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Abstract: Due to the disproportionate difference between the number of genes and samples,
microarray data analysis is considered an extremely difficult task in sample classification.
Feature selection mitigates this problem by removing irrelevant and redundant genes from data.
In this paper, we propose a new methodology for feature selection that aims to detect relevant,
non-redundant and interacting genes by analysing the feature value space instead of the feature space.
Following this methodology, we also propose a new feature selection algorithm, namely Pavicd
(Probabilistic Attribute-Value for Class Distinction). Experiments in fourteen microarray cancer
datasets reveal that Pavicd obtains the best performance in terms of running time and classification
accuracy when using Ripper-k and C4.5 as classifiers. When using SVM (Support Vector Machine),
the Gbc (Genetic Bee Colony) wrapper algorithm gets the best results. However, Pavicd is
significantly faster.
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1. Introduction

Microarray is a multiplex technology used in molecular biology and medicine that enables
biologists to monitor expression levels of thousands of genes [1]. Many microarray experiments have
been designed to investigate the genetic mechanisms of cancer [2] and to discover new drug designs
in the pharmaceutical industry [3]. According to the World Health Organization, cancer is among
the leading causes of death worldwide accounting for more than 8 million deaths. Therefore, finding
a mechanism to discover the genetic expressions that may lead to an abnormal growth of cells is a first
order task today. To build a microarray, short sequences of genes tagged with fluorescent materials are
printed on a glass surface for hibridization [4]. Then, the slice is scanned and goes through various
data processing steps including image data collection, quality control and normalization. The resulting
dataset is a two-dimensional array D with thousands of columns (genes) and several rows (instances):

D =

 x1
1 · · · xn

1 c1
...

. . .
...

...
x1

m · · · xn
m cm

 .

Every instance xj (a row in D) is described by a row vector [x1
j , . . . , xn

j , cj] that represents a labeled

genetic expression: xi
j refers to the expression level of gene fi, and cj ∈ C is the classification for

the j-th sample. C may represent different types of cancer or a binary label for cancerous and
non-cancerous tissue.

Analysis of microarray data presents unprecedented opportunities and challenges for data mining
in areas such as: sample classification and gene selection [5,6]. For sample classification, the microarray
matrices serve as training sets to a given classifier, to find a classification function ` : D→ v(c) that
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is able to classify an arbitrary sequence of genes with unknown class from v(c) ∈ C. Classification
function ` is built from analysing the relation between labeled sequence of genes in D. The performance
of supervised classifiers is often measured in three directions: efficiency, representation complexity
and accuracy. The efficiency refers to the time required to learn the classification function `, while the
representation complexity often refers to the number of bits used to represent the classification
function [7]. One of the most common metrics to measure the accuracy of a supervised classifier is the
error rate defined as:

Err(`, D) =
1
m

m

∑
j=1

δ(`(xj), cj), (1)

where m is the number of sequence of genes in D and δ is the complement of the Kronecker’s delta
function, which returns 0 if both arguments are equal and 1 otherwise.

The main obstacle in microarray datasets arises from the fact that the genes greatly outnumber the
sample observations. As a popular example, in the “Leukemia” dataset, there are only 72 observations
of the expression level of 7129 genes [8]. It is clear that, in this extreme scenario sample, classification
methods cannot perform well because of the “curse of dimensionality” phenomena, where excessive
features may actually degrade the performance of a classifier if the number of training examples used
to build the classifier is relatively small compared to the number of features [7].

Feature selection plays an essential role in microarray data classification since its main goal is
to identify and remove irrelevant and redundant genes that do not contribute to minimize the error
of a given classifier [9]. Basically, the advantages of feature selection include selecting a set of genes
F̃ = { fi1 , . . . , fik} ( F with:

Err(`, DF̃) ≤ Err(`, D), (2)

where DF̃ is the result of projecting F̃ over D. In addition, when a small number of genes are selected,
their biological relationship with the target diseases is more easily identified. These “marker” genes
thus provide additional scientific understanding of the causes of the disease [6]. Feature selection
plays a fundamental role for increasing efficiency and enhancing the comprehensibility of the results.

In gene selection, genes are evaluated based on (i) their individual relevance to the target class,
(ii) the redundancy level respect to other genes, and (iii) how the gene interacts to other genes [10].
The relevance and the redundancy level of a gene are often measured by correlation coefficients such as:
Pearson’s correlation [11], Mutual Information (MI) [12], Symmetrical Uncertainty [13] and others.
On the other hand, it is said that a gene interacts with other genes if, when combined, it becomes more
relevant [14]. Most of the feature selection algorithms in the literature evaluate features by only using
one or two of these aspects, but not using all three of them as a whole. This may lead the algorithm to
output low-quality solutions, especially when redundant genes and interacting genes are abundant in
the problem. In addition, we have detected that most of feature selection algorithms in the literature
suffer from what we call the integrality problem (to be defined). Roughly speaking, the integrality problem
occurs when the relevance of a gene is measured by the average of the correlation of their values with
the target class. We will further analyse this problem in Section 3.

While not losing sight of the fact that microarray cancer datasets are large and abundant in
“noisy” genes, the first goal of this paper is to present a new algorithm able to efficiently detect and select
relevant, non-redundant and interacting genes to improve the accuracy of classification algorithms.
In order to reach this task:

• We first introduce a new feature selection methodology that can avoid the integrality problem.
• Second, we present a new simple algorithm that can detect irrelevant, redundant and interacting

genes in an efficient way.
• Finally, the new algorithm is compared with five state-of-the-art feature selection algorithms

in fourteen microarray datasets, which include leukemia, ovarian, lymphoma, breast and other
cancer data.
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2. Feature Selection for Microarray Cancer Data

Feature selection can be accomplished in a variety of ways depending on the characteristics of
the data. In this section, we review most popular algorithms used in microarray cancer data, taking into
account two basic group of algorithms: gene ranking and pairwise evaluation methods.

2.1. Gene Ranking Methods

In order to find the optimal subset of features that maximize some feature selection
criterion function, an exhaustive search is required, which is a classic NP (non-polynomial) hard
problem. Various heuristics and greedy algorithms have been proposed to find suboptimal solutions.
The individual relevance score r( fi; C) of a gene fi is a common term that refers to the power of a
single gene to predict the class feature C. Assuming independence between genes, the individual
relevance score can be used as a metric to select the genes that better predict the class (target disease
or phenotype) under certain thresholds. That is, genes are ranked using their individual relevance
score and then the top genes are selected. These algorithms are called gene ranking methods and often
use correlation, distance and information measures between a single gene and the target class to find
genes with high discriminatory power among diseases or phenotypes.

As an instance, the Recursive Feature Elimination algorithm evaluates a gene fi by computing the
added error when fi is removed from the current set [15]:

RFE( fi; C) =
(

∑
k

αk c(xk) xi
k

)2
, (3)

where c(xk) = {+1,−1} returns the class corresponding to the instance xk. αk is the optimal weight
of the k-th instance, which is computed with a linear discriminatory classifier such as the Support
Vector Machine (SVM). Different from most of the gene ranking algorithms, in the Recursive Feature
Elimination approach, a greedy search is performed to add at the end of the ranking the gene fi that
minimize RFE( fi; C). Although this atypical way of building a ranking leads to a relatively high
computational complexity, the quality of the output is high [15]. Fisher Score [16] is a distance-based
gene ranking algorithm. Let nc be the number of instances with class c and let µic and σ2

ic be the mean
and variance of the i-th value of all instances in the data, respectively. The Fisher Score represents the
average of the distances among instances with different classes when the data are projected with the
gene fi. The Fisher score metric is defined as follows:

FS( fi; C) =
∑
|C|
c=1 nc(µic − µi)

2

∑
|C|
c=1 ncσ2

ic

. (4)

Another example is RELIEF [17], which computes the relevance score of a gene fi based on the
capability of fi to discriminate among instances of different classes. Assuming instance xk with class
c+ is randomly sampled from the data, and Hk and Mk are two sets of instances (in the neighborhood
of xk) with class c+ and c−, respectively, then a gene has high separability power if it has similar
values (expression) in instances from Hk and different values in instances from Mk. RELIEFF is
an extension of RELIEF that handles multiple classes by splitting the data into series of two-class
data [18]. The individual relevance of each gene fi is assessed by computing the average of its
separability power in l instances randomly sampled. That is,

RF( fi; C) =
1
|C|

l

∑
k=1

(− 1
|Mk| ∑

xj∈Mk

d(xi
k, xi

j) + ∑
c 6=c(xk)

p(c)
|Hk|(1− p(c)) ∑

xj∈Hk

d(xi
k, xi

j)),
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where p(c) is the probability that an instance is labeled with class c and
d(xi

k, xi
j) = (xi

k − xi
j)/(max( fi)−min( fi)), with max( fi) and min( fi) being the maximum and

minimum value of gene fi.
It is well known that the assumption of independence between genes leads to the selection of

redundant genes and over simplifies the complex relationship between genes [19]. Genes are well
known to interact with each other [20]. Several recent research papers on feature selection, especially
gene selection [19,21,22], took into consideration the correlation between genes explicitly by genes’
pairwise evaluation.

2.2. Pairwise Evaluation Methods

Oppositely to the gene ranking algorithms, pairwise evaluation algorithms are able to remove
redundant genes. The way most of these algorithms operate is as follows. First, the relevance score
r( fi, C) of each gene fi ∈ F is computed, and, second, pairwise evaluations r( fi, f j) between genes are
performed to detect genes that are highly correlated to others (redundant genes). Finally, following
some criteria, only relevant and non-redundant genes are selected. As an example, the algorithm
Fcbf (Fast Correlation based-Filter) [23] first ranks all genes { f1, . . . , fn} in the descending order of the
Symmetrical Uncertainty scores. Then, starting from the best/first gene in the ranking fi (with i = 1),
it applies a redundancy filter to all of the genes f j with j > i as follows. If SU( fi; f j) > SU( f j; C) holds,
then gene f j is removed. Since the overall complexity of algorithm Fcbf is O(mn log n), where m is the
number of instances in the data, this algorithm is scalable to large microarray data.

CFS(Correlation-based Feature Selection) is one of the most well-known feature selection algorithms
that take advantage of a redundancy filter [24]. Cfs use a Sequential Forward Search to generate candidate
sets. Every candidate set F̃ is heuristically evaluated as follows:

C f s(F̃, C) =
|F̃| rc f√

|F̃|+ |F̃|(|F̃| − 1) r f f

, (5)

where rc f represents the average of the relevance score of each gene in F̃ and r f f is the average of
the redundancy score of all possible pair of genes in F̃. Finally, from all the candidate sets, the one
with higher Cfs() value is selected. The time complexity of this algorithm is quadratic in terms
of number of genes. Therefore, Cfs is not recommended for high-dimensional microarray data
classification problems.

The Minimum Relevance Maximum Relevance (mRMR) algorithm uses a very similar process to
select sets of genes [22]. In each iteration, the gene f ∗ ∈ F \ F̃ that optimizes certain evaluation
functions is selected. Again, the evaluation function corresponds to a balance between the averages of
the relevance score and redundancy score of the set of genes already selected F̃:

f ∗ = argmax
fi∈F\F̃

 MI( fi, c)
1
|F̃| ∑ f j∈F̃ MI( fi, f j)

. (6)

Assuming that the optimal number of features is not known a priori, one of the disadvantages of
mRMR is that the number of features to select must be specified.

Genetic Bee Colony (Gbc) [25] is a well known algorithm in the field of microarray data analysis.
Gbc combines the advantages of two naturally inspired algorithms: Genetic Algorithm and Artificial
Bee Colony. Since evolutionary algorithms are time-consuming, in Gbc algorithm, the search space is
drastically reduced in the first step by discarding the features eliminated by MRMR. In the reduced
dataset, Artificial Bee Colony for feature selection is then run with additional crossover and mutation
operations, borrowed from Genetic Algorithms, to enhance the exploration process. Although this



Information 2018, 9, 6 5 of 15

algorithm is not so fast, it can have a high accuracy since a Support Vector Machine algorithm is used to
evaluate the candidate sets by cross validation.

Although feature ranking and pairwise evaluation methods are quite fast and easy to implement,
they are not able to detect complex relations among genes. This is why, in high-dimensional microarray
data, they may output low-quality sets. To illustrate, consider the class target function c = f1⊕ f2

where { f1, f2, . . . , fn} ∈ F are binary genes and ⊕ denotes the xor operator. Beforehand, we may
expect that { f1, f2} won’t be selected because both genes by themselves are uncorrelated with c. If we
consider that genes in F \ { f1, f2} can not accurately describe the class, then we can not expect a good
performance of the classifier after reducing F by any of the feature ranking or pairwise evaluation
algorithms. Figure 1 depicts a numerical version of the aforementioned example.

0.0

0.3

0.5

0.8

1.0

0 0.25 0.5 0.75 1𝑓"

𝑓#

Figure 1. Numerical features f1 and f2 are represented in a two-dimensional space to demonstrate
their interaction to discriminate between class + and class −.

The main motivation of this paper is to present an efficient gene selection algorithm able to
detect complex relation among relevant genes that yields a significant improvement in the sample
classification problem. In the next section, we present a novel methodology for gene selection and
a new algorithm derived from such methodology.

3. Materials and Methods

In this section, we introduce a new methodology to create feature selection algorithms that
take advantage of feature value information to avoid the integrality problem mentioned in Section 1.
For a better understanding of the integrality problem, consider the dataset depicted in Figure 2.

Note that the Symmetrical Uncertainty of f1, f2, f3 and f4 with respect to class C is 0.729, 0.57, 0.71
and 0.628, respectively. Therefore, most of the feature selection algorithms described in Section 2,
will select f1 as the best feature, and the rest of the features might be selected or not according to their
correlation (redundancy score) with f1. However, it is clear that class C is perfectly predictable by
three one-precedent rules when { f2, f3, f4} is selected.

This problem occurs because features in { f2, f3, f4} have at least one value that is highly correlated
with a class label and its other values are not correlated with the class. Consequently, if the relevance of
these features (genes) is measured by averaging the prediction power of all its feature values, then this
feature may be considered irrelevant. We call this phenomena the integrality problem. Note that we call
the correlation of a feature value f j

i with respect to a class label of C, to the existing correlation between
the binary feature obtained from the respective feature fi and a given class label. As an example,
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the feature value f a
3 of feature f3 = {b, c, b, c, b, b, b, a, a, a} is {0, 0, 0, 0, 0, 0, 0, a, a, a}. Note that the

correlation between f a
3 and the target class C, given that C = c, is maximal.

f1 f2 f3 f4 C
0 B b 0 a
0 B c 0 a
0 A b 0 a
1 A c 0 a
1 C b 1 b
1 C b 2 b
1 C b 1 b
3 A a 2 c
2 B a 1 c
2 B a 1 c

Figure 2. Dataset with interacting-genes.

3.1. New Methodology for the Gene Selection Problem

Several feature selection methodologies have been proposed in the literature [9,23].
However, the methodology we introduce in this section is designed so that the search is performed
over the expressions of genes (feature values) and not over genes (features). For simplicity, from now on,
we refer to an expression of a gene as a feature value, and we refer to a gene as a feature.

As stated above, when a feature has only a feature value that is highly correlated with a class label,
then the average of the relevance of all the feature values may be small. Consequently, this feature is
often removed by most of the current feature selection algorithms, leading to the loss of important
information to predict certain class labels. In order to avoid the integrality problem, our methodology is
as follows:

• First, for each class label ck ∈ C, the feature values that are highly correlated with the class label
ck (according to some evaluation function) are stored in Gk. Optionally, a filter process may be
carried out, by eliminating feature values in Gk, whose correlation score does not exceed a certain
threshold. From now on, we call this step the Relevance Analysis. Note that Gk is a cluster of
feature values with the highest correlation score with respect to ck.

• Second, feature values in Gk are evaluated/tested among them to determine their redundancy and
interaction level. Feature values that are redundant and do not interact with other feature values are
removed from Gk. From now on, we call this step the Integration Analysis.

• Third, the set of features that correspond to the feature values in each Gk is returned as the solution.

This methodology is very simple and easy to reproduce. The only entries required are:
an evaluation function (that estimates how good an individual feature value is to predict a class label)
and a threshold for the Relevance Analysis; and an evaluation function (to measure how good two
or more feature values are to predict a class label) for the Integration Analysis. However, the main
property that distinguishes this methodology from other feature selection algorithms relies on the
fact that the selection process is carried out over the feature value space and not over the feature
space. This property may enhance the quality of the feature selection process because features are
discriminated according to their contribution to predict only one class label and they are not forced to
contain all the necessary information to predict the entire set of class labels, in order to be classified as
“good” features. The methodology is depicted in Figure 3.
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Figure 3. New feature selection methodology, based on the search of feature values, to avoid the integrality problem.

3.2. Pavicd: A Probabilistic Rule-Based Algorithm

We now introduce a new algorithm, namely Pavicd (Probabilistic Attribute-Value Integration
for Class Distinction), which is based on the methodology aforementioned. In order to develop the
algorithm, we take into account three aspects: first, how to deal with non-binary datasets, second,
how to build Gk for each class label ck, and third, to develop functions to measure the relevance,
redundancy and interaction score of feature values.

The first step in Pavicd is the preparation of data. Since the proposed methodology is based
on the evaluation of feature values, instead of features, dealing with non-binary data can be difficult.
However, to deal with non-binary data, Pavicd builds a new space of binary features through the
decomposition of each feature fi in (v number of feature values of fi) new binary features where each
one of them take value “1” in the position, where the respective feature value appears in the original
feature and takes value “0” in the other positions. Note that this conversion is reversible because the
original feature could be obtained through the union of its binary features. With this transformation,
a feature is analysed piecemeal, so that its most intrinsic useful information to predict a given class
label is easily identified.

The second step is to determine, and store in Gk which of the entire sets of feature values are
relevant for a given class label ck. Here, we adopt a very simple approach that consists of selecting the
covering or reliable feature values for a given class label cq. Note that we use two thresholds, namely λ

and δ, to fix the lower bound value for the selection of covering and reliable values, respectively.

Definition 1. A feature value f j
i is said to be covering with respect to the class label cq if cq ∈

argmaxck∈C P( fi = f j
i |C = ck) and P( fi = f j

i |C = ck) > λ.

Definition 1 suggests that a feature value f j
i is covering with respect to the class cq if the conditional

probability of f j
i given ck is the largest among all the class labels in C. Note that all features values in

D are covering for at least one class label. Therefore, we use the threshold 0 ≤ λ < 1 to discriminate
between “good” covering values and "bad" covering values for a given class label.

Definition 2. A feature value f j
i is said to be reliable with respect to the class label cq if cq ∈

argmaxck∈C P(C = ck| fi = f j
i ) and P(C = ck| fi = f j

i ) > δ.

According to Definition 2, a feature value is likely to be reliable for a given class cq if it occurs many
times in cq and almost does not occur in the rest of the class labels. Note that, again, we introduce
a new threshold 0 ≤ δ < 1 to filter the feature values.

In the third step, we carried out the Integration Analysis by means of a sequential forward search.
The sequential forward search is twofold. First, the best feature value in mathscrGk is identified and
included in the current solution set F̃k; and second, the sequential forward search itself is performed.
To select the best feature value in mathscrGk, we use the following evaluation function:

µ( f j
i , ck) =

P( fi = f j
i |C = ck) + P(C = ck| fi = f j

i )

2
. (7)
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This measure is equal to 1 when f j
i completely covers ck and does not occur in any other instance

with different class (as feature values f C
2 , f a

3 and f 0
4 in the example of Figure 2), and it takes value 0 if

the feature value does not occur in any of the instances labelled with class ck. In other words, we may
expect that the best feature value is a highly-covering and highly-reliable one. For the sequential forward
search, we start with F̃k equal to the feature value in Gk that maximizes Equation (7), and, then, in each
iteration, we explore Gk so that feature value f j

i ∈ Gk that maximizes µ(F̃k, f j
i , ck) is selected, and feature

value f j
i such that µ(F̃k, f j

i , ck) < µ(F̃k, ck) holds, is removed from Gk and never tested again. Note that,
since Pavicd deals with binary features (or feature values), the current solution F̃k is also a binary feature
because it is the result of one of “AND” or “OR” operators between two binary features. This is briefly
explained below.

To evaluate how good a feature value f j
i ∈ Gk is with respect to the already selected set F̃k, we use

the following set of rules:

• Rule 1. If both f j
i and F̃k are covering feature values, then µ(F̃k; f j

i ; ck) = P(F̃k ∩ f j
i |ck)+ P(ck|F̃k ∩ f j

i )

• Rule 2. If both f j
i and F̃k are reliable feature values, then µ(F̃k; f j

i ; ck) = P(F̃k ∪ f j
i |ck) + P(ck|F̃k ∪ f j

i )

• Rule 3. If neither Rule 1 or Rule 2 hold, then apply the Rule (1 or 2) that maximizes µ(F̃k; f j
i ; ck).

Note that F̃k is treated as a feature value (or a binary feature) because every time a feature value
f j
i ∈ Gk is “added” to F̃k, F̃k is transformed to F̃k ∩ f j

i or F̃k ∪ f j
i , if Rule 1 or Rule 2 holds, respectively.

Algorithm 1 shows the pseudo code of Pavicd.

Algorithm 1: Algorithm of Pavicd
Input:
D: dataset
λ: threshold for covering feature values
δ: threshold for reliable feature values
Output:
the features corresponding to the selected feature values
Binarize D
foreach class ck in D do

Find the covering and reliable feature values and store them in Gk
Let f ∗ be the best feature value in Gk
F̃k = f ∗

γ = µ( f ∗; ck)

Gk = Gk \ { f ∗}
repeat

f ∗ = NULL
foreach f j

i in Gk do
γtemp = µ(F̃k; f j

i ; ck) (see Rules)

if γtemp > γ then γ = γtemp, f ∗ = f j
i ;

else
Gk = Gk \ { f j

i }
end

end
if f ∗ 6= NULL then Update F̃k to F̃k ∩ f ∗ or F̃k ∪ f ∗ depending on the rule (Rule 1 or
Rule 2) used in line 11 ;

until Gk = ∅;
end

3.3. Complexity Analysis

The first part of Pavicd has a linear time complexity with respect to the number of features n.
In this step, instead of computing the mean relevance of each feature as the common feature selection
algorithms do, Pavicd analyses all the feature values, which is equivalent in terms of complexity.
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On the other hand, assuming that each feature has v feature values, the computational complexity in
the second step is O(nv log nv) on average, that is, when the half of the remaining feature values are
removed in each iteration.

3.4. Preliminary Evaluation

It is well known that microarray datasets contain interacting genes. In order to test the proposed
algorithm, we run some benchmark algorithms in four datasets where the optimal solution is known.
Table 1 shows the features selected by each algorithm and the number of errors (#Error) for each
algorithm. In Table 1—means that a feature that should be selected was not selected, and features in
bold letters represent the features that do not belong to the optimal solution.

Table 1. Features selected by some benchmark algorithms in artificial datasets with known solutions.

Dataset Relevant Features FCBF Cfs INTERACT GBC PAVICD

Corral A0, A1, B0, B1 A0, A1, B0, B1, R A0, —, —, —, R A0, A1, B0, B1 A0, A1, B0, B1, R A0, A1, B1, R
Monk1 A1, A2, A5 A1, —, A3, A4, A5 —, —, A5 A1, A2, A5 A1, A2, A3, A4, A5 A1, A2, A5

Monk2
A1, A2, A3, A4,

A5, A6
—, —, —, A4, A5, A6

—, —, —, A4,
A5, A6

A1, A2, A3, A4,
,A5, A6

A1, A2, A3, A4,
A5, A6

A1, A2, —, A4,
—, A6

Monk3 A2, A4, A5 A2, —, A5, A6 A2, —, A5 A1, A2, A4, A5
A1, A2, A3,

A4, A5
A2, A4, A5

#Error 9 10 1 5 3

4. Empirical Study

To evaluate the proposed algorithm, we conduct experiments in fourteen microarray
cancer datasets. We compare Pavicd with some of the state-of-the-art feature selection algorithms
such as: RELIEFF [17], mRMR [22], Fcbf [23], Cfs [24], INTERACT [26] and Gbc [25]. To run experiments,
we implemented mRMR and Gbc algorithms in weka. The rest of the algorithms are available on the
weka framework. The experiments were conducted as follows. Given a dataset, we perform the feature
selection with all the algorithms listed above to obtain seven reduced datasets, one for each algorithm.
At this point, the number of features selected and the running time of each algorithm is compared.
To evaluate the accuracy of each algorithm, a ten-fold cross validation is performed over the reduced
sets, using four different classifiers: Support Vector Machine (SVM) [27], C4.5 [28], Ripper-k [29] and
Naïve Bayes [30]. Classification accuracy is computed and then compared. The classification accuracy
depends on the number of instances correctly classified t (true positive + true negative) and is computed
by the following formula:

acc =
t
m
∗ 100, (8)

where m is the number of instances of the dataset.
As a final step, non-parametric statistical tests are performed to detect significant differences

among the feature selection algorithms. The experiment was performed on the machine learning
suite, namely weka [31]. When running Pavicd, we fix the parameters to λ = δ = 0. For the rest of
the algorithms, we use the default values for their parameters. For SVM, we use an Rbf (Radial basis
function) kernel with C = 1 and γ = 0.5. To evaluate a feature set, the Gbc algorithm requires training
and testing the SVM classifier by cross-validation. After running extensive experiments we decided
to train and test the SVM using all the instances in the datasets. In our experiments, there was no
difference (in the selected set) between this approach and the leave-one-out cross-validation, except for
the running time. Table 2 shows the characteristic of each dataset, which can be found in the OpenML
machine learning repository [32].
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Table 2. Datasets used in the experiments.

Data Acronym # Features # Instances #Classes Available at:

Leukemia LEU 7130 72 2 https://www.openml.org/d/1104
Anthracycline ANT 61,360 159 2 https://www.openml.org/d/1085
BreastCancer BRE 24,482 97 2 http://mldata.org/repository/data/viewslug

BurkittLymphoma BUR 22,284 220 3 https://www.openml.org/d/1084
Central Nervous System CEN 7130 60 2 http://eps.upo.es/bigs/datasets.html

Lymphoma LYM 4027 96 11 http://eps.upo.es/bigs/datasets.html
Difusse B Cell STAN 4027 47 2 http://eps.upo.es/bigs/datasets.html

ECML ECM 27,680 90 43 http://eps.upo.es/bigs/datasets.html
Global Cancer Map GCM 16,064 144 14 http://eps.upo.es/bigs/datasets.html

HepatitisC HEP 22,278 123 4 https://www.openml.org/search?q=hepatitisC&type=data
Leukemia MLL MLL 12,583 72 3 http://mldata.org/repository/data/viewslug/leukemia-mll/

MouseType MOU 45,102 214 7 https://www.openml.org/d/1083
Ovarian Cancer OVA 54,622 283 3 https://www.openml.org/d/1086
Various Cancer VAR 54,676 383 9 https://www.openml.org/d/1088

4.1. Accuracy Evaluation

Tables 3–6 represent the classification accuracy computed for each classifier after their application
on the reduced data. AVG. denotes averaged classification accuracy. It can be seen that Pavicd
performs consistently better for Ripper-k and C4.5. We attribute this to the fact that Pavicd detects
gene interaction while Naïve Bayes assumes independence between genes. For SVM, Pavicd does
not perform so well. However, non-parametric tests reveal that there are not significant differences
between the best algorithm when using SVM (Gbc) and Pavicd. For Naïve Bayes, Pavicd has comparable
results with the other algorithms in all datasets. One interesting thing to notice is that in many cases
the best classification results correspond to Naïve Bayes. The best answer we find by investigating
the results more deeply is that in these datasets there are a lot of genes highly-correlated with the
target class. However, according to the results, Pavicd is able to detect these type of genes, but the
interacting genes found by Pavicd may be useless for Naïve Bayes. Tables 3–6 also show the averaged
ranking of the results.

Table 3. Classification accuracy with Support Vector Machine.

Data LEU ANT BRE BUR CEN COM STAN ECM GCM HEP MLL MOU OVA VAR AVG.

SVM
Fcbf 100 83.6 87.4 95.5 91.7 85.7 100 76.7 69.6 93.9 94.2 87.4 92.0 90.1 89.1
RF 98.6 59.7 70.2 96.0 65.0 82.4 97.3 87.8 58.5 91.0 96.7 78.4 92.2 88.4 83.0
Cfs 94.8 65.8 84.2 93.8 87.4 87.8 96.8 100 63.2 93.0 97.2 72.6 94.2 98.3 87.8

mRMR 98.6 78.0 80.1 96.0 88.3 84.3 93.2 75.6 55.6 91.8 100 77.1 94.0 93.8 79.1
INT 94.3 63.5 75.2 92.3 78.3 89.2 92.9 91.1 59.0 82.9 91.7 63.6 95.4 93.9 83.1
GBC 100 59.1 87.6 95.5 78.3 86.4 97.1 100 86.8 96.2 97.5 57.9 95.0 97.4 87.4
PAV 95.7 66.0 84.2 96.0 83.3 86.4 97.3 89.7 64.4 94.3 97.2 74.8 94.5 94.8 86.9

Ranking

Fcbf 1.5 1.0 2.0 4.5 1.0 5.0 1.0 6.0 2.0 3.0 5.0 1.0 7.0 6.0 3.29
RF 3.5 6.0 7.0 2.0 7.0 7.0 2.5 5.0 6.0 6.0 4.0 2.0 6.0 7.0 5.07
Cfs 6.0 4.0 3.5 6.0 3.0 2.0 5.0 1.5 4.0 4.0 2.5 5.0 4.0 1.0 3.68

mRMR 3.5 2.0 5.0 2.0 2.0 6.0 6.0 7.0 7.0 5.0 7.0 3.0 5.0 5.0 4.68
INT 7.0 5.0 6.0 7.0 5.5 1.0 7.0 3.0 5.0 7.0 6.0 6.0 1.0 4.0 5.04
GBC 1.5 7.0 1.0 4.5 5.5 3.5 4.0 1.5 1.0 1.0 1.0 7.0 2.0 2.0 3.04
PAV 5.0 3.0 3.5 2.0 4.0 3.5 2.5 4.0 3.0 2.0 2.5 4.0 3.0 3.0 3.21

https://www.openml.org/d/1104
https://www.openml.org/d/1085
http://mldata.org/repository/data/viewslug
https://www.openml.org/d/1084
http://eps.upo.es/bigs/datasets.html
http://eps.upo.es/bigs/datasets.html
http://eps.upo.es/bigs/datasets.html
http://eps.upo.es/bigs/datasets.html
http://eps.upo.es/bigs/datasets.html 
https://www.openml.org/search?q=hepatitisC&type=data
http://mldata.org/repository/data/viewslug/leukemia-mll/
https://www.openml.org/d/1083
https://www.openml.org/d/1086
https://www.openml.org/d/1088
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Table 4. Classification accuracy with Naïve Bayes.

Data LEU ANT BRE BUR CEN COM STAN ECM GCM HEP LEU MOU OVA VAR AVG.

Naive Bayes

Fcbf 100 78.0 54.6 96.0 73.3 93.2 99.5 66.7 96.1 92.7 97.4 94.9 93.7 96.3 88.0
RF 95.8 59.7 66.0 87.7 65.0 90.9 99.2 66.7 87.6 89.4 100 86.6 80.6 93.2 83.5
Cfs 96.4 77.5 76.2 92.8 71.7 92.8 99.5 69.3 96.1 87.8 93.4 93.8 93.9 95.5 88.3

mRMR 97.2 88.7 56.7 95.0 71.7 93.4 99.5 67.2 96.1 90.2 100 94.2 98.2 95.7 88.8
INT 94.4 84.0 52.6 90.0 81.7 88.7 98.9 67.1 88.1 87.8 97.4 87.1 84.3 90.0 85.2
GBC 95.8 80.2 84.5 93.6 70.0 90.2 96.4 67.0 95.2 91.9 97.4 91.0 94.2 94.1 88.7
PAV 97.2 86.9 76.2 94.1 75.0 93.9 99.3 67.2 96.3 91.9 97.4 94.9 94.5 95.6 90.0

Ranking

Fcbf 1.0 5.0 6.0 1.0 3.0 3.0 2.0 6.5 3.0 1.0 4.5 1.5 5.0 1.0 3.11
RF 5.5 7.0 4.0 7.0 7.0 5.0 5.0 6.5 7.0 5.0 1.5 7.0 7.0 6.0 5.75
Cfs 4.0 6.0 2.5 5.0 4.5 4.0 2.0 1.0 3.0 6.5 7.0 4.0 4.0 4.0 4.11

mRMR 2.5 1.0 5.0 2.0 4.5 2.0 2.0 2.5 3.0 4.0 1.5 3.0 1.0 2.0 2.57
INT 7.0 3.0 7.0 6.0 1.0 7.0 6.0 4.0 6.0 6.5 4.5 6.0 6.0 7.0 5.50
GBC 5.5 4.0 1.0 4.0 6.0 6.0 7.0 5.0 5.0 2.5 4.5 5.0 3.0 5.0 4.54
PAV 2.5 2.0 2.5 3.0 2.0 1.0 4.0 2.5 1.0 2.5 4.5 1.5 2.0 3.0 2.43

Table 5. Classification accuracy with C4.5.

Data LEU ANT BRE BUR CEN LYM DIF ECM GCM HEP LEU MOU OVA VAR AVG.

C4.5
Fcbf 80.6 68.6 67.0 78.6 68.3 92.8 68.2 76.3 78.7 87.0 97.4 81.3 70.2 86.0 78.6
RF 79.2 59.7 52.6 82.7 65.0 75.4 73.9 88.7 66.4 80.5 92.1 79.0 65.5 88.7 75.0
Cfs 85.6 70.6 81.7 85.8 69.5 73.2 87.1 88.5 78.4 84.7 95.0 85.9 71.9 81.2 81.4

mRMR 80.6 77.4 70.1 82.7 80.0 81.9 70.2 75.5 75.2 83.7 89.5 75.1 71.6 82.9 78.3
INT 90.3 78.9 73.2 87.7 76.7 83.4 85.9 72.3 77.1 80.5 97.4 84.2 74.9 83.3 81.8
GBC 84.7 73.9 68.0 85.9 72.7 81.9 83.4 91.8 77.3 88.7 81.6 84.6 66.3 81.4 80.2
PAV 87.5 71.5 82.4 87.2 73.3 82.2 87.9 88.9 78.6 86.2 97.4 86.6 78.4 90.3 84.2

Ranking

Fcbf 5.5 6.0 6.0 7.0 6.0 7.0 5.0 1.0 2.0 2.0 5.0 5.0 3.0 5.0 4.68
RF 7.0 7.0 7.0 5.5 7.0 6.0 5.0 3.0 7.0 6.5 5.0 6.0 7.0 2.0 5.79
Cfs 3.0 5.0 2.0 4.0 5.0 7.0 2.0 4.0 3.0 4.0 4.0 2.0 3.0 7.0 3.93

mRMR 5.5 2.0 4.0 5.5 1.0 4.5 6.0 6.0 6.0 5.0 6.0 7.0 4.0 5.0 4.82
INT 1.0 1.0 3.0 1.0 2.0 2.0 3.0 7.0 5.0 6.5 2.0 4.0 2.0 4.0 3.11
GBC 4.0 3.0 5.0 3.0 4.0 4.5 4.0 1.0 4.0 1.0 7.0 3.0 6.0 6.0 3.96
PAV 2.0 4.0 1.0 2.0 3.0 3.0 1.0 2.0 2.0 3.0 2.0 1.0 1.0 1.0 2.00

Table 6. Classification accuracy with Ripper-k.

Data LEU ANT BRE BUR CEN COM STA ECM GCM HEP LEU MOU OVA VAR AVG.

Ripper-k

Fcbf 84.7 59.7 75.3 83.6 71.7 79.6 87.3 89.0 77.1 82.1 97.4 82.5 86.7 83.4 81.4
RF 87.5 59.7 68.0 80.0 65.0 81.5 81.2 87.8 70.4 75.6 76.3 77.9 76.8 81.5 76.4
Cfs 91.2 67.3 77.4 83.5 76.8 77.7 92.4 87.8 81.5 86.3 95.1 84.2 74.2 86.2 83.0

mRMR 86.1 61.6 73.2 83.2 66.7 84.3 93.7 89.8 74.8 78.0 81.6 84.1 72.9 76.9 79.1
INT 94.4 67.4 74.2 86.4 75.0 79.2 89.1 89.5 74.3 78.0 97.4 77.9 75.9 81.6 81.5
GBC 87.5 63.9 63.9 86.8 65.0 84.1 94.1 90.4 76.6 82.1 84.2 82.3 70.0 76.5 79.1
PAV 91.6 69.3 79.4 86.4 80.0 85.9 89.9 89.9 83.2 90.2 97.4 84.5 87.9 87.2 85.9

Ranking

Fcbf 7.0 6.5 3.0 4.0 4.0 5.0 6.0 5.0 3.0 3.5 2.0 4.0 2.0 3.0 4.14
RF 4.5 6.5 6.0 7.0 6.5 4.0 7.0 6.5 7.0 7.0 7.0 6.5 3.0 5.0 5.96
Cfs 3.0 3.0 2.0 5.0 2.0 7.0 3.0 6.5 2.0 2.0 4.0 2.0 5.0 2.0 3.46

mRMR 6.0 5.0 5.0 6.0 5.0 2.0 2.0 3.0 5.0 5.5 6.0 3.0 6.0 6.0 4.68
INT 1.0 2.0 4.0 2.5 3.0 6.0 5.0 4.0 6.0 5.5 2.0 6.5 4.0 4.0 3.96
GBC 4.5 4.0 7.0 1.0 6.5 3.0 1.0 1.0 4.0 3.5 5.0 5.0 7.0 7.0 4.25
PAV 2.0 1.0 1.0 2.5 1.0 1.0 4.0 2.0 1.0 1.0 2.0 1.0 1.0 1.0 1.54

For Ripper-k, Pavicd found the best reduced sets in ten out of fourteen datasets, which is
a promising result. For C4.5, Pavicd found the best results for the fifty percentage of datasets. Figure 4
shows the Critical Distance chart. The Critical Distance was computed using Nemenyi’s equation [33]
with α = 0.1.

The post hoc Nemenyi test shows significant differences among the algorithms for the
four classifiers. For SVM (Figure 4a), Gbc and Pavicd have significant differences with RELIEFF
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and INTERACT. Moreover, there are not significant diferences among Gbc and Pavicd. For Naïve Bayes
(Figure 4b), algorithms Fcbf, Pavicd, Cfs and mRMR have no differences among them. However, Fcbf
and Pavicd show significantly better results than RELIEFF and INTERACT. Speaking about Ripper-k
(Figure 4d), Pavicd is significantly better with respect to the rest of the algorithms, and the rest of the
algorithms do not have significant differences among them. For C4.5 (Figure 4c), Pavicd is significantly
better to all of the algorithms except for INTERACT.

(a) (b)

(c) (d)

Figure 4. Critical Distance charts that show the average ranking of the feature selection algorithms and
their significant differences with α = 0.1. (a) Critical Distance chart for SVM; (b) Critical Distance chart
for Naïve Bayes; (c) Critical Distance chart for C4.5; (d) Critical Distance chart for Ripper-k.

Next, we examine the performance of the algorithms in terms of number of features selected and
running time.

4.2. Number of Features Selected and Running Time

The main goal of feature selection is to reduce the data so that machine learning algorithms can
improve their performance. Table 7 shows the running time and the number of genes selected by each
feature selection algorithm.

Table 7. Running time (in seconds) and number of features selected by the algorithms.

Running Time (in Seconds) #Feat. Selected

Data Fcbf RF Cfs mrm INT GBC PAV Fcbf RF Cfs mrm INT GBC PAV
LEU 1.1 0.76 206 7.49 22.1 14.5 0.79 51 130 51 50 3 5 6
ANT 6.27 10.8 14763 853 11653 5091 4.73 67 1 78 50 15 2 29
BRE 1.81 4.8 437 69.4 304 321 1.28 90 3 89 50 9 5 16
BUR 8.3 6.76 3215 83.1 765 233 3.44 208 201 314 50 9 8 27
CEN 0.27 0.52 104 6.9 14.9 12.4 0.20 28 1 36 50 8 3 11
Lym 0.08 0.11 501 2.9 10.6 9.7 0.07 14 5 154 50 11 3 4

STAN 0.16 0.17 30 2.48 4.76 7.9 0.10 60 54 33 50 3 5
ECM 1.81 7.26 709 98.8 303 572 2.23 74 2750 97 50 7 2 25
GCM 4.63 5.96 428 33.3 264 256 3.27 67 173 63 50 13 4 37
HEP 6.73 5.13 2981 57.1 485 188 2.48 239 626 189 50 6 8 12
MLL 2.38 1.71 1520 19.1 83.2 34.3 0.77 97 580 82 50 3 7 5
MOU 11.93 10.43 5652 264 2989 2739 8.32 127 112 233 50 10 4 33
OVA 53.12 14.67 11412 464 5849 6932 9.63 734 934 781 50 16 17 13
VAR 144 23.08 13902 515 9920 7664 37.53 934 1528 827 50 17 19 54

AVG. 17.3 6.58 3990 177 2333 1720 5.35 199 507 216 50 9.29 6.69 19.8

Speaking about the number of genes selected, it is clearly revealed that INTERACT and Gbc select a
small number of genes. However, when we look at the performance of INTERACT in terms of accuracy
(see Section 4.1), we reach the conclusion that INTERACT might be removing genes with important
information for classification. The same applies to Gbc in all the classifiers except SVM. Nevertheless,
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Pavicd selects a similar number of features with respect to INTERACT and Gbc, but its performance in
terms of accuracy is high. Another conclusion to reach is that the algorithms Cfs and RELIEFF select a
huge number of features with respect to the rest of the algorithms.

Speaking about running time, surprisingly, Pavicd is the fastest in all datasets except in VAR, ECM

and LEU. We further investigated this result and realized that Pavicd removes a lot of genes in early
iterations. In addition, we tested two types of implementations of Pavicd: (1) without binarizing the
genes and (2) with the binarization process mentioned in Section 3.2. With the first implementation,
the running time of Pavicd was slightly larger to Fcbf. However, with the binarization process that
transforms the gene space in a binary genes space, the algorithm is extremely fast as shown in Table 7.
To better understand the trade-off between the efficiency and effectiveness of the algorithms, Figure 5
depicts a visual comparison between these aspects.

(a) SVM (b) Naïve Bayes

(c) C4.5 (d) Ripper-k

Figure 5. Visual comparison of the accuracy and the running time of each algorithm. The figure plots
a cross for each algorithm. Each cross is centered on its averaged ranks (for accuracy and running time
parameters). The shadowed region represents the area of non-significant difference according to the
Nemenyi test with α = 0.1 (critical distance is 1.609).

In Figure 5, every algorithm is placed according to their averaged ranks for both running time
(vertical axis) and classification accuracy (horizontal axis). Again, the Nemenyi test is performed to
compute the critical distance (CD = 1.609) with α = 0.1. The shadowed area represents the region
where there are not significant differences between Pavicd and the rest of the algorithms in terms
of both the accuracy and running time. In the context of this experiment, and speaking about the
balance between the efficiency and accuracy, we reach the conclusion that Pavicd and Fcbf are the
best algorithms for Naïve Bayes and C4.5. While Pavicd performs the best for Ripper-k, Gbc obtains the
best results for SVM in terms of accuracy, but the running time is very large in the datasets with the
largest dimensions.

We also more deeply investigate the statistical significance of the obtained results, specifically,
the observed difference of Pavicd from the other benchmark algorithms by conducting the
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Benjamini–Hochberg (BH) test [34]. The BH test controls the false discovery rate (FDR) instead of
the family wise error rate (FWER). FWER is the probability of rejecting one or more null hypotheses
assuming that all of the null hypotheses are true, while FDR is the conditional probability that a null
hypothesis is true when the test indicates rejecting the null hypothesis. The inequality FDR ≤ FWER
implies a test that controls FDR may be less conservative than a test that controls FWER. In our
investigation, we run the BH test on the maximum values across the classifiers. Fcbf, Cfs, MRMR,
Gbc and Pavicd form the top group, and the BH test showed that the difference is not significant.
For the maximum values across the classifiers, we can conclude that all of five of these algorithms
are comparable with respect to accuracy, while Fcbf and Pavicd are comparable with respect to
time efficiency.

5. Conclusions

Due to the intrinsic distribution of the data population of microarray datasets, where genes greatly
outnumber the sample observations, feature selection has proven to be a crucial step for further data
analysis such as sample classification. In this paper, we propose a new feature selection algorithm
based on a novel methodology, which aims to mitigate the integrality problem. The proposed algorithm,
Pavicd, works on the space of feature values instead of the features’ space. This gives the algorithm the
opportunity to better detect relevant, non-redundant and interacting features. Experiments in fourteen
microarray cancer datasets reveal that Pavicd obtains the best performance in terms of running time
and classification accuracy when using Ripper-k and C4.5 as classifiers. When using SVM, the Gbc
wrapper algorithm gets the best results. However, Pavicd is significantly faster. In future work, we
will evaluate the incidence of the parameters λ and δ in the algorithm of Pavicd.
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