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Abstract: In this paper, the hesitant neutrosophic linguistic set is first defined by extending a hesitant
fuzzy set to accommodate linguistic terms and neutrosophic fuzzy values. Some operational laws
are defined for hesitant neutrosophic linguistic fuzzy information. Several distance measures
have been defined including generalized hesitant neutrosophic linguistic distance, generalized
hesitant neutrosophic linguistic Hausdorff distance, and generalized hesitant neutrosophic linguistic
hybrid distance. Some hesitant neutrosophic fuzzy linguistic aggregation operators based on the
Choquet integral have been defined. A new multiple attribute decision making method for hesitant
neutrosophic fuzzy linguistic information has been developed based on TOPSIS. In order to illustrate
the feasibility and practical advantages of the new algorithm, we use it to select a company to invest.
The new method is then compared with other methods.

Keywords: neutrosophic set; linguistic argument; hesitant fuzzy set; Choquet integral; multiple
attribute decision making

1. Introduction

With the development of society and the economy, decision problems have become increasingly
complicated. Fuzziness and uncertainty exists extensively in the decision process. Many useful tools
have been developed to model fuzzy and uncertain information, including fuzzy sets, intuitionistic
fuzzy sets, interval-valued intuitionistic fuzzy sets, linguistic arguments, hesitant fuzzy sets, and
neutrosophic sets. Many useful methods have been developed based on these tools. Smarandache [1]
developed the neutrosophic set by generalizing a fuzzy set, an intuitionistic fuzzy set [2], and a hesitant
fuzzy set. The neutrosophic set has received extensively attention [3–25] recently. The neutrosophic
fuzzy set has been extended to accommodate interval values [7,8], linguistic variables [9,10],
and trapezoidal fuzzy numbers [11]. Ye [9] proposed the concept of a single valued neutrosophic
linguistic set as a generalization of the concepts of a linguistic variable and an intuitionistic
linguistic set. Ye [11] combined trapezoidal fuzzy numbers with a single-valued neutrosophic
set to propose a trapezoidal neutrosophic set and defined some trapezoidal neutrosophic fuzzy
aggregation operators. The neutrosophic fuzzy set has been used in image segmentation [12], clustering
analysis [13], supply chain management [14], etc. Guo and Sengür [12] utilized the neutrosophic set
in image segmentation and proposed a novel algorithm based on neutrosophic similarity clustering.
Karaaslan [13] defined the concept of a single-valued neutrosophic refined soft set by extending a
single-valued neutrosophic refined set. Some aggregation operators have been developed [3,7,15–18].
Liu and Tang [3] proposed some power average aggregation operators for interval neutrosophic sets,
including the interval neutrosophic power generalized weighted aggregation operator and interval
neutrosophic power generalized ordered weighted aggregation operator. Zhao et al. [7] defined the
generalized weighted aggregation operator for interval valued neutrosophic sets based on a traditional
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generalized weighted aggregation operator. Liu and Shi [15] defined the interval neutrosophic hesitant
fuzzy set and developed some new interval neutrosophic hesitant fuzzy generalized hybrid aggregation
operators. Liu et al. [16] proposed some generalized neutrosophic number hamacher weighted
aggregation operators. Sun et al. [17] defined a ranking index to compare two interval neutrosophic
numbers and defined an interval neutrosophic Choquet integral operator. Peng et al. [18] developed
the multi-valued neutrosophic sets and defined the operations of multi-valued neutrosophic numbers
based on Einstein operations. Some distances, cross entropies and correlation coefficient measures
have been defined [19–26]. Ye [19] defined the Hamming and Euclidean distances between interval
neutrosophic sets and proposed the similarity measures based on the relationship between similarity
measures and distances. Ye presented single-valued neutrosophic cross entropy in [20] and presented
the correlation coefficient of single-valued neutrosophic sets based on the extension of the intuitionistic
fuzzy correlation coefficient in [21]. Zhang et al. [22] proposed a new correlation coefficient measure
for interval neutrosophic sets. Şahin [23] defined the interval neutrosophic cross-entropy based on
extension of fuzzy cross entropy and single-valued neutrosophic cross entropy. Tian et al. [26] proposed
a fuzzy cross entropy approach to calculate the discrimination measure between alternatives and the
absolute ideal solutions.

A hesitant fuzzy set is another extension of the fuzzy set, which was developed by Torra and
Narukawa [27,28]. In the hesitant fuzzy set, the membership degree of an element to a set is represented
by several possible values. Compared with other tools to model fuzzy and uncertain information,
the hesitant fuzzy set is more flexible and accurate, especially for large-scale and complex decision
problems. The hesitant fuzzy set has received a great deal of attention [29–34]. Due to the fuzzy nature
of human thinking, decision-makers would like to evaluate with linguistic terms. Several linguistic
decision making models have been developed [35–39], including the 2-tuple linguistic model [35],
uncertain linguistic variables [36], the hesitant fuzzy linguistic terms set [37], and the linguistic hesitant
intuitionistic fuzzy term set [39]. With the development of the economy and society, decision problems
become more and more complex, and multiple decision-makers from different fields are invited to
evaluate. Decision-makers (DMs) would like to use linguistic terms in the evaluation process, but they
may express some hesitation, which can be modeled properly by the neutrosophic set. Since each
DM has his/her own characteristics, he/she can give proper evaluation values if he/she is familiar
with the attribute and can refuse to produce any evaluation values if he/she is unfamiliar with the
attribute in order to assure accuracy and reasonability of decision results. DMs can use a different
number of linguistic terms and a different number of neutrosophic fuzzy values in evaluating the
attribute. Then, we can get hesitant neutrosophic linguistic information. Ye [40] developed hesitant
interval neutrosophic linguistic set and proposed the hesitant interval neutrosophic linguistic weighted
average operator and a hesitant interval neutrosophic linguistic weighted geometric operator. It is
rather difficult to use interval linguistic values in evaluation, and distances between hesitant interval
neutrosophic linguistic elements have not been studied. To our best knowledge, hesitant neutrosophic
linguistic sets, which are very important in decision-making, especially for complex decision-making
problems requiring fast evaluation, have not been studied. Motivated by the idea of the hesitant fuzzy
set, the neutrosophic set, and linguistic terms, we present hesitant neutrosophic linguistic sets. Then,
we define some operational laws and some distant measures between hesitant neutrosophic linguistic
sets. A new multiple attribute decision-making method based on hesitant neutrosophic linguistic
information has thus been developed.

The rest of the paper is organized as follows. In Section 2, we first briefly review some concepts on
the hesitant fuzzy set, the linguistic variable, and the neutrosophic set. Then, we propose a definition
of the hesitant neutrosophic linguistic set and provide some operation laws of hesitant neutrosophic
linguistic elements. We also define the cosine value between two hesitant neutrosophic linguistic
elements to compare them. In Section 3, we present some distance measures for hesitant neutrosophic
linguistic elements. In Section 4, we develop some hesitant neutrosophic linguistic aggregation
operators based on the Choquet integral. In Section 5, we present a new multiple attribute group
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decision-making method based on TOPSIS for hesitant neutrosophic fuzzy linguistic information.
A numerical example is presented in Section 6, and some comparisons are also made. Conclusions are
presented in Section 7.

2. Preliminaries

In this section, we give the definition of the hesitant neutrosophic linguistic set and present some
operation laws. We also present the method to compare two hesitant neutrosophic linguistic elements
by using their cosine values.

In the decision-making process, there are cases where a DM, in determining the membership of an
element to a set, doubts several different values. Torra and Narukawa [27,28] generalized a fuzzy set to
make each membership include several values and developed the hesitant fuzzy set (HFS). An HFS is
defined in terms of a function that returns a set of membership values of each element in the domain.

Definition 1. Let X be a reference set. An HFS Ã on X is a function m that returns a subset of values in [0, 1]
when it is applied to X:

Ã = {< x, mÃ(x) >| x ∈ X}

where mÃ(x) is a set of some different values in [0, 1], representing the possible membership degrees of element
x ∈ X to Ã. mÃ(x) is called a hesitant fuzzy element (HFE).

Let S = {si| i = 1, ..., g} be a finite and totally ordered discrete term set, where si represents a
possible value for a linguistic variable. For example, a set of nine terms [36] can be expressed as

S = {s1 = extremely poor, s2 = very poor, s3 = poor, s4 = slightly poor, s5 = fair,

s6 = slightly good, s7 = good, s8 = very good, s9 = extremely good}.

The above set satisfies the following properties:

(1) The set is ordered: si ≥ sj, if i ≥ j.
(2) Max operator: max{si, sj} = si, if i ≥ j.
(3) Min operator: min{si, sj} = si, if i ≤ j.
(4) Negation operator: neg{si} = sg−i.

In order to preserve all the information, the discrete linguistic term sets S can be extended to
a continuous one: S̄ = {sα | s0 ≤ sα ≤ sg}, α ∈ [0, g].

Definition 2. [1] Let X be a universeof discourse, with a generic element in X denoted by x. A neutrosophic
set A in X is

A = {x(TA(x), IA(x), FA(x)) | x ∈ X},

where TA is the truth-membership function, IA is the indeterminacy-membership function, FA is the real
falsity-membership function. TA(x), IA(x) and FA(x) are real standard or nonstandard subsets of ]0−, 1+[.
There is no restriction on the sum of TA(x), IA(x) and FA(x), we can obtain 0− ≤ TA(x) + IA(x) +
FA(x) ≤ 3+.

DMs would like to evaluate with linguistic terms since such terms reflect the fuzzy nature of
human thinking. For complex decision-making problems, multiple experts from different fields are
invited to evaluate alternatives with respect to multiple attributes. If the expert is familiar with the
attribute, he/she can provide a proper evaluation value. If he/she is not familiar with the attribute,
he/she can refuse to provide any evaluation value to assure the reasonability of the results. If two
experts use the same truth-membership, indeterminacy-membership, or real falsity-membership, they
are merged. We can then obtain the hesitant neutrosophic linguistic set as follows.
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Definition 3. Let X = {x1, x2, ..., xn} be a reference set. A hesitant neutrosophic linguistic set (HNLS) A in
X is

A =
{
< xi, hA(xi) >| xi ∈ X, i = 1, 2, ..., n

}
where hA(xi) =

{(
sθi , (T(sθi ), I(sθi ), F(sθi ))

)}
, T(sθi ) is the set of truth-membership functions, I(sθi ) is

the set of indeterminacy-membership functions, and F(sθi ) is the set of real falsity-membership functions.
sup(T(sθi )) + sup(I(sθi )) + sup(F(sθi )) ≤ 3. For convenience, we call hA(xi) the hesitant neutrosophic
linguistic element (HNLE). We can use a =

(
sθi , (T(sθi ), I(sθi ), and F(sθi ))

)
to represent a neutrosophic

linguistic element (NLE).

