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Abstract: This paper presents an efficient and simple technique on reducing the false contour
problem which often occurs in the JPEG decoded image. The false contour appears on JPEG
decoded image while applying small quality factor. This problem induces unpleasant visual
appearance. The proposed scheme exploits the usability of Halftoning-Based Block Truncation
Coding (HBTC) approach on generating visual illumination to reduce the aforementioned problem.
Three HBTC techniques, namely Ordered Dither Block Truncation Coding (ODBTC), Error Diffusion
Block Truncation Coding (EDBTC) and Dot Diffused Block Truncation Coding (DDBTC), modify
the DC components of all Discrete Cosine Transform (DCT) processed image on JPEG encoding
stage. Experimental results show the proposed method superiority on JPEG false contour reduction.
To further improve the JPEG decoded image quality, the proposed method utilizes the Gaussian kernel
on replacing the DDBTC diffused kernel on spreading the error term. It assumes that the adjacent
image blocks have a strong correlation in which high diffused coefficient should be applied on nearest
adjacent neighbor. This paper extends the HBTC usability on JPEG false contour suppression.
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1. Introduction

Reducing the required storage space for recording digital image in computer has attracted many
attentions for image processing researchers. Some research efforts have been devoted for image
compression fields to develop a new compression technique and to further reduce the required storage
of compressed image. Several image compression techniques have been proposed and documented in
literatures such as JPEG scheme and HBTC method [1–3]. Among of them, the JPEG scheme yields
a promising result on decoded image quality as well as required storage bits. The JPEG gives a good
result on decoded image while applying a high JPEG quality factor. However, the false contour
problem occurs on a JPEG decoded image when applying the low-quality factor. This problem induces
unpleasant visual effect.

The JPEG false contour can be easily reduced by modifying the DC components of DCT-transformed
image. This modification is only performed on the encoding stage, whereas the decoding module
simply performs the original JPEG inverse process without additional operation related to DC values.
A simple approach has been proposed in [4] for modifying the DC components. This method
de-correlates the adjacency criterion and neighbor correlation in DC components using EDBTC
approach. It performs the thresholding operation and diffuses error term of processed DC components
into its neighbor to generate illumination effect. Using this simple method, the quality of JPEG decoded
image can be improved. At the same time, it reduces the appearance of false contour in the decoded
image. As reported in the literature, this method achieves better performance compared to that of the
former existing scheme.
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To further reduce the false contour problem occurring in JPEG decompression stage, some simple
techniques are proposed in this paper. These techniques exploit the HBTC effectiveness for generating
the visual illumination. Herein, the DC components are modified using the HBTC on the JPEG
encoding process. Using this strategy, the visual illumination helps the JPEG on suppressing false
contour in the decoding stage. The HBTC methods have been proven to give a promising result for
image compression as reported in [1–3]. Due to its simplicity, several applications have been developed
under the HBTC framework such as image watermarking [5], image retrieval [4,6–9], inverse half
toning method [10–12], data hiding [13] and image security [14]. As reported in the experimental
result section, the proposed method effectively reduces the JPEG false contour artifacts.

At the end, this paper is organized as follow: Section 2 delivers the related works on JPEG
image compression and the former scheme on reducing the JPEG false contour. Section 3 presents the
proposed method on reducing the JPEG false contour using two HBTC techniques. The first technique
employs the ODBTC approach on generating the visual illumination, whereas the second technique
utilizes the DDBTC to obtain better result on JPEG false contour reduction. An improvement version
of the proposed DDBTC scheme is also presented in this section by modifying the Gaussian filtering
to further generate better visual illumination. Some extensive experiments are reported in Section 3
along with the discussion on the finding results. Finally, the conclusion is drawn in Section 4.

2. Related Works

This section presents a brief introduction of JPEG image compression under a specific quality
factor. It gives an example of JPEG false contour problem which often appear on JPEG decoded image
with low value of quality factor. The former method on reducing JPEG false contour is also presented
in this section.

2.1. JPEG Image Compression

The JPEG image compression scheme is firstly introduced in this section. The JPEG reduces
the required bit for storing a given image by utilizing the usability of quantization process.
The quantization process enforces most of the image pixels into lower entropy. The JPEG utilizes the
quantization matrix determined by quality factor. Quantization matrix determines the decompressed
image quality. In the JPEG compression, the quantization factor lies in the interval [0, 100] in which
the zero value denotes the poorest decompressed image quality, whereas the 100 value indicates the
best decompressed image quality. The false contour often occurs at the JPEG decompressed image by
choosing a small quality factor such as 5, 8, 10, etc.

