient. Thus, we can make a conclusion that a necessary
condition for a control to minimize the performance cost function J is the following

H(t, x∗(t), u∗(t), α∗(t)) ≤ H(t, x∗(t), u(t), α∗(t)) for all t ∈
[
t0, t f

]
and for all admissi-

ble controls u.
The above theorem is called Pontryagin’s Minimum Principle.
From all that precedes, the application of Pontryagin’s Minimum Principle to this

article’s problem yields the following:
If Ω∗ = (Ω1

∗, Ω2
∗) ∈ R2 is the feasible control vector of the above problem and

Y∗ = (z1
∗, z2

∗, z3
∗, z4

∗, z5
∗, z6

∗, z7
∗) ∈ R7 is the associated feasible system response, then

there exists a costate vector α∗ = (z8
∗, z9

∗, z10
∗, z11

∗, z12
∗, z13

∗, z14
∗) ∈ R7 such that the

following properties are satisfied:

J(Ω∗) ≤ J(Ω)∀Ω ∈ R2 (30)
dz8

dt
= − ∂H

∂z1
= 0 (31)

dz9

dt
= − ∂H

∂z2
= 0 (32)

dz10

dt
= − ∂H

∂z3
= c1z6(z8 sin(z3 + z5)− z9 cos(z3 + z5)) (33)

dz11

dt
= − ∂H

∂z4
= −c3z6z10 cos(z5) sec2(z4) + 2c2z7z12 cos2(z5) tan(z4) sec2(z4) (34)

dz12

dt
= − ∂H

∂z5
= c1z6(z8 sin(z3 + z5)− z9 cos(z3 + z5)) + c3z6z10 tan(z4) sin(z5) + l2z7z12 cos−2(z4) sin(2z6) (35)

dz13

dt
= − ∂H

∂z6
= −c1(z8 cos(z3 + z5) + z9 sin(z3 + z5))− c3z10 tan(z4) cos(z5) + a1z13 (36)

dz14

dt
= − ∂H

∂z7
= −z11 − c2z12cos2(z5)/cos2(z4) + a2z14 (37)

Equation (30) is the optimality condition for the control strategies, and the system of
Equations (31)–(37) represent the costate system. By combining the state and the costate sys-
tems into a vector as z = [Y, α], and by substituting Ω1

∗ = −0.5a1z13 and Ω2
∗ = −0.5a2z14

into the system, which is being built, then the combined state–costate system can be
rewritten as follows:

dz1

dt
= c1z6cos(z3 + z5) (38)

dz2

dt
= c1z6sin(z3 + z5) (39)

dz3

dt
= c3z6tan(z4)cos(z5) (40)

dz4

dt
= z7 (41)

dz5

dt
= c2z7cos2(z5)/cos2(z4) (42)

dz6

dt
= −a1z6 + a1(−0.5a1z13) (43)
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dz7

dt
= −a2z7 + a2(−0.5a2z14) (44)

dz8

dt
= 0 (45)

dz9

dt
= 0 (46)

dz10

dt
= c1z6(z8 sin(z3 + z5)− z9 cos(z3 + z5)) (47)

dz11

dt
= −c3z6z10 cos(z5) sec2(z4) + 2c2z7z12 cos2(z5) tan(z4) sec2(z4) (48)

dz12

dt
= c1z6(z8 sin(z3 + z5)− z9 cos(z3 + z5)) + c3z6z10 tan(z4) sin(z5) + c2z7z12 cos−2(z4) sin(2z6) (49)

dz13

dt
= −c1(z8 cos(z3 + z5) + z9 sin(z3 + z5))− c3z10 tan(z4) cos(z5) + a1z13 (50)

dz14

dt
= −z11 − c2z12cos2(z5)/cos2(z4) + a2z14 (51)

5. Numerical and Computational Simulations

The above system (38)–(51) can be vectorized as dZ
dt = f (t, Z) (52), where

Z = [z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14]
T ∈ R14 is the vector storing

seven state variables and seven costate variables. The following parameters are used:

R = 0.4; L = 0.8; lr = 0.4; c1 = R; c2 =
lr
L

; c3 =
R
L

; a1 = 0.25; a2 = 0.25; t0 = 0;

t f = 5; N = 501

where t0 is the lower bound of the time interval, t f is the upper bound of the time interval

and N is the number of discrete points on the interval
[
t0, t f

]
. The remaining parameters

are defined in the previous sections.
In order to develop an algorithm which can solve any system of ordinary differential

equations, we wrote a Matlab function that is an algorithm coding a fourth-order Runge–
Kutta method. Such an Algorithms 1–4 is as follows:

Algorithm 1 Fourth-order Runge–Kutta method

function [t,z] = runge_v2(state_costate_robot,t0,tf,N,z0)
h = (tf–t0)./(N−1); % N is the number of discrete points, h is the step.
% t0 and tf are the lower bound and the upper bound of the time interval [t0,tf].
t = t0:h:tf; % Discretization of the time interval [t0,tf].
% t is the time vector with N elements. His elements are the discrete time points. t = t′;
z = zeros(N,length(z0)); % z is initialized to zero. It is initially set as a matrix of N rows
and with the
The first row of the solution z is set to z0;
for n = 2:N
k1 = feval(fs,t(n − 1),z(n − 1,:));
k2 = feval(fs,t(n − 1) + (h/2),z(n − 1,:) + (h/2) × k1′);
k3 = feval(fs,t(n − 1) + (h/2),z(n − 1,:) + (h/2) × k2′);
k4 = feval(fs,t(n − 1) + h,z(n − 1,:) + h × k3′);
z(n,:) = z(n − 1,:) + (h/6) × (k1′ + 2 × k2′ + 2 × k3′+k4′);
end

The above algorithm can be used to solve any initial value problem. Let us use it to
solve the above combined state–costate system of ordinary differential Equations (38)–(51).
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The combined state–costate system of ordinary differential equations is coded into the
following vector function:

Algorithm 2 The combined state–costate system of ordinary differential equations

function dzdt = bicycle_centerOfGravity (t,z)
dzdt = zeros(14,1);
R = 0.4; L = 0.8; lr = 0.4; c1 = R; c2 = lr/L; c3 = R/L; a1 = 0.25; a2 = 0.25;
dzdt (1) = c1 × z(6) × cos(z(3) + z(5)); %Coding of Equation (38)
dzdt (2) = c1 × z(6) × sin(z(3) + z(5)); % Coding of Equation (39)
dzdt (3) = c3 × z(6) × tan(z(4)) × cos((z(5))); % Coding of Equation (40)
dzdt (4) = z(7); % Coding of Equation (41)
dzdt (5) = c2 × z(7) × ((cos(z(5))ˆ2)/(cos(z(4))ˆ2)); % Coding of Equation (42)
dzdt (6) = −a1 × z(6) + a1 × (−0.5 × a1 × z(13)); % Coding of Equation (43)
dzdt (7) = −a2 × z(7) + a2 × (−0.5 × a2 × z(14)); % Coding of Equation (44)
dzdt (8) = 0; % Coding of Equation (45)
dzdt (9) = 0; % Coding of Equation (46)
dzdt (10) = c1 × z(6) × (z(8) × sin(z(3) + z(5)) − z(9) × cos(z(3) + z(5))); % Coding of Equation (47)
dzdt (11) = −c3 × z(6) × z(10) × cos(z(5)) × (sec(z(4))ˆ2) + 2 × c2 × z(7) × z(12) × (cos(z(5))ˆ2) ×
tan(z(4)) × (sec(z(4))ˆ2); % Coding of Equation (48)
dzdt (12) = c1 × z(6) × (z(8) × sin(z(3) + z(5)) − z(9) × cos(z(3) + z(5))) + c3 × z(6) × z(10) ×
tan(z(4)) × sin(z(5)) + c2 × z(7) × z(12) × (cos(z(4))ˆ(−2)) × sin(2 × z(6)); % Coding of
Equation (49)
dzdt (13) = −c1 × (z(8) × cos(z(3) + z(5)) + z(9) × sin(z(3) + z(5))) −c3 × z(10) × tan(z(4)) ×
cos(z(5)) + a1 × z(13);
% Coding of Equation (50)
dzdt (14) = −z(11) − c2 × z(12) × ((cos(z(5))/cos(z(4)))ˆ2) + a2 × z(14); % Coding of Equation (51)

The function coding the state–costate system of ordinary differential equations can
also be written as:

Algorithm 3 State–costate system of ordinary differential equations

function dzdt = bicycle_centerOfGravity (t,z)
dzdt = zeros(14,1); R = 0.4; L = 0.8; lr = 0.4; c1 = R; c2 = lr/L; c3 = R/L; a1 = 0.25; a2 = 0.25;
dzdt = [c1 × z(6) × cos(z(3) + z(5));
c1 × z(6) × sin(z(3) + z(5));
c3 × z(6) × tan(z(4)) × cos((z(5)));
z(7);
c2 × z(7) × ((cos(z(5))ˆ2)/(cos(z(4))ˆ2));
−a1 × z(6) + a1 × (−0.5 × a1 × z(13));
−a2 × z(7) + a2 × (−0.5 × a2 × z(14));
0;
0;
c1 × z(6) × (z(8) × sin(z(3) + z(5)) − z(9) × cos(z(3) + z(5)));
−c3 × z(6) × z(10) × cos(z(5)) × (sec(z(4))ˆ2) + 2 × c2 × z(7) × z(12) × (cos(z(5))ˆ2) × tan(z(4)) ×
(sec(z(4))ˆ2);
c1 × z(6) × (z(8) × sin(z(3)+z(5)) − z(9) × cos(z(3)+z(5))) + c3 × z(6) × z(10) × tan(z(4)) ×
sin(z(5))
+c2 × z(7) × z(12) × (cos(z(4))ˆ(−2)) × sin(2 × z(6));
−c1 × (z(8) × cos(z(3) + z(5)) + z(9) × sin(z(3) + z(5))) − c3 × z(10) × tan(z(4)) × cos(z(5)) + a1 ×
z(13);
−z(11) −c2 × z(12) × ((cos(z(5))/cos(z(4)))ˆ2) + a2 × z(14)];

Three different Matlab functions, “function [t,z] = runge_kutta(fs,t0,tf,N,z0) ”, ”func-
tion dzdt = bicycle_centerOfGravity (t,z) ” and “function main_ bicycle_centerOfGravity”,
are developed in three different files. main_ bicycle_centerOfGravity is a script function.
For sake of ease, let us name these tree files runge_kutta.m, bicycle_centerOfGravity.m and
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main_ bicycle_centerOfGravity.m, respectively, where main_ bicycle_centerOfGravity.m is
the main file.

As said above, function dzdt = bicycle_centerOfGravity (t,z) codes the system combining
the state and the costate’s ordinary differential equations, and [t,z] = runge_v2(fs,t0,tf,N,z0)
codes a fourth-order Runge–Kutta numerical method to solve any system of ordinary
differential equations. In addition to statements of allocation, the script file contains also a
statement calling.

function [t,z] = runge_v2(fs,t0,tf,N,z0) to solve the system of differential equations
defined by function.

dzdt = bicycle_centerOfGravity (t,z). The system is a first-order system. The main file
is given by the following set of codes:

Algorithm 4 First-order system

function main_bicycle_centerOfGravity
clear all
clc
format long
disp(‘Nonlinear Control of an Autonomous Bicycle Robot: Computation of Feasible Controls’)
R = 0.4; L = 0.8; lr = 0.4; c1 = R; c2 = lr/L; c3 = R/L; a1 = 0.25; a2 = 0.25; t0 = 0; tf = 5; N = 501;
z0 = [zeros (7,1);2 ∗ ones (7,1)];
[t,z] = runge_v2(‘ bicycle_centerOfGravity ‘,t0,tf,N,z0);
control1 = −0.5 × a1 × z(:,13); control2 = −0.5 × a2 × z(:,14); control = [ control1, control2];
dx = c1 × z(6) × cos(z(3) + z(5)); % x component of the velocity
dy = c1 × z(6) × sin(z(3) + z(5)); % y component of the velocity
dTheta = c3 × z(6) × tan(z(4)) × cos((z(5))); % Heading angular velocity
dDelta = z(7); % Steering angular velocity
dOmega = c2 × z(7) × ((cos(z(5))ˆ2)/(cos(z(4))ˆ2)); % Rate of change of the slipping angular
velocity
dPhi = −a1 × z(6) + a1 × (−0.5 × a1 × z(13));
dzdt7 = −a2 × z(7) + a2 × (−0.5 × a2 × z(14));
% Feasible trajectory
plot(z(:,1),z(:,2),’r’); xlabel(‘x (in meters)’);ylabel(‘y = f(x) (in meters)’);
% Converting the plot into a png (Portable Network Graphic) format
print C:\Users\Guest\Documents\16september2022\bicyclepath.png;
disp(‘To display the first three state functions, press a key’)
% distance = intsplin(t,sqrt(dx.ˆ2 + dy.ˆ2));
% First 3 state functions
subplot(3,1,1); plot(t,z(:,1),’r’); xlabel(‘Time t in seconds’); ylabel(‘State 1 ‘);
subplot(3,1,2); plot(t,z(:,2),’r’); xlabel(‘Time t in seconds ‘); ylabel(‘State 2 ‘);
subplot(3,1,3); plot(t,z(:,3),’r’); xlabel(‘Time t in seconds ‘); ylabel(‘State 3 ‘);
% The file containing the first three state function graphs is named “bicycleFirst3states” and saved
in the folder whose path is C:\Users\Guest\Documents\16september2022
% Converting the plot into png (Portable Graphic network) format
print C:\Users\Guest\Documents\16september2022\bicycleFirst3states.png;
% Last 4 state functions
disp(‘To display the last four state functions, press a key’)
subplot(2,2,1); plot(t,z(:,4),’r’); xlabel(‘Time t in seconds’); ylabel(‘State 4 ‘);
subplot(2,2,2); plot(t,z(:,5),’r’); xlabel(‘Time t in seconds ‘); ylabel(‘State 5 ‘);
subplot(2,2,3); plot(t,z(:,6),’r’); xlabel(‘Time t in seconds ‘); ylabel(‘State 6 ‘);
subplot(2,2,4); plot(t,z(:,7),’r’); xlabel(‘Time t in seconds ‘); ylabel(‘State 7 ‘);
% Converting the plot into png (Portable Graphic network) format
print C:\Users\Guest\Documents\16september2022\bicycleLast4states.png;
% First 3 costate functions
disp(‘To display the first three costate functions, press a key’)
subplot(3,1,1); plot(t,z(:,8),’r’); xlabel(‘Time t in seconds’); ylabel(‘Costate 1 ‘);
subplot(3,1,2); plot(t,z(:,9),’r’); xlabel(‘Time t in seconds ‘); ylabel(‘Costate 2 ‘); subplot(3,1,3);
plot(t,z(:,10),’r’); xlabel(‘Time t in seconds ‘); ylabel(‘Costate 3 ‘);
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Algorithm 4 First-order system

% Converting the plot into png (Portable Graphic network) format
print C:\Users\Guest\Documents\16september2022\bicycleFirst3Costates.png;
% Last 4 costate functions
disp(‘To display the last four costate functions, press a key’)
subplot(2,2,1); plot(t,z(:,11),’r’); xlabel(‘Time t in seconds’); ylabel(‘Costate 4‘);
subplot(2,2,2); plot(t,z(:,12),’r’); xlabel(‘Time t in seconds ‘); ylabel(‘Costate 5‘);
subplot(2,2,3); plot(t,z(:,13),’r’); xlabel(‘Time t in seconds ‘); ylabel(‘Costate 6‘);
subplot(2,2,4); plot(t,z(:,14),’r’); xlabel(‘Time t in seconds ‘); ylabel(‘Costate 7‘);
% Converting the plot into png (Portable Graphic network) format
print C:\Users\Guest\Documents\16september2022\bicycleLast4Costates.png;
% Control strategies
disp(‘To display the two control functions, press a key’)
subplot(2,1,1); plot(t,control1,’r’); xlabel(‘Time t in seconds ‘); ylabel(‘Control1′);
subplot(2,1,2); plot(t,control2,’r’); xlabel(‘Time t in seconds ‘); ylabel(‘Control2′);
% Converting the plot into png (Portable Graphic network) format
print C:\Users\Guest\Documents\16september2022\bicycleControls.png
% Velocities
disp(‘To display the directional velocities functions, press a key’)
subplot(3,1,1); plot(t,dx,’r’); xlabel(‘Time t in seconds ‘); ylabel(‘x velocity’);
subplot(3,1,2); plot(t,dy,’r’); xlabel(‘Time t in seconds ‘); ylabel(‘y velocity ‘);
subplot(3,1,3); plot(t,c1*abs(z(:,6)),’r’); xlabel(‘Time t in seconds ‘);ylabel(‘Robot speed’);
% Converting the plot into png (Portable Graphic network) format
print C:\Users\Guest\Documents\16september2022\bicycle_velocities.png
diary C:\Users\Guest\Documents\16september2022\Results_Runge-Kutta;
% diary allows to store the numerical data and results into a specified file.

Case 1: The initial heading angle for the position of the robot is 0 radian; the other
parameters also are 0.