Definition 4. Let h, h1, and h2 be HNLEs, and let h = {ak}, h1 = {a(1)i }, h2 = {a(2)j },

ak =
(
sθk , (T(sθk ), I(sθk ), F(sθk ))

)
∈ h, a(1)i =

(
s

θ
(1)
i

, (T(s
θ
(1)
i
), I(s

θ
(1)
i
), F(s

θ
(1)
i
))
)
∈ h1 and a(2)j =(

s
θ
(2)
j

, (T(s
θ
(2)
j
), I(s

θ
(2)
j
), F(s

θ
(2)
j
))
)
∈ h2 be NLEs. Let µ

(1)
i ∈ F(s

θ
(1)
i
), µ

(2)
j ∈ F(s

θ
(2)
j
), ν

(1)
i ∈ T(s

θ
(1)
i
), ν

(2)
j ∈

T(s
θ
(2)
j
), τ

(1)
i ∈ I(s

θ
(1)
i
), τ

(2)
j ∈ I(s

θ
(2)
j
). λ > 0. The operational laws can be defined as follows.

(1) h1 ⊕ h2 =
⋃

a(1)i ∈h1,a(2)j ∈h2

{(
s

θ
(1)
i +θ

(2)
j

,
⋃{(µ(1)

i + µ
(2)
j − µ

(1)
i µ

(2)
j , ν

(1)
i ν

(2)
j , τ

(1)
i τ

(2)
j )}

)}
(2) h1 ⊗ h2 =

⋃
a(1)i ∈h1,a(2)j ∈h2

{(
s

θ
(1)
i θ

(2)
j

,
⋃{(µ(1)

i µ
(2)
j , ν

(1)
i + ν

(2)
j − ν

(1)
i ν

(2)
j , τ

(1)
i + τ

(2)
j − τ

(1)
i τ

(2)
j )}

)}
(3) λh =

⋃
ak∈h

{(
sλθk ,

⋃{(1− (1− µk)
λ, (νk)

λ, (τk)
λ)}
)}

(4) hλ =
⋃

ak∈h
{(

sθλ
k
,
⋃{((µk)

λ, 1− (1− νk)
λ, 1− (1− τk)

λ)}
)}

.

Theorem 1. Let h, h1, h2, and h3 be HNLEs, λ, λ1 and λ2 > 0. Then,

(1) h1 ⊕ h2 = h2 ⊕ h1

(2) h1 ⊗ h2 = h2 ⊗ h1

(3) λ(h1 ⊕ h2) = λh1 ⊕ λh2

(4) (λ1 + λ2)h = λ1h⊕ λ2h
(5) (h1 ⊗ h2)

λ = hλ
1 ⊗ hλ

2
(6) hλ1+λ2 = hλ1 ⊗ hλ2

(7) (h1 ⊕ h2)⊕ h3 = h1 ⊕ (h2 ⊕ h3)

(8) (h1 ⊗ h2)⊗ h3 = h1 ⊗ (h2 ⊗ h3).

Different HNLEs may have different NLEs, and different NLEs may have different truth-
memberships, indeterminacy-memberships, or falsity-memberships. In order to define the distances
between two HNLEs more accurately, we need to extend the HNLEs until they have the same number
of NLEs and until each NLE has the same number of truth-memberships, indeterminacy-memberships,
and falsity-memberships. We can extend the HNLEs according to the risk attitudes of the decision-
makers. If decision-makers are risk-seeking, the largest NLE can be added; if decision-makers are
risk-averse, the smallest NLE can be added; if decision-makers are risk-neutral, the average value of
NLEs can be added.

Definition 5. Let ai and aj be NLEs. ai =
(
sθi , (T(sθi ), I(sθi ), F(sθi ))

)
, aj =

(
sθj , (T(sθj), I(sθj), F(sθj))

)
,

µik ∈ T(sθi ), νil ∈ I(sθi ), τim ∈ F(sθi ), µjk ∈ T(sθj), νjl ∈ I(sθj), τjm ∈ F(sθj). The cosine value between ai
and aj can be defined as follows:

cos(ai, aj) =
θiθj/g2 + 1

lt ∑lt
k=1 µiσ(k)µjσ(k) +

1
li ∑li

k=1 νiσ(k)νjσ(k) +
1
l f

∑
l f
k=1 τiσ(k)τjσ(k)

4 ‖ ai ‖ · ‖ aj ‖
(1)
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where ‖ ai ‖=
(

1
4 (θ

2
i /g2 + 1

lt ∑lt
k=1 µ2

ik +
1
li ∑li

k=1 ν2
ik +

1
l f

∑
l f
k=1 τ2

ik)
)1/2

, ‖ aj ‖=
(

1
4 (θ

2
j /g2+ 1

lt ∑lt
k=1 µ2

jk

+ 1
li ∑li

k=1 ν2
jk + 1

l f
∑

l f
k=1 τ2

jk)
)1/2

, g is the number of linguistic variables in the linguistic term set, lt is the
number of truth-memberships in the NLE, li is the number of indeterminacy-membership in the NLE, and
l f is the number of falsity-membership in the NLE. 0 < cos(ai, aj) ≤ 1. If aj is the ideal solution I =

(sg, {1, ..., 1}, {0, ..., 0}, {0, ..., 0}), then

cos(ai, I) =
θi/g + 1

lt ∑lt
k=1 µiσ(k)√

2(θ2
i /g2 + 1

lt ∑lt
k=1 µ2

ik +
1
li ∑li

k=1 ν2
ik +

1
l f

∑
l f
k=1 τ2

ik)

.

Definition 6. Let a1, a2 be two NLEs. If cos(a1, I) ≤ cos(a2, I), then a1 ≤ a2.

Definition 7. Let h1, h2 be HNLEs. h1 = {a(1)i } =
{(

s
θ
(1)
i

, (T(s
θ
(1)
i
), I(s

θ
(1)
i
), F(s

θ
(1)
i
))
)}

, h2 = {a(2)i } ={(
s

θ
(2)
i

, (T(s
θ
(2)
i
), I(s

θ
(2)
i
), F(s

θ
(1)
i
))
)}

. The cosine value between h1 and h2 can be defined as follows:

cos(h1, h2) =
h1 · h2

‖ h1 ‖ · ‖ h2 ‖
(2)

where

h1 · h2 =
1
4l

l

∑
i=1

(
(θ

(1)
σ(i)θ

(2)
σ(i))/g2 +

1
lt

lt

∑
k=1

(µ
(1)
σ(ik)µ

(2)
σ(ik)) +

1
li

li

∑
k=1

(
ν
(1)
σ(ik)ν

(2)
σ(ik)

)2
+

1
lt

lt

∑
k=1

(
τ
(1)
σ(ik)τ

(1)
σ(ik)

)2)
‖ h1 ‖=

( 1
4l ∑l

i=1
(
(θ

(1)
i )2/g2 + 1

lt ∑lt
k=1(µ

(1)
ik )2 + 1

li ∑li
k=1

(
ν
(1)
ik
)2

+ 1
l f

∑
l f
k=1

(
τ
(1)
ik
)2))1/2

‖ h2 ‖=
( 1

4l ∑l
i=1
(
(θ

(2)
i )2/g2 + 1

lt ∑lt
k=1(µ

(2)
ik )2 + 1

li ∑li
k=1

(
ν
(2)
ik
)2
+ 1

l f
∑

l f
k=1 ∗

(
τ
(2)
ik
)2))1/2.

l is the number of NLEs in the HNLEs, g is the number of linguistic variables in the linguistic term
set, lt is the number of truth-memberships in an NLE, li is the number of indeterminacy-membership in an
NLE, l f is the number of falsity-membership in an NLE. 0 < cos(h1, h2) ≤ 1. When h2 is the ideal solution
I′ = {(sg, {1, ..., 1}, {0, ..., 0}, {0, ..., 0})}, the bigger cos(h1, I′) between h1 and I′ is, the more consistent the
direction between h1 and I′ is. Thus,

cos(h1, I′) =
1
l ∑l

i=1
(
(θ

(1)
σ(i))/g + 1

lt ∑lt
k=1 µ

(1)
σ(ik)

)√
2
l ∑l

i=1
(
(θ

(1)
i )2/g2 + 1

lt ∑lt
k=1(µ

(1)
ik )2 + 1

li ∑li
k=1

(
ν
(1)
ik
)2

+ 1
lt ∑

l f
k=1

(
τ
(1)
ik
)2) . (3)

Definition 8. Let h1, h2 be two HNLEs. If cos(h1, I′) ≤ cos(h2, I′), then h1 ≤ h2.

3. Some Hesitant Neutrosophic Fuzzy Linguistic Distance Measures

In this section, we propose some distance measures for the hesitant neutrosophic fuzzy linguistic
values and we also propose some correlated distance measures by using the Choquet integral.

The distance measures are very important since they are the basis of many well-known methods
including TOPSIS, VIKOR, and ELECTRE. In this section, we develop some distance measures for
hesitant neutrosophic fuzzy linguistic information.

Definition 9. Let h1, h2 be HNLEs. The distance measure between h1 and h2 can be defined as d(h1, h2), which
satisfies the following properties:

(1) 0 ≤ d(h1, h2) ≤ 1;
(2) d(h1, h2) = 0 if and only if h1 = h2;
(3) d(h1, h2) = d(h2, h1).
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Definition 10. Let h1, h2 be HNLEs. Then the similarity measure between h1 and h2 is defined as ρ(h1, h2),
which satisfies the following properties:

(1) 0 ≤ ρ(h1, h2) ≤ 1;
(2) ρ(h1, h2) = 1 if and only if h1 = h2;
(3) ρ(h1, h2) = ρ(h2, h1).

Remark 1. If d(h1, h2) is the distance between h1 and h2, then ρ(h1, h2) = 1− d(h1, h2) is the similarity
measure between h1 and h2. Hence, we only focus on the distance measures, and the similarity measures can be
determined easily.