In JPEG image compression, an input image (subtracted with 128) is firstly transformed using
the Discrete Cosine Transformation (DCT). The quantization process is subsequently performed in
this transformed image before lossless entropy coding. Let I be an image of size M × M. In the JPEG
encoding stage, this image is divided into several non-overlapping image blocks of size 8 × 8. A set
of image blocks are then denoted as B = {b(i, j)|∀i, j}, where i, j = 1, 2, . . . , M

8 . The symbol (i, j)
denotes the image block position in row and column. Each image block is firstly subtracted with the
mean pixel distribution, i.e., 128, as indicated with b(i, j)− 128. This substracted image block is further
transformed using DCT as follow:

b̃(i, j)⇐ =DCT{b(i, j)}, (1)

where b̃(i, j) and =DCT{·} denote the transformed image block and DCT operator, respectively.
The DCT operator produces the DC and AC components of an image. The DCT transformed coefficient
of each image block is then defined as:

b̃(i, j) = {DC(i, j), AC(i, j)}, (2)
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where DC(i, j) and AC(i, j) are the DC and AC components, respectively, of DCT transformed image
block at position (i, j). By setting the quality factor Q, the quantization process enforces the DCT
transformed coefficients into zero values as much as possible. The quantization process is formally
defined as:

B̃(i, j)⇐ Round

{
b̃(i, j)
Q

}
, (3)

where Q represents the quantization matrix of the same size with the image block size. The symbol
Round{·} denotes the truncation operator to force the quantized DCT coefficient into the nearest
integer. The image block B̃(x, y) is subsequently encoded using the entropy coding. The DC and AC
coefficients are processed using the Differential Pulse Code Modulation (DPCM) and lossless Huffman
coding, respectively. Figure 1 illustrates an example of JPEG image compression by choosing the
quality factor Q = 5. As shown in Figure 1c, the zero values dominate the encoded image block B̃(i, j).
This phenomenon is caused by the quantization process as formulated in Equation (3). By applying
the JPEG decoding process, one may obtain the decoded image block as shown in Figure 1d. The pixel
values in an input image are almost different with the pixel values of decoded image. This phenomenon
induces the false contour problem in the JPEG decoding stage when utilizing a small quality factor.
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matrix ℚ; (c) encoded image 𝐵̃(𝑥, 𝑦); and (d) decoded image. 

To alleviate the JPEG false contour appearance, the proposed method utilizes the visual 

illumination by exploiting the Halftoning-based Block Truncation Coding (HBTC) approaches, i.e. 

ODBTC and DDBTC scheme. These schemes are applied on the DC coefficient of DCT transformed 

image block. Herein, all DC components over all image blocks are firstly collected into a single matrix 

𝑑(𝑖, 𝑗) as follow: 

Figure 1. Example of JPEG compression with Q = 5: (a) input image block b(i, j); (b) quantization
matrix Q; (c) encoded image B̃(x, y); and (d) decoded image.

To alleviate the JPEG false contour appearance, the proposed method utilizes the visual
illumination by exploiting the Halftoning-based Block Truncation Coding (HBTC) approaches,
i.e., ODBTC and DDBTC scheme. These schemes are applied on the DC coefficient of DCT transformed
image block. Herein, all DC components over all image blocks are firstly collected into a single matrix
d(i, j) as follow:
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d(i, j) = ∪∀i,jDC(i, j), (4)

for i, j = 1, 2, . . . , M
8 . The HBTC performs the dithering and diffused operation in the matrix d(i, j) to

gives the visual illumination. Specifically, the HBCT operation on d(i, j) is conducted as follow:

g(i, j)⇐ H{d(i, j)}, (5)

where g(i, j) and H{·} denote the modified DC components and HBTC operator, respectively.
The modified DC coefficient replaces the original DC component as:

b̃∗(i, j) = {g(i, j), AC(i, j)}. (6)

The last step is quantized this modified image block b̃∗(i, j) before performing the entropy coding
as follow:

B̃(i, j)⇐ Round

{
b̃∗(i, j)
Q

}
. (7)

Figure 2 shows the schematic diagram of JPEG false contour reduction using HBTC operation,
namely DDBTC approach. This simple strategy effectively suppresses the false contour problem which
often occurs in the JPEG image compression. It is noteworthy that the proposed method is only applied
on JPEG encoding scheme, while the additional post processing is not required at the decoding side.
Thus, we can use the standard JPEG decoding process for the proposed scheme.
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Figure 2. Schematic diagram of the proposed method.

2.2. Error Diffused Method

The error diffusion approach has been proposed in Reference [15] to modify the DC components
and introduce the visual illumination on the JPEG decoded image. Herein, the HBTC performs the
modification on DC components using the EDBTC approach. The EDBTC approach on JPEG false
contour reduction can be formally defined as:

g(i, j)⇐ HEDBTC{d(i, j)}. (8)

The EDBTC operation produces the visual illumination by exploiting the usability of the error
kernel. In this research, we simply use the Floyd-Steinberg error kernel for performing the EDBTC
thresholding stage. Figure 3 depicts Floyd-Steinberg error kernel utilized in this research. The symbol
× in this error kernel denotes the current processed pixel, i.e., the center of error kernel.
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In the EDBTC approach, an input image/matrix d(i, j) is firstly decomposed into several
non-overlapping image blocks of size m × m. Let f (x, y) be an image block size. The EDBTC
requires the threshold value for performing the thresholding process. Herein, the mean value of each
image block is regarded as threshold value which can be easily computed as:

f = ∑m
x=1∑

m
y=1 f (x, y). (9)

