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Abstract: Diagnosability of a multiprocessor system is an important research topic. The system and
interconnection network has a underlying topology, which usually presented by a graph G = (V, E).
In 2012, a measurement for fault tolerance of the graph was proposed by Peng et al. This measurement
is called the g-good-neighbor diagnosability that restrains every fault-free node to contain at least g
fault-free neighbors. Under the PMC model, to diagnose the system, two adjacent nodes in G are can
perform tests on each other. Under the MM model, to diagnose the system, a node sends the same
task to two of its neighbors, and then compares their responses. The MM* is a special case of the MM
model and each node must test its any pair of adjacent nodes of the system. As a famous topology
structure, the (n, k)-arrangement graph An,k, has many good properties. In this paper, we give the
g-good-neighbor diagnosability of An,k under the PMC model and MM* model.
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1. Introduction

A multiprocessor system and interconnection network (networks for short) has an underlying
topology, which is usually presented by a graph, where nodes represent processors and links represent
communication links between processors. Some processors may fail in the system, so processor fault
identification plays an important role for reliable computing. The first step to deal with faults is to
identify the faulty processors from the fault-free ones. The identification process is called the diagnosis
of the system. A system G is said to be t-diagnosable if all faulty processors can be identified without
replacing the faulty processors, provided that the number of faulty processors presented does not
exceed t. The diagnosability t(G) of G is the maximum value of t such that G is t-diagnosable [1–3].
For a t-diagnosable system, Dahbura and Masson [1] proposed an algorithm with time complex
O(n2.5), which can effectively identify the set of faulty processors.

Several diagnosis models were proposed to identify the faulty processors. One of most commonly
used is the Preparata, Metze, and Chien’s (PMC) diagnosis model introduced by Preparata et al. [4].
The diagnosis of the system is achieved through two linked processors testing each other. A similar
issue, namely the comparison diagnosis model (MM model), was proposed by Maeng and Malek [5].
In the MM model, to diagnose the system, a node sends the same task to two of its neighbors, and then
compares their responses. The MM* is a special case of the MM model and each node must test its any
pair of adjacent nodes of the system.

In 2005, Lai et al. [3] introduced a measurement for fault diagnosis of a system, namely,
the conditional diagnosability. They considered the situation that no fault set can contain all the
neighbors of any vertex in the system. In 2012, Peng et al. [6] proposed a measurement for fault
diagnosis of the system G, namely, the g-good-neighbor diagnosability tg(G) (which is also called the
g-good-neighbor conditional diagnosability), which requires that every fault-free node has at least
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g fault-free neighbors. In [6], they studied the g-good-neighbor diagnosability of the n-dimensional
hypercube under the PMC model. In [7], Wang and Han studied the g-good-neighbor diagnosability
of the n-dimensional hypercube under the MM* model. There is a significant amount of research on
the g-good-neighbor diagnosability of graphs [6–24].

The star graph, which was proposed by Akers et al. [25], is a well-known interconnection
network. To solve the problem of scalability of star graph topology, Day and Tripathi [26] proposed the
arrangement graph as a generalization of the star graph. The arrangement graph An,k is more flexible
than the star graph in selecting the major design parameters: the number, degree, and diameter of
the vertex. At the same time, most of the nice properties of the star graph are preserved (for details,

see [26–32]). In this paper, we show (1) ((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1 ≤ tg(An,k) ≤
[(g+ 1)(k− 1)+ 1](n− k) under the PMC model and MM* model for n ≥ 4, k ∈ [3, n− 2], g ∈ [3, n− k);
(2) the diagnosability t(An,k) = k(n − k) under the PMC model and MM* model; (3) t1(An,k) =

(2k− 1)(n− k) under the PMC model for n ≥ 5 and k ∈ [2, n), and under the MM∗ model for n ≥ 8
and k ∈ [2, n); (4) t2(An,k) = (3k− 2)(n− k) under the PMC model and MM* model for n ≥ 8 and
k ∈ [3, n− 5] ∪ {n− 2, n− 1}; and (5) t2(An,2) = 4n− 9 under the PMC model and MM* model for
n ≥ 8.

2. Preliminaries

Under the PMC model [5,23], to diagnose a system G = (V(G), E(G)), two adjacent nodes in G
can perform tests on each other. For two adjacent nodes u and v in V(G), the test performed by u on v
is represented by the ordered pair (u, v). The outcome of a test (u, v) is 1 (respectively, 0) if u evaluate
v as faulty (respectively, fault-free). We assume that the test result is reliable (respectively, unreliable) if
the node u is fault-free (respectively, faulty). A test assignment T for G is a collection of tests for every
adjacent pair of vertices. It can be modeled as a directed testing graph T = (V(G), L), where (u, v) ∈ L
implies that u and v are adjacent in G. The collection of all test results for a test assignment T is called
a syndrome. Formally, a syndrome is a function σ : L 7→ {0, 1}. The set of all faulty processors in G
is called a faulty set. This can be any subset of V(G). For a given syndrome σ, a subset of vertices
F ⊆ V(G) is said to be consistent with σ if syndrome σ can be produced from the situation that, for any
(u, v) ∈ L such that u ∈ V \ F, σ(u, v) = 1 if and only if v ∈ F. This means that F is a possible set
of faulty processors. Since a test outcome produced by a faulty processor is unreliable, a given set
F of faulty vertices may produce a lot of different syndromes. On the other hand, different faulty
sets may produce the same syndrome. Let σ(F) denote the set of all syndromes which F is consistent
with. Under the PMC model, two distinct sets F1 and F2 in V(G) are said to be indistinguishable if
σ(F1) ∩ σ(F2) 6= ∅; otherwise, F1 and F2 are said to be distinguishable. Besides, we say (F1, F2) is an
indistinguishable pair if σ(F1) ∩ σ(F2) 6= ∅; else, (F1, F2) is a distinguishable pair.

In the MM model, a processor sends the same task to a pair of distinct neighbors and then
compares their responses to diagnose a system G. The comparison scheme of G = (V(G), E(G)) is
modeled as a multigraph, denoted by M = (V(G), L), where L is the labeled-edge set. A labeled
edge (u, v)w ∈ L represents a comparison in which two vertices u and v are compared by a
vertex w, which implies uw, vw ∈ E(G). We usually assume that the testing result is reliable
(respectively, unreliable) if the node u is fault-free (respectively, faulty). If u, v ∈ F and w ∈ V(G)\F,
then (u, v)w → 1. If u ∈ F and v, w ∈ V(G)\F, then (u, v)w → 1. If v ∈ F and u, w ∈ V(G)\F,
then (u, v)w → 1. If u, v, w ∈ V(G)\F, then (u, v)w → 0. The collection of all comparison results
in M = (V(G), L) is called the syndrome of the diagnosis, denoted by σ. If the comparison (u, v)w

disagrees, then σ((u, v)w) = 1. Otherwise, σ((u, v)w) = 0. Hence, a syndrome is a function from L to
{0, 1}. The MM* is a special case of the MM model and each node must test its any pair of adjacent
nodes, i.e., if uw, vw ∈ E(G), then (u, v)w ∈ L. The set of all faulty processors in the system is called
a faulty set. This can be any subset of V(G). For a given syndrome σ, a faulty subset of vertices
F ⊆ V(G) is said to be consistent with σ if syndrome σ can be produced from the situation that, for
any (u, v)w ∈ L such that w ∈ V \ F, σ(u, v)w = 1 if and only if u, v ∈ F or u ∈ F or v ∈ F under the
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MM∗ model. Let σ(F) denote the set of all syndromes which F is consistent with. Let F1 and F2 be two
distinct faulty sets in V(G). If σ(F1) ∩ σ(F2) 6= ∅, we say (F1, F2) is an indistinguishable pair under
the MM∗ model; else, (F1, F2) is a distinguishable pair under the MM∗ model.

Definition 1. A system G = (V, E) is g-good-neighbor t-diagnosable if F1 and F2 are distinguishable under
the PMC (MM∗) model for each distinct pair of g-good-neighbor faulty subsets F1 and F2 of V with |F1| ≤ t
and |F2| ≤ t. The g-good-neighbor diagnosability tg(G) of G is the maximum value of t such that G is
g-good-neighbor t-diagnosable under the PMC (MM∗) model.

A multiprocessor system and network is modeled as an undirected simple graph G = (V, E),
whose vertices (nodes) represent processors and edges (links) represent communication links. Given
a nonempty vertex subset V′ of V, the induced subgraph by V′ in G, denoted by G[V′], is a graph,
whose vertex set is V′ and the edge set is the set of all the edges of G with both endpoints in V′.
For any vertex v, we define the neighborhood NG(v) of v in G to be the set of vertices adjacent to v.
For u ∈ NG(v), u is called a neighbor vertex or a neighbor of v. We denote the numbers of vertices and
edges in G by |V(G)| and |E(G)|. The degree dG(v) of a vertex v is the number of neighbors of v in G.
The minimum degree of a vertex in G is denoted by δ(G). Let S ⊆ V. We use NG(S) to denote the set
∪v∈SNG(v)\S. For neighborhoods and degrees, we usually omit the subscript for the graph when no
confusion arises. A path in G is a sequence of vertices such that from each of its vertices there is an edge
to the next vertex in the sequence. The path with a length of n is denoted by n-path. The length of a
shortest path between x and y is called the distance between x and y, denoted by dG(x, y). A complete
graph Kn is a graph in which any two vertices are adjacent on n vertices. A graph G1 is isomorphic
to another graph G2 (denoted by G1

∼= G2) if and only if there exists a bijection ϕ : V(G1) → V(G2)

such that for any two vertices u, v ∈ V(G1), uv ∈ E(G1) if and only if ϕ(u)ϕ(v) ∈ E(G2). A graph
G is said to be k-regular if for any vertex v, dG(v) = k. Let G be connected. The connectivity κ(G)

of G is the minimum number of vertices whose removal results in a disconnected graph or only one
vertex left when G is complete. Let F1 and F2 be two distinct subsets of V, and let the symmetric
difference F1 M F2 = (F1 \ F2) ∪ (F2 \ F1). For graph-theoretical terminology and notation not defined
here, we follow [33].