Let h1, h2 be HNLEs. h1 = {a(1)i } =
{(

s
θ
(1)
i

, (T(s
θ
(1)
i
), I(s

θ
(1)
i
), F(s

θ
(1)
i
))
)}

, T(s
θ
(1)
i
) = {µ(1)

iti
},

I(s
θ
(1)
i
) = {ν(1)iti

}, F(s
θ
(1)
i
) = {τ(1)

iti
} and h2 = {a(2)i } =

{(
s

θ
(2)
i

, (T(s
θ
(2)
i
), I(s

θ
(2)
i
), F(s

θ
(1)
i
))
)}

, T(s
θ
(2)
i
) =

{µ(2)
iti
}, I(s

θ
(2)
i
) = {ν(2)iti

}, F(s
θ
(2)
i
) = {τ(2)

iti
}. a(k)

σ(i) ≥ a(k)
σ(j) for i ≥ j. l is the number of NLEs in HNLE, g is

the number of linguistic variables in the linguistic term set, lt is the number of truth-memberships in an NLE, li
is the number of indeterminacy-membership in an NLE, l f is the number of falsity-membership in an NLE. Based
on the operation laws of HNLEs and the extension principle, we define some distance measures between HNLEs.

The hesitant neutrosophic linguistic Euclidean distance between h1 and h2 can be defined
as follows:

dE(h1, h2) =
(

1
4l ∑l

i=1

((
θ
(1)
σ(i) − θ

(2)
σ(i)

)2/g2 + 1
lt ∑lt

k=1

(
µ
(1)
σ(ik) − µ

(2)
σ(ik)

)2
+ 1

li ∑li
k=1

(
ν
(1)
σ(ik)−

ν
(2)
σ(ik)

)2
+ 1

lt ∑lt
k=1

(
τ
(1)
σ(ik) − τ

(2)
σ(ik)

)2
))1/2

.
(4)

The hesitant neutrosophic linguistic Hamming distance between h1 and h2 can be defined
as follows:

dH(h1, h2) = 1
4l ∑l

i=1

(
| θ

(1)
σ(i) − θ

(2)
σ(i) | /g + 1

lt ∑lt
k=1 | µ

(1)
σ(ik) − µ

(2)
σ(ik) | +

1
li ∑li

k=1 | ν
(1)
σ(ik)−

ν
(2)
σ(ik) | +

1
lt ∑lt

k=1 | τ
(1)
σ(ik) − τ

(2)
σ(ik) |

)
.

(5)

The hesitant neutrosophic linguistic Hamming–Hausdorff distance can be defined as follows:

dHH(h1, h2) = 1
4 max

i,k

{
| θ

(1)
σ(i) − θ

(2)
σ(i) | /g+ | µ

(1)
σ(ik) − µ

(2)
σ(ik) | + | ν

(1)
σ(ik) − ν

(2)
σ(ik) | +

| τ
(1)
σ(ik) − τ

(2)
σ(ik) |

}
.

(6)

The hesitant neutrosophic linguistic Euclidean–Hausdorff distance can be defined as

dEH(h1, h2) =
(

1
4 max

i,k

{
(θ

(1)
σ(i) − θ

(2)
σ(i))

2/g2+ | µ
(1)
σ(ik) − µ

(2)
σ(ik) |

2 + | ν
(1)
σ(ik) − ν

(2)
σ(ik) |

2 +

| τ
(1)
σ(ik) − τ

(2)
σ(ik) |

2
})1/2

.
(7)

The hybrid hesitant neutrosophic linguistic Hamming distance can be defined as

dHybH(h1, h2) = 1
2

(
1
4l ∑l

i=1

(
| θ

(1)
σ(i) − θ

(2)
σ(i) | /g + 1

lt ∑lt
k=1 | µ

(1)
σ(ik) − µ

(2)
σ(ik) | +

1
li ∑li

k=1 | ν
(1)
σ(ik)−

ν
(2)
σ(ik) | +

1
lt ∑lt

k=1 | τ
(1)
σ(ik) − τ

(2)
σ(ik) |

)
+ 1

4 max
i,k

{
| θ

(1)
σ(i) − θ

(2)
σ(i) | /g+ | µ

(1)
σ(ik)−

µ
(2)
σ(ik) | + | ν

(1)
σ(ik) − ν

(2)
σ(ik) | + | τ

(1)
σ(ik) − τ

(2)
σ(ik) |

})
.

(8)

The hybrid hesitant neutrosophic linguistic Euclidean distance can be defined as
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dHybE(h1, h2) = 1
2

((
1
4l ∑l

i=1

((
θ
(1)
σ(i) − θ

(2)
σ(i)

)2/g2 + 1
lt ∑lt

k=1

(
µ
(1)
σ(ik) − µ

(2)
σ(ik)

)2
+ 1

li ∑li
k=1

(
ν
(1)
σ(ik)−

ν
(2)
σ(ik)

)2
+ 1

lt ∑lt
k=1

(
τ
(1)
σ(ik) − τ

(2)
σ(ik)

)2
))1/2

+
(

1
4 max

i,k

{
(θ

(1)
σ(i) − θ

(2)
σ(i))

2/g2+ | µ
(1)
σ(ik)−

µ
(2)
σ(ik) |

2 + | ν
(1)
σ(ik) − ν

(2)
σ(ik) |

2 + | τ
(1)
σ(ik) − τ

(2)
σ(ik) |

2
})1/2)

.

(9)

The generalized hesitant neutrosophic linguistic distance can be defined as

dG(h1, h2) =
(

1
4l ∑l

i=1

((
θ
(1)
σ(i) − θ

(2)
σ(i)

)λ/gλ + 1
lt ∑lt

k=1

(
µ
(1)
σ(ik) − µ

(2)
σ(ik)

)λ
+ 1

li ∑li
k=1

(
ν
(1)
σ(ik)−

ν
(2)
σ(ik)

)λ
+ 1

lt ∑lt
k=1

(
τ
(1)
σ(ik) − τ

(2)
σ(ik)

)λ
))1/λ

.
(10)

If λ = 1, the generalized hesitant neutrosophic linguistic distance becomes the hesitant
neutrosophic linguistic Hamming distance. If λ = 2, then the generalized hesitant neutrosophic
linguistic distance becomes the hesitant neutrosophic linguistic Euclidean distance.

The generalized hesitant neutrosophic linguistic Hausdorff distance can be defined as

dGH(h1, h2) =
(

1
4 max

i,k

{
| θ

(1)
σ(i) − θ

(2)
σ(i) |

λ /gλ+ | µ
(1)
σ(ik) − µ

(2)
σ(ik) |

λ + | ν
(1)
σ(ik) − ν

(2)
σ(ik) |

λ +

| τ
(1)
σ(ik) − τ

(2)
σ(ik) |

λ
})1/λ

.
(11)

If λ = 1, the generalized hesitant neutrosophic linguistic Hausdorff distance becomes the hesitant
neutrosophic linguistic Hamming–Hausdorff distance. If λ = 2, the generalized hesitant neutrosophic
linguistic Hausdorff distance becomes the hesitant neutrosophic linguistic Euclidean–Hausdorff
distance.

The generalized hesitant neutrosophic linguistic hybrid distance can be defined as

dGHyb(h1, h2) =
(

1
2

(
1
4l ∑l

i=1

((
θ
(1)
σ(i) − θ

(2)
σ(i)

)λ/gλ + 1
lt ∑lt

k=1

(
µ
(1)
σ(ik) − µ

(2)
σ(ik)

)λ
+ 1

li ∑li
k=1

(
ν
(1)
σ(ik)

−ν
(2)
σ(ik)

)λ
+ 1

lt ∑lt
k=1

(
τ
(1)
σ(ik) − τ

(2)
σ(ik)

)λ
)
+ 1

4 max
i,k

{
| θ

(1)
σ(i) − θ

(2)
σ(i) |

λ /gλ+ | µ
(1)
σ(ik)

−µ
(2)
σ(ik) |

λ + | ν
(1)
σ(ik) − ν

(2)
σ(ik) |

λ + | τ
(1)
σ(ik) − τ

(2)
σ(ik) |

λ
}))1/λ

.

(12)

Definition 11. [41]. A fuzzy measure µon the set X is a set function µ : P(X) → [0, 1], satisfying the
following axioms:

(1) µ(∅) = 0, µ(X) = 1;
(2) B ⊆ C implies µ(B) ≤ µ(C), for all B, C ⊆ X;
(3) µ(B ∪ C) = µ(B) + µ(C) + ρµ(B)µ(C) for all B, C ⊆ X and B ∩ C = ∅, where ρ ∈ (−1,+∞).

Here, ∅ is an empty set.

Let X = {x1, x2, ..., xn} be a finite set. Sugeno [42] provided the following equation to determine
the fuzzy measure on X, avoiding the computational complexity.

m(X) =

{
1
ρ (Π

n
i=1(1 + ρm(xi))− 1), ρ 6= 0,

∑n
i=1 m(xi), ρ = 0.

(13)

The value ρ can be uniquely determined from m(X) = 1 by the following equation:

ρ = Πn
i=1(1 + ρm(xi))− 1. (14)

Let X = {x1, x2, ..., xn} be a reference set, let m be the fuzzy measure [41] on X, and let
H1 = {h(1)1 , h(1)2 , ..., h(1)n } and H2 = {h(2)1 , h(2)2 , ..., h(2)n } be two collections of the HNLEs on X,
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where h(k)j = {al(k)
j } (j = 1, 2, ..., n, k = 1, 2). We then develop some weighted distances between

HNLEs based on the Choquet integral.
The generalized hesitant neutrosophic linguistic correlation averaging distance between H1 and

H2 can be defined as follows:

dGC(H1, H2) =
(

∑n
j=1

(m(Aσ(j))−m(Aσ(j−1)))

4l ∑l
i=1

((
θ
(1)
σ(ji) − θ

(2)
σ(ji)

)λ/gλ + 1
lt ∑lt

k=1

(
µ
(1)
σ(jik)−

µ
(2)
σ(jik)

)λ
+ 1

lu ∑lu
k=1

(
ν
(1)
σ(jik) − ν

(2)
σ(jik)

)λ
+ 1

lv ∑lv
k=1

(
τ
(1)
σ(jik) − τ

(2)
σ(jik)

)λ
))1/λ

.
(15)

If λ = 1, the generalized hesitant neutrosophic linguistic correlation averaging distance becomes
the hesitant neutrosophic linguistic correlation averaging Hamming distance as follows:

dCH(H1, H2) = ∑n
j=1

(m(Aσ(j))−m(Aσ(j−1)))