This means that the initial condition is z0 = [zeros (7,1);2 ∗ ones (7,1)], in which zeros
(7,1) is the initial state vector and 2 ∗ ones (7,1) is the initial costate vector. The following
are the results: Figure 2 presents the trajectory of the autonomous bicycle robot, where
(0, 0) is the starting point, and 0 is the starting heading angle between the robot and the x
axis. Figure 2 is plotted in the third quadrant. For Figure 3, the magnitude of the initial
costate vector is increased. Then, one can notice that the length of the resulting robot’s
trajectory has increased. One can also verify with the program that, in the initial condition,
if the costate vector 25 ∗ ones (7,1) is replaced by the vector −25 ∗ ones (7,1), the curve will
be displaced from the third quadrant to the fourth quadrant with the same length.
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Figure 3. Feasible Vehicle Robot Trajectory (Initial condition = [zeros (7,1); 25 ∗ ones (7,1)]).

Figure 4 presents the first three state functions x(t), y(t) and θ(t) defined, respectively,
by state 1, state 2 and state 3. The points (x(t), y(t)) defines the above feasible trajectory
of the robot. In this case, for the starting position of the robot (x(t = 0), y(t = 0)) = (0, 0),
θ(t = 0) = 0, We have the following:
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Figure 4. Feasible first three state functions.

Figure 5 presents the last four state functions δ(t), β(t), ω(t) and ϕ(t) given in the
graph by State 4 (the steering angle), State 5 (the slip angle), State 6 (the steering angular
velocity) and State 7 (the heading angular velocity), respectively. Notice that state 4,
state 5 and state 7 are increasing.

Figure 6 presents the first three costate functions α1(t), α2(t) and α3(t) (adjoint func-
tions to x(t), y(t) and θ(t), respectively) given, respectively, by Costate 1, Costate 2 and
Costate 3. One can notice that the first two costate functions are constant functions due to
the values of their time derivatives, which are zero, given by the Equations (41) and (42).
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Figure 6. Feasible first three costate functions.

Figure 7 presents the last four costate functions α4(t), α5(t), α6(t) and α7(t) (adjoint
functions to δ(t), β(t), ω(t) and ϕ(t), respectively) given, respectively, by Costate 4, Costate
5, Costate 6 and Costate 7.

Figure 8 presents the feasible controls. One can notice that the two control functions
are increasing in the given interval. Control 1 and Control 2 are based on the bicycle wheels’
heading angular velocity and slip angular velocity, respectively.
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Figure 8. Feasible Control functions.

Figure 9 presents the velocity along the x direction, the velocity along the y direction
and the feasible speed. One can notice that the speed increases in a time interval and
decreases in another time interval. Notice from the above figure that each control strategy
is increasing.
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Figure 9. Feasible velocities.

Case 2: The initial position of the robot is (x(t = 0), y(t = 0)) = (0, 0), θ(t = 0) = π
2 .

The other parameters in the program remain the same. The initial condition is z0 = [zeros(2, 1);
π
2 ; 0; 0; 0; 0; 2∗ones(7, 1)], in which

[
zeros(2, 1); π2 ; 0; 0; 0; 0

]
is the initial state vector and

2∗ones(7, 1) is the costate vector. Such graphs enable me to show the performance
of the vehicle. Unlike Figure 2, which considers the starting point of the robot’s tra-
jectory at (0, 0) with an angle of zero radian, Figure 10 considers the same starting
point (0, 0) but with an angle of π

2 with respect to the x axis. In other words, we have
(x(t = 0), y(t = 0)) = (0, 0), θ(t = 0) = π

2 . One can notice that the robot travels in the
fourth quadrant.
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Figure 10. Feasible Vehicle Robot Trajectory.

Unlike Figure 4, and Figure 11 presents the first three state functions x(t), y(t) and θ(t)
defined, respectively, by state 1, state 2 and state 3. The points (x(t), y(t)) define the above fea-
sible trajectory of the robot. In this case, we have (x(t = 0), y(t = 0)) = (0, 0), θ(t = 0) = π

2 .
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Figure 11. Feasible first three state trajectories.

Unlike Figure 5, Figure 12 presents the last four state functions δ(t), β(t), ω(t) and
ϕ(t) given in the graph by State 1 (the steering angle), State 2 (the slip angle), State 3 (the
steering angular velocity) and State4 (the heading angular velocity), respectively. Notice
that state 1, state 2 and state 4 are increasing.

Computation 2022, 10, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 11. Feasible first three state trajectories. 