By utilizing this threshold value, the EDBTC modifies the DC components by using the following
thresholding strategy:

g(x, y) =

{
fmin, f (x, y) < f
fmax, f (x, y) ≥ f

. (10)

The EDBTC replaces the original DC components with the minimum or maximum value found on
the image block using the simple thresholding method. Beside of thresholding operation, the EDBTC
needs to diffuse the error caused by this thresholding process. It can be regarded as the most important
step in EDBTC approach. The error of a given pixel/element can be calculated as:

e(x, y) = f (x, y)− g(x, y). (11)

This error calculation simply measures the degree of difference between the actual pixel/element
value with the replaced value (minimum or maximum value). The error should be diffused or spread
out into its neighbor to create the illumination effect. The error diffusion around its surrounding
neighbors can be easily computed as follow:

f (x, y)← f (x, y) + e(x, y) ∗ ε, (12)

where e(x, y) and ε represent the error term caused by thresholding operation and the error kernel,
respectively. The symbol ∗ denotes the convolution operation. At the end, all DC components are
replaced with the modified DC coefficients g(x, y). Using this approach, the JPEG false contour can be
reduced such that the JPEG decoded image becomes more satisfied for human vision.

3. Proposed Method for Reducing JPEG False Contour

This section presents the proposed method on reducing the JPEG false contour. The proposed
method exploits the effectiveness and usability of ODBTC and DDBTC schemes to reduce the
aforementioned problem. The ODBTC and DDBTC methods produce the visual illumination which
is very useful to suppress the false contour artifacts. To further improve the performance, a slight
modification is proposed on DDBTC method by employing the Gaussian kernel in the DDBTC
process. This simple modification offers a better result, at the same time, it simply requires low
computational burden.

3.1. Ordered Dither Method

The simple approach on reducing the JPEG false contour is with the dithering method. The DC
components of all image blocks, i.e., the matrix d(i, j) is fed into the HBTC module to yield the modified
DC coefficients. In the dithering approach, the ODBTC performs the DC coefficients modification as follow:

g(i, j)⇐ HODBTC{d(i, j)}. (13)
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The ODBTC has been proved to yield a good illumination effect by exploiting the dither array.
The ODBTC performs the dithering operation on block-wise of an input image/matrix.

In the ODBTC processing, the matrix d(i, j) is firstly divided into several non-overlapping image
blocks of size m × m. Let f (x, y) be an image block. The minimum and maximum values of this
image block are required in the ODBTC process which can be computed as follow:

fmin = min
∀x,y

f (x, y), (14)

fmax = max
∀x,y

f (x, y) (15)

where fmin and fmax denote the minimum and maximum values of each image block, respectively.
The symbol x, y = 1, 2, . . . , m represent the pixel/matrix position.

The ODBTC employs the dither array D(x, y) of the same size image block, i.e., m × m, to generate
the illumination effect. This dither array can be offline pre-trained over several training images.
However, the determination of dither array coefficients is out of paper scope. Figure 4a shows
an example of dither array D(x, y). The scaled dither array Dk can be easily computed as follow:

Dk = k
D(x, y) − min

∀x,y
D(x, y)

max
∀x,y

D(x, y) − min
∀x,y

D(x, y)
, (16)

where k is the scaled value which can be calculated as k = fmax − fmin Figure 4b–f gives some examples
of scaled dither array over various k = 1, 2, 64, 128, 256. These scaled dither array can be stored in
the Look-Up-Table (LUT) for later usage in order to speed up the computational time. The ODBTC
subsequently modifies the DC components using the simple thresholding approach as follow:

g(x, y) =

{
fmin, f (x, y) < fmin + Dk(x, y)
fmax, f (x, y) ≥ fmin + Dk(x, y)

, (17)

for all x, y = 1, 2, . . . , m. Using this scenario, the modified DC components can be obtained.
The ODBTC perform the dithering operation over all image blocks. All image blocks are then combined
into a single matrix g(i, j) using the following operation:

g(i, j) = ∪∀x,yg(x, y). (18)
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Figure 4. Examples of (a) ODBTC dither array, 𝐷(𝑥, 𝑦) and its scaled version (stored as LUT for latter 
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The matrix g(i, j) is used to replace and modify the original DC coefficients as indicated in
(6). The ODBTC can effectively reduce the JPEG false contour by introducing the dithering-based
visual illumination.

3.2. Dot Diffused Method

The more sophisticated approach for creating the visual illumination on JPEG false contour
reduction is by utilizing the dot diffused method. Herein, the false contour is reduced using the HBTC
approach, i.e., DDBTC. The DDBTC is almost similar to EDBTC in which the error value caused by
thresholding approach are delivered into its surrounding neighbors. However, the processing order
between these two aforementioned methods is totally different. The DDBTC requires the fix processing
order to generate dot-like visual illumination. Specifically, the DDBTC process on JPEG false contour
reduction can be defined as follow:

g(i, j)⇐ HDDBTC{d(i, j)}. (19)