Let G = (V, E) be connected. A fault set F ⊆ V is called a g-good-neighbor faulty set if
|N(v) ∩ (V\F)| ≥ g for every vertex v in V\F. A g-good-neighbor cut of G is a g-good-neighbor
faulty set F such that G− F is disconnected. The minimum cardinality of g-good-neighbor cuts is said
to be the g-good-neighbor connectivity of G, denoted by κ(g)(G). A connected graph G is said to be
g-good-neighbor connected if G has a g-good-neighbor cut.

For two positive integers n and k, let 〈n〉 denote the set {1, 2, . . . , n} and 〈k〉 denote the set
{1, 2, . . . , k}. Let Pn,k be a set of arrangements of k elements in 〈n〉, that is, Pn,k = {p1 p2 · · · pk: pi ∈ 〈n〉
for 1 ≤ i ≤ k and ps 6= pt for 1 ≤ s, t ≤ k, s 6= t}.

Definition 2. Given two positive integers n and k with n > k ≥ 1. The (n, k)-arrangement graph, denoted by
An,k, has vertex set V(An,k) = {p : p = p1 · · · pk ∈ Pn,k}, and edge set E(An,k) = {(p, q) : p, q ∈ V(An,k)

with pi 6= qi for some i ∈ 〈k〉 and pj = qj for all j ∈ 〈k〉 \ {i}}.

From the definition, we know that the vertices of An,k are the arrangements of k elements in 〈n〉,
and the edges of An,k connect arrangements which differ in exactly one of their k positions. An,k is a
regular graph of degree k(n− k) with n!

(n−k)! vertices. Figure 1 shows the arrangement graph A4,2.
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Figure 1. The arrangement graph A4,2.

Definition 3. ([8]) A graph is vertex-transitive if and only if for its any pair of vertices u and v, there exists an
automorphism of the graph that maps u to v. A graph is edge-transitive if and only if for its any pair of edges
(u, v) and (x, y), there exists an automorphism of the graph that maps (u, v) to (x, y).

Lemma 1. ([8]) An,k is vertex-transitive and edge-transitive.

Lemma 2. ([8]) κ(An,k) = k(n− k) for n > k ≥ 1.

Lemma 3. ([4]) n ≥ 3 and n 6= 4, k ∈ [2, n), κ(1)(An,k) = (2k − 1)(n − k) − 1. And κ(1)(A4,2) =

κ(1)(A4,3)(= κ(1)(S4)) = 4.

Lemma 4. ([4]) n ≥ 3 and n 6= 4, 2 ≤ k < n, κ(1)(An,k) = (2k − 1)(n − k) − 1. And κ(1)(A4,2) =

κ(1)(A4,3)(= κ(1)(S4)) = 4.

Lemma 5. ([4]) For n ≥ 8, κ(2)(An,2) = 4n− 12; and, for k ∈ {i : i = 3, . . . , n− 5} ∪ {n− 2, n− 1},
κ(2)(An,k) = (3k− 2)(n− k)− 2.

Lemma 6. ([4]) Let n, k, g be positive integers such that n ≥ 4, 2 ≤ k ≤ n− 2, g ≥ 3. Then

((g + 1)(k− 2) + 2− (g + 1)2

2
)(n− k) < κ(g)(An,k) ≤ [(g + 1)(k− 1) + 1](n− k)− g.

An edge cut of a graph G is a set of edges whose removal makes the remaining graph no longer
connected. The edge connectivity λ(G) of G is the minimum cardinality of an edge cut of G.

Lemma 7. ([2]) κ(G) ≤ λ(G) ≤ δ(G).

According to Lemmas 2 and 7, we get the following corollary.

Corollary 1. The edge connectivity λ(An,k) = k(n− k) for n > k ≥ 1.

For i ∈ 〈n〉, j ∈ 〈k〉, let V(Aj:i
n,k) be the set of all vertices in An,k with the jth position being i,

that is, V(Aj:i
n,k) = {p : p = p1 · · · pj · · · pk ∈ Pn,k with pj = i}. It is easy to check that each Aj:i

n,k is a

subgraph of An,k, and we say that An,k is decomposed into n subgraphs Aj:i
n,k (1 ≤ i ≤ n) according

Figure 1. The arrangement graph A4,2.

Definition 3 ([26]). A graph is vertex-transitive if and only if for any pair of its vertices u and v, there exists
an automorphism of the graph that maps u to v. A graph is edge-transitive if and only if for any pair of its edges
(u, v) and (x, y), there exists an automorphism of the graph that maps (u, v) to (x, y).

Lemma 1 ([26]). An,k is vertex-transitive and edge-transitive.

Lemma 2 ([26]). κ(An,k) = k(n− k) for n > k ≥ 1.

Lemma 3 ([28]). n ≥ 3 and n 6= 4, k ∈ [2, n), κ(1)(An,k) = (2k − 1)(n − k) − 1 and κ(1)(A4,2) =

κ(1)(A4,3)(= κ(1)(S4)) = 4.

Lemma 4 ([28]). n ≥ 3 and n 6= 4, 2 ≤ k < n, κ(1)(An,k) = (2k − 1)(n − k) − 1 and κ(1)(A4,2) =

κ(1)(A4,3)(= κ(1)(S4)) = 4.

Lemma 5 ([28]). For n ≥ 8, κ(2)(An,2) = 4n− 12, and, for k ∈ {i : i = 3, . . . , n− 5} ∪ {n− 2, n− 1},
κ(2)(An,k) = (3k− 2)(n− k)− 2.

Lemma 6 ([28]). Let n, k, g be positive integers such that n ≥ 4, 2 ≤ k ≤ n− 2, g ≥ 3. Then,

((g + 1)(k− 2) + 2− (g + 1)2

2
)(n− k) < κ(g)(An,k) ≤ [(g + 1)(k− 1) + 1](n− k)− g.

An edge cut of a graph G is a set of edges whose removal makes the remaining graph no longer
connected. The edge connectivity λ(G) of G is the minimum cardinality of an edge cut of G.

Lemma 7 ([33]). κ(G) ≤ λ(G) ≤ δ(G).

According to Lemmas 2 and 7, we get the following corollary.

Corollary 1. The edge connectivity λ(An,k) = k(n− k) for n > k ≥ 1.

For i ∈ 〈n〉, j ∈ 〈k〉, let V(Aj:i
n,k) be the set of all vertices in An,k with the jth position being i,

that is, V(Aj:i
n,k) = {p : p = p1 · · · pj · · · pk ∈ Pn,k with pj = i}. It is easy to check that each Aj:i

n,k is a

subgraph of An,k, and we say that An,k is decomposed into n subgraphs Aj:i
n,k (1 ≤ i ≤ n) according

to the jth position. For simplicity, we shall take j as the last position k, and use Ai
n,k to denote Ak:i

n,k.
Then, V(Ai

n,k) = {p : p = p1 · · · pk−1i with pj ∈ 〈n〉 \ {i} and ps 6= pt for 1 ≤ s, t ≤ k − 1} for
1 ≤ i ≤ n. It is easy to see that An,1 is a complete graph Kn.
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Proposition 1 ([34]). Let n > k ≥ 2. For each j ∈ 〈k〉, Aj:i
n,k is isomorphic to An−1,k−1 where 1 ≤ i ≤ n.

For any vertex u ∈ V(Ai
n,k) (1 ≤ i ≤ n), in this paper, we say that N(u) ∩ V(Ai

n,k) is the set of
inner neighbors of u, which is denoted by IN(u) and N(u) ∩ (V(An,k) \ V(Ai

n,k)) is the set of outer
neighbors of u, which is denoted by ON(u).

Proposition 2 ([31]). Let n > k ≥ 2, i ∈ 〈n〉. For any two vertices u, v in the subgraph Ai
n,k,

ON(u) ∩ ON(v) = ∅ and |ON(u)| = n − k. Furthermore, the vertices of ON(u) are distributed in
(n− k) distinct subgraphs.

Proposition 3. For any vertex u ∈ V(Ai
n,k) (1 ≤ i ≤ n), let ON(u) be the set of outer neighbors of u.

Then, An,k[{u} ∪ON(u)] is isomorphic to the complete graph Kn−k+1.