4l ∑l
i=1

(∣∣θ(1)
σ(ji) − θ

(2)
σ(ji)

∣∣/g + 1
lt ∑lt

k=1

∣∣µ(1)
σ(jik)−

µ
(2)
σ(jik)

∣∣+ 1
lu ∑lu

k=1

∣∣ν(1)
σ(jik) − ν

(2)
σ(jik)

∣∣+ 1
lv ∑lv

k=1

∣∣τ(1)
σ(jik) − τ

(2)
σ(jik)

∣∣).
(16)

If λ = 2, the generalized hesitant neutrosophic linguistic correlation averaging distance becomes
the hesitant neutrosophic linguistic correlation averaging Euclidean distance as follows:

dCE(H1, H2) =
(

∑n
j=1

(m(Aσ(j))−m(Aσ(j−1)))

4l ∑l
i=1

((
θ
(1)
σ(ji) − θ

(2)
σ(ji)

)2/g2 + 1
lt ∑lt

k=1

(
µ
(1)
σ(jik)−

µ
(2)
σ(jik)

)2
+ 1

lu ∑lu
k=1

(
ν
(1)
σ(jik) − ν

(2)
σ(jik)

)2
+ 1

lv ∑lv
k=1

(
τ
(1)
σ(jik) − τ

(2)
σ(jik)

)2
))1/2

.
(17)

The generalized hesitant neutrosophic linguistic correlation averaging Housdorff distance is
defined as follows:

dGCH(H1, H2) =
(

∑n
j=1

(m(Aσ(j))−m(Aσ(j−1)))

4 max
i,k

{
| θ

(1)
σ(ji) − θ

(2)
σ(ji) |

λ /gλ+ | µ
(1)
σ(jik) − µ

(2)
σ(jik) |

λ

+ | ν
(1)
σ(jik) − ν

(2)
σ(jik) |

λ + | τ
(1)
σ(jik) − τ

(2)
σ(jik) |

λ
})1/λ

.
(18)

If λ = 1, the generalized hesitant neutrosophic linguistic correlation averaging Housdorff distance
becomes the hesitant neutrosophic linguistic correlation averaging Hamming–Housdorff distance

dCHH(H1, H2) =
(

∑n
j=1

(m(Aσ(j))−m(Aσ(j−1)))

4 max
i,k

{
| θ

(1)
σ(ji) − θ

(2)
σ(ji) | /g+ | µ

(1)
σ(jik) − µ

(2)
σ(jik) |

+ | ν
(1)
σ(jik) − ν

(2)
σ(jik) | + | τ

(1)
σ(jik) − τ

(2)
σ(jik) |

})
.

(19)

If λ = 2, the generalized hesitant neutrosophic linguistic correlation averaging Housdorff distance
becomes the hesitant neutrosophic linguistic correlation averaging Euclidean–Housdorff distance:

dCEH(H1, H2) =
(

∑n
j=1

(m(Aσ(j))−m(Aσ(j−1)))

4 max
i,k

{
| θ

(1)
σ(ji) − θ

(2)
σ(ji) |

2 /g2+ | µ
(1)
σ(jik) − µ

(2)
σ(jik) |

2

+ | ν
(1)
σ(jik) − ν

(2)
σ(jik) |

2 + | τ
(1)
σ(jik) − τ

(2)
σ(jik) |

2
})1/2

.
(20)

The generalized hesitant neutrosophic linguistic hybrid correlation averaging distance between
H1 and H2 can be defined as follows:

dGHC(H1, H2) =
(

1
2

(
∑n

j=1
1
4 (m(Aσ(j))−m(Aσ(j−1)))

(
1
l ∑l

i=1

((
θ
(1)
σ(ji) − θ

(2)
σ(ji)

)λ/gλ+

1
lt ∑lt

k=1

(
µ
(1)
σ(jik) − µ

(2)
σ(jik)

)λ
+ 1

lu ∑lu
k=1

(
ν
(1)
σ(jik) − ν

(2)
σ(jik)

)λ
+ 1

lv ∑lv
k=1

(
τ
(1)
σ(jik)−

τ
(2)
σ(jik)

)λ
)
+ max

i,k

{
| θ

(1)
σ(ji) − θ

(2)
σ(ji) |

λ /gλ+ | µ
(1)
σ(jik) − µ

(2)
σ(jik) |

λ

+ | ν
(1)
σ(jik) − ν

(2)
σ(jik) |

λ + | τ
(1)
σ(jik) − τ

(2)
σ(jik) |

λ
}))1/λ

.

(21)
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If λ = 1, the generalized hesitant neutrosophic linguistic hybrid correlation averaging distance
becomes the hesitant neutrosophic linguistic hybrid correlation Hamming distance:

dCHyb(H1, H2) = 1
2

(
∑n

j=1
1
4 (m(Aσ(j))−m(Aσ(j−1)))

(
1
l ∑l

i=1

((
θ
(1)
σ(ji) − θ

(2)
σ(ji)

)
/g+

1
lt ∑lt

k=1

(
µ
(1)
σ(jik) − µ

(2)
σ(jik)

)
+ 1

lu ∑lu
k=1

(
ν
(1)
σ(jik) − ν

(2)
σ(jik)

)
+ 1

lv ∑lv
k=1

(
τ
(1)
σ(jik)−

τ
(2)
σ(jik)

))
+ max

i,k

{
| θ

(1)
σ(ji) − θ

(2)
σ(ji) | /g+ | µ

(1)
σ(jik) − µ

(2)
σ(jik) |

+ | ν
(1)
σ(jik) − ν

(2)
σ(jik) | + | τ

(1)
σ(jik) − τ

(2)
σ(jik) |

})
.

(22)

If λ = 2, the generalized hesitant neutrosophic linguistic hybrid correlation averaging distance
becomes the hesitant neutrosophic linguistic hybrid correlation Euclidean distance:

dCHE(H1, H2) =
(

1
2

(
∑n

j=1
1
4 (m(Aσ(j))−m(Aσ(j−1)))

(
1
l ∑l

i=1

((
θ
(1)
σ(ji) − θ

(2)
σ(ji)

)2/g2+

1
lt ∑lt

k=1

(
µ
(1)
σ(jik) − µ

(2)
σ(jik)

)2
+ 1

lu ∑lu
k=1

(
ν
(1)
σ(jik) − ν

(2)
σ(jik)

)2
+ 1

lv ∑lv
k=1

(
τ
(1)
σ(jik)−

τ
(2)
σ(jik)

)2
)
+ max

i,k

{
| θ

(1)
σ(ji) − θ

(2)
σ(ji) |

2 /g2+ | µ
(1)
σ(jik) − µ

(2)
σ(jik) |

2

+ | ν
(1)
σ(jik) − ν

(2)
σ(jik) |

2 + | τ
(1)
σ(jik) − τ

(2)
σ(jik) |

2
}))1/2

.

(23)

4. Some Hesitant Neutrosophic Fuzzy Linguistic Aggregation Operators Based on the
Choquet Integral

In this section, we present some hesitant neutrosophic fuzzy linguistic aggregation operators
considering correlation by using the Choquet integral.

Definition 12. Let X = {x1, x2, ..., xn} be a reference set, and let m be the fuzzy measure [41] on X. Let
hj = {ak

j } (j = 1, 2, ..., n) be a collection of the HNLEs, then the hesitant neutrosophic fuzzy linguistic
correlation averaging (HNLCA) operator can be defined as follows:

HNLCA(h1, h2, ..., hn) =
n

∑
j=1

(m(Aσ(j))−m(Aσ(j−1)))hσ(j) (24)

where (σ(1), σ(2), ..., σ(n)) is a permutation of (1, 2, ..., n) such that hσ(1) ≥ hσ(2) ≥ ... ≥ hσ(n).
Aσ(i) = {xσ(1), xσ(2), ..., xσ(i)}, Aσ(0) = ∅, and ∅ is an empty set.

The aggregated value of the HNLCA operator is also an HNLE.

HNLCA(h1, h2, ..., hn) = ∑n
j=1(m(Aσ(j))−m(Aσ(j−1)))hσ(j)

=
⋃

ak
j∈hj

{(
s∑n

j=1(m(Aσ(j))−m(Aσ(j−1)))θ
k
σ(j)

,
⋃{(1−∏n

j=1(1− µk
σ(j))

m(Aσ(j))−m(Aσ(j−1)),

∏n
j=1(ν

k
σ(j))

m(Aσ(j))−m(Aσ(j−1)), ∏n
j=1(τ

k
σ(j))

m(Aσ(j))−m(Aσ(j−1)))}
)}

.

Definition 13. Let X = {x1, x2, ..., xn} be a reference set, and let m be the fuzzy measure on X. Let hj = {ak
j }

(j = 1, 2, ..., n) be a collection of the HNLEs. Thus, the hesitant neutrosophic fuzzy linguistic correlation
geometric averaging (HNLCGA) operator can be defined as follows:

HNLCGA(h1, h2, ..., hn) =
n

∏
j=1

(hσ(j))
(m(Aσ(j))−m(Aσ(j−1))), (25)

where (σ(1), σ(2), ..., σ(n)) is a permutation of (1, 2, ..., n) such that hσ(1) ≥ hσ(2) ≥ ... ≥ hσ(n). Aσ(i) =

{xσ(1), xσ(2), ..., xσ(i)}, Aσ(0) = ∅, and ∅ is an empty set.
The aggregated value of the HNLCGA operator is also an HNLE.
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HNLCGA(h1, h2, ..., hn) = ∏n
j=1(hσ(j))

(m(Aσ(j))−m(Aσ(j−1)))

=
⋃

ak
j∈hj

{(
s

∏n
j=1(θ

k
σ(j))

(m(Aσ(j))−m(Aσ(j−1)))
,
⋃{(∏n

j=1(µ
k
σ(j))

m(Aσ(j))−m(Aσ(j−1)),

1−∏n
j=1(1− νk

σ(j))
m(Aσ(j))−m(Aσ(j−1)), 1−∏n

j=1(1− τk
σ(j))

m(Aσ(j))−m(Aσ(j−1)))}
)}

.

We further develop the generalized hesitant neutrosophic fuzzy linguistic correlation averaging (GHNLCA)
operator as follows.