Figure 2 depicts the schematic diagram of the DDBTC method for reducing the JPEG false contour.
In contrast to EDBTC, the DDBTC needs the class matrix for indicating the processing order as shown
in Figure 5. Herein, different image block requires different class matrix. In addition, the DDBTC
also employs the diffused kernel as given in Figure 6 in which different image block uses different
diffused kernel.
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Let f (x, y) be an image block of size m × m as defined in the previous subsection.
The pixel/element of f (x, y) is processed based on the processing order given in the class matrix C.
Suppose o = 1, 2, . . . , m2 be a processing order. The (xo, yo) is the processed pixel/element, i.e., one
pixel is processed after completing the other pixel. The DDBTC method performs the thresholding
operation on generating the visual illumination by incorporating the mean value f as threshold value.
The DDBTC thresholding approach can be performed as follow:
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g(xo, yo) =

{
fmin, f (xo, yo) < f
fmax, f (xo, yo) ≥ f

, (20)

where fmin and fmax are the minimum and maximum value computed on an image block, respectively.
This thresholding process is only workable on non-concurrent condition, i.e., one pixel processing
must be finished before going to another pixel. Similar to EDBTC, the DDBTC thresholding approach
induces the error term which is the different between the original pixel/element value with the
threshold value. The error computation for each pixel/element can be defined as:

e(x, y) = f (x, y)− g(x, y). (21)

To generate better illumination result, this error term is diffused into its surrounding neighbors
using the following strategy:

f (x, y)← f (x, y) + e(x, y) ∗ ε, (22)

where ε denotes the diffused kernel. Since the adjacent pixel values have higher degree of correlation,
the simple diffused kernel is not enough to spread the error after DC components thresholding.
The Gaussian diffused kernel offers better kernel coefficient for diffusing the error term. The Gaussian
diffused kernel can be easily computed as:

ε(x, y) =
1√

2πσ2
exp

{
− x2 + y2

2σ2

}
, (23)

where σ denotes the standard deviation of Gaussian diffused kernel. Figure 7 shows an example of
Gaussian diffused kernel for generating visual illumination. Using this kernel, the JPEG false contour
can be easily reduced to yield more pleasant JPEG decoded image. The DDBTC Gaussian approach
utilizes the class matrix which is similar to that of the classical DDBTC method as shown in Figure 5,
whereas the main different between these two approaches are simply on diffused kernel.
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The key aspects of the proposed method in the JPEG false contour reduction are summarized
in Table 1. Different HBTC methods utilize different strategies for modifying the DC-components.
The HBTC techniques are only applied on encoder side, however, the standard JPEG decoding module
can be directly used to obtain the decoded image. This decoded image is with the JPEG false contour
reduction result.

Table 1. Summary of key aspects over various HBTC techniques.

HBTC Methods Key Aspects of Algorithm

EDBTC Employing the error kernel as shown in Figure 3
ODBTC Utilizing the dither arrays as shown in Figure 4
DDBTC Exploiting the class matrix and diffused kernel as given in Figures 5 and 6, respectively

DDBTC Gaussian Combining the class matrix as shown in Figure 5 with Gaussian diffused kernel in Figure 7

Figure 8 gives some numerical examples of HBTC processes. Herein, Figure 8a shows input image
in grayscale. Figure 8b is the processed image g(x, y) using EDBTC method, while Figure 8c is the
result of g(x, y) after appying ODBTC. Figure 8d–e show the image g(x, y) with DDBTC and DDBTC
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Gaussian respectively. As it can be seen from these figures, different HBTC methods produce different
visual illumination of g(x, y).
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Figure 8. Numerical examples of HBTC process: (a) input image; (b–e) are g(x, y) using EDBTC,
ODBTC, DDBTC and DDBTC Gaussian, respectively.

4. Experimental Results

Some extensive experiments were conducted to examine the proposed method performance.
Several images are turned as testing data to investigate the usability of the proposed method for
reducing JPEG false contour. This section firstly presents the experimental condition. The subsequent
discussion reports some experimental results of the proposed method under visual investigation.
The next subsection discusses the block size effect on the overall performances of the proposed method.
At last, the superiority of the proposed method is compared to the former existing scheme in the JPEG
false contour reduction application.
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4.1. Experimental Setup

In this research, the performance of the proposed method is evaluated under two image datasets,
namely Image Set 1 and Image Set 2. These two image datasets consist of 16 grayscale images under
various image content, complexity, brightness, flatness, different conditions, etc. Each image is of size
256 × 256. Figures 9 and 10 show all images on Image Set 1 and Image Set 2, respectively. In spite
of using the images of size 256 × 256, the performance of the proposed method is also investigated
under higher image sizes such as {512 × 512, 1024 × 1024, . . . , 4096 × 4096}. Herein, a set of
images with higher size are the upsampled version of a given image set. This paper utilizes bicubic
interpolation to obtain the upsampled image of size 2α(256 × 256), where α = {0, 1, . . . , 4} denotes
the upsampled factor.

