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Abstract: The human face as a biometric trait has been widely used for personal identity verification
but it is still a challenging task under uncontrolled conditions. With the development of hyper-spectral
imaging acquisition technology, spectral properties with sufficient discriminative information bring
new opportunities for a facial image process. This paper presents a novel ensemble method for
skin feature segmentation of a hyper-spectral facial image based on a k-means algorithm and a
spanning forest algorithm, which exploit both spectral and spatial discriminative features. According
to the closed skin area, local features are selected for further facial image analysis. We present the
experimental results of the proposed algorithm on various public face databases which achieve higher
segmentation rates.

Keywords: hyper-spectral imaging; band selection; clustering ensemble; k-means; spatial-spectral
classification; minimum spanning forest

1. Introduction

Problems related to conventional verification methodology, for example, ID cards and password
cards, have been solved by biotechnology, which provides personal inherent characteristics [1]. With
the rapid development of science and technology, the face recognition technique has been developed
into various applications and widely utilized by industries such as the financial industry; and the
security industry. However, it is still a challenge to develop an automatic face recognition system with
a little extra effort under uncontrolled conditions (such as illumination conditions, facial expressions,
aging and disguises).

Human skin segmentation is an important step for many researches related to face detection,
face recognition, intelligent video surveillance and others [2–7]. There are many methods for skin
segmentation in color images: Gaussian Mixture Model, color clustering models [8], fusion [6],
thresholding [9] and so on. Tan et al. [6] combined a smoothed 2D histogram and Gaussian model
to automatic human skin detection in color image. Xu et al. [7] realized automatic selection of
important components of color spaces using flexible neural tree (FNT) algorithm. There are also many
technologies for face segmentation in thermal images [10–12] and thermal imaging has a variety of
applications [13]. Filipe et al. [11] used active contours, morphological filtering and several other image
processing operations to against a wide range of face rotations, expressions and artifacts. Further, they
proposed a simple and fast skin segmentation method could be used in real-time applications and
designed a method put more importance to accuracy than to speed [12].

Hyperspectral images bring a new opportunity to skin segmentation compared to RGB images.
Each band of the hyperspectral images carries discriminative information and the clustering (utilized
spatial information) results for single bands are different proved in the experimental part. We fused
these single-band cluster images to choose the most reliable classified pixels, that is to say, if the cluster
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images of different bands have the same label at the same position, they are marked as reliable classified
pixels. In this process, we did not fuse the clustering results of all single-band. Because some bands
have very little meaningful information, the band selection is done first. Pixels that are not properly
classified using only spatial information, need further classify using spectral information. The spectral
information of the pixel to be unclassified is calculated, compared with the most reliable classified
pixels of its neighborhood and classified by similarity. In the above clustering and classification process,
the role of spectral information is fully utilized in different ways.

Then, we propose a novel ensemble method for skin feature segmentation of a hyper-spectral
facial image and it is regarded as two main processes including a clustering process generated by
k-means and a classification process using the MSF. Compared to the traditional ensemble methods
on a pixel-by-pixel basis, we utilize the degree of homogeneity of the neighborhood for the re-label
issue of basic clustering results to lighten the computational complexity and get a more accurate
skin boundary, yet few related studies involve it. This likes a sub-sampling process using pixel’s
neighborhood. The reason why neighborhood information is used is the homogeneity in the face
neighborhood is relatively high and pixels’ value mutations occur only at the edge of the facial organs.
The purpose of this article is to segment the skin feature, so the experiment is not too sensitive to the
edge information. Under the premise of not affecting the experimental results, the experimental part
of this article also discusses the most suitable pixel neighborhood size. After the above operation, we
expand the raw data to its original size using the pixel’s neighborhood relationship. The flow chart of
the proposed algorithm can be seen in Figure 1. In addition, the hyper-spectral imaging acquisition
technology divides the spectrum into many narrow bands with structural information not captured
by ordinary imaging. Thus, the proposed algorithm makes full use of spatial and spectral dimension
information; and brings opportunities for robust facial image segmentation or classification.
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Figure 1. Flow chart of the proposed algorithm.

The remainder of this paper is organized as follows. Section 2 reviews related work of
hyper-spectral images and introduces the clustering ensemble algorithm. Section 3 introduces the
proposed algorithm’s model. In Section 4, we present experimental results on two hyper-spectral facial
image databases, which are intended to test the performance of our proposed method. This paper is
summarized in Section 5.