Definition 14. Let X = {x1, x2, ..., xn} be a reference set, and let m be the fuzzy measure on X. If hj = {ak
j }

(j = 1, 2, ..., n) is a collection of the HNLEs, then the GHNLCA operator can be defined as follows:

GHNLCA(h1, h2, ..., hn) =
( n

∑
j=1

(m(Aσ(j))−m(Aσ(j−1)))(hσ(j))
λ
)1/λ, (26)

where (σ(1), σ(2), ..., σ(n)) is a permutation of (1, 2, ..., n) such that hσ(1) ≥ hσ(2) ≥ ... ≥ hσ(n). Aσ(i) =

{xσ(1), xσ(2), ..., xσ(i)}, Aσ(0) = ∅ , ∅ is an empty set, and λ > 0.
The aggregated value of the GHNLCA operator is also an HNLE.

GHNLCA(h1, h2, ..., hn) =
(

∑n
j=1 m(Aσ(j))−m(Aσ(j−1))(hσ(j))

λ
)1/λ

=
⋃

ak
j∈hj

{(
s(∑n

j=1(m(Aσ(j))−m(Aσ(j−1)))(θ
k
σ(j))

λ)1/λ ,
⋃ {((

1−∏n
j=1(1− (µk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1))

)1/λ,

1− (1−∏n
j=1(1− (1− νk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1)))1/λ, 1− (1−∏n

j=1(1− (1−
τk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1)))1/λ

)})}
.

Theorem 2. (Commutativity). If (h′1, h′2, ..., h′n) is any permutation of (h1, h2, ..., hn), then

GHNLCA(h′1, h′2, ..., h′n) = GHNLCA(h1, h2, ..., hn).

Proof of Theorem 2.

GHNLCA(h1, h2, ..., hn) =
(

∑n
j=1 m(Aσ(j))−m(Aσ(j−1))(hσ(j))

λ
)1/λ

=
⋃

ak
j∈hj

{(
s(∑n

j=1(m(Aσ(j))−m(Aσ(j−1)))(θ
k
σ(j))

λ)1/λ ,
⋃ {((

1−∏n
j=1(1− (µk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1))

)1/λ,

1− (1−∏n
j=1(1− (1− νk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1)))1/λ, 1− (1−∏n

j=1(1− (1−
τk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1)))1/λ

)})}
and

GHNLCA(h′1, h′2, ..., h′n) =
(

∑n
j=1 m(A′σ(j))−m(A′σ(j−1))(h′σ(j))

λ
)1/λ

=
⋃

ak
j∈hj

{(
s
(∑n

j=1(m(A′σ(j))−m(A′σ(j−1)))(θ
′k
σ(j))

λ)1/λ ,
⋃ {((

1−∏n
j=1(1− (µ′kσ(j))

λ)m(A′σ(j))−m(A′σ(j−1))
)1/λ,

1− (1−∏n
j=1(1− (1− ν′kσ(j))

λ)m(A′σ(j))−m(A′σ(j−1)))1/λ, 1− (1−∏n
j=1(1− (1−

τ′kσ(j))
λ)m(A′σ(j))−m(A′σ(j−1)))1/λ

)})}
.

If (h′1, h′2, ..., h′n) is any permutation of (h1, h2, ..., hn), then we have hσ(j) = h′
σ(j) and

m(Aσ(j)) = m(A′σ(j)).

GHNLCA(h′1, h′2, ..., h′n) = GHNLCA(h1, h2, ..., hn).
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Theorem 3. (Idempotency). If hj = h, j = 1, 2, ..., n, hj = {ak
j }, ak

j =
(
s

θ
(k)
j

, (T(s
θ
(k)
j
), I(s

θ
(k)
j
), F(s

θ
(k)
j
))
)
,

T(s
θ
(k)
j
) = {µ(k)

j }, I(s
θ
(k)
j
) = {ν(k)j }, F(s

θ
(k)
j
) = {τ(k)

j }, then

GHNLCA(h1, h2, ..., hn) = h.

Proof of Theorem 3.

GHNLCA(h1, h2, ..., hn) =
(

∑n
j=1 m(Aσ(j))−m(Aσ(j−1))(hσ(j))

λ
)1/λ

=
⋃

ak
j∈hj

{(
s(∑n

j=1(m(Aσ(j))−m(Aσ(j−1)))(θ
k
σ(j))

λ)1/λ ,
⋃ {((

1−∏n
j=1(1− (µk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1))

)1/λ,

1− (1−∏n
j=1(1− (1− νk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1)))1/λ, 1− (1−∏n

j=1(1− (1−
τk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1)))1/λ

)})}
.

If hj = h, j = 1, 2, ..., n, then ak
j = ak =

(
sθk , (T(sθk ), I(sθk ), F(sθk ))

)
, T(sθk ) = {µ(k)},

I(sθk ) = {ν(k)}, F(sθk ) = {τ(k)}. Thus,

s(∑n
j=1(m(Aσ(j))−m(Aσ(j−1)))(θ

k)λ)1/λ = s((θk)λ ∑n
j=1(m(Aσ(j))−m(Aσ(j−1))))

1/λ = s((θk)λ)1/λ = sθk

(
1−∏n

j=1(1− (µk
σ(j))

λ)m(Aσ(j))−m(Aσ(j−1))
)1/λ

=
(
1−∏n

j=1(1− (µ(k))λ)m(Aσ(j))−m(Aσ(j−1))
)1/λ

=
(
1− (1− (µ(k))λ)∑n

j=1(m(Aσ(j))−m(Aσ(j−1)))
)1/λ

=
(
1− (1− (µ(k))λ)∑n

j=1(m(Aσ(j))−m(Aσ(j−1)))
)1/λ

=
(
1− (1− (µ(k))λ)

)1/λ
= µ(k).

1− (1−∏n
j=1(1− (1− ν

(k)
σ(j))

λ)m(Aσ(j))−m(Aσ(j−1)))1/λ

= 1− (1−∏n
j=1(1− (1− ν(k))λ)m(Aσ(j))−m(Aσ(j−1)))1/λ

= 1− (1− (1− (1− ν(k))λ)∑n
j=1(m(Aσ(j))−m(Aσ(j−1))))1/λ

= 1− (1− (1− (1− ν(k))λ))1/λ = 1− ((1− ν(k))λ)1/λ = ν(k).

1− (1−∏n
j=1(1− (1− τ

(k)
σ(j))

λ)m(Aσ(j))−m(Aσ(j−1)))1/λ

= 1− (1−∏n
j=1(1− (1− τ(k))λ)m(Aσ(j))−m(Aσ(j−1)))1/λ

= 1− (1− (1− (1− τ(k))λ)∑n
j=1(m(Aσ(j))−m(Aσ(j−1))))1/λ

= 1− (1− (1− (1− τ(k))λ))1/λ = 1− ((1− τ(k))λ)1/λ = τ(k).

Hence, GHNLCA(h1, h2, ..., hn) = h.

Definition 15. Let X = {x1, x2, ..., xn} be a reference set, and let m be the fuzzy measure on X. If hj = {ak
j }

(j = 1, 2, ..., n) is a collection of the HNLEs, then the QHNLCA operator can be defined as follows:

QHNLCA(h1, h2, ..., hn) = g−1( n

∑
j=1

(m(Aσ(j))−m(Aσ(j−1)))g(hσ(j))
)

(27)

where (σ(1), σ(2), ..., σ(n)) is a permutation of (1, 2, ..., n) such that hσ(1) ≥ hσ(2) ≥ ... ≥ hσ(n).
Aσ(i) = {xσ(1), xσ(2), ..., xσ(i)}, Aσ(0) = ∅ , ∅ is an empty set, and g(x) is a strictly monotonic
continuous function.

5. The Hesitant Neutrosophic Fuzzy Linguistic Decision-Making Method Based on TOPSIS

For a multiple attribute decision-making problem with p different periods tk (k = 1, 2, ..., p).
Let {A1, A2, ..., Am} be the set of alternatives, and let {C1, C2, ..., Cn} be the set of attributes.
hk

ij =
{(

sθk
ij
, (T(sθk

ij
), I(sθk

ij
), F(sθk

ij
))
)}

is the hesitant neutrosophic linguistic evaluation value given
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by DMs in evaluating alternative Ai with respect to the attribute Cj in period k, where sθk
ij
∈ S,

µkt
ij ∈ T(sθk

ij
), νkl

ij ∈ I(sθk
ij
), τkm

ij ∈ F(sθk
ij
), and 0 ≤ sup µkt

ij + sup νkl
ij + sup τkm

ij ≤ 3. The decision matrix

is formed as Dk = (hk
ij)m×n (k = 1, 2, ..., p).

Algorithm

Step 1. The DMs evaluate alternatives Ai (i = 1, 2, ..., m) with respect to attributes Cj (j =

1, 2, ..., n) in period k (k = 1, 2, ..., p) with hesitant neutrosophic fuzzy linguistic elements and decision
matrices are formed Hk = (hk

ij)m×n.

Hk =


hk

11 hk
12 ... hk

1n
hk

21 hk
22 ... hk

2n
...

...
. . .

...
hk

m1 hk
m2 ... hk

mn

 .

Step 2. Confirm the fuzzy density of each period and determine ρ by using the equation ρ =

Πn
i=1(1 + ρm(ti))− 1).

Step 3. Calculate the evaluation values h1
ij, h2

ij, ..., hp
ij in different periods into collective hij by using

the GHNLCA operator as follows:

hij = GHNLCA(h1
ij, h2

ij, ..., hp
ij)

=
⋃

ak
ij∈hk

ij

{(
s
(∑

p
k=1(m(Aσ(k))−m(Aσ(k−1)))(θ

(k)
ij )λ)1/λ

,
⋃ {((

1−∏
p
k=1(1− (µkt

ij )
λ)m(Aσ(k))−m(Aσ(k−1))

)1/λ,

1− (1−∏
p
k=1(1− (1− νkl

ij )
λ)m(Aσ(k))−m(Aσ(k−1)))1/λ, 1− (1−∏

p
k=1(1− (1−

τkm
ij )λ)m(Aσ(k))−m(Aσ(k−1)))1/λ

)})}
where Aσ(k) = {t1, t2, ..., tk}, A0 = φ. Thus, the decision matrix is formed as H = (hij)m×n, hij =

{(
sθij ,

(T(sθij), I(sθij), F(sθij))
)}

.
Step 4. Extend the collective decision matrix according to risk attitudes of DMs until all HNLEs

have the same number of NLEs and until each NLE has the same number of truth-memberships,
indeterminacy-memberships, and falsity-memberships. The extended decision matrix is formed as
H′ = (h′ij)m×n.