Information 2018, 9, x  10 of 23 

 

4.1. Experimental Setup 

In this research, the performance of the proposed method is evaluated under two image datasets, 

namely Image Set 1 and Image Set 2. These two image datasets consist of 16 grayscale images under 

various image content, complexity, brightness, flatness, different conditions, etc. Each image is of size 

256 ×  256. Figures 9 and 10 show all images on Image Set 1 and Image Set 2, respectively. In spite 

of using the images of size 256 ×  256, the performance of the proposed method is also investigated 

under higher image sizes such as {512 ×  512, 1024 ×  1024, … , 4096 ×  4096} . Herein, a set of 

images with higher size are the upsampled version of a given image set. This paper utilizes bicubic 

interpolation to obtain the upsampled image of size 2𝛼(256 ×  256), where 𝛼 = {0, 1, … , 4} denotes 

the upsampled factor. 

 

Figure 9. A set of images, named as Image Set 1, used to validate proposed method performance. 

 

Figure 10. A set of images, named as Image Set 2, for experiment. 

Figure 9. A set of images, named as Image Set 1, used to validate proposed method performance.

Information 2018, 9, x  10 of 23 

 

4.1. Experimental Setup 

In this research, the performance of the proposed method is evaluated under two image datasets, 

namely Image Set 1 and Image Set 2. These two image datasets consist of 16 grayscale images under 

various image content, complexity, brightness, flatness, different conditions, etc. Each image is of size 

256 ×  256. Figures 9 and 10 show all images on Image Set 1 and Image Set 2, respectively. In spite 

of using the images of size 256 ×  256, the performance of the proposed method is also investigated 

under higher image sizes such as {512 ×  512, 1024 ×  1024, … , 4096 ×  4096} . Herein, a set of 

images with higher size are the upsampled version of a given image set. This paper utilizes bicubic 

interpolation to obtain the upsampled image of size 2𝛼(256 ×  256), where 𝛼 = {0, 1, … , 4} denotes 

the upsampled factor. 

 

Figure 9. A set of images, named as Image Set 1, used to validate proposed method performance. 

 

Figure 10. A set of images, named as Image Set 2, for experiment. Figure 10. A set of images, named as Image Set 2, for experiment.



Information 2018, 9, 41 11 of 24

The proposed method performance is evaluated under subjectively visual investigation and
objectively image quality assessment. In subjective image quality assessment, the correctness and
usability of the proposed method are simply examined using human visual observation. While the
proposed method produces a pleasant JPEG decoded image, it is said the proposed method yield a good
performance on reducing the JPEG false contour. On the other hand, the proposed method performance
is further measured with objectively image quality assessment metric, namely Peak-Signal-to-Noise
Ratio (PSNR) as previously used in [15]. Higher PSNR value indicate better image quality.

4.2. Visual Investigation of the Proposed Method

This subsection presents the proposed method performance under human visual investigation.
In this experiment, the effectiveness and usability of the proposed method for reducing the false
contour are investigated on the visual quality of JPEG decoded image. Firstly, an input image is
transformed using DCT to obtain the DC and AC components. The DC components over all image
blocks are subsequently modified using the ODBTC, EDBTC and DDBTC techniques to examine the
proposed method performance. Two images from Image Set 1 and Image Set 2 are chosen in this
experiment. Herein, the JPEG image compression encodes these two images using the small quality
factor, i.e., Q = {5, 8, 10}. This quality factor induces the false contour on decoded images.

The ODBTC, EDBTC, DDBTC and DDBTC Gaussian utilize the image block processing of size
m × m = 4 × 4. Figures 11–13 show the proposed method performances under Image Set 1 on
reducing JPEG false contour over various quality factors, i.e., Q = {5, 8, 10}. As shown in these
figures, low quality factor yields unpleasant JPEG decoded image quality indicating with appearing
the false contour. The false contour problem can be easily perceived in the grape images. By employing
the proposed method, the JPEG false contour can be reduced. In these figures, the DDBTC Gaussian
scheme gives the best visual effect on reducing JPEG false contour.
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decoded image; (c) ODBTC; (d) EDBTC; (e) DDBTC; and (f) DDBTC Gaussian method.
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decoded image; (c) ODBTC; (d) EDBTC; (e) DDBTC; and (f) DDBTC Gaussian method.
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Figure 13. Visual investigation on Image Set 1 with quality factor Q = 10: (a) input image; (b) JPEG
decoded image; (c) ODBTC; (d) EDBTC; (e) DDBTC; and (f) DDBTC Gaussian method.

Figures 14–16 delivers the proposed method results for Image Set 2 in the JPEG false reduction
task. Herein, the JPEG compresses an input image using several quality factors, i.e., Q = {5, 8, 10}.
These quality factor induces the false contour. For example, the false contour appears on the Lena
shoulder which can be easily seen in these figures. As reported in these figures, the proposed method
effectively reduces the JPEG false contour using the HBTC approach. The EDBTC method gives
better performance compared to that of ODBTC scheme. Whereas the DDBTC yields better result
compared to that of the EDBTC method in suppressing the unpleasant contour. Yet, the DDBTC
Gaussian shows the best result among of them. Thus, the proposed method is very effective to reduce
the JPEG false contour especially in low quality factor. It broads the usability of HBTC approaches on
JPEG image compression.
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Figure 14. Visual investigation on Image Set 2 with quality factor Q = 5: (a) input image; (b) JPEG
decoded image; (c) ODBTC; (d) EDBTC; (e) DDBTC; and (f) DDBTC Gaussian method.
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Figure 16. Visual investigation on Image Set 2 with quality factor Q = 10: (a) input image; (b) JPEG
decoded image; (c) ODBTC; (d) EDBTC; (e) DDBTC; and (f) DDBTC Gaussian method.