Proof. By Lemma 1, An,k is vertex-transitive. Without loss of generality, let u = (n− k + 1)(n− k +
2) · · · n ∈ V(An

n,k). By the definition of arrangement graphs, ON(u) = {uj : uj = (n− k + 1)(n−
k + 2) · · · (n − 1)j, j ∈ {1, 2, . . . , n − k}}. Then, |ON(u)| = n − k. Note that u, u1,. . . ,un−k−1 and
un−k are only different in last position. By the definition of arrangement graphs, any pair of vertices
of u u1,. . . ,un−k−1 and un−k are adjacent. Thus, An,k[{u} ∪ON(u)] is a complete graph. Note that
|{u} ∪ON(u)| = n− k + 1. Thus, An,k[{u} ∪ON(u)] is isomorphic to Kn−k+1.

Definition 4. Let 〈n〉 = {1, 2, · · · , n}, and let Sn be the symmetric group on 〈n〉 containing all permutations
p = p1 p2 · · · pn of 〈n〉. The alternating group An is the subgroup of Sn containing all even permutations. It is
well known that {(12i), (1i2), 3 ≤ i ≤ n} is a generating set for An. The n-dimensional alternating group
graph AGn is the graph with vertex set V(AGn) = An in which two vertices u, v are adjacent if and only if
u = v(12i) or u = v(1i2), 3 ≤ i ≤ n.

Definition 5. The n-dimensional star graph denoted by Sn. The vertex set of Sn is {u1u2 · · · un :
u1u2 · · · un is a permutation of 〈n〉}. Vertex adjacency is defined as follows: u1u2 · · · un is adjacent to
uiu2 · · · ui−1u1ui+1 · · · un for all 2 ≤ i ≤ n.

Lemma 8 ([29]). (1). The arrangement graph An,n−2 is isomorphic to the n-dimensional alternating group
graph AGn. (2). The arrangement graph An,n−1 is isomorphic to the n-dimensional star graph Sn.

Lemma 9 ([31]). For any two distinct vertices u and v in the arrangement graph An,k, we have the
following results:

1. If d(u, v) = 1, then |N(u) ∩ N(v)| = n− k− 1;
2. If d(u, v) = 2 and n = k + 1, then |N(u) ∩ N(v)| = 1;
3. If d(u, v) = 2 and n ≥ k + 2, then |N(u) ∩ N(v)| ≤ 2; and
4. If d(u, v) ≥ 3, then |N(u) ∩ N(v)| = 0.

3. The g-Good-Neighbor Diagnosability of Arrangement Graphs under the PMC Model

In this section, we show the g-good-neighbor diagnosability of arrangement graphs under the
PMC model (Figure 2).

Theorem 1 ([23]). A system G = (V, E) is g-good-neighbor t-diagnosable under the PMC model if and only
if there is an edge uv ∈ E with u ∈ V\(F1 ∪ F2) and v ∈ F1 M F2 for each distinct pair of g-good-neighbor
faulty subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t.
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Figure 2. Illustration of a distinguishable pair (F1, F2) under the PMC model.

Lemma 10 ([28]). For n ≥ 3 and n 6= 4, 2 ≤ k < n, κ(1)(An,k) = (2k− 1)(n− k)− 1 and κ(1)(A4,2) =

κ(1)(A4,3)(= κ(1)(S4)) = 4.

Lemma 11 ([28]). For n ≥ 8, κ(2)(An,2) = 4n− 12, and, for k ∈ {i : i = 3, . . . , n− 5} ∪ {n− 2, n− 1},
κ(2)(An,k) = (3k− 2)(n− k)− 2.

Lemma 12 ([27]). Let n ≥ 7 and let T be a subset of the vertices of An,2 such that |T| ≤ 4n− 12. Then,
An,2 − T is either connected or has a large component and small components with at most two vertices or
|T| = 4n− 12 and An,2 − T has a large component and a four-cycle.

Lemma 13 ([28]). Let n, k, g be positive integers such that n ≥ 4, 2 ≤ k ≤ n− 2, 3 ≤ g < n− k. Then,

((g + 1)(k− 2) + 2− (g + 1)2

2
)(n− k) < κ(g)(An,k) ≤ [(g + 1)(k− 1) + 1](n− k)− g.

Let α ∈ P(n, k − 1), α = p1 . . . pk−1 and Vα = {p1 . . . pk−1i : i ∈ 〈n〉\{p1, . . . , pk−1}}.
Let u = αi = p1 . . . pk−1i and v = αj = p1 . . . pk−1 j, i 6= j and neither i nor j occurs in α. Clearly,
u, v ∈ V(An,k), and (u, v) ∈ E(An,k). Since any symbol that does not occur in α can serve as the last
symbol in a vertex in Vα, |Vα| = n− (k − 1). Thus, the graph Kα

n+k+1 induced by Vα is a complete
graph of order n− k + 1. Let g ∈ [0, n− k) and X ⊆ V(Kα

n+k+1) such that |X| = g + 1. Notice that
g + 1 = |X| < |V(Kα

n+k+1)| = n− k + 1. Then, An,k[X] is a complete graph Kg+1.

Lemma 14. Let n, k, g be positive integers such that n ≥ 3, 2 ≤ k < n, 0 ≤ g < n− k, and let An,k be the
arrangement graph. Let X be defined as above, and let F1 = NAn,k (X), F2 = X ∪ NAn,k (X). Then, |F1| =
[(g + 1)(k − 1) + 1](n− k)− g, |F2| = [(g + 1)(k − 1) + 1](n− k) + 1, δ(An,k[X]) ≥ g and δ(An,k −
F1 − F2) ≥ g.

Proof. Let X be defined as above. By the process of the proof of Lemma 13 in [28], N(X) is a
g-good-neighbor cut of An,k and |N(X)| = |F1| = [(g + 1)(k− 1) + 1](n− k)− g. Since |X| = g + 1,
|F2| = [(g + 1)(k− 1) + 1](n− k) + 1.

Lemma 15. Let n ≥ 3, 2 ≤ k < n and 0 ≤ g < n − k. Then, the g-good-neighbor diagnosability of
the arrangement graph An,k under the PMC model is less than or equal to [(g + 1)(k − 1) + 1](n − k),
i.e., tg(An,k) ≤ [(g + 1)(k− 1) + 1](n− k).

Proof. Let X be defined as above, and let F1 = NAn,k (X), F2 = X ∪ NAn,k (X). By Lemma 14,
|F1| = [(g + 1)(k − 1) + 1](n − k) − g, |F2| = |X| + |F1| = [(g + 1)(k − 1) + 1](n − k) + 1,
δ(An,k − F1) ≥ g and δ(An,k − F2) ≥ g. Therefore, F1 and F2 are g-good-neighbor faulty sets of
An,k with |F1| = [(g + 1)(k− 1) + 1](n− k)− g and |F2| = [(g + 1)(k− 1) + 1](n− k) + 1.

We prove that An,k is not g-good-neighbor ([(g + 1)(k− 1) + 1](n− k) + 1)-diagnosable. Since
X = F1 M F2 and NAn,k (X) = F1 ⊂ F2, there is no edge of An,k between V(An,k)\(F1 ∪ F2) and
F1 M F2. By Theorem 1, we can show that An,k is not g-good-neighbor ([(g + 1)(k− 1) + 1](n− k) +
1)-diagnosable under the PMC model. Hence, by the definition of the g-good-neighbor diagnosability,
we show that the g-good-neighbor diagnosability of An,k is less than [(g + 1)(k− 1) + 1](n− k) + 1,
i.e., tg(An,k) ≤ [(g + 1)(k− 1) + 1](n− k).
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Lemma 16. Let n, k, g be positive integers such that n ≥ 4, 2 ≤ k ≤ n − 2, 3 ≤ g < n − k. Then, the

arrangement graph An,k is g-good-neighbor (((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1)-diagnosable
under the PMC model.

Proof. By Theorem 1, to prove An,k is g-good-neighbor (((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g +

1)-diagnosable, it is equivalent to prove that there is an edge uv ∈ E(An,k) with u ∈ V(An,k)\(F1 ∪ F2)

and v ∈ F1 M F2 for each distinct pair of g-good-neighbor faulty subsets F1 and F2 of V(An,k) with |F1| ≤
((g+ 1)(k− 2)+ 2−b (g+1)2

2 c)(n− k)+ g+ 1 and |F2| ≤ ((g+ 1)(k− 2)+ 2−b (g+1)2

2 c)(n− k)+ g+ 1.
We prove this statement by contradiction. Suppose that there are two distinct g-good-neighbor

faulty subsets F1 and F2 of An,k with |F1| ≤ ((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1 and |F2| ≤
((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1, but the vertex set pair (F1, F2) is not satisfied with the
condition in Theorem 1, i.e., there are no edges between V(An,k)\(F1 ∪ F2) and F1 M F2. Without loss
of generality, suppose that F2 \ F1 6= ∅.

Case 1. V(An,k) = F1 ∪ F2.

Note that (g + 1)(k − 2) + 2 − (g+1)2

2 = − g2

2 + (k − 3)g + k − 1
2 . Since k ∈ [2, n − 2], − g2

2 +

(k− 3)g + k− 1
2 ≤ −

g2

2 + (n− 5)g + n− 2− 1
2 . Let y = − g2

2 + (n− 5)g + n− 2− 1
2 . Then, ymax =

1
2 n2 − 4n + 10 for g = n− 5 and − g2

2 + (k− 3)g + k− 1
2 ≤ 1

2 n2 − 4n + 10.
Assume V(An,k) = F1 ∪ F2. We have that n!