Step 5. Determine the hesitant neutrosophic linguistic positive ideal solution (HNLPIS), denoted
as h+, and the hesitant neutrosophic linguistic negative ideal solution (HNLNIS), denoted as h−,
as follows:

h+ = (h+1 , h+2 , ..., h+n ) = (max
i

h′i1, max
i

h′i2, ..., max
i

h′in), (28)

h− = (h−1 , h−2 , ..., h−n ) = (min
i

h′i1, min
i

h′i2, ..., min
i

h′in), (29)

where h+j = {(sθt+
j

, (T(sθt+
j
), I(sθt+

j
), F(sθt+

j
)))}, T(sθt+

j
) = {µt+

ijk}, I(sθt+
j
) = {νt+

ijk },F(sθt+
j
) = {τt+

ijk },

h−j = {(sθt−
j

, (T(sθt−
j
), I(sθt−

j
), F(sθt−

j
)))}, T(sθt−

j
) = {µt−

ijk}, I(sθt−
j
) = {νt−

ijk },F(sθt−
j
) = {τt−

ijk }.
Step 6. Confirm the fuzzy density m(Ci) of each attribute. Determine ρ by using Equation (14)

and calculate fuzzy measures of attribute sets.
Step 7. Based on the generalized hesitant neutrosophic linguistic correlation weighted averaging

distance, calculate the distances of each alternative’s collective evaluation values to the HNLPIS h+

and HNLNIS h−, respectively.
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di+
GC(hi, h+) =

(
∑n

j=1 (m(Bσ(j))−m(Bσ(j−1)))
1
4l ∑l

i=1

(
1
lθ ∑lθ

t=1

(∣∣θt
σ(ji) − θt+

σ(ji)

∣∣λ/gλ+

1
lt ∑lt

k=1

∣∣µt
σ(jik) − µt+

σ(jik)

∣∣λ + 1
lu ∑lu

k=1

∣∣νt
σ(jik) − νt+

σ(jik)

∣∣λ + 1
lv ∑lv

k=1

∣∣τt
σ(jik)−

τt+
σ(jik)

∣∣λ)))1/λ

(30)

di−
GC(hi, h−) =

(
∑n

j=1 (m(Bσ(j))−m(Bσ(j−1)))
(

1
4l ∑l

i=1
1
lθ ∑lθ

t=1

(∣∣θt
σ(ji) − θt−

σ(ji)

∣∣λ/gλ+

1
lt ∑lt

k=1

∣∣µt
σ(jik) − µt−

σ(jik)

∣∣λ + 1
lu ∑lu

k=1

∣∣νt
σ(jik) − νt−

σ(jik)

∣∣λ + 1
lv ∑lv

k=1

∣∣τt
σ(jik)−

τt−
σ(jik)

∣∣λ)))1/λ

(31)

where d1+
GC(hσ(i1), h+

σ(1)) ≥ d2+
GC(hσ(i2), h+

σ(2)) ≥ ... ≥ dn+
GC(hσ(in), h+

σ(n)), d1−
GC(hσ(i1), h−

σ(1)) ≥
d2−

GC(hσ(i2), h−
σ(2)) ≥ ... ≥ dn−

GC(hσ(in), h−
σ(n)), Bσ(j) = {Cσ(1), Cσ(2), ..., Cσ(j)}, and Bσ(0) = φ, Cσ(j) is

the attribute corresponding to the jth largest di+
GC(hij, h+j ) in di+

GC or the jth largest di−
GC(hij, h−j ) in di−

GC.
Step 8. Calculate closeness coefficients CCi (i = 1, 2, ..., m) for alternatives Ai (i = 1, 2, ..., m)

as follows:

CCi =
di−

GC(hi, h−)

di+
GC(hi, h−) + di−

GC(hi, h+)
, i = 1, 2, ..., m. (32)

Step 9. Rank alternatives according to the ranking of closeness coefficients and select the
optimal alternative.

6. Numerical Example

6.1. Practical Example

A company wants to invest a sum of money in an industry (adapted from [43]). The experts
mainly consider the following attributes: C1—the price of the product; C2—the quality of the product;
C3—the risk; C4—the delivery time. After pre-evaluation, there are five alternatives left for further
evaluation. Alternatives are evaluated with respect to attributes using hesitant neutrosophic linguistic
information. They consider information in three periods (ti, i = 1, 2, ..., 3). The new method is used to
rank alternatives.

Step 1. The hesitant neutrosophic linguistic matrices Dk (k = 1, 2, 3) are given by experts in
evaluating alternatives with respect to attributes in different periods as in Tables 1–3.

Step 2. Determine the fuzzy density of different ti and λ. Assume m(t1) = 0.3, m(t2) = 0.4,
and m(t3) = 0.5. By using Equation (14), we can get ρ = −0.3793. Then we can get m(t1, t2) =

0.6545, m(t1, t3) = 0.7431, m(t2, t3) = 0.8241, and m(t1, t2, t3) = 1.0.
Step 3. Aggregate the collective evaluation values by using the GHNLCA operator. We can take

different λ values. Here, we consider the HNLCA operator by taking λ = 1 in the GHNLCA operator.
The results are shown in Table 4.

Step 4. Assume decision-makers are risk-averse. Thus, the smallest linguistic evaluation
value, the smallest truth-membership, the largest indeterminacy-membership, and the largest falsity-
membership can be added until all the HNLEs have the same number of NLEs and until each NLE has
the same number of truth-memberships, indeterminacy-memberships, and falsity-memberships. The
results are shown in Table 5.

Step 5. We take the HNLPIS and the HNLNIS as follows:
HNLPIS: h+ =

{
{(s9, ({1, 1}, {0, 0}, {0, 0})), (s9, ({1, 1}, {0, 0}, {0, 0}))}, {(s9, ({1, 1}, {0, 0}, {0, 0})),

(s9, ({1, 1}, {0, 0}, {0, 0}))}, {(s9, ({1, 1}, {0, 0}, {0, 0})), (s9, ({1, 1}, {0, 0}, {0, 0}))}, {(s9, ({1, 1}, {0, 0},
{0, 0})), (s9, ({1, 1}, {0, 0}, {0, 0}))}

}
.

HNLNIS: h− =
{
{(s1, ({0, 0}, {1, 1}, {1, 1}, (s1, ({0, 0}, {1, 1}, {1, 1}))}, {(s1, ({0, 0}, {1, 1}, {1, 1},

(s1, ({0, 0},{1, 1},{1, 1}))},{(s1, ({0, 0},{1, 1},{1, 1}, (s1, ({0, 0},{1, 1},{1, 1}))},{(s1, ({0, 0},{1, 1},{1, 1},
(s1, ({0, 0},{1, 1},{1, 1}))}

}
.
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Step 6. Assume m(C1) = 0.25, m(C2) = 0.35, m(C3) = 0.30, and m(C4) = 0.20. We can get
ρ = −0.2330 by using Equation (14). Then, we can determine the fuzzy measures of the attribute sets
as follows:

m({C1}) = 0.25, m({C2}) = 0.35, m({C3}) = 0.30, m({C4}) = 0.20, m({C1, C2}) = 0.5796,
m({C1, C3}) = 0.5325, m({C1, C4}) = 0.4383, m({C2, C3}) = 0.6255, m({C2, C4}) = 0.5337, m({C3, C4}) =
0.4860, m({C1, C2, C3}) = 0.8391, m({C1, C2, C4}) = 0.7526, m({C1, C3, C4}) = 0.7077, m({C2, C3, C4}) =
0.7964, m({C1, C2, C3, C4}) = 1.0.

Step 7. Calculate the correlated distances of each alternative’s evaluation values to the HNLPIS
and the HNLNIS by generalized hesitant neutrosophic linguistic correlation weighted averaging
distance. Here, we can take different λ in Equations (30) and (31). If λ = 2, we can get

d1+
CE = 0.5249, d2+

CE = 0.5344, d3+
CE = 0.5082, d4+

CE = 0.5190, d5+
CE = 0.5249, d1−

CE = 0.5107, d2−
CE =

0.5231, d3−
CE = 0.5432, d4−

CE = 0.5624, d5−
CE = 0.5439.

Step 8. Calculate closeness coefficients of alternatives as
CC1 = 0.4932, CC2 = 0.4947, CC3 = 0.5166, CC4 = 0.5200, CC5 = 0.5262.
Step 9. Rank alternatives according to the ranking of CCi to get A5 > A4 > A3 > A2 > A1 and

the optimal alternative is A5.
If another λ value is used in Step 7, we can get distances, coefficients, and alternative rankings as

in Table 6.

Table 1. Decision matrix D1.

Alternative C1 C2

A1 {(s5,({0.3,0.4},{0.2},{0.3}))} {(s4, ({0.4},{0.3},{0.2}))}
A2 {(s6,({0.6},{0.1},{0.2})),(s7,({0.3},{0.4},{0.3}))} {(s5,({0.6},{0.1},{0.2}))}
A3 {(s4,({0.3},{0.2},{0.3}))} {(s3,({0.5},{0.2},{0.3})),(s4,({0.3},{0.2},{0.5}))}
A4 {(s4,({0.7},{0.0},{0.1})),(s5,({0.6},{0.2},{0.2}))} {(s7,({0.6},{0.1},{0.2}))}
A5 {(s3,({0.5},{0.3,0.4},{0.2}))} {(s2,({0.3},{0.3,0.4},{0.5}))}

C3 C4

A1 {(s2,({0.2,0.3},{0.3},{0.5,0.6}))} {(s5,({0.5},{0.2},{0.4})),(s7,({0.4},{0.2},{0.3}))}
A2 {(s3,({0.5},{0.3},{0.2}))} {(s6,({0.7,0.8},{0.1},{0.1}))}
A3 {(s5,({0.6},{0.1},{0.3}))} {(s2,({0.4},{0.2},{0.3}))}
A4 {(s2,({0.7},{0.2},{0.1,0.2}))} {(s3,({0.5},{0.3},{0.2}))}
A5 {(s8,({0.4},{0.3},{0.4}))} {(s4,({0.5},{0.4},{0.3})),(s5,({0.3},{0.3},{0.5}))}

Table 2. Decision matrix D2.

