
 information

Article

A Framework for Measuring Security as a System
Property in Cyberphysical Systems

Janusz Zalewski 1,*, Ingrid A. Buckley 1, Bogdan Czejdo 2, Steven Drager 3, Andrew J. Kornecki 4

and Nary Subramanian 5

1 Department of Software Engineering, Florida Gulf Coast University, Ft. Myers, FL 33965, USA;
zalewski@fgcu.edu (J.Z.); ibuckley@fgcu.edu (I.A.B.)

2 Department of Math & Computer Science, Fayetteville State University, Fayetteville, NC 28301, USA;
bczejdo@uncfsu.edu

3 Air Force Research Laboratory, Rome, NY 13441, USA; steven.drager@us.af.mil
4 Department of Electrical, Computer, Software, and Systems Engineering, Embry-Riddle Aeronautical

University, Daytona Beach, FL 32114, USA; kornecka@erau.edu
5 Department of Computer Science, University of Texas at Tyler, Tyler, TX 75799, USA;

nsubramanian@uttyler.edu
* Correspondence: zalewski@fgcu.edu; Tel.: +1-239-590-7317

Academic Editor: Eduardo B. Fernandez
Received: 15 February 2016; Accepted: 3 June 2016; Published: 17 June 2016

Abstract: This paper addresses the challenge of measuring security, understood as a system property,
of cyberphysical systems, in the category of similar properties, such as safety and reliability. First, it
attempts to define precisely what security, as a system property, really is. Then, an application context
is presented, in terms of an attack surface in cyberphysical systems. Contemporary approaches
related to the principles of measuring software properties are also discussed, with emphasis on
building models. These concepts are illustrated in several case studies, based on previous work of
the authors, to conduct experimental security measurements.

Keywords: computer security; information security; security assessment; software metrics

1. Introduction

Measuring security, in general, and that of cyberphysical systems, in particular, is a difficult task
for a number of reasons including primarily: vagueness of the concept of security itself, and inadequate
knowledge of the principles of measurement. Despite multiple publications on the subject, there are
no valuable or verified methods that would move the discipline forward. The conjecture of this paper
is that measuring security as a system property has to be addressed in a broader context. Useful
questions to define precisely what is meant by security as a property, include: What does security
really mean in terms of the system? What are the implications for computer security, system security,
information security and data security? To define what is meant by the cyberphysical system, a model
of the system helps to realize the technical ramifications of design and through simulation answer
questions, which determine what is being protected and made secure.

Probably the most important aspect of measuring security is the description of the measurement
process itself. What is actually meant by a measurement? Understanding the measurement process is
not necessarily the strongest side of security studies or practices. However, the real issue might be
how to distinguish between the concepts of metrics and measures.

Accordingly, the objective of the paper is to clarify the concepts and illustrate their meaning
through use in several case studies based on previous work of the authors. The paper is structured as
follows. Section 2 outlines and advocates one view of security as a system property, Section 3 provides
an overview of essential architectures and features of cyberphysical systems, with respect to measuring

Information 2016, 7, 33; doi:10.3390/info7020033 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/journal/information

Information 2016, 7, 33 2 of 33

security, Section 4 presents a discussion of fundamental concepts of measurement theory, and Section 5
discusses five different case studies. The article ends with a conclusion in Section 6.

2. Security as a System Property

In a review of measuring security, there have been numerous publications in the last decade
on security assessment, including books [1,2], research and engineering papers [3,4], government
reports [5–7], and Internet sources [8,9], all of them discussing security metrics. However, the vast
majority of the references deal with metrics at the management level and have very little to do with
measurement in a scientific sense of the term, as developed in measurement theory [10].

What is meant by security and its metrics in these publications is primarily adherence to policy
and standards, whether established in industry standards [11–13] or internal to the company [14,15],
leading to the assessment of how security policies are executed, for example, by implementing
respective processes and auditing them. As one paper defines it [16], security metrics mean “the
measurement of the effectiveness of the organization’s security efforts over time.” While this method
of security assessment is beneficial and productive, means to measure security as a property of a
computing system or software are not particularly well developed and documented.

Focus on the quantitative assessment of operational aspects of security has become more popular
in recent years. A thorough survey was published in 2009 [17], covering quantitative representation
and analysis of operational security since 1981, and addressing the question whether “security can
correctly be represented with quantitative information?” The major finding of this study was that
“there exists significant work for quantified security, but there is little solid evidence that the methods
represent security in operational settings.”