2. Related Work

In this part, we first review hyper-spectral imaging devices in Section 2.1, which bring
opportunities for a robust facial image process and pose several challenges that should be resolved. In
Section 2.2, we discuss the widely used clustering ensemble algorithm to improve the performance
of clustering.
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2.1. Hyper-Spectral Images

The spectral imaging method uses a generic imaging device to capture digital images over narrow
fixed tens to hundreds of bands spanning the visible to infrared spectrum. Figure 2a illustrates a 3D
data cube of the spectral imaging, which involves one dimensional spectral, and two dimensional
spatial, information. Figure 2b illustrates the spectral reflectance properties of a point of a facial
image. Its reflectance properties are affected by carotene, melanin and hemoglobin the three types
of light-absorbing chemical compounds [14]. In addition to facial recognition, a spectral signature is
widely used in liveliness studies by distinguishing a real human image from a synthetic mask or a
mere photograph.
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Apart from the above mentioned new opportunities, hyper-spectral imaging also poses a set of
challenges, including a high spectral dimension, a low signal-to-noise ratio (SNR) and intra-person
misalignment of bands. A high spectral dimension results in redundant information, which takes
up large amounts of memory and is difficult to separate from useful information. Low-SNR
information causes misjudgment of the results and affects experimental performance. The intra-person
misalignment variations must be prohibited during the hyper-spectral imaging process. Most studies
on the hyper-spectral image select discriminative and high-SNR information to improve experimental
performance or simplify the calculation process [15,16]. Di et al. [15] selected a two subset feature
center at the peak absorption bands (one consisting bands of 530 nm, 540 nm and 550 nm and another
containing the bands of 570 nm, 580 nm and 590 nm). Li et al. [16] selected several bands with highly
similar features to those of the first principle components (PCs) calculated by the principal component
analysis (PCA).

2.2. Clustering Ensemble

The clustering ensemble algorithm has been developed as a more robust and stable [17] solution
compared to individual clustering algorithms in the area of pattern recognition. Traditional individual
clustering aims to classify unlabeled data into a homogeneous group, which lacks robust results.
Additionally, many adaptations of classical clustering algorithms have been developed and the
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clustering ensemble algorithm has successfully attracted people’s attention [18–20]. In the past decade,
literature on clustering ensemble has mainly been divided into three categories, including a paired
similarity-based approach, a graph partitioning-based method approach and a median partition-based
approach. The pair-wise similarity-based method constructs a co-association matrix as a similarity
matrix to achieve the clustering [21]. The graph partitioning-based method regards the objects or
clusters as graph nodes and builds graph links between them [22]. The median partition-based method
visuals clustering as a point in high-dimensional space and finds its center through converting an
optimization problem, which is to minimize the sum of distances (SOD) in the ensemble [23]. In this
paper, clustering ensemble assembles the supervised and unsupervised process to achieve satisfactory
segmentation performance.

3. Skin Feature Segmentation Scheme

In this section, the band selection algorithm and the algorithm for the generation of basic clustering
are discussed in Section 3.1; the construction and re-labeling process for patches are proposed in
Section 3.2; and the classification process is discussed in Section 3.3. Finally, the comparison methods
are explained in Section 3.4.

3.1. Band Selection and Generation of Basic Clustering

To improve the performance of ensemble issues, N discriminative feature bands are selected as the
input of k-means algorithm. The selected bands have highly similar features to those of the first PCs
proposed by the Li et al. [16]. The first few PCs contain rich spatial information but it cannot ensure
that the spectral signatures of interest are reserved. This method enhances the spatial features while
emphasizing spectral signatures; thus, it is useful for the hyper-spectral image process. The similarity
features are extracted from the widely used algorithm of Gray Level Co-occurrence Matrix (GLCM).
Among 14 texture features of GLCM, the Inverse Difference Moment (IDM), contrast and entropy
features are considered to be similarity criteria between the first PC and a single-band image to make
sure the selected bands possess the greatest recognition ability. The contrast reflects the clarity of the
image and the depth of the texture groove, whereas IDM reflects the homogeneity of the image texture
and measures the local variation of image texture. Entropy measures the amount of information that
an image has and indicates the degree of complexity of the image. The similarity criterion can be
expressed as:

`l =
3

∑
i=1

ki

∣∣∣∣∣PCFi − Bandl
Fi

PCFI

∣∣∣∣∣, l = 1, 2, 3, . . . L (1)

where PC represents the first PC, Fi represents the ith texture feature and ki represents the weight of
the ith texture feature. The value of `l is metric of lth band. The smaller the value of metric `l , the
more the similarity between the first PC image and single bands is.