4.3. Effects of Different Block Sizes

This subsection reports the effect of using different image block sizes. Some experimental
results of the proposed method under various image block sizes are detail presented in this
subsection. The proposed ODBTC, EDBTC, DDBTC and DDBTC Gaussian utilize the image
block size for modifying the DC components. Different image block size yields different
performance. Herein, two image block sizes are investigated and compared for the proposed method,
i.e., m × m = {4 × 4, 8 × 8}. In this experiment, the proposed method performance is examined in
terms of average PSNR values on Image Set 1 and Image Set 2 over two aforementioned image block
sizes. All images in Image Set 1 and Image Set 2 are bicubic interpolated using α = {0, 1, . . . , 4}.
The quality factors of JPEG image compression are set as Q = {5, 8, 10}.

Figures 17–19 show the average PSNR comparison of the proposed method for Image Set 1 under
the image block sizes m × m = 4 × 4 and 8 × 8 with different quality factor. As depicted in
these figures, the proposed method with m × m = 4 × 4 yields better performance compared to
that of m × m = 8 × 8 over all JPEG quality factors. For Image Set 2, the proposed method with
m × m = 4 × 4 also gives better performance compared to that of using m × m = 8 × 8 indicating
with higher average PSNR values. These results are confirmed in Figures 20–22. Thus, the image block
m × m = 4 × 4 can be regarded as a good parameter setting for the proposed method in reducing
JPEG false contour.
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Figure 17. Effect of image block sizes on Image Set 1 with Q = 5 over (a) ODBTC; (b) EDBTC;
(c) DDBTC; and (d) DDBTC Gaussian scheme.
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Figure 18. Effect of image block sizes on Image Set 1 with Q = 8 over (a) ODBTC; (b) EDBTC;
(c) DDBTC; and (d) DDBTC Gaussian scheme.



Information 2018, 9, 41 18 of 24

Information 2018, 9, x  18 of 23 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 19. Effect of image block sizes on Image Set 1 with 𝑄 = 10 over (a) ODBTC; (b) EDBTC;  

(c) DDBTC; and (d) DDBTC Gaussian scheme. 

 
(a) 

 
(b) 

1 2 3 4 5
26

28

30

32

34

36

38

Upsampled Factor, 

A
ve

ra
g
e 

P
S

N
R

Image Set 1, Q = 10 - ODBTC

 

 

Block Size 4x4

Block Size 8x8

JPEG Decoded Image

1 2 3 4 5
26

28

30

32

34

36

38

40

Upsampled Factor, 

A
ve

ra
g

e 
P

S
N

R

Image Set 1, Q = 10 - EDBTC

 

 

Block Size 4x4

Block Size 8x8

JPEG Decoded Image

1 2 3 4 5
26

28

30

32

34

36

38

40

Upsampled Factor, 

A
ve

ra
g
e 

P
S

N
R

Image Set 1, Q = 10 - DDBTC

 

 

Block Size 4x4

Block Size 8x8

JPEG Decoded Image

1 2 3 4 5
25

30

35

40

45

Upsampled Factor, 

A
ve

ra
g

e 
P

S
N

R

Image Set 1, Q = 10 - DDBTC Gaussian

 

 

Block Size 4x4

Block Size 8x8

JPEG Decoded Image

1 2 3 4 5
24

26

28

30

32

34

36

38

Upsampled Factor, 

A
ve

ra
g

e 
P

S
N

R

Image Set 2, Q = 5 - ODBTC

 

 

Block Size 4x4

Block Size 8x8

JPEG Decoded Image

1 2 3 4 5
25

30

35

40

Upsampled Factor, 

A
ve

ra
g

e 
P

S
N

R

Image Set 2, Q = 5 - EDBTC

 

 

Block Size 4x4

Block Size 8x8

JPEG Decoded Image

Figure 19. Effect of image block sizes on Image Set 1 with Q = 10 over (a) ODBTC; (b) EDBTC;
(c) DDBTC; and (d) DDBTC Gaussian scheme.
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Figure 20. Effect of image block sizes on Image Set 2 with Q = 5 over (a) ODBTC; (b) EDBTC;
(c) DDBTC; and (d) DDBTC Gaussian scheme.

Information 2018, 9, x  19 of 23 

 

 
(c) 

 
(d) 

Figure 20. Effect of image block sizes on Image Set 2 with 𝑄 = 5 over (a) ODBTC; (b) EDBTC;  

(c) DDBTC; and (d) DDBTC Gaussian scheme. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 21. Effect of image block sizes on Image Set 2 with 𝑄 = 8 over (a) ODBTC; (b) EDBTC;  

(c) DDBTC; and (d) DDBTC Gaussian scheme. 