What is of specific interest in the current paper is not security at the enterprise or the organization
level, but rather how security as a computer system property or software property can contribute to
protecting information and other resources during system’s operation. In this regard, security can
be viewed as one specific aspect of system’s dependability, the other two aspects being safety and
reliability, with one of the earliest papers addressing this issue published over twenty years ago [18].

One has to remember, however, that security and safety, with reliability in between, are two
sides of the same coin, mutually complementary aspects of dependability, as illustrated in Figures 1
and 2. According to the International Electrotechnical Commission (IEC) [19], safety is defined as
“freedom from unacceptable risk to the outside from the functional and physical units considered”
whereas security is defined as “freedom from unacceptable risk to the physical units considered from
the outside.” Translating this into the language used in the current paper:

‚ Safety is concerned when a failure leads to severe consequences (high risk) for the
operational environment;

‚ Security is concerned when a failure to protect assets (a breach) leads to severe consequences
(high risk) for the system itself (and potentially to its operational environment).

Information 2016, 7, 33 2 of 33

follows. Section 2 outlines and advocates one view of security as a system property, Section 3

provides an overview of essential architectures and features of cyberphysical systems, with respect

to measuring security, Section 4 presents a discussion of fundamental concepts of measurement

theory, and Section 5 discusses five different case studies. The article ends with a conclusion

in Section 6.

2. Security as a System Property

In a review of measuring security, there have been numerous publications in the last decade on

security assessment, including books [1,2], research and engineering papers [3,4], government

reports [5–7], and Internet sources [8,9], all of them discussing security metrics. However, the vast

majority of the references deal with metrics at the management level and have very little to do with

measurement in a scientific sense of the term, as developed in measurement theory [10].

What is meant by security and its metrics in these publications is primarily adherence to policy

and standards, whether established in industry standards [11–13] or internal to the company [14,15],

leading to the assessment of how security policies are executed, for example, by implementing

respective processes and auditing them. As one paper defines it [16], security metrics mean “the

measurement of the effectiveness of the organization’s security efforts over time.” While this method

of security assessment is beneficial and productive, means to measure security as a property of a

computing system or software are not particularly well developed and documented.

Focus on the quantitative assessment of operational aspects of security has become more

popular in recent years. A thorough survey was published in 2009 [17], covering quantitative

representation and analysis of operational security since 1981, and addressing the question whether

“security can correctly be represented with quantitative information?” The major finding of this

study was that “there exists significant work for quantified security, but there is little solid evidence

that the methods represent security in operational settings.”

What is of specific interest in the current paper is not security at the enterprise or the

organization level, but rather how security as a computer system property or software property can

contribute to protecting information and other resources during system’s operation. In this regard,

security can be viewed as one specific aspect of system’s dependability, the other two aspects being

safety and reliability, with one of the earliest papers addressing this issue published over twenty

years ago [18].

Figure 1. Relationship between safety and security with the environment.

One has to remember, however, that security and safety, with reliability in between, are two

sides of the same coin, mutually complementary aspects of dependability, as illustrated in

Figures 1 and 2. According to the International Electrotechnical Commission (IEC) [19], safety is

defined as “freedom from unacceptable risk to the outside from the functional and physical units

considered” whereas security is defined as “freedom from unacceptable risk to the physical units

considered from the outside.” Translating this into the language used in the current paper:

Figure 1. Relationship between safety and security with the environment.

Information 2016, 7, 33 3 of 33

Information 2016, 7, 33 3 of 33

• Safety is concerned when a failure leads to severe consequences (high risk) for the operational

environment;

• Security is concerned when a failure to protect assets (a breach) leads to severe consequences

(high risk) for the system itself (and potentially to its operational environment).

Looking at definitions of security in established standard glossaries, such as [20] or [21], it

becomes immediately clear that in none of these documents is security defined as a system property.

For example, one of several definitions in [21] reads as follows: “Protection of information and data

so that unauthorized persons or systems cannot read or modify them and authorized persons or

systems are not denied access to them” and a corresponding one in [22]: “A condition that results

from the establishment and maintenance of protective measures that enable an enterprise to perform

its mission or critical functions despite risks posed by threats to its use of information systems.”

Figure 2. Impact and relationships of hazards and threats.

Both of these definitions make sense, but not for our purposes, because they both refer to

security as a state, as opposed to ability. System state is a discrete entity and can be described, by

analogy to a program state, by all its variables and their values at any given time. This implies that a

state can change upon applying appropriate inputs, and respective outputs can also be associated

with the change of state.