(n−k)! = |V(An,k)| = |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩ F2| ≤
|F1|+ |F2| ≤ 2(((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1) ≤ 2(((g + 1)(k− 2) + 2− (g+1)2

2 )(n−
k) + g + 1) ≤ 2(( 1

2 n2 − 4n + 10)(n − k) + g + 1) = (n2 − 8n + 20)(n − 2) + 2(n − 2) + 2 = n3 −
10n2 + 34n − 34. When k = 3, n!

(n−k)! = n3 − 3n2 + 2n. Note n3 − 3n2 + 2n ≤ n!
(n−k)! for k ≥ 3.

Thus, n3 − 3n2 + 2n ≤ n3 − 10n2 + 36n− 40. In fact, n3 − 3n2 + 2n > n3 − 10n2 + 36n− 40 when
n ≥ 4. This is a contradiction. Therefore, V(An,k) 6= F1 ∪ F2.

Case 2. V(An,k) 6= F1 ∪ F2

According to the hypothesis, there are no edges between V(An,k) \ (F1 ∪ F2) and F1 M F2. Since F1

is a g-good-neighbor faulty set and An,k − F1 has two parts An,k − F1 − F2 and An,k[F2 \ F1], we have
that δ(An,k − F1 − F2) ≥ g and δ(An,k[F2 \ F1]) ≥ g. Similarly, δ(An,k[F1 \ F2]) ≥ g when F1 \ F2 6= ∅.
Therefore, F1 ∩ F2 is also a g-good-neighbor faulty set. Since there are no edges between V(An,k −
F1 − F2) and F1 M F2, F1 ∩ F2 is also a g-good-neighbor cut. When F1 \ F2 = ∅, F1 ∩ F2 = F1 is
also a g-good-neighbor faulty set. Since there are no edges between V(An,k − F1 − F2) and F1 M F2,

F1 ∩ F2 is a g-good-neighbor cut. By Lemma 13, |F1 ∩ F2| ≥ ((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + 1.
Since δ(An,k[F2 \ F1]) ≥ g, |F2\F1| ≥ g + 1. Therefore, |F2| = |F2\F1|+ |F1 ∩ F2| ≥ g + 1+ ((g + 1)(k−
2) + 2− b (g+1)2

2 c)(n− k) + 1 = ((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 2, which contradicts with

that |F2| ≤ ((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1. Thus, An,k is g-good-neighbor (((g + 1)(k−
2) + 2− b (g+1)2

2 c)(n− k) + g + 1)-diagnosable. By the definition of tg(An,k), tg(An,k) ≥ ((g + 1)(k−
2) + 2− b (g+1)2

2 c)(n− k) + g + 1. The proof is complete.

Combining Lemmas 15 and 16, we have the following theorem.

Theorem 2. Let n, k, g be positive integers such that n ≥ 4, 3 ≤ k ≤ n− 2, 3 ≤ g < n− k. Then, ((g +

1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1 ≤ tg(An,k) ≤ [(g + 1)(k− 1) + 1](n− k) under the PMC model.

Theorem 3. Let An,k be the arrangement graph with n > k ≥ 2. Then, the diagnosability t(An,k) = k(n− k)
under the PMC model.

Proof. Let u ∈ V(An,k). Then, N(u) is a cut of An,k and |N(u)| = k(n− k). Let F1 = N(u), F2 = {u} ∪
N(u). Then, |F1| = k(n− k), |F2| = |X|+ |F1| = k(n− k) + 1, δ(An,k − F1) ≥ 0 and δ(An,k − F2) ≥ 0.
Therefore, F1 and F2 are 0-good-neighbor faulty sets of An,k with |F1| = k(n− k) and |F2| = k(n− k)+ 1.
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We will prove An,k is not 0-good-neighbor (k(n − k) + 1)-diagnosable. Since {u} = F1 M F2 and
N(u) = F1 ⊂ F2, there is no edge of An,k between V(An,k)\(F1 ∪ F2) and F1 M F2. By Theorem 1,
we can show that An,k is not 0-good-neighbor (k(n − k) + 1)-diagnosable under the PMC model.
Hence, by the definition of the 0-good-neighbor diagnosability, we conclude that the 0-good-neighbor
diagnosability of An,k is less than k(n− k) + 1, i.e., t0(An,k) ≤ k(n− k).

By Theorem 1, to prove An,k is 0-good-neighbor k(n− k)-diagnosable, it is equivalent to prove
that there is an edge uv ∈ E(An,k) with u ∈ V(An,k)\(F1 ∪ F2) and v ∈ F1 M F2 for each distinct pair of
0-good-neighbor faulty subsets F1 and F2 of V(An,k) with |F1| ≤ k(n− k) and |F2| ≤ k(n− k).

We prove this statement by contradiction. Suppose that there are two distinct 0-good-neighbor
faulty subsets F1 and F2 of An,k with |F1| ≤ k(n− k) and |F2| ≤ k(n− k), but the vertex set pair (F1, F2)

is not satisfied with the condition in Theorem 1, i.e., there are no edges between V(An,k)\(F1 ∪ F2) and
F1 M F2. Without loss of generality, suppose that F2 \ F1 6= ∅.

Assume V(An,k) = F1 ∪ F2. We have that n!
(n−k)! = |V(An,k)| = |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩ F2| ≤

|F1|+ |F2| ≤ 2k(n− k). When k = 2, n2 − n = n!
(n−2)! ≤ 4n− 8, a contradiction. Therefore, V(An,2) 6=

F1 ∪ F2. When k = 3, n!
(n−k)! = n3− 3n2 + 2n. Note n3− 3n2 + 2n ≤ n!

(n−k)! and 2k(n− k) ≤ 2n2− 8n+ 6

for k ≥ 3. Thus, n3 − 3n2 + 2n ≤ 2n2 − 8n + 6. In fact, n3 − 3n2 + 2n > 2n2 − 8n + 6 when n ≥ 4. This
is a contradiction. Therefore, V(An,k) 6= F1 ∪ F2.

According to the hypothesis, there are no edges between V(An,k) \ (F1 ∪ F2) and F1 M F2. Since F1

is a 0-good-neighbor faulty set and An,k − F1 has two parts An,k − F1 − F2 and An,k[F2 \ F1], we have
that δ(An,k − F1 − F2) ≥ 0 and δ(An,k[F2 \ F1]) ≥ 0. Similarly, δ(An,k[F1 \ F2]) ≥ 0 when F1 \ F2 6= ∅.
Therefore, F1 ∩ F2 is also a 0-good-neighbor faulty set. Since there are no edges between V(An,k −
F1 − F2) and F1 M F2, F1 ∩ F2 is also a 0-good-neighbor cut. When F1 \ F2 = ∅, F1 ∩ F2 = F1 is also a
0-good-neighbor faulty set. Since there are no edges between V(An,k − F1 − F2) and F1 M F2, F1 ∩ F2

is a 0-good-neighbor cut. By Lemma 2, |F1 ∩ F2| ≥ k(n− k). Since δ(An,k[F2 \ F1]) ≥ 0, |F2\F1| ≥ 1.
Therefore, |F2| = |F2\F1| + |F1 ∩ F2| ≥ 1 + k(n − k), which contradicts with that |F2| ≤ k(n − k).
Thus, An,k is 0-good-neighbor k(n− k)-diagnosable. By the definition of t0(An,k), t0(An,k) ≥ k(n− k).
Therefore, t0(G) = t(G) = k(n− k).

Lemma 17. Let n ≥ 5 and 2 ≤ k < n. Then, t1(An,k) ≥ (2k− 1)(n− k) under the PMC model.

Proof. By Theorem 1, to prove An,k is 1-good-neighbor (2k− 1)(n− k)-diagnosable, it is equivalent
to prove that there is an edge uv ∈ E(An,k) with u ∈ V(An,k)\(F1 ∪ F2) and v ∈ F1 M F2 for each
distinct pair of g-good-neighbor faulty subsets F1 and F2 of V(An,k) with |F1| ≤ (2k− 1)(n− k) and
|F2| ≤ (2k− 1)(n− k).

We prove this statement by contradiction. Suppose that there are two distinct 1-good-neighbor
faulty subsets F1 and F2 of An,k with |F1| ≤ (3k− 2)(n− k) and |F2| ≤ (3k− 2)(n− k), but the vertex
set pair (F1, F2) is not satisfied with the condition in Theorem 1, i.e., there are no edges between
V(An,k)\(F1 ∪ F2) and F1 M F2. Without loss of generality, assume that F2 \ F1 6= ∅.

Assume V(An,k) = F1 ∪ F2. We have that n!
(n−k)! = |V(An,k)| = |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩

F2| ≤ |F1|+ |F2| ≤ 2(2k − 1)(n − k) ≤ 2(2n − 3)(n − 2) = 4n2 − 14n + 12. When k = 3, n!
(n−k)! =

n3 − 3n2 + 2n. Note n3 − 3n2 + 2n ≤ n!
(n−k)! for k ≥ 3. Thus, n3 − 3n2 + 2n ≤ 4n2 − 14n + 12. In fact,

n3 − 3n2 + 2n > 4n2 − 14n + 12 when n ≥ 5. This is a contradiction. When k = 2, n2 − n = n!
(n−k)! ≤

2(2k− 1)(n− k) = 6(n− 2). In fact, n2 − n > 6(n− 2) when n ≥ 5. This is a contradiction. Therefore,
V(An,k) 6= F1 ∪ F2.