1 2 3 4 5
25

30

35

40

Upsampled Factor, 

A
ve

ra
g
e 

P
S

N
R

Image Set 2, Q = 5 - DDBTC

 

 

Block Size 4x4

Block Size 8x8

JPEG Decoded Image

1 2 3 4 5
25

30

35

40

Upsampled Factor, 

A
ve

ra
g
e 

P
S

N
R

Image Set 2, Q = 5 - DDBTC Gaussian

 

 

Block Size 4x4

Block Size 8x8

JPEG Decoded Image

1 2 3 4 5
26

28

30

32

34

36

38

Upsampled Factor, 

A
ve

ra
g

e 
P

S
N

R

Image Set 2, Q = 8 - ODBTC

 

 

Block Size 4x4

Block Size 8x8

JPEG Decoded Image

1 2 3 4 5
26

28

30

32

34

36

38

40

Upsampled Factor, 

A
ve

ra
g
e 

P
S

N
R

Image Set 2, Q = 8 - EDBTC

 

 

Block Size 4x4

Block Size 8x8

JPEG Decoded Image

1 2 3 4 5
26

28

30

32

34

36

38

40

Upsampled Factor, 

A
ve

ra
g

e 
P

S
N

R

Image Set 2, Q = 8 - DDBTC

 

 
Block Size 4x4

Block Size 8x8

JPEG Decoded Image

1 2 3 4 5
25

30

35

40

45

Upsampled Factor, 

A
ve

ra
g

e 
P

S
N

R

Image Set 2, Q = 8 - DDBTC Gaussian

 

 
Block Size 4x4

Block Size 8x8

JPEG Decoded Image

Figure 21. Effect of image block sizes on Image Set 2 with Q = 8 over (a) ODBTC; (b) EDBTC;
(c) DDBTC; and (d) DDBTC Gaussian scheme.
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Table 2. PSNR Comparison on Image Set 1. 

Quality 

Factor 

Downsampled 

Factor 

JPEG Decoded 

Image 
ODBTC 

EDBTC 

[15] 
DDBTC 

DDBTC 

Gaussian 

𝑄 = 5 

256 ×  256 25.07 29.59 31.21 31.49 31.99 

512 ×  512 26.44 31.08 32.88 33.05 33.49 

1024 ×  1024 29.19 33.11 34.91 35.10 35.57 

2048 ×  2048 30.79 34.82 36.60 36.80 37.25 

4096 ×  4096 31.78 36.88 38.45 38.69 39.18 

Average 28.66 33.09 34.81 35.03 35.49 

𝑄 = 8 

256 ×  256 26.93 29.79 31.51 31.82 32.35 

512 ×  512 28.49 31.30 33.23 33.41 33.89 

1024 ×  1024 32.05 33.36 35.30 35.51 36.03 
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Figure 22. Effect of image block sizes on Image Set 2 with Q = 10 over (a) ODBTC; (b) EDBTC;
(c) DDBTC; and (d) DDBTC Gaussian scheme.

4.4. Performance Comparison

The proposed method superiority is further investigated by comparing its performance against
the former existing scheme in the JPEG false contour reduction. Herein, the proposed method is
compared with the former scheme [15] in terms of average PNSR value. Both methods employ the
image block of size m × m = 4 × 4. The JPEG quality factor is set as Q = {5, 8, 10}. The comparison
is conducted over various bicubic upsampled factor, i.e., α = {0, 1, . . . , 4} over Image Set 1 and Image
Set 2.

Table 2 summarizes the performance comparison between the proposed method and former
scheme on Image Set 1 over various quality factors. As reported in this table, the proposed method
gives the better performance compared to that of [15]. The proposed DDBTC Gaussian scheme yields
the best performance for Image Set 1 as indicated with highest PSNR scores over all JPEG quality
factors. In addition, higher quality factor also gives better average PSNR since the higher quality factor
produces less false contour in JPEG decoded image.

The similar finding also appears on the performance comparison between the proposed method
and former scheme under Image Set 2. Table 3 tabulates the average PSNR value comparison between
these two methods for Image Set 2. Again, the proposed DDBTC method beats the former scheme
performance as indicated with higher average PSNR score. In addition, the proposed DDBTC Gaussian
method yields the best performance among the other schemes over various upsampled factors,
α = {0, 1, . . . , 4}. From this experiment, it can be concluded that the proposed method is very
effective on reducing JPEG false contour with simple and efficient approach. Yet, the proposed method
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simply modifies the JPEG encoding process, especially for modifying DC components. The proposed
method does not require some modification at the decoding process. The modified DC components
resulted from the proposed method can be opened with the standard JPEG decoding module.

Table 2. PSNR Comparison on Image Set 1.