Alternative C1 C2

A1 {(s6,({0.2},{0.4},{0.3})),(s7,({0.5},{0.1},{0.2}))} {(s5, ({0.2},{0.2,0.4},{0.5}))}
A2 {(s4,({0.4},{0.1},{0.3}))} {(s6,({0.4},{0.3},{0.5}))}
A3 {(s7,({0.5},{0.3,0.4},{0.1}))} {(s4,({0.2},{0.4},{0.3}))}
A4 {(s3,({0.5},{0.2},{0.2}))} {(s6,({0.5},{0.2,0.3},{0.2}))}
A5 {(s2,({0.6},{0.4},{0.3}))} {(s4,({0.6},{0.3},{0.4})))}

C3 C4

A1 {(s3,({0.4},{0.4},{0.3}))} {(s3,({0.5},{0.2},{0.4}))}
A2 {(s4,({0.3},{0.2},{0.4}))} {(s5,({0.6},{0.1,0.2},{0.3}))}
A3 {(s3,({0.5},{0.3},{0.2}))} {(s2,({0.3},{0.2},{0.3}))}
A4 {(s4,({0.4},{0.2},{0.1}))} {(s3,({0.4},{0.1},{0.3})),(s4,({0.3},{0.2},{0.2}))}
A5 {(s5,({0.7,0.8},{0.3},{0.3}))} {(s6,({0.5},{0.3},{0.4}))}



Information 2018, 9, 88 15 of 20

Table 3. Decision matrix D3.

Alternative C1 C2

A1 {(s3,({0.3},{0.4},{0.5}))} {(s3, ({0.3},{0.4},{0.2}))}
A2 {(s5,({0.5},{0.2},{0.3}))} {(s4,({0.7},{0.2},{0.2}))}
A3 {(s4,({0.4},{0.1},{0.3})),(s5,({0.6},{0.2},{0.1}))} {(s5,({0.6},{0.1},{0.3}))}
A4 {(s6,({0.6},{0.1},{0.2}))} {(s4,({0.5},{0.2},{0.2}))}
A5 {(s3,({0.4},{0.2},{0.3}))} {(s6,({0.7,0.8},{0.2},{0.4}))}

C3 C4

A1 {(s6,({0.2},{0.1,0.3},{0.6}))} {(s5,({0.4},{0.3},{0.3}))}
A2 {(s2,({0.7},{0.2},{0.1}))} {(s4,({0.5},{0.2},{0.2})),(s5,({0.6},{0.1},{0.2}))}
A3 {(s7,({0.6},{0.2},{0.2}))} {(s2,({0.7},{0.1},{0.2}))}
A4 {(s4,({0.4,0.5},{0.1},{0.2}))} {(s3,({0.6},{0.2,0.4},{0.3}))}
A5 {(s2,({0.6},{0.2},{0.4})),(s3,({0.5},{0.2},{0.3}))} {(s7,({0.8},{0.2},{0.1}))}

Table 4. Collective decision matrix D.

Alternative C1 C2

A1
{(s4.6635,({0.2661,0.2992},{0.3249},{0.3579})), {(s4.0090,({0.2992},{0.2870,0.3669},{0.2768}))}(s5.0180,({0.3787,0.4068},{0.1988},{0.3100}))}

A2 {(s4.9455,({0.5012},{0.1271},{0.2656}))} {(s5.009,({0.5819},{0.1876},{0.2768}))}

A3
{(s5.0635,({0.4109},{0.1817,0.2013},{0.2032})), {(s4.0455,({0.4532},{0.2013},{0.3000})),
(s5.4090,({0.4879},{0.2309,0.2557},{0.1390}))} (s4.3455,({0.3951},{0.2013},{0.3497}))}

A4
{(s4.3365,({0.6029},{0.0000},{0.1625})), {(s5.3090,({0.5324},{0.1625,0.1876},{0.2000}))}(s4.6365,({0.5671},{0.1574},{0.2000}))}

A5 {(s2.6455,({0.4340},{0.2888,0.3148},{0.2656}))} {(s4.0910,({0.5716,0.6276},{0.2608,0.2843},{0.4277}))}

C3 C4

A1 {(s3.7365,({0.2776,0.3059},{0.2273,0.3322},{0.4443}))} {(s4.291,({0.4657},{0.2301},{0.3622})),
(s4.891,({0.4376},{0.2301},{0.3322}))}

A2 {(s3.0090,({0.5278},{0.2259},{0.2013}))} {(s4.9545,({0.6037,0.6491},{0.1271,0.1625},{0.1876}))}

A3 {(s4.9820,({0.5671},{0.1876},{0.2259}))} {(s2.0000,({0.5013},{0.1574},{0.2608}))}

A4 {(s3.4000,({0.5126,0.5424},{0.1574},{0.1271,0.1564}))} {(s3.0000,({0.5062},{0.1767,0.2245},{0.2656}))}
{(s3.3545,({0.4785},{0.2259,0.2870},{0.2301}))}

A5 {(s4.8635,({0.5921,0.6467},{0.2608},{0.3612})), {(s5.7455,({0.6357},{0.2843},{0.2273}))}
(s5.2090,({0.5594,0.6184},{0.2608},{0.3270}))} {(s6.0455,({0.5970},{0.2608},{0.2649}))}

Table 5. Extended hesitant neutrosophic fuzzy linguistic decision matrix D̃.

Alternative C1 C2

A1 {(s4.6635,({0.2661,0.2992},{0.3249,0.3669},{0.3579,0.4443})), {(s4.0090,({0.2661,0.2992},{0.2870,0.3669},{0.2768,0.4443})),
(s5.0180,({0.3787,0.4068},{0.1988,0.3669},{0.3100,0.4443}))} (s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))}

A2 {(s4.9455,({0.2661,0.5012},{0.1271,0.3669},{0.2656,0.4443})), {(s5.009,({0.2661,0.5819},{0.1876,0.3669},{0.2768,0.4443})),
(s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))} (s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))}

A3 {(s5.0635,({0.2661,0.4109},{0.1817,0.2013},{0.2032,0.4443})), {(s4.0455,({0.2661,0.4532},{0.2013,0.3669},{0.3000,0.4443})),
(s5.4090,({0.2661,0.4879},{0.2309,0.2557},{0.1390,0.4443}))} (s4.3455,({0.2661,0.3951},{0.2013,0.3669},{0.3497,0.4443}))}

A4 {(s4.3365,({0.2661,0.6029},{0.0000,0.3669},{0.1625,0.4443})), {(s5.3090,({0.2661,0.5324},{0.1625,0.1876},{0.2000,0.4443})),
(s4.6365,({0.2661,0.5671},{0.1574,0.3669},{0.2000,0.4443}))} (s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))}

A5 {(s2.6455,({0.2661,0.4340},{0.2888,0.3148},{0.2656,0.4443})), {(s4.0910,({0.5716,0.6276},{0.2608,0.2843},{0.4277,0.4443})),
(s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))} (s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))}

C3 C4

A1 {(s3.7365,({0.2776,0.3059},{0.2273,0.3322},{0.4443,0.4443})), {(s4.291,({0.2661,0.4657},{0.2301,0.3669},{0.3622,0.4443})),
{(s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))} (s4.891,({0.2661,0.4376},{0.2301,0.3669},{0.3322,0.4443}))}

A2 {(s3.0090,({0.2661,0.5278},{0.2259,0.3669},{0.2013,0.4443})), {(s4.9545,({0.6037,0.6491},{0.1271,0.1625},{0.1876,0.4443})),
(s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))} (s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))}

A3 {(s4.9820,({0.2661,0.5671},{0.1876,0.3669},{0.2259,0.4443})), {(s2.0000,({0.2661,0.5013},{0.1574,0.3669},{0.2608,0.4443})),
(s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))} (s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))}

A4 {(s3.4000,({0.5126,0.5424},{0.1574,0.3669},{0.1271,0.1564})), {(s3.0000,({0.2661,0.5062},{0.1767,0.2245},{0.2656,0.4443})),
(s2.0000,({0.2661,0.2661},{0.3669,0.3669},{0.4443,0.4443}))} (s3.3545,({0.2661,0.4785},{0.2259,0.2870},{0.2301,0.4443}))}

A5 {(s4.8635,({0.5921,0.6467},{0.2608,0.3669},{0.3612,0.4443})), {(s5.7455,({0.2661,0.6357},{0.2843,0.3669},{0.2273,0.4443})),
(s5.2090,({0.5594,0.6184},{0.2608,0.3669},{0.3270,0.4443}))} (s6.0455,({0.2661,0.5970},{0.2608,0.3669},{0.2649,0.4443}))}
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Table 6. Decision results using different λ with hesitant neutrosophic linguistic elements (HNLEs).

λ A1 A2 A3 A4 A5 Ranking

λ = 0.1
d+i 0.4762 0.4625 0.4409 0.3748 0.4462

A4 > A5 > A3 > A1 > A2d−i 0.4386 0.4168 0.4605 0.4381 0.4786
CCi 0.4795 0.4740 0.5109 0.5389 0.5175

λ = 0.5
d+i 0.4868 0.4793 0.4564 0.4355 0.4554

A5 > A4 > A3 > A1 > A2d−i 0.4568 0.4452 0.4810 0.4720 0.4956
CCi 0.4841 0.4816 0.5131 0.5201 0.5212

λ = 1
d+i 0.4999 0.4990 0.4749 0.4686 0.4670

A5 > A4 > A3 > A1 > A2d−i 0.4772 0.4759 0.5043 0.5079 0.5144
CCi 0.4884 0.4882 0.5150 0.5201 0.5242

λ = 2
d+i 0.5249 0.5344 0.5082 0.5190 0.4898

A5 > A4 > A3 > A2 > A1d−i 0.5107 0.5231 0.5432 0.5624 0.5439
CCi 0.4932 0.4947 0.5166 0.5200 0.5262

λ = 5
d+i 0.6142 0.6326 0.5922 0.6236 0.5561

A5 > A4 > A3 > A2 > A1d−i 0.5725 0.6031 0.6171 0.6546 0.5930
CCi 0.4824 0.4881 0.5103 0.5121 0.5160

λ = 10
d+i 0.6201 0.6616 0.5925 0.6746 0.5673

A3 > A5 > A4 > A2 > A1d−i 0.6266 0.6714 0.6807 0.7290 0.6310
CCi 0.5026 0.5037 0.5346 0.5194 0.5266

6.2. Comparison Analysis

Comparisons with other methods have been made [44,45]. If indeterminacy memberships are not
considered, hesitant neutrosophic linguistic elements reduce to hesitant intuitionistic fuzzy linguistic
elements (HIFLEs) [44] h′kij =

{(
sθk

ij
, (I(sθk

ij
), F(sθk

ij
))
)}

. We first aggregate hesitant intuitionistic fuzzy

linguistic elements given by different DMs in different periods into collective ones h′ ij =
{(

sθij ,
(I(sθij), F(sθij))

)}
by using the generalized hesitant intuitionistic fuzzy linguistic correlated averaging

(GHIFLCA) operator as in Equation (33).