According to the hypothesis, there are no edges between V(An,k) \ (F1 ∪ F2) and F1 M F2. Since F1

is a 1-good-neighbor faulty set and An,k − F1 has two parts An,k − F1 − F2 and An,k[F2 \ F1], we have
that δ(An,k − F1 − F2) ≥ 1 and δ(An,k[F2 \ F1]) ≥ 1. Similarly, δ(An,k[F1 \ F2]) ≥ 1 when F1 \ F2 6= ∅.
Therefore, F1 ∩ F2 is also a 1-good-neighbor faulty set. Since there are no edges between V(An,k −
F1 − F2) and F1 M F2, F1 ∩ F2 is also a 1-good-neighbor cut. When F1 \ F2 = ∅, F1 ∩ F2 = F1 is also a
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1-good-neighbor faulty set. Since there are no edges between V(An,k − F1 − F2) and F1 M F2, F1 ∩ F2

is a 1-good-neighbor cut. By Lemma 10, |F1 ∩ F2| ≥ (2k− 1)(n− k)− 1. Since δ(An,k[F2 \ F1]) ≥ 1,
|F2\F1| ≥ 2. Therefore, |F2| = |F2\F1|+ |F1 ∩ F2| ≥ 2 + (2k − 1)(n − k)− 1 = (2k − 1)(n − k) + 1,
which contradicts with that |F2| ≤ (2k − 1)(n − k). Thus, An,k is 1-good-neighbor (2k − 1)(n −
k)-diagnosable. By the definition of t1(An,k), t1(An,k) ≥ (2k− 1)(n− k).

Combining Lemmas 15 and 17, we have the following theorem.

Theorem 4. Let n ≥ 5 and 2 ≤ k < n. Then, t1(An,k) = (2k− 1)(n− k) under the PMC model.

Lemma 18. Let n ≥ 8 and k ∈ {i : i = 3, . . . , n− 5} ∪ {n− 2, n− 1}. Then, t2(An,k) ≥ (3k− 2)(n− k)
under the PMC model.

Proof. By Theorem 1, to prove An,k is 2-good-neighbor (3k− 2)(n− k)-diagnosable, it is equivalent
to prove that there is an edge uv ∈ E(An,k) with u ∈ V(An,k)\(F1 ∪ F2) and v ∈ F1 M F2 for each
distinct pair of g-good-neighbor faulty subsets F1 and F2 of V(An,k) with |F1| ≤ (3k− 2)(n− k) and
|F2| ≤ (3k− 2)(n− k).

We prove this statement by contradiction. Suppose that there are two distinct g-good-neighbor
faulty subsets F1 and F2 of An,k with |F1| ≤ (3k− 2)(n− k) and |F2| ≤ (3k− 2)(n− k), but the vertex
set pair (F1, F2) is not satisfied with the condition in Theorem 1, i.e., there are no edges between
V(An,k)\(F1 ∪ F2) and F1 M F2. Without loss of generality, assume that F2 \ F1 6= ∅.

Assume V(An,k) = F1 ∪ F2. We have that n!
(n−k)! = |V(An,k)| = |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩

F2| ≤ |F1|+ |F2| ≤ 2(3k − 2)(n − k) ≤ 2(3n − 5)(n − 3) = 6n2 − 28n + 30. When k = 3, n!
(n−k)! =

n3 − 3n2 + 2n. Note n3 − 3n2 + 2n ≤ n!
(n−k)! for k ≥ 3. Thus, n3 − 3n2 + 2n ≤ 6n2 − 28n + 30. In fact,

n3 − 3n2 + 2n > 6n2 − 28n + 30 when n ≥ 8. This is a contradiction. Therefore, V(An,k) 6= F1 ∪ F2.
According to the hypothesis, there are no edges between V(An,k) \ (F1 ∪ F2) and F1 M F2. Since F1

is a 2-good-neighbor faulty set and An,k − F1 has two parts An,k − F1 − F2 and An,k[F2 \ F1], we have
that δ(An,k − F1 − F2) ≥ 2 and δ(An,k[F2 \ F1]) ≥ 2. Similarly, δ(An,k[F1 \ F2]) ≥ 2 when F1 \ F2 6= ∅.
Therefore, F1 ∩ F2 is also a 2-good-neighbor faulty set. Since there are no edges between V(An,k −
F1 − F2) and F1 M F2, F1 ∩ F2 is also a 2-good-neighbor cut. When F1 \ F2 = ∅, F1 ∩ F2 = F1 is also a
2-good-neighbor faulty set. Since there are no edges between V(An,k − F1 − F2) and F1 M F2, F1 ∩ F2

is a 2-good-neighbor cut. By Lemma 11, |F1 ∩ F2| ≥ (3k− 2)(n− k)− 2. Since δ(An,k[F2 \ F1]) ≥ 2,
|F2\F1| ≥ 3. Therefore, |F2| = |F2\F1|+ |F1 ∩ F2| ≥ 3 + (3k − 2)(n − k)− 2 = (3k − 2)(n − k) + 1,
which contradicts with that |F2| ≤ (3k − 2)(n − k). Thus, An,k is 2-good-neighbor (3k − 2)(n −
k)-diagnosable. By the definition of t2(An,k), t2(An,k) ≥ (3k− 2)(n− k).

Combining Lemmas 15 and 18, we have the following theorem.

Theorem 5. Let n ≥ 8 and k ∈ {i : i = 3, . . . , n− 5} ∪ {n− 2, n− 1}. Then, t2(An,k) = (3k− 2)(n− k)
under the PMC model.

For n ≥ 8, An,2 is decomposed into n subgraphs A1
n,2, . . . , An

n,2. By Proposition 1, Ai
n,2 is

isomorphic to Kn−1 for i = 1, 2, . . . , n. Let a = (1, n), b = (2, n), c = (1, n − 1), d = (2, n − 1).
Then, a, b ∈ V(An

n,2), ab ∈ E(An
n,2), c, d ∈ V(An−1

n,2 ), cd ∈ E(An−1
n,2 ), ac ∈ E(An,2) and bd ∈ E(An,2),

and abdca is a 4-cycle of An,2.

Lemma 19. For n ≥ 8 and An,2, let X = {a, b, c, d} be defined as above, and let F1 = NAn,2(X),
F2 = X ∪ NAn,2(X). Then, |F1| = 4n− 12, |F2| = 4n− 8, δ(An,2[X]) = 2 and δ(An,2 − F1 − F2) ≥ 2.
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Proof. Note that |N(X)| = 4(n− 3) = 4n− 12. Then, |F2| = 4n− 8. Since abdca is a four-cycle of
An,2, δ(An,2[X]) = 2. Since n ≥ 8, δ(An

n,2 − {a, b}) ≥ 2 and δ(An−1
n,2 − {c, d}) ≥ 2. Thus, δ(An,2 − F1 −

F2) ≥ 2.

Lemma 20. For n ≥ 8, t2(An,2) ≤ 4n− 9 under the PMC model.

Proof. Let X be defined in Lemma 19, and let F1 = NAn,2(X), F2 = X ∪ NAn,2(X). By Lemma 19,
|F1| = 4n− 12, |F2| = |X|+ |F1| = 4n− 8, δ(An,2 − F1) ≥ 2 and δ(An,2 − F2) ≥ 2. Therefore, F1 and F2

are 2-good-neighbor faulty sets of An,2 with |F1| = 4n− 12 and |F2| = 4n− 8.
We will prove An,2 is not 2-good-neighbor (4n − 8)-diagnosable. Since X = F1 M F2 and

NAn,k (X) = F1 ⊂ F2, there is no edge of An,2 between V(An,2)\(F1 ∪ F2) and F1 M F2. By Theorem 1,
we can deduce that An,2 is not 2-good-neighbor (4n− 8)-diagnosable under the PMC model. Hence,
by the definition of the 2-good-neighbor diagnosability, we conclude that the 2-good-neighbor
diagnosability of An,2 is less than 4n− 8, i.e., tg(An,2) ≤ 4n− 9.

Lemma 21. For n ≥ 8, t2(An,2) ≥ 4n− 9 under the PMC model.

Proof. By Theorem 1, to prove An,2 is 2-good-neighbor (4n− 9)-diagnosable, it is equivalent to prove
that there is an edge uv ∈ E(An,2) with u ∈ V(An,2)\(F1 ∪ F2) and v ∈ F1 M F2 for each distinct pair of
2-good-neighbor faulty subsets F1 and F2 of V(An,2) with |F1| ≤ 4n− 9 and |F2| ≤ 4n− 9.

We prove this statement by contradiction. Suppose that there are two distinct 2-good-neighbor
faulty subsets F1 and F2 of An,2 with |F1| ≤ 4n− 9 and |F2| ≤ 4n− 9, but the vertex set pair (F1, F2) is
not satisfied with the condition in Theorem 1, i.e., there are no edges between V(An,k)\(F1 ∪ F2) and
F1 M F2. Without loss of generality, assume that F2 \ F1 6= ∅.