3.2. Construction and Re-Labeling of a Patch

In this subsection, due to a lack of a priori information, basic clustering is divided into a number
of non-overlap neighborhoods as patch X̂, with a size arrangement of 2 × 2, 3 × 3, or 4 × 4 pixels. We
depict a particular clustering distribution kth patch as a vector γk and the vector value represents the
number of clusters. The patch with the arrangement of 4 × 4 pixels is described as γk = [a, b]. An
example of binary clustering (the blue and orange cluster) can be seen in Figure 3, where γa = [14, 2]
and γb = [2, 14], respectively. Figure 3a indicates that the patch has 14 pixels that belong to the blue
cluster; and 2 pixels that belong to the red cluster. This can be analyzed based on Figure 3b. In this
paper, clustering distribution comprises two clusters: skin or non-skin.
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Hence, all of the basic clustering can be represented as patches γk, that is, the size of original basic
clustering is 220 × 180; after being redefined with a size arrangement of 4 × 4 pixels and it becomes
to 55 × 45 patches. Integrated with the selected basic clustering, patches with the samevalue remain
as optional patches. According to the degree of the homogeneity rule, the optional patches with the
highest homogeneity will be considered as the reliable patches called markers. Then the markers can
be classified. In Figure 3, for example, as γa = [14, 2] and γb = [2, 14], we set X̂a to the blue cluster
(La = 1) and set X̂b to the orange cluster (Lb = 2), which satisfy the rules 13 < a < 16 and 13 < b < 16.
Specific situation rules depend on the size of the patch. Other unmarked patches need to be further
classified. This method achieves reduced computational complexity and a faster execution speed.

3.3. MSF for Classification

In this subsection, we group the adjacent image patches into series of MSF graphs with 3 × 3
blocks (see Figure 4) [24], that is, the size of image patches is 55 × 45; we need to calculate 18 × 15
graphs approximately. Thus, the spatial neighborhood information is fully considered by the
calculated graphs.
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(a) Original image graphs G. 1 and 2 represent the labeled patches (markers); unlabeled patches are
denoted by “0”. (b) Addition vertices t1, t2 to the graph G. (c) The MSF with two MSTs of graph G.

The spanning forest graph is a weighted undirected and disconnected graph model that associates
the weight or cost for each edge on the basis of the undirected graph. Additionally, the spanning forest
graph is composed of a series of spanning tree graphs and is a weighted undirected and connected
graph model.

Given a graph G = (V, E, W), V and E are the sets of vertices (patch X̂k) and edges (each edge
eij of this graph connects a couple of patches i and j), respectively and W is a mapping of the set of
edges E into R+ (a weight wij indicates the dissimilarity between two patches). In Figure 5a, there are
a total of 5 vertices and they connected to each other with different weights. A Minimum spanning
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tree (MST) is rooted on one vertex (marker). The MST graph follows the principle that satisfies the
minimum sum of edge weights, as expressed by the following equation:

T ∈ arg min
F∈ST

 ∑
ei,j∈ET

wi,j

 (2)

where ST is a set of spanning trees of G. In Figure 5b, we generate a minimum spanning tree from
graph of Figure 5a.
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As mentioned above, the MSF is composed of a series of MSTs. Given a graph G = (V, E, W), a
MSF is rooted on a set of distinct vertices (a set of distinct markers), with each tree grown from one
root vertex (marker). The principle of minimum sum of edge weights is expressed by the following
equation:

F ∈ arg min
F∈SF

 ∑
ei,j∈EF

wi,j

 (3)

where SF is a set of spanning forests of G rooted distinct vertices.
Then, uncertain patches classified into markers utilizing the spectral and spatial information

generated by the MSF algorithm. The spectral similarity metric is based on mean information of
patches, including Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID). SID
computes the probability behavior difference between the spectral signatures of two pixel vectors
xi, xj:

SID(xi, xj) =

{
B

∑
b=1

{
qb(xi) log

[
qb(xi)

qb(xj)

]
+ qb(xj) log

[ qb(xj)

qb(xi)

]}
(4)

SID is the degree of dissimilarity of two distributions, when xi, xj has the same distribution and
its value is 0. In this paper, xi and xj represent two different patches. The probability represents

qb(xi) =
−

xlkb
B
∑

h=1

−
xlkh

, where the mean spectral feature of the kth patch is derived from the following

equation:

xlk =

L
∑

l=1
xlk

L
, l = 1, 2 . . . L (5)

where xlk = (x1k, x2k, . . . xLk)
T and xlk represents the lth pixel of the kth patch.

Actually, the above rules of finding the minimal sum of edge weights for graph can be resolved
by a region-growing method. This means starting from a certain vertex as seed (marker) and gradually
adding neighboring vertices (patches) according to the minimum weight certain criteria between
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two vertices of a graph. Prim’s algorithm can be used to achieve the MSF algorithm. An unlabeled
patch x̂ should be added to the seed every time, until all of the patches of the graph are classified. A
prerequisite to be aware is that the graph should contain markers with different categories, as Figure 4a
illustrates. Two classes of extra vertices ti (i = 1, 2) are added to the graph linking the corresponding
markers to form two categories of MST, as illustrated in Figure 4b. Each extra vertex is connected
by the edge with a null weight to the markers. As illustrated in Figure 4c, markers are viewed as
seeds; and unlabeled patches x̂ are added to the tree to meet the criterion of minimum sum of the
edge weights. While lacking markers are a common situation in a graph, we have to select markers
manually. In this case, we select a marker within a graph that has the highest SID similarity to the
nearest markers of this graph.

The whole algorithm can be indirectly listed as follows:

Step 1: Choose several discriminative basic clusters (see Section 3.2) as the input of the ensemble process.
Step 2: The basic clustering is represented by non-overlap neighborhood patch x̂ with 2 × 2 pixels. Depict it as

a vector γk and re-represent it by calculating the mean spectral characteristic
−
x lk.

Step 3: Integrate selected basic clustering, to obtain the optional patches. Then, select and re-label for reliable
patches as markers, from the optional patches.
Step 4: Group the adjacent image patches into series of Minimum Spanning Forests with 3 × 3 blocks; and
then assign the unlabeled patch xk to markers according to the SID similarity criterion.

3.4. Comparison Algorithm

To evaluate the performance of the proposed algorithm, two algorithms are selected for
comparison, including the standard fuzzy c-means (FCM) [25–27] and spatial FCM. Different from
hard clustering k-means, FCM calculates the membership for each pixel to all clusters center. FCM is
derived by iteratively minimizing a cost optimization function, that is, the weighted error of the sum
of squares minimization inter-class. The function is defined as follows:

J =
N

∑
j=1

c

∑
i=1

um
ij ‖xj − vi‖2 (6)

where uij represents the membership of pixel xj (with N pixels) to the ith cluster and vi is the ith cluster
center (with c centroids). The parameter m controls the fuzziness of the resulting partition and m = 2 is
used in the present study.

Neighboring pixels possess similar feature merit; thus, the probability that they belong to the
same cluster is high. However, spatial features are not considered in the standard FCM. An improved
method of FCM was proposed by Chuang et al. [28]; it incorporates spatial information into the
membership function to improve the performance. A spatial function is defined as:

hij = ∑
k∈NB(xj)

uik (7)

where uik represents the membership of pixel xj belongs to the kth cluster and NB(xj) represents the
neighborhood pixels of a square window centered on pixel xj. The improved membership function
becomes:

uij
′ =

up
ijh

q
ij

c
∑

k=1
up

ijh
q
ij

(8)

where p and q are parameters that control the relative importance of both functions.
In this paper, SID is adapted to measure the distance between two distributions in the cost

optimization function instead of using Euclidean Distance (ED). SID measures the differences in
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probability behavior between the spectral features of two pixel vectors based on the notion of
divergence, which improves the clustering performance [29]. An improved FCM algorithm based on
morphological reconstruction and membership filtering (FRFCM) is proposed by Tao et al. [30], that is
significantly faster and more robust than FCM.

4. Experimental Results and Discussion

In this section, we conduct experiments on two public hyper-spectral facial image databases to
evaluate the effectiveness of the proposed algorithm; as compared with standard FCM, spatial FCM
and FRFCM algorithms.

4.1. Band Selection Results

First, we adopt the mean value of four types of Gray Level Co-occurrence Matrixs (GLCMs) and
the four different methods of scanning are horizontal, vertical, left and right diagonal. Then, we set
different combination weights for contrast, entropy and IDM features, with 0.3, 0.5 and 0.2; 0.5, 0.2
and 0.3; and 0.2, 0.3 and 0.5, respectively. Based on Equation (1), we can observe the influence of the
feature weight on the band selection result (see Figure 6 for one example).
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Figure 6a illustrates the band selection result of the Hong Kong Polytechnic University
Hyper-Spectral Face Database (PolyU-HSFD), in which the facial images of the 1, 2, 3, 4, 5, 6, 7,
28, 29, 30, 31, 32 and 33 bands have lower SNR in three different weight combinations. The Figure 6b
from the University of Western Australia Hyper-Spectral Face Database (UWA–HSFD) indicates that
the features on 25, 26, 27, 28, 29, 30, 31, 32 and 33 bands have the least effective information in three
different weight combinations. This phenomenon is caused by the camera system. The sorting of the
other bands indicates similarity in the first two weight combinations, so we site a greater weight for
contrast to select the discriminative bands.

The above method has a perspective from mainly information and sorts the bands according to
the amount of information relative to the first PC. There is a problem that the several bands contain
similar local feature information. This is because the method does not consider the best categories’
separability between bands. After the sorting of information, we choose the best category’s separability
bands according to the discrete metric. We select the several bands with less noise and high category
separability as the input of the clustering ensemble. The results of the combination of the few bands
indicate that the six bands (23, 22, 25, 13, 17 and 18) perform better for PolyU-HSFD; and the experiment
that performs better includes the 18, 14, 16, 23, 28 and 12 bands for UWA-HSFD.

4.2. Skin Feature Segmentation of the PolyU Hyper-Spectral Face Database

The PolyU–HSFD, gathered by Di et al. [15] and acquired with the CRI’s VariSpec Liquid Crystal
Tunable Filter (LCTF) and a Halogen Light system, consists of 25 data subjects of Asian descent
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(8 females and 17 males; 21–38 years old), with varying poses (frontal, right and left view of a subject)
and time periods that include the hairstyle changes and skin condition diversification. Each data cube
(see Figure 7 for one example) size is 220 × 180 × 33 pixels, with 33 bands covering the spectral range
of 400–720 nm with a step size of 10 nm.
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Figure 7. A hyper-spectral facial image from the PolyU-HSFD.

Figure 8a,b present basic clustering of facial images of front and left views, respectively. We can
observe partial basic clustering with little effective feature information in Figure 8a, which is consistent
with the band selection results of low-SNR bands. We can also find that specific local features stand
out on distinct bands, while the bands with all of the local features are severely affected by noise (such
as the last third basic clustering of Figure 8b). Hence, it is necessary to integrate discriminative basic
clustering to get a robust result.
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Next, we evaluate whether different sizes of a patch have an effect on the clustering ensemble’s
results. It is not hard to find that we depict clustering distribution as patches and represent the
patches’ feature information by calculating a mean spectral characteristic described in Section 3.2.
The reason for this is that the patch is treated as the high-homogeneity neighborhood. Figure 9
illustrates the clustering ensemble results with a different patch size of the left view of the facial image
of PolyU-HSFD. We can observe that the separation between features is poor with a large patch size of
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4 × 4 pixels in Figure 9c. As the contour boundary of local features belongs to pixel mutation, the local
feature boundary can be blurred if the neighborhood size is relatively large, especially if the two local
features are close to each other, such as eyes and eyebrows, as illustrated in the Figure 9c. Instead, the
clustering ensemble with a patch size of 2 × 2 pixels is more sensitive to contour boundaries of local
features, as illustrated in the Figure 9a. As can be seen, a patch with a size of 3 × 3 pixels (Figure 9b)
completely confuses the background and features.
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The performance of the proposed algorithm with 2 × 2 and 4 × 4 pixels patch sizes are presented
in Table 1, in terms of precision, recall and F1-score. The recall reflects the proportion of the samples
correctly classified as true positive samples (TP) to the positive samples that conclude true positive
samples (TP) and the false negative samples (FN). It indicates the ability to identify positive samples.
The recall can be expressed as:

R =
TP

TP + FN
(9)

The higher the recall is, the stronger the recognition ability of the positive samples is.

Table 1. Average comparison of different patch sizes of the proposed algorithm.

Block
Size

Precision-
Brow

Recall-
Brow

F1-Score
-Brow

Precision-
Eye

Recall-
Eye

F1-Score-
Eye

Precision-
Mouse

Recall-
Mouse

F1-Mcore-
Mouse

2 × 2 0.75 0.89 0.82 0.76 1.00 0.86 0.89 0.88 0.88
4 × 4 0.13 0.19 0.15 0.53 0.83 0.88 0.55 0.64 0.59

In addition, the precision reflects the proportion of the true positive samples (TP) to the test’s
positive samples that conclude true positive samples (TP) and the false positive samples (FP). It
indicates the ability to identify negative samples. The precision can be expressed as:

P =
TP

TP + FP
(10)

The higher the precision is, the stronger the recognition ability of the negative samples is.
The F1-score is the combination of accuracy and the recall rate, which can be seen as the average

effect. It reflects the robustness of the classification or segmentation model. The higher the F1-score is,
the more robust the model is. The F1-score can be given according to:

F1−score =
2 · P · R
R + P

(11)

In this database, we select three non-skin closed local features for assessment, for example, brows,
eyes and a mouse. We can see that the 2 × 2 patch size achieves better performance, by improving the
F1-score by 0.67%, −0.02% and 0.29% for local features. In general, the non-skin area features are more
prominent in a 2 × 2 patch size, because the contour boundary is more obvious. Therefore, we choose
the patch size of 2 × 2 pixels for the proposed algorithm in all the following experiments.

Finally, the performance of the proposed algorithm on PolyU-HSFD is compared with the
previously mentioned standard FCM, spatial FCM, FRFCM and basic clustering. In Figure 10a
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(front facial image), the standard FCM clustering loses numerous features, because spectral reflectance
of the face is not a reliable biometric, as spectral reflectance will change slightly due to the external
environment [31]. Figure 10b illustrates spatial FCM clustering that performs better than the standard
FCM algorithm as it makes full use of the spatial and spectral information, as expressed by Equation
(7). This is achieved by adding the spatial function to the membership function um

ij as expressed
by Equation (8). Figure 10c illustrates the performance of the proposed algorithm, in which almost
all local features are obvious. Figure 10d also indicates a good result using a fast and robust FCM
(FRFCM) algorithm.
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Table 2 and Figure 11 summarize the results. Compared with spatial FCM, which makes full use
of all spectral and spatial information, our method performs better and the F1-score rate improved by
0.11%, 0.43% and 0.77% for local features. Compared with the better basic clustering of the 23rd band
and FRFCM, the F1-score rate is improved by −0.04%, 0.13% and 0.61% as well as −0.11%, 0.11 and
0.02% for local features. The non-skin area features are more prominent in our proposed method.

Table 2. Average effect comparison of different model methods for PolyU-HSFD.

Method Precision-Brow Recall-Brow Precision-Eye Recall-Eye Precision-Mouse Recall-Mouse

Standard-FCM 0.92 0.04 0.97 0.2.0 0 0
spatial-FCM 0.62 0.17 0.85 0.35 0.82 0.05

FRFCM 0.65 0.96 0.79 0.84 0.89 0.79
Our method 0.67 0.67 0.96 0.91 0.93 0.80

15th band 0.59 0.66 0.80 0.77 1.00 0.66
23rd band 0.67 0.86 0.82 0.78 1.00 0.14
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However, the feature characteristics of the right wing of the nose are not obvious. These features
are highlighted in the low SNR bands, which are not selected into the ensemble process. Hence, basic
clustering has a significant impact on ensemble results.

4.3. Skin Feature Segmentation of the UWA Hyper-Spectral Face Database

UWA-HSFD is acquired with the CRI’s VariSpec Liquid Crystal Tuneable Filter (LCTF) and
integrated with a photon focus camera. UWA-HSFD consists of 79 data subjects in the frontal view
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taken over 1–4 sessions (see Figure 12 for one example) [32,33]. Each data cube of a hyper-spectral
facial image contains 33 bands covering the visible spectral range from 400 to 720 nm with a 10 nm
step. The SNR in this database is relatively lower because Uzair et al. [31] used a novel algorithm
that automatically adjusted the camera exposure time based on the filter’s transmittance, illumination
intensity and CCD sensitivity for each frequency band. Most subjects had slight head movements
and eye blinking during image collection process, therefore, there was alignment errors between
individual bands.
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Figure 12. Hyperspectral facial image from the UWA-HSFD.

In our experiment, each subject in the databases was cropped to a different size according to
his/her position from the background. We selected data cubes with little inter-misalignments in three
sessions. Figure 13 illustrates basic clustering with three sessions of the same subject. Once again,
this proves that local features are highlighted on distinct bands. We selected three local features
for assessment: beard, eyes and brows, which highlight the biological characteristics of the beard.
According to the band selection results, the bands highlighting different features with less noise are
selected as the input of the clustering ensemble.

In addition, we can observe that the basic clustering of session one had a poor performance of
nose characteristics. In session two, several bands in the middle have some noise in the front of the
images. That may be due to imaging photographic light.
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performance evaluations of three local features (brows, eye and beard) for three sessions. Compared 
with the better basic clustering of the 12th band, the F1-score rate improved by 0.03%, −0.12% and 
0.05% for local features in session one; 0.11%, 0.25% and 0% for local features in session two; and 0%, 
−0.05% and 0.45% for local features in session three. Compared with the spatial FCM, the F1-score 
rate improved by 0.28%, 0.31% and 0.80% for local features in session one; 0%, 0.06% and 0.82% for 
local features in session two; and 0.89%, 0.64% and 0.86% for local features in session 3. Totally, the 
proposed algorithm is superior to other two algorithms. 

However, as illustrated in Figure 15a, we notice that the nose feature is unsatisfactory in the 
clustering ensemble of session one, caused by basic clustering as illustrated in Figure 13a. There is 
noise interference in the front of clustering ensemble that can be found in Figure 15c. In this case, we 
use the location information for feature extraction to avoid being affected by noise interference in the 
front of facial image. Therefore, basic clustering plays an essential role in the ensemble process.

Figure 13. Cont.



Information 2018, 9, 261 13 of 16

Information 2018, 9, x FOR PEER REVIEW  13 of 16 

 

 

 
(b) Session two 

 

 

 

(c) Session three 

Figure 13. Single band clustering of three different periods correspond to Figure 14 of UWA-HSFD. 

 
(a) Session one (b) Session two (c) Session three 

Figure 14. The 16th band image of the same person in three different sessions from the UWA-HSFD. 

The performance for the proposed algorithm in Figure 15a,c,e is compared with spatial FCM in 
Figure 15b,d,f and the basic clustering, respectively. We can observe that the local features nose and 
mouth are not recognized for session one, as illustrated in Figure 15b and the recognition is not 
complete and clear for session two, as shown in Figure 15d. The most unsatisfactory result has little 
useful information for session three, as illustrated in Figure 15f. Relatively speaking, local features 
are clear and complete in the clustering ensemble. Tables 3–5 and Figure 16. illustrate the 
performance evaluations of three local features (brows, eye and beard) for three sessions. Compared 
with the better basic clustering of the 12th band, the F1-score rate improved by 0.03%, −0.12% and 
0.05% for local features in session one; 0.11%, 0.25% and 0% for local features in session two; and 0%, 
−0.05% and 0.45% for local features in session three. Compared with the spatial FCM, the F1-score 
rate improved by 0.28%, 0.31% and 0.80% for local features in session one; 0%, 0.06% and 0.82% for 
local features in session two; and 0.89%, 0.64% and 0.86% for local features in session 3. Totally, the 
proposed algorithm is superior to other two algorithms. 

However, as illustrated in Figure 15a, we notice that the nose feature is unsatisfactory in the 
clustering ensemble of session one, caused by basic clustering as illustrated in Figure 13a. There is 
noise interference in the front of clustering ensemble that can be found in Figure 15c. In this case, we 
use the location information for feature extraction to avoid being affected by noise interference in the 
front of facial image. Therefore, basic clustering plays an essential role in the ensemble process.

Figure 13. Single band clustering of three different periods correspond to Figure 14 of UWA-HSFD.

Information 2018, 9, x FOR PEER REVIEW  13 of 16 

 

 

 
(b) Session two 

 

 

 

(c) Session three 

Figure 13. Single band clustering of three different periods correspond to Figure 14 of UWA-HSFD. 

 
(a) Session one (b) Session two (c) Session three 

Figure 14. The 16th band image of the same person in three different sessions from the UWA-HSFD. 

The performance for the proposed algorithm in Figure 15a,c,e is compared with spatial FCM in 
Figure 15b,d,f and the basic clustering, respectively. We can observe that the local features nose and 
mouth are not recognized for session one, as illustrated in Figure 15b and the recognition is not 
complete and clear for session two, as shown in Figure 15d. The most unsatisfactory result has little 
useful information for session three, as illustrated in Figure 15f. Relatively speaking, local features 
are clear and complete in the clustering ensemble. Tables 3–5 and Figure 16. illustrate the 
performance evaluations of three local features (brows, eye and beard) for three sessions. Compared 
with the better basic clustering of the 12th band, the F1-score rate improved by 0.03%, −0.12% and 
0.05% for local features in session one; 0.11%, 0.25% and 0% for local features in session two; and 0%, 
−0.05% and 0.45% for local features in session three. Compared with the spatial FCM, the F1-score 
rate improved by 0.28%, 0.31% and 0.80% for local features in session one; 0%, 0.06% and 0.82% for 
local features in session two; and 0.89%, 0.64% and 0.86% for local features in session 3. Totally, the 
proposed algorithm is superior to other two algorithms. 

However, as illustrated in Figure 15a, we notice that the nose feature is unsatisfactory in the 
clustering ensemble of session one, caused by basic clustering as illustrated in Figure 13a. There is 
noise interference in the front of clustering ensemble that can be found in Figure 15c. In this case, we 
use the location information for feature extraction to avoid being affected by noise interference in the 
front of facial image. Therefore, basic clustering plays an essential role in the ensemble process.

Figure 14. The 16th band image of the same person in three different sessions from the UWA-HSFD.

The performance for the proposed algorithm in Figure 15a,c,e is compared with spatial FCM
in Figure 15b,d,f and the basic clustering, respectively. We can observe that the local features nose
and mouth are not recognized for session one, as illustrated in Figure 15b and the recognition is not
complete and clear for session two, as shown in Figure 15d. The most unsatisfactory result has little
useful information for session three, as illustrated in Figure 15f. Relatively speaking, local features are
clear and complete in the clustering ensemble. Tables 3–5 and Figure 16. illustrate the performance
evaluations of three local features (brows, eye and beard) for three sessions. Compared with the better
basic clustering of the 12th band, the F1-score rate improved by 0.03%, −0.12% and 0.05% for local
features in session one; 0.11%, 0.25% and 0% for local features in session two; and 0%, −0.05% and
0.45% for local features in session three. Compared with the spatial FCM, the F1-score rate improved
by 0.28%, 0.31% and 0.80% for local features in session one; 0%, 0.06% and 0.82% for local features in
session two; and 0.89%, 0.64% and 0.86% for local features in session 3. Totally, the proposed algorithm
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Table 3. Average effect comparison of different model methods for UWA-HSFD of session one.

Method Precision-BrowRecall-Brow Precision-Eye Recall-Eye Precision-Beard Recall-Beard

spatial-FCM 1.00 0.45 1.00 0.32 0 0
12th band 0.77 1.00 0.95 0.87 0.94 0.62

Our-method 0.93 0.88 0.76 0.82 0.89 0.72
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Table 4. Average effect comparison of different model methods for UWA-HSFD of session two.

Method Precision-BrowRecall-Brow Precision-Eye Recall-Eye Precision-Beard Recall-Beard

spatial-FCM 0.85 0.86 0.93 0.84 1.00 0.05
12th band 0.58 1 0. 64 0.75 1.00 0.84

Our-method 0.83 0.88 1.00 0.88 1.00 0.84

Table 5. Average effect comparison of different model methods for UWA-HSFD of session three.

Method Precision-BrowRecall-Brow Precision-Eye Recall-Eye Precision-Beard Recall-Beard

Spatial-FCM 0 0 1.00 0.07 0 0
12th band 0.83 0.96 1.00 0.70 0.83 0.27

Our-method 0.85 0.93 0.83 0.71 1.00 0.77
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Figure 16. Robust comparison of different model methods for UWA-HSFD.

However, as illustrated in Figure 15a, we notice that the nose feature is unsatisfactory in the
clustering ensemble of session one, caused by basic clustering as illustrated in Figure 13a. There is
noise interference in the front of clustering ensemble that can be found in Figure 15c. In this case, we
use the location information for feature extraction to avoid being affected by noise interference in the
front of facial image. Therefore, basic clustering plays an essential role in the ensemble process.

5. Conclusions

In this article, we present an effective skin feature-segmentation method for a hyper-spectral facial
image. Instead of segmentation of an unlabeled point on a pixel-by-pixel basis, we make full use of
spatial structure information on the neighborhood and spectral information for the MSF classification
algorithm process. We evaluate the performance of the proposed method on two databases with
uncontrolled conditions. Experimental results have proven that the proposed algorithm outperforms
the other algorithms. Our algorithm can also perform better for skin segmentation of a facial image in
complex environments and in classification for a remote sensing image.
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As mentioned in our experiments, the ensemble results are significantly influenced by the
performance of basic clustering. In a more complex background environment, other clustering methods
should be considered to improve the local feature performance in basic clustering, just like the different
color space in RGB images, in future works. Another phenomenon in the experiment is that a marker
around a patch affects the clustering ensemble results. It is time-consuming to repeat the experiment
to select the best performance markers. Hence, designing the selection of a reliable marker around the
patch is a direction of our future work. It is worth mentioning that, sub-sampling image needed some
operators to fill holes and remove small protrusion.
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