Unlike Figure 5, Figure 12 presents the last four state functions 𝛿(𝑡), 𝛽(𝑡), 𝜔(𝑡) and 

𝜑(𝑡) given in the graph by State 1 (the steering angle), State 2 (the slip angle), State 3 (the 

steering angular velocity) and State4 (the heading angular velocity), respectively. Notice 

that state 1, state 2 and state 4 are increasing. 

(𝑥(𝑡 = 0), 𝑦(𝑡 = 0)) = (0,0), 𝜃(𝑡 = 0) =
𝜋

2
. 

 
Figure 12. Feasible last four state trajectories: state 4, state 5, state 6, state 7.



Computation 2022, 10, 194 17 of 20

(x(t = 0), y(t = 0)) = (0, 0), θ(t = 0) = π
2 .

Unlike Figure 6, Figure 13 presents the first three costate functions α1(t), α2(t) and
α3(t) (adjoint functions to x(t), y(t) and θ(t), respectively) given, respectively, by Costate
1, Costate 2 and Costate 3. One can notice that the first two costate functions are con-
stant functions due to the values of their time derivatives, which are zero, given by the
Equations (41) and (42):

(x(t = 0), y(t = 0)) = (0, 0), θ(t = 0) =
π

2
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Figure 13. Feasible first three costate trajectories.

Unlike Figure 7, Figure 14 presents the last four costate functions α4(t), α5(t), α6(t)
and α7(t) (adjoint functions to δ(t), β(t), ω(t) and ϕ(t), respectively) given, respectively,
by Costate 4, Costate 5, Costate 6 and Costate 7.
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Unlike Figure 8, Figure 15 presents the feasible controls. One can notice that the two
control strategy functions are increasing in the given interval. Control 1 and Control 2 are
based on the bicycle wheels’ heading angular velocity and slip angular velocity, respectively.

Computation 2022, 10, x FOR PEER REVIEW 19 of 22 
 

 

 

Figure 14. Feasible last four costate trajectories. 

Unlike Figure 8, Figure 15 presents the feasible controls. One can notice that the two 

control strategy functions are increasing in the given interval. Control 1 and Control 2 are 

based on the bicycle wheels’ heading angular velocity and slip angular velocity, respec-

tively. 

 

Figure 15. Feasible control strategies. 
Figure 15. Feasible control strategies.

Figures 9 and 16 present the velocity along the x direction, the velocity along the y
direction and the feasible speed. One can notice that the speed of the robot is obtained by
combining the x velocity and the y velocity.
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6. Conclusions

The aim of this paper was to model and to control the kinematics of an autonomous
bicycle robot (where the reference point is the center of gravity). The autonomous vehicle
robot had to drive from a given initial state to a final state such that the running cost was
minimized. Pontryagin’s Minimum Principle was applied, and it derived the optimality
conditions and the costate system of ordinary differential equations. The state and the
costate system of ordinary differential equations were combined into a single system of
ordinary differential equations. After having designed relevant initial conditions, such a
system was solved and gave the feasible control strategies and the feasible state functions,
from which the feasible trajectory of the robot was derived. Finally, the feasible costate
functions were obtained. The obtained results enable the prediction of the performance
of the autonomous bicycle robot so that it can be controlled efficiently. The designed
control strategy function takes into account any disturbance of the system. Computational
simulations are developed and provided to show the effectiveness of the results. One can
notice from the plot of the feasible trajectory that the length of the trajectory is proportional
to the magnitude of the initial costate vector provided that there is no costate component
equal to zero. Future Research Directions will address the following topics: the effect
of the size of the initial costate vector on the length of the robot’s trajectory; the effect
of the initial heading angle on the instantaneous direction of the trajectory; the path
following feedback control of autonomous bicycle robots; from an optimal control problem
of autonomous bicycle robots to nonlinear constrained optimization problems and their
applications to robotics; the design of fifth degree Lagrange interpolating polynomials to
approximate optimal control functions and their associated state functions; The optimal
control of quantum systems; control of chemical processes; forensic detection of deep
fake videos; data science methods to transform economic and financial data into critical
information; data science methods to transform medical and biological data into critical
information; the control of electromagnetic systems; the control of biological systems;
machine learning applications in autonomous vehicle robots; robot path planning; free-
obstacle path planning using fuzzy logic; natural language processing using linear and/or
multilinear algebra; blockchain modeling and computer simulations; image analysis using
differential equations; the modeling and control of photonic systems; collision-free control
of an autonomous bicycle robot using a tracking policy; path planning using reinforcement
learning; material science and principal component analysis; crime investigation using
principal component analysis, etc.
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