Assume V(An,2) = F1 ∪ F2. We have that n2 − n = n!
(n−2)! = |V(An,2)| = |F1 ∪ F2| = |F1|+ |F2| −

|F1 ∩ F2| ≤ |F1|+ |F2| ≤ 2(4n− 9) = 8n− 18, a contradiction to n ≥ 8. Therefore, V(An,k) 6= F1 ∪ F2.
According to the hypothesis, there are no edges between V(An,2) \ (F1 ∪ F2) and F1 M F2. Since F1

is a 2-good-neighbor faulty set and An,2 − F1 has two parts An,k − F1 − F2 and An,2[F2 \ F1], we have
that δ(An,2 − F1 − F2) ≥ 2 and δ(An,2[F2 \ F1]) ≥ 2. Similarly, δ(An,2[F1 \ F2]) ≥ 2 when F1 \ F2 6= ∅.
Therefore, F1 ∩ F2 is also a 2-good-neighbor faulty set. Since there are no edges between V(An,2 −
F1 − F2) and F1 M F2, F1 ∩ F2 is also a 2-good-neighbor cut. When F1 \ F2 = ∅, F1 ∩ F2 = F1 is
also a 2-good-neighbor faulty set. Since there are no edges between V(An,2 − F1 − F2) and F1 M F2,
F1 ∩ F2 is a 2-good-neighbor cut. By Lemma 11, |F1 ∩ F2| ≥ 4n− 12. If |F1 ∩ F2| = 4n− 12, then, by
Lemma 12, |F2\F1| = 4. If |F1 ∩ F2| = 4n− 11 or 4n− 10, then |F2\F1| ≤ 2, a contradiction to that
δ(An,2[F1 \ F2]) ≥ 2. Therefore, |F2| = |F2\F1|+ |F1 ∩ F2| ≥ 4 + (4n− 12) = 4n− 8, which contradicts
with that |F2| ≤ 4n − 9. Thus, An,k is 2-good-neighbor (4n − 9)-diagnosable. By the definition of
t2(An,k), t2(An,2) ≥ 4n− 9.

Combining Lemmas 20 and 21, we have the following theorem.

Theorem 6. Let n ≥ 8. Then, t2(An,2) = 4n− 9 under the PMC model.

4. The g-Good-Neighbor Diagnosability of Arrangement Graphs under the MM* Model

Before discussing the g-good-neighbor diagnosability of the arrangement graph An,k under the
MM∗ model (Figure 3), we first give an existing result.

Theorem 7 ([1,23]). A system G = (V, E) is g-good-neighbor t-diagnosable under the MM∗ model if and only
if for each distinct pair of g-good-neighbor faulty subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t satisfies one
of the following conditions. (1) There are two vertices u, w ∈ V \ (F1 ∪ F2) and there is a vertex v ∈ F1 M F2

such that uw ∈ E and vw ∈ E. (2) There are two vertices u, v ∈ F1 \ F2 and there is a vertex w ∈ V \ (F1 ∪ F2)
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such that uw ∈ E and vw ∈ E. (3) There are two vertices u, v ∈ F2 \ F1 and there is a vertex w ∈ V \ (F1 ∪ F2)

such that uw ∈ E and vw ∈ E.

F1 F2s
ss
s s s
s s
s
s s
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w

v

w
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uv

w

v

u

w

#
"

 
!
#
"

 
!

(2) (1) (1) (3)

Figure 3. Illustration of a distinguishable pair (F1, F2) under the MM* model.

Lemma 22. Let n ≥ 3, 2 ≤ k < n and 0 ≤ g < n − k. Then, the g-good-neighbor diagnosability of
the arrangement graph An,k under the MM* model is less than or equal to [(g + 1)(k − 1) + 1](n − k),
i.e., tg(An,k) ≤ [(g + 1)(k− 1) + 1](n− k).

Proof. Let X be defined in Lemma 15, and let F1 = NAn,k (X), F2 = X ∪ NAn,k (X). By Lemma 14,
|F1| = [(g + 1)(k − 1) + 1](n− k)− g, |F2| = |X|+ |F1| = [(g + 1)(k − 1) + 1](n− k) + 1, δ(An,k −
F1) ≥ g and δ(An,k − F2) ≥ g. Therefore, F1 and F2 are g-good-neighbor faulty sets of An,k with
|F1| = [(g + 1)(k− 1) + 1](n− k)− g and |F2| = [(g + 1)(k− 1) + 1](n− k) + 1.

We will prove that An,k is not g-good-neighbor ([(g + 1)(k − 1) + 1](n − k) + 1)-diagnosable.
Since X = F1 M F2 and NAn,k (X) = F1 ⊂ F2, there is no edge of An,k between V(An,k)\(F1 ∪ F2) and
F1 M F2. By Theorem 7, we can show that An,k is not g-good-neighbor ([(g + 1)(k− 1) + 1](n− k) +
1)-diagnosable under the MM* model. Hence, by the definition of the g-good-neighbor diagnosability,
we show that the g-good-neighbor diagnosability of An,k is less than [(g + 1)(k− 1) + 1](n− k) + 1,
i.e., tg(An,k) ≤ [(g + 1)(k− 1) + 1](n− k).

Lemma 23. Let n, k, g be positive integers such that n ≥ 4, 3 ≤ k ≤ n − 2, 3 ≤ g < n − k. Then, the

arrangement graph An,k is g-good-neighbor (((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1)-diagnosable
under the MM* model.

Proof. By the definition of the g-good-neighbor diagnosability, it is sufficient to show that An,k is

g-good-neighbor (((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1)-diagnosable for 3 ≤ g ≤ n− k− 1.
By Theorem 7, suppose, on the contrary, that there are two distinct g-good-neighbor faulty

subsets F1 and F2 of An,k with |F1| ≤ ((g + 1)(k − 2) + 2 − b (g+1)2

2 c)(n − k) + g + 1 and |F2| ≤
((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1, but the vertex set pair (F1, F2) is not satisfied with any
condition in Theorem 7. Without loss of generality, assume that F2 \ F1 6= ∅. Similar to the discussion
on V(An,k) = F1 ∪ F2 in Lemma 16, we can show V(An,k) 6= F1 ∪ F2.

Claim 1. An,k − F1 − F2 has no isolated vertex.
Since F1 is a g-good neighbor faulty set, for an arbitrary vertex u ∈ V(An,k) \ F1, |NAn,k−F1(u)| ≥ g.

Suppose, on the contrary, that An,k − F1 − F2 has at least one isolated vertex x. Since F1 is a g-good
neighbor faulty set and g ≥ 3, there are at least two vertices u, v ∈ F2 \ F1 such that u, v are adjacent
to x. According to the hypothesis, the vertex set pair (F1, F2) is not satisfied with any condition in
Theorem 7, by Condition (3) of Theorem 7, a contradiction. Therefore, there are at most one vertex
u ∈ F2 \ F1 such that u are adjacent to x. Thus, |NAn,k−F1(x)| = 1, a contradiction to that F1 is a g-good
neighbor faulty set, where g ≥ 3. Thus, An,k − F1 − F2 has no isolated vertex. The proof of Claim 1
is complete.

Let u ∈ V(An,k) \ (F1 ∪ F2). By Claim 1, δ(An,k − F1 − F2) ≥ 1. Since the vertex set pair (F1, F2)

is not satisfied with any condition in Theorem 7, by the condition (1) of Theorem 7, for any pair of
adjacent vertices u, w ∈ V(An,k) \ (F1 ∪ F2), there is no vertex v ∈ F1 M F2 such that uw ∈ E(An,k) and
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uv ∈ E(An,k). It follows that u has no neighbor in F1 M F2. Since u is taken arbitrarily, there is no edge
between V(An,k) \ (F1 ∪ F2) and F1 M F2.

Since F2 \ F1 6= ∅ and F1 is a g-good-neighbor faulty set, we have that δAn,k ([F2 \ F1]) ≥ g,
δ(An,k − F2 − F1) ≥ g and |F2 \ F1| ≥ g + 1. Since both F1 and F2 are g-good-neighbor faulty sets,
and there is no edge between V(An,k) \ (F1 ∪ F2) and F1 M F2, F1 ∩ F2 is a g-good-neighbor cut of

An,k. By Lemma 13, we have |F1 ∩ F2| ≥ ((g + 1)(k − 2) + 2 − b (g+1)2

2 c)(n − k) + 1. Therefore,

|F2| = |F2 \ F1|+ |F1 ∩ F2| ≥ g + 1 + ((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + 1 = ((g + 1)(k− 2) +

2− b (g+1)2

2 c)(n− k) + g + 2, which contradicts |F2| ≤ ((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1.

Therefore, An,k is g-good-neighbor (((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1)-diagnosable and

tg(An,k) ≥ ((g + 1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1. The proof is complete.

Combining Lemmas 22 and 23, we have the following theorem.

Theorem 8. Let n, k, g be positive integers such that n ≥ 4, 3 ≤ k ≤ n− 2, 3 ≤ g < n− k. Then, ((g +

1)(k− 2) + 2− b (g+1)2

2 c)(n− k) + g + 1 ≤ tg(An,k) ≤ [(g + 1)(k− 1) + 1](n− k) under the MM* model.

Theorem 9 ([34]). Let An,k be an n-dimensional arrangement graph and 3 ≤ k < n. Then, the diagnosability
of An,k is k(n− k), i.e., t(An,k) = k(n− k) under the MM* model.

Lemma 24 ([30]). An,k is hamiltonian for 1 ≤ k ≤ n− 1.

A component of a graph G is odd according as it has an odd number of vertices. We denote by
o(G) the number of odd component of G.

Theorem 10 ([33]). A graph G = (V, E) has a perfect matching if and only if o(G− S) ≤ |S| for all S ⊆ V.