GHIFLCA(h′1, h′2, ..., h′n) =
(

∑n
j=1 m(Aσ(j))−m(Aσ(j−1))(h′σ(j))

λ
)1/λ

=
⋃

ak
j∈hj

{(
s(∑n

j=1(m(Aσ(j))−m(Aσ(j−1)))(θ
k
σ(j))

λ)1/λ ,
⋃ {((

1−∏n
j=1(1− (µk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1))

)1/λ,

1− (1−∏n
j=1(1− (1− τk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1)))1/λ

)})}
.

(33)

Assuming DMs are risk-averse, we extend the hesitant intuitionistic fuzzy linguistic elements
by adding the smallest linguistic evaluation values, the smallest truth-memberships, and the largest
false-memberships. Determine the hesitant intuitionistic fuzzy linguistic positive ideal solution
(HIFLPIS) h′+ and the hesitant intuitionistic fuzzy linguistic negative ideal solution (HIFLNIS) h′−.

HIFLPIS: h′+ =
{
{(s9, ({1, 1}, {0, 0})), (s9, ({1, 1}, {0, 0}))}, {(s9, ({1, 1}, {0, 0})), (s9, ({1, 1},

{0, 0}))}, {(s9, ({1, 1}, {0, 0})), (s9, ({1, 1}, {0, 0}))}, {(s9, ({1, 1}, {0, 0})), (s9, ({1, 1}, {0, 0}))}
}

.
HIFLNIS: h′− =

{
{(s1, ({0, 0}, {1, 1}, (s1, ({0, 0}, {1, 1}))}, {(s1, ({0, 0}, {1, 1}, (s1, ({0, 0}, {1,

1}))}, {(s1, ({0, 0}, {1, 1}, (s1, ({0, 0}, {1, 1}))}, {(s1, ({0, 0}, {1, 1}, (s1, ({0, 0}, {1, 1}))}
}

.
Calculate the distances of the collective evaluation values to h′+ and h′− by using Equations (34)

and (35). The results are shown in Table 7.

di(h′i, h′+) =
(

∑n
j=1 (m(Bσ(j))−m(Bσ(j−1)))

1
3l ∑l

i=1

(
1
lθ ∑lθ

t=1

(∣∣θt
σ(ji) − 9

∣∣λ/9λ+

1
lt ∑lt

k=1

∣∣µt
σ(jik) − 1

∣∣λ + 1
lt ∑lt

k=1

∣∣τt
σ(jik) − 0

∣∣λ)))1/λ
.

(34)
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di(h′i, h′−) =
(

∑n
j=1 (m(Bσ(j))−m(Bσ(j−1)))

1
3l ∑l

i=1

(
1
lθ ∑lθ

t=1

(∣∣θt
σ(ji) − 1

∣∣λ/9λ+

1
lt ∑lt

k=1

∣∣µt
σ(jik) − 0

∣∣λ + 1
lt ∑lt

k=1

∣∣τt
σ(jik) − 1

∣∣λ)))1/λ
.

(35)

Calculate the closeness coefficients of alternatives by using Equation (32). The results are also
shown in Table 7. From the results, we can get different ranking results if indeterminacy memberships
are not considered. In most cases, A4 is the optimal alternative and A5 becomes the suboptimal
alternative. If λ = 10, A3 is the optimal alternative, and A5 is ranked as the second to last.

Table 7. Decision results using different λ with hesitant intuitionistic fuzzy linguistic elements (HIFLEs).

λ CCi A1 A2 A3 A4 A5 Ranking

λ = 0.1 CCi 0.4110 0.4295 0.4556 0.4787 0.4678 A4 > A5 > A3 > A2 > A1
λ = 0.5 CCi 0.4158 0.4369 0.4589 0.4809 0.4718 A4 > A5 > A3 > A2 > A1
λ = 1 CCi 0.4212 0.4443 0.4626 0.4838 0.4756 A4 > A5 > A3 > A2 > A1
λ = 2 CCi 0.4300 0.4541 0.4686 0.4891 0.4800 A4 > A5 > A3 > A2 > A1
λ = 5 CCi 0.4444 0.4659 0.4791 0.4997 0.4796 A4 > A5 > A3 > A2 > A1

λ = 10 CCi 0.4775 0.4812 0.5026 0.5021 0.4705 A3 > A4 > A2 > A5 > A1

If the linguistic arguments are not considered, the hesitant neutrosophic linguistic elements reduce
to the hesitant neutrosophic elements [45] h′′kij =

{(
Tk

ij, Ik
ij, Fk

ij
)}

. The hesitant neutrosophic elements
are first aggregated into collective ones by using the generalized hesitant neutrosophic fuzzy correlated
averaging (GHNFCA) operator as follows:

GHNFCA(h′′1 , h′′2 , ..., h′′n) =
(

∑n
j=1 m(Aσ(j))−m(Aσ(j−1))(h′′σ(j))

λ
)1/λ

=
⋃

ak
j∈hj

{⋃ {((
1−∏n

j=1(1− (µk
σ(j))

λ)m(Aσ(j))−m(Aσ(j−1))
)1/λ, 1− (1−∏n

j=1(1− (1−

νk
σ(j))

λ)m(Aσ(j))−m(Aσ(j−1)))1/λ, 1− (1−∏n
j=1(1− (1− τk

σ(j))
λ)m(Aσ(j))−m(Aσ(j−1)))1/λ

)})}
.

The DMs are also assumed to be risk-averse and the smallest truth-membership, the largest
indeterminacy-membership, and the largest falsity-membership are added. Determine the hesitant
neutrosophic fuzzy positive ideal solution h′′+ and hesitant neutrosophic fuzzy negative ideal
solution h′′−. Calculate the distances of collective neutrosophic fuzzy values to h′′+ and h′′− by
the following equations:

di(h′′i , h′′+) =
(

∑n
j=1 (m(Bσ(j))−m(Bσ(j−1)))

1
3l ∑l

i=1

(
1
lθ ∑lθ

t=1

(∣∣µt
σ(ji) − 1

∣∣λ+
1
lt ∑lt

k=1

∣∣νt
σ(jik) − 0

∣∣λ + 1
lt ∑lt

k=1

∣∣τt
σ(jik) − 0

∣∣λ)))1/λ
.

(36)

di(h′′i , h′′−) =
(

∑n
j=1 (m(Bσ(j))−m(Bσ(j−1)))

1
3l ∑l

i=1

(
1
lθ ∑lθ

t=1

(∣∣µt
σ(ji) − 0

∣∣λ+
1
lt ∑lt

k=1

∣∣νt
σ(jik) − 1

∣∣λ + 1
lt ∑lt

k=1

∣∣τt
σ(jik) − 1

∣∣λ)))1/λ
.

(37)

Other steps are the same as the proposed methods. If λ = 2, we can get the results as CC1 = 0.7661,
CC1 = 0.7229, CC1 = 0.7686, CC1 = 0.6880, and CC1 = 0.7256. The alternatives can be ranked as
A3 > A1 > A5 > A2 > A4.

Results of different methods are listed in Table 8 if λ = 2. From the results, we can see that
different ranking results can be obtained using different methods. In the method of [45], only hesitant
neutrosophic fuzzy values have been considered. In the method of [44], the memberships are in the
form of intuitionistic fuzzy values. In fact, DMs would like to evaluate with linguistic arguments in the
evaluation process. By using hesitant neutrosophic fuzzy elements to model fuzziness and uncertainty,
more accuracy results can be obtained. Decision results are more reasonable in the proposed method.
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Based on comparison with existing methods, therefore, this paper presents a new way of solving
multiple attribute decision-making in a hesitant neutrosophic linguistic environment.

Table 8. Results of different methods.

Method Ranking

Method from [44] A4 > A5 > A3 > A2 > A1
Method from [45] A3 > A1 > A5 > A2 > A4
Proposed method A5 > A4 > A3 > A2 > A1

7. Conclusions

In this paper, we first introduce a definition of the hesitant neutrosophic fuzzy linguistic set.
We then define some distance measures including the hesitant neutrosophic linguistic Euclidean
distance, the hesitant neutrosophic linguistic Hamming distance, and the generalized hesitant
neutrosophic linguistic distance. We also define some correlated distance measures including the
generalized hesitant neutrosophic linguistic correlation averaging distance and the generalized hesitant
neutrosophic linguistic hybrid correlation averaging distance. We present some correlated aggregation
operators for hesitant neutrosophic fuzzy linguistic set including the HNLCA operator, the HNLCGA
operator, the GHNLCA operator, and the QHNLCA operator. A new hesitant neutrosophic fuzzy
linguistic multiple attribute decision-making method has been developed based on the new distance
measures and the new aggregation operators. We apply the new method to solve investment problems.
Two special cases of the hesitant neutrosophic fuzzy linguistic set from existing works have been
used in the numerical example to illustrate the difference between the proposed method and several
other methods.

The proposed method has the following advantages. First, the hesitant neutrosophic fuzzy
linguistic set is the extension of the hesitant fuzzy set, the neutrosophic set, and the linguistic term set,
which can be applied in decision problems with imprecise, uncertain, incomplete, and inconsistent
information. Compared with other tools, the hesitant neutrosophic fuzzy linguistic set is more flexible
and accurate, and many existing tools are special cases of the hesitant neutrosophic fuzzy linguistic set.
Second, correlation exists extensively in the decision-making process, which can be modeled by using
the Choquet integral. We combine the Choquet integral with the hesitant neutrosophic fuzzy linguistic
theory to develop some distance measures and aggregation operators. Finally, the new multiple
attribute group decision-making method is based on the TOPSIS and the Choquet integral for hesitant
neutrosophic fuzzy linguistic information, which can be used to solve complicated decision problems.
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23. Şahin, R. Cross-entropy measure on interval neutrosophic sets and its applications in multicriteria decision
making. Neural Comput. Appl. 2017, 28, 2781–2793.

24. Majumdar, P.; Samanta, S.K. On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26,
1245–1252.
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