Quality
Factor

Downsampled
Factor

JPEG Decoded
Image ODBTC EDBTC [15] DDBTC DDBTC

Gaussian

Q = 5

256 × 256 25.07 29.59 31.21 31.49 31.99
512 × 512 26.44 31.08 32.88 33.05 33.49

1024 × 1024 29.19 33.11 34.91 35.10 35.57
2048 × 2048 30.79 34.82 36.60 36.80 37.25
4096 × 4096 31.78 36.88 38.45 38.69 39.18

Average 28.66 33.09 34.81 35.03 35.49

Q = 8

256 × 256 26.93 29.79 31.51 31.82 32.35
512 × 512 28.49 31.30 33.23 33.41 33.89

1024 × 1024 32.05 33.36 35.30 35.51 36.03
2048 × 2048 33.97 35.10 37.03 37.25 37.76
4096 × 4096 35.34 37.28 39.04 39.31 39.88

Average 31.36 33.37 35.22 35.46 35.98

Q = 10

256 × 256 27.78 29.82 31.57 31.89 32.43
512 × 512 29.38 31.38 33.34 33.54 34.02

1024 × 1024 33.32 33.43 35.41 35.62 36.16
2048 × 2048 35.32 35.17 37.15 37.37 37.90
4096 × 4096 36.82 37.39 39.20 39.49 40.08

Average 32.53 33.44 35.34 35.58 36.12

Table 3. PSNR Comparison on Image Set 2.

Quality
Factor

Downsampled
Factor

JPEG Decoded
Image ODBTC EDBTC [15] DDBTC DDBTC

Gaussian

Q = 5

256 × 256 25.20 30.58 32.15 32.33 32.73
512 × 512 26.91 31.89 33.56 33.75 34.16

1024 × 1024 29.26 33.46 35.21 35.40 35.83
2048 × 2048 30.82 35.20 36.94 37.16 37.59
4096 × 4096 31.81 37.37 38.90 39.19 39.62

Average 28.80 33.70 35.35 35.57 35.99

Q = 8

256 × 256 27.13 30.86 32.54 32.74 33.18
512 × 512 29.06 32.14 33.94 34.15 34.59

1024 × 1024 31.96 33.74 35.63 35.83 36.32
2048 × 2048 33.89 35.52 37.44 37.68 38.17
4096 × 4096 35.17 37.83 39.57 39.91 40.42

Average 31.44 34.02 35.82 36.06 36.54

Q = 10

256 × 256 28.04 30.94 32.66 32.88 33.32
512 × 512 30.05 32.22 34.06 34.27 34.73

1024 × 1024 33.23 33.82 35.75 35.96 36.46
2048 × 2048 35.34 35.61 37.57 37.83 38.33
4096 × 4096 36.79 37.96 39.78 40.13 40.67

Average 32.69 34.11 35.96 36.21 36.70

4.5. JPEG False Contour Reduction for Color Image

The subsection investigates the proposed method effectiveness on JPEG false contour reduction
task over color image. Herein, the color image is compressed using JPEG by firstly converting the
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color image from Red-Green-Blue (RGB) color space into the Luminance-Chrominance (YCbCr) color
channel. This approach employs 4:2:2 chrominance subsampling before applying the JPEG, i.e., DCT
process and quantization. Similar to the grayscale processing, the JPEG false contour reduction
modifies the DC-components of color image using the proposed HBTC method.

Figure 23 reports the JPEG false contour reduction using the proposed HBTC method. The JPEG
quality factor is set as Q = 5 to produce the false contour on the decoded image. Figure 23a,b
show the input image and the corresponding JPEG decoded image, respectively. As shown in these
figures, the JPEG compression yields unpleasant decoded image in which the false contour can be
easily perceived as shown in Figure 23b. Figure 23c–f deliver some JPEG false contour reduction
under various HBTC techniques, i.e., (c) ODBTC; (d) EDBTC; (e) DDBTC; and (f) DDBTC Gaussian.
The HBTC approaches effectively suppress the JPEG false contour for color image by modifying the
DC components. Thus, the proposed method offers a promising result on JPEG false contour for
grayscale and color image with effective and efficient approaches. The proposed method can be also
directly applied to the other color spaces.
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5. Conclusions

An effective way for reducing the JPEG false contour has been presented in this paper. It exploits
the HBTC usability for modifying the DCT components of all image blocks. The HBTC produces visual
illumination which is very useful on suppressing the JPEG false contour. As reported in experimental
results, the proposed method offers promising results on JPEG decoded image. This paper proves
that HBTC is not only suitable for half toning and compressing an image but it is also powerful for
subtracting the unpleasant false contour noise.

For the future works, some additional techniques can be carried out to bring the proposed method
into the color image and video processing. The performance of the proposed method can be extended
into the other color spaces such as Hue-Saturation-Intensity (HSI), Luminance-Chrominance (YCbCr),
CIE 1931 XYZ color space, CIELUV, CIEUVW, CIELAB, etc., to further investigate the proposed method
usability. In this current work, the HBTC simply employs extreme quantizers for generating the visual
illumination. The number of HBTC extreme quantizers can be increased, not only two, to improve
the proposed method performance. It can be viewed to bring the multi toning approach for HBTC.
In addition, a slight modification should be carried out for the proposed method on dealing with the
wavelet-based JPEG image compression. Thus, the proposed method can work well on several types
of JPEG compression, not only DCT-based JPEG. Special consideration should be taken into account
on implementing the proposed method for the video processing. Herein, the proposed method can be
simply performed on image sequences of video file or modified under visual effect of video processing.
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