Lemma 25. Let n ≥ 8 and 2 ≤ k < n. Then, t1(An,k) ≥ (2k− 1)(n− k) under the MM∗ model.

Proof. By the definition of 1-good-neighbor diagnosability, it is sufficient to show that An,k is
1-good-neighbor (2k− 1)(n− k)-diagnosable.

By Theorem 7, suppose, on the contrary, that there are two distinct 1-good-neighbor faulty subsets
F1 and F2 of An,k with |F1| ≤ (2k− 1)(n− k) and |F2| ≤ (2k− 1)(n− k), but the vertex set pair (F1, F2)

is not satisfied with any condition in Theorem 7. Without loss of generality, suppose that F2 \ F1 6= ∅.
Assume V(An,k) = F1 ∪ F2. We have that n!

(n−k)! = |V(An,k)| = |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩ F2| ≤
|F1| + |F2| ≤ 2(2k − 1)(n − k). When k = 2, n2 − n = n!

(n−2)! = |V(An,2)| = |F1 ∪ F2| ≤ 6n − 12,

a contradiction to n ≥ 5. Therefore, V(An,2) 6= F1 ∪ F2. When k = 3, n!
(n−k)! = n3− 3n2 + 2n. Note n3−

3n2 + 2n ≤ n!
(n−k)! for k ≥ 3. Thus, 2(2k− 1)(n− k) ≤ 2(2(n− 1)− 1)(n− 3) ≤ 4n2− 18n + 18. In fact,

n3 − 3n2 + 2n > 4n2 − 18n + 18 when n ≥ 5. This is a contradiction. Therefore, V(An,k) 6= F1 ∪ F2.
Claim 1. An,k − F1 − F2 has no isolated vertex.
Suppose, on the contrary, that An,k − F1 − F2 has at least one isolated vertex w. Since F1 is

a 1-good-neighbor faulty set, there is a vertex u ∈ F2 \ F1 such that u is adjacent to w. Since the
vertex set pair (F1, F2) is not satisfied with any condition in Theorem 7, there is at most one vertex
u ∈ F2 \ F1 such that u is adjacent to w. Thus, there is just a vertex u ∈ F2 \ F1 such that u is
adjacent to w. Similarly, we can show that there is just a vertex v ∈ F1 \ F2 such that v is adjacent
to w when F1 \ F2 6= ∅. Suppose F1 \ F2 = ∅. Then, F1 ⊆ F2. Since F2 is a 1-good neighbor
faulty set, An,k − F2 = An,k − F1 − F2 has no isolated vertex. Therefore, F1 \ F2 6= ∅ as follows.
Let W ⊆ V(An,k) \ (F1 ∪ F2) be the set of isolated vertices in An,k[V(An,k) \ (F1 ∪ F2)], and let H be
the subgraph induced by the vertex set V(An,k) \ (F1 ∪ F2 ∪W). Then, for any w ∈ W, there are
(k(n− k)− 2) neighbors in F1 ∩ F2. Since |V(An,k)| is even and Lemma 24, An,k has a perfect matching.
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By Theorem 10, |W| ≤ o(G − (F1 ∪ F2)) ≤ |F1 ∪ F2| ≤ |F1| + |F2| − |F1 ∩ F2| ≤ 2(2k − 1)(n − k) −
(k(n − k) − 2) = (n − k)(3k − 2) + 2 ≤ 3n2 − 11n + 12. In particular, |W| ≤ 4n − 6 when k = 2.
When k = 2, n2 − n = |V(An,2)| = |F1 ∪ F2|+ |W| ≤ 2(4n− 6) = 8n− 12. This is a contradiction
to n ≥ 8. Thus, V(H) 6= ∅. When k = 3, n!

(n−k)! = n3 − 3n2 + 2n. Note n3 − 3n2 + 2n ≤ n!
(n−k)! for

k ≥ 3. Note that n3 − 3n2 + 2n = |V(An,k)| = |F1 ∪ F2|+ |W| ≤ 2(3n2 − 11n + 12) = 6n2 − 22n + 24.
This is a contradiction to n ≥ 8. Thus, V(H) 6= ∅. Since the vertex set pair (F1, F2) is not satisfied with
the condition (1) of Theorem 7, and any vertex of V(H) is not isolated in H, we show that there is
no edge between V(H) and F1 M F2. Thus, F1 ∩ F2 is a vertex cut of An,k and δ(An,k − (F1 ∩ F2)) ≥ 1,
i.e., F1 ∩ F2 is a 1-good-neighbor cut of An,k. By Lemma 10, |F1 ∩ F2| ≥ (2k− 1)(n− k)− 1. Because
|F1| ≤ (2k − 1)(n − k), |F2| ≤ (2k − 1)(n − k), and neither F1 \ F2 nor F2 \ F1 is empty, we have
|F1 \ F2| = |F2 \ F1| = 1. Let F1 \ F2 = {v1} and F2 \ F1 = {v2}. Then, for any vertex w ∈ W,
w are adjacent to v1 and v2. Suppose that v1 is adjacent to v2. Then, v1v2vv1 is a three-cycle and
|N({v1, v2,v})| = 3[(k− 1)(n− k)− 1] + n− k + 1 > (2k− 1)(n− k)− 1 ≥ |F1 ∩ F2|, a contradiction.
Therefore, suppose that v1 is not adjacent to v2. According to Lemma 9, there are at most two common
neighbors for any pair of vertices in An,k, it follows that there are at most three isolated vertices in
An,k − F1 − F2, i.e., |W| ≤ 2.

Suppose that there is exactly one isolated vertex v in An,k − F1 − F2. Let v1 and v2 be adjacent to
v. Then, NAn,k (v) \ {v1, v2} ⊆ F1 ∩ F2 and |NAn,k (v) ∩ (F1 ∩ F2)| = k(n− k)− 2. Note that |NAn,k (v1) ∩
(F1 ∩ F2)| = k(n − k) − 1 and |NAn,k (v2) ∩ (F1 ∩ F2)| = k(n − k) − 1. By Lemma 9, |F1 ∩ F2| ≥
k(n− k)− 2 + k(n− k)− 1 + k(n− k)− 1− 2(n− k − 1)− 2 = (3k − 2)(n− k)− 4. It follows that
|F2| = |F2 \ F1|+ |F1 ∩ F2| ≥ 1 + (3k− 2)(n− k)− 4 = (3k− 2)(n− k)− 3 > (2k− 1)(n− k) (n ≥ 8),
which contradicts |F2| ≤ (2k− 1)(n− k).

Suppose that there are exactly two isolated vertices v and w in An,k − F1 − F2. Let v1 and v2

be adjacent to v and w, respectively. Since v1, v2 ∈ NAn,k ({v, w}), by Lemma 9, |NAn,k ({v, w}) ∩
(F1 ∩ F2)| = 2(k(n − k) − 2). Note that |F1 ∩ F2| ≤ (2k − 1)(n − k) − 1. If n > k + 3, then
2(k(n − k) − 2) > (2k − 1)(n − k) − 1, a contradiction. Thus, n ≤ k + 3. Since n ≥ k + 1,
k + 1 ≤ n ≤ k + 3. If n = k + 1, then, by Lemma 9, a contradiction to |W| = 2. Suppose
that n = k + 2. Then, An,k = An,n−2. By the proof of Lemma 3.2 ([18]), An,n−2 − F1 − F2 has no
isolated vertex. Suppose that n = k + 3. Then, 2(k(n− k)− 2) = (2k− 1)(n− k)− 1 = 6n− 22. By
Lemma 1, let v1 = (1, 2, . . . , n− 4, n− 3).Without loss of generality, suppose v = (1, 2, . . . , n− 4, n)
and w = (n, 2, . . . , n− 4, n− 3). Then, the vertex v′ = (1, n− 1, . . . , n− 4, n− 3) is not adjacent to v
and w. Thus, |F1 ∩ F2| > (2k− 1)(n− k)− 1, a contradiction. The proof of Claim 1 is complete.

Let u ∈ V(An,k) \ (F1 ∪ F2). By Claim 1, u has at least one neighbor in An,k − F1 − F2. Since the
vertex set pair (F1, F2) is not satisfied with any condition in Theorem 7, by the condition (1) of
Theorem 7, for any pair of adjacent vertices u, w ∈ V(An,k) \ (F1 ∪ F2), there is no vertex v ∈ F1 M F2

such that uw ∈ E(An,k) and vw ∈ E(An,k). It follows that u has no neighbor in F1 M F2. Since u is
taken arbitrarily, there is no edge between V(An,k) \ (F1 ∪ F2) and F1 M F2. Since F2 \ F1 6= ∅ and
F1 is a 1-good-neighbor faulty set, δAn,k ([F2 \ F1]) ≥ 1 and |F2 \ F1| ≥ 2. Since both F1 and F2 are
1-good-neighbor faulty sets, and there is no edge between V(An,k) \ (F1 ∪ F2) and F1 M F2, F1 ∩ F2

is a 1-good-neighbor cut of An,k. By Lemma 10, we have |F1 ∩ F2| ≥ (2k− 1)(n− k)− 1. Therefore,
|F2| = |F2 \ F1| + |F1 ∩ F2| ≥ 2 + ((2k − 1)(n − k) − 1) = (2k − 1)(n − k) + 1, which contradicts
|F2| ≤ (3k− 2)(n− k). Therefore, An,k is 1-good-neighbor (3k− 2)(n− k)-diagnosable and t1(An,k) ≥
(3k− 2)(n− k). The proof is complete.