A definition of security as a system property must imply a continuum and an assumption that

one can measure it. In this regard, just like for several other properties [20,21], the definition should

include a phrase “the extent to which” or “the degree to which”. Consequently, we propose

adopting the definition of security from [21], to read as follows: “The extent to which information

and data are protected so that unauthorized persons or systems cannot read or modify them and

authorized persons or systems are not denied access to them.”

What is additionally important and captured well in [21] is the fact that the secure system must

be not only protected against threats but also accessible to those authorized to use it.

Figure 2. Impact and relationships of hazards and threats.

Looking at definitions of security in established standard glossaries, such as [20] or [21], it
becomes immediately clear that in none of these documents is security defined as a system property.
For example, one of several definitions in [21] reads as follows: “Protection of information and data so
that unauthorized persons or systems cannot read or modify them and authorized persons or systems
are not denied access to them” and a corresponding one in [22]: “A condition that results from the
establishment and maintenance of protective measures that enable an enterprise to perform its mission
or critical functions despite risks posed by threats to its use of information systems.”

Both of these definitions make sense, but not for our purposes, because they both refer to security
as a state, as opposed to ability. System state is a discrete entity and can be described, by analogy
to a program state, by all its variables and their values at any given time. This implies that a state
can change upon applying appropriate inputs, and respective outputs can also be associated with the
change of state.

A definition of security as a system property must imply a continuum and an assumption that
one can measure it. In this regard, just like for several other properties [20,21], the definition should
include a phrase “the extent to which” or “the degree to which”. Consequently, we propose adopting
the definition of security from [21], to read as follows: “The extent to which information and data
are protected so that unauthorized persons or systems cannot read or modify them and authorized
persons or systems are not denied access to them.”

What is additionally important and captured well in [21] is the fact that the secure system must
be not only protected against threats but also accessible to those authorized to use it.

Having the definition in place, one needs to figure how to assess “the extent” or “the degree”
to which the conditions spelled out in the definition are met. The community has adopted several
ways to do it. One view, which gained especially wide popularity, is called the C-I-A triad, where the
acronym comes from the first letters of, what are called, Confidentiality, Integrity, and Availability
properties [23]. The assessment of the degree to which a system is secure can be based on meeting the
three criteria of the C-I-A triad.

Information 2016, 7, 33 4 of 33

3. Cyberphysical Systems

Cyberphysical systems have their roots in embedded computer systems, which in turn evolved
from control systems, long before digital computer control was conceived [24]. The essential structure
of a simple control system is widely known, but for completeness is shown in Figure 3. It consists
of a controller and a controlled object (commonly termed a plant). The sensor installed on a plant
delivers a measurement signal to the controller, which on this basis, and a prescribed plan (setpoint),
takes a decision value of a control signal to apply to an object via an actuator, to counteract potential
variations in a controlled (measured) variable caused by disturbances.

Information 2016, 7, 33 4 of 33

Having the definition in place, one needs to figure how to assess “the extent” or “the degree” to

which the conditions spelled out in the definition are met. The community has adopted several ways

to do it. One view, which gained especially wide popularity, is called the C-I-A triad, where the

acronym comes from the first letters of, what are called, Confidentiality, Integrity, and Availability

properties [23]. The assessment of the degree to which a system is secure can be based on meeting

the three criteria of the C-I-A triad.

3. Cyberphysical Systems

Cyberphysical systems have their roots in embedded computer systems, which in turn evolved

from control systems, long before digital computer control was conceived [24]. The essential

structure of a simple control system is widely known, but for completeness is shown in Figure 3. It

consists of a controller and a controlled object (commonly termed a plant). The sensor installed on a

plant delivers a measurement signal to the controller, which on this basis, and a prescribed plan

(setpoint), takes a decision value of a control signal to apply to an object via an actuator, to

counteract potential variations in a controlled (measured) variable caused by disturbances.

Figure 3. Illustration of a control system influenced by disturbances.

A typical example of this sort of control system, which we are all familiar with, either from our

homes, offices or cars, is a temperature controller, otherwise known as a thermostat. Historically, the

oldest known device, which applies this type of control principle, is the Ktesibios water clock (third

century B.C. [25]), stabilizing the water level in a tank to let it flow at constant rate, out to another

tank at the lower level, to mark the passage of time.

With the development of digital technologies, control systems became miniaturized and

directly embedded into plants, that is, controlled objects. At the same time, they were expanded to

include operator (user) interface, and their parameter values, such as a setpoint, evolved into more

sophisticated data sets, soon to reach the size of true databases. This expanded embedded control

system’s structure is shown in Figure 4.

Figure 4. Illustration of interactions in a modern control system.

Once it became possible and desirable to implement a network connectivity feature in

embedded controllers, a new breed of systems called cyberphysical systems came into being, which

Figure 3. Illustration of a control system influenced by disturbances.

A typical example of this sort of control system, which we are all familiar with, either from our
homes, offices or cars, is a temperature controller, otherwise known as a thermostat. Historically, the
oldest known device, which applies this type of control principle, is the Ktesibios water clock (third
century B.C. [25]), stabilizing the water level in a tank to let it flow at constant rate, out to another tank
at the lower level, to mark the passage of time.

With the development of digital technologies, control systems became miniaturized and directly
embedded into plants, that is, controlled objects. At the same time, they were expanded to
include operator (user) interface, and their parameter values, such as a setpoint, evolved into more
sophisticated data sets, soon to reach the size of true databases. This expanded embedded control
system’s structure is shown in Figure 4.

Information 2016, 7, 33 4 of 33

Having the definition in place, one needs to figure how to assess “the extent” or “the degree” to

which the conditions spelled out in the definition are met. The community has adopted several ways

to do it. One view, which gained especially wide popularity, is called the C-I-A triad, where the

acronym comes from the first letters of, what are called, Confidentiality, Integrity, and Availability

properties [23]. The assessment of the degree to which a system is secure can be based on meeting

the three criteria of the C-I-A triad.

3. Cyberphysical Systems

Cyberphysical systems have their roots in embedded computer systems, which in turn evolved

from control systems, long before digital computer control was conceived [24]. The essential

structure of a simple control system is widely known, but for completeness is shown in Figure 3. It

consists of a controller and a controlled object (commonly termed a plant). The sensor installed on a

plant delivers a measurement signal to the controller, which on this basis, and a prescribed plan

(setpoint), takes a decision value of a control signal to apply to an object via an actuator, to

counteract potential variations in a controlled (measured) variable caused by disturbances.

Figure 3. Illustration of a control system influenced by disturbances.

A typical example of this sort of control system, which we are all familiar with, either from our

homes, offices or cars, is a temperature controller, otherwise known as a thermostat. Historically, the

oldest known device, which applies this type of control principle, is the Ktesibios water clock (third

century B.C. [25]), stabilizing the water level in a tank to let it flow at constant rate, out to another

tank at the lower level, to mark the passage of time.

With the development of digital technologies, control systems became miniaturized and

directly embedded into plants, that is, controlled objects. At the same time, they were expanded to

include operator (user) interface, and their parameter values, such as a setpoint, evolved into more

sophisticated data sets, soon to reach the size of true databases. This expanded embedded control

system’s structure is shown in Figure 4.

Figure 4. Illustration of interactions in a modern control system.

Once it became possible and desirable to implement a network connectivity feature in

embedded controllers, a new breed of systems called cyberphysical systems came into being, which

Figure 4. Illustration of interactions in a modern control system.

Once it became possible and desirable to implement a network connectivity feature in embedded
controllers, a new breed of systems called cyberphysical systems came into being, which are in fact old
embedded control systems enhanced by connectivity mechanisms. This is reflected in Figure 4 by a
network interface.

Thus, for the purpose of this paper, a cyberphysical system can be defined as a computing system
with access to physical measurement and control instruments as well as with connectivity to the
Internet. As shown in Figure 4, in addition to a physical process (a plant) and network interfaces, user
and database interfaces are also present.

Information 2016, 7, 33 5 of 33

Taking the analogy from control engineering, one would only keep interfaces relevant to security
during the system’s operation and, as a result, derive a model of an embedded controller (or more
broadly, a cyberphysical system) subject to security threats as shown in Figure 5.

Information 2016, 7, 33 5 of 33

are in fact old embedded control systems enhanced by connectivity mechanisms. This is reflected in

Figure 4 by a network interface.

Thus, for the purpose of this paper, a cyberphysical system can be defined as a computing

system with access to physical measurement and control instruments as well as with connectivity to

the Internet. As shown in Figure 4, in addition to a physical process (a plant) and network interfaces,

user and database interfaces are also present.

Taking the analogy from control engineering, one would only keep interfaces relevant to

security during the system’s operation and, as a result, derive a model of an embedded controller (or

more broadly, a cyberphysical system) subject to security threats as shown in Figure 5.

Figure 5. Illustration of basic terms and an attack surface.

Figure 5 shows that multiple controller interfaces to the process, the operator, the network, and

the database, are all subject to security threats, forming the attack surface. More importantly, to take

the analogy further, just like control theory assumes that the controlled process (a plant) is subject to

disturbances, security theory, if one is developed for this model, could assume that known or

unknown threats play the role of disturbances to the controller, via its all interfaces.

In this