Combining Lemmas 22 and 25, we have the following theorem.

Theorem 11. Let n ≥ 8. Then, t1(An,k) = (2k− 1)(n− k) under the MM∗ model.

Lemma 26. Let n ≥ 8 and k ∈ {i : i = 3, . . . , n− 5} ∪ {n− 2, n− 1}. Then, t2(An,k) ≥ (3k− 2)(n− k)
under the MM∗ model.
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Proof. By the definition of the 2-good-neighbor diagnosability, it is sufficient to show that An,k is
g-good-neighbor (3k− 2)(n− k)-diagnosable.

By Theorem 7, suppose, on the contrary, that there are two distinct g-good-neighbor faulty subsets
F1 and F2 of An,k with |F1| ≤ (3k− 2)(n− k) and |F2| ≤ (3k− 2)(n− k), but the vertex set pair (F1, F2)

is not satisfied with any condition in Theorem 7. Without loss of generality, suppose that F2 \ F1 6= ∅.
Similar to the discussion on V(An,k) = F1 ∪ F2 in Lemma 18, we have V(An,k) 6= F1 ∪ F2.

Claim 1. An,k − F1 − F2 has no isolated vertex.
Since F1 is a 2-good neighbor faulty set, for an arbitrary vertex u ∈ V(An,k) \ F1, |NAn,k−F1(u)| ≥ 2.

Suppose, on the contrary, that An,k − F1 − F2 has at least one isolated vertex x. Since F1 is a 2-good
neighbor faulty set, there are at least two vertices u, v ∈ F2 \ F1 such that u, v are adjacent to x.
According to the hypothesis, the vertex set pair (F1, F2) is not satisfied with any condition in Theorem 7,
by the condition (3) of Theorem 7, a contradiction. Therefore, there are at most one vertex u ∈ F2 \ F1

such that u are adjacent to x. Thus, |NAn,k−F1(x)| = 1, a contradiction to that F1 is a 2-good neighbor
faulty set. Thus, An,k − F1 − F2 has no isolated vertex. The proof of Claim 1 is complete.

Let u ∈ V(An,k) \ (F1 ∪ F2). By Claim 1, δ(An,k − F1 − F2) ≥ 1. Since the vertex set pair (F1, F2)

is not satisfied with any condition in Theorem 7, by the condition (1) of Theorem 7, for any pair of
adjacent vertices u, w ∈ V(An,k) \ (F1 ∪ F2), there is no vertex v ∈ F1 M F2 such that uw ∈ E(An,k) and
uv ∈ E(An,k). It follows that u has no neighbor in F1 M F2. Since u is taken arbitrarily, there is no edge
between V(An,k) \ (F1 ∪ F2) and F1 M F2.

Since F2 \ F1 6= ∅ and F1 is a 2-good-neighbor faulty set, we have that δAn,k ([F2 \ F1]) ≥ 2,
δ(An,k − F2 − F1) ≥ 2 and |F2 \ F1| ≥ 2 + 1 = 3. Since both F1 and F2 are 2-good-neighbor faulty
sets, and there is no edge between V(An,k) \ (F1 ∪ F2) and F1 M F2, F1 ∩ F2 is a 2-good-neighbor cut of
An,k. By Lemma 11, we have |F1 ∩ F2| ≥ (3k− 2)(n− k)− 2. Therefore, |F2| = |F2 \ F1|+ |F1 ∩ F2| ≥
3 + (3k− 2)(n− k)− 2 = (3k− 2)(n− k) + 1, which contradicts |F2| ≤ (3k− 2)(n− k). Therefore,
An,k is 2-good-neighbor (3k − 2)(n − k)-diagnosable and t2(An,k) ≥ (3k − 2)(n − k). The proof
is complete.

Combining Lemmas 22 and 26, we have the following theorem.

Theorem 12. Let n ≥ 8 and k ∈ {i : i = 3, . . . , n− 5} ∪ {n− 2, n− 1}. Then, t2(An,k) = (3k− 2)(n− k)
under the MM∗ model.

Lemma 27. For n ≥ 8, t2(An,2) ≤ 4n− 9 under the MM∗ model.

Proof. Let X be defined in Lemma 19, and let F1 = NAn,2(X), F2 = X ∪ NAn,2(X). By Lemma 19,
|F1| = 4n− 12, |F2| = |X|+ |F1| = 4n− 8, δ(An,2 − F1) ≥ 2 and δ(An,2 − F2) ≥ 2. Therefore, F1 and F2

are 2-good-neighbor faulty sets of An,2 with |F1| = 4n− 12 and |F2| = 4n− 8.
We will prove An,2 is not 2-good-neighbor (4n − 8)-diagnosable. Since X = F1 M F2 and

NAn,k (X) = F1 ⊂ F2, there is no edge of An,2 between V(An,2)\(F1 ∪ F2) and F1 M F2. By Theorem 7,
we show that An,2 is not 2-good-neighbor (4n− 8)-diagnosable under the MM∗ model. Hence, by the
definition of the 2-good-neighbor diagnosability, we show that the 2-good-neighbor diagnosability of
An,2 is less than 4n− 8, i.e., tg(An,2) ≤ 4n− 9.

Lemma 28. For n ≥ 8, t2(An,2) ≥ 4n− 9 under the MM∗ model.

Proof. By the definition of the 2-good-neighbor diagnosability, it is sufficient to show that An,k is
2-good-neighbor (4n− 9)-diagnosable.

By Theorem 7, suppose, on the contrary, that there are two distinct 2-good-neighbor faulty subsets
F1 and F2 of An,k with |F1| ≤ 4n− 9 and |F2| ≤ 4n− 9, but the vertex set pair (F1, F2) is not satisfied
with any condition in Theorem 7. Without loss of generality, suppose that F2 \ F1 6= ∅. Similar to the
discussion on V(An,k) = F1 ∪ F2 in Lemma 21, we have V(An,k) 6= F1 ∪ F2.
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Claim 1. An,k − F1 − F2 has no isolated vertex.
Since F1 is a 2-good neighbor faulty set, for an arbitrary vertex u ∈ V(An,k) \ F1, |NAn,k−F1(u)| ≥ 2.

Suppose, on the contrary, that An,k − F1 − F2 has at least one isolated vertex x. Since F1 is a 2-good
neighbor faulty set, there are at least two vertices u, v ∈ F2 \ F1 such that u, v are adjacent to x.
According to the hypothesis, the vertex set pair (F1, F2) is not satisfied with any condition in Theorem 7,
by the condition (3) of Theorem 7, a contradiction. Therefore, there are at most one vertex u ∈ F2 \ F1

such that u are adjacent to x. Thus, |NAn,k−F1(x)| = 1, a contradiction to that F1 is a 2-good neighbor
faulty set. Thus, An,k − F1 − F2 has no isolated vertex. The proof of Claim 1 is complete.

Let u ∈ V(An,k) \ (F1 ∪ F2). By Claim 1, δ(An,k − F1 − F2) ≥ 1. Since the vertex set pair (F1, F2)

is not satisfied with any condition in Theorem 7, by the condition (1) of Theorem 7, for any pair of
adjacent vertices u, w ∈ V(An,k) \ (F1 ∪ F2), there is no vertex v ∈ F1 M F2 such that uw ∈ E(An,k) and
uv ∈ E(An,k). It follows that u has no neighbor in F1 M F2. Since u is taken arbitrarily, there is no edge
between V(An,k) \ (F1 ∪ F2) and F1 M F2.

Since F2 \ F1 6= ∅ and F1 is a 2-good-neighbor faulty set, we have that δAn,k ([F2 \ F1]) ≥ 2,
δ(An,k − F2 − F1) ≥ 2 and |F2 \ F1| ≥ 2 + 1 = 3. Since both F1 and F2 are 2-good-neighbor faulty sets,
and there is no edge between V(An,k) \ (F1 ∪ F2) and F1 M F2, F1 ∩ F2 is a 2-good-neighbor cut of An,k.
By Lemma 11, we have |F1 ∩ F2| ≥ 4n− 12. If |F1 ∩ F2| = 4n− 12, then, by Lemma 12, |F2\F1| = 4.
If |F1 ∩ F2| = 4n − 11 or 4n − 10, then |F2\F1| ≤ 2, a contradiction to that δ(An,2[F1 \ F2]) ≥ 2.
Therefore, |F2| = |F2\F1|+ |F1 ∩ F2| ≥ 4 + (4n− 12) = 4n− 8, which contradicts with that |F2| ≤
4n− 9. Therefore, An,k is 2-good-neighbor (4n− 9)-diagnosable and t2(An,k) ≥ 4n− 9. The proof
is complete.

Combining Lemmas 27 and 28, we have the following theorem.

Theorem 13. Let n ≥ 8. Then, t2(An,2) = 4n− 9 under the MM∗ model.

5. Conclusions

The conditional diagnosability of a multiprocessor system is an important research topic for fault
tolerance of the system. In this paper, we investigate the problem of g-good-neighbor diagnosability of
the (n, k)-arrangement graph An,k, and present the g-good-neighbor diagnosability of An,k under the
PMC model and MM* model. The work will help engineers to develop more different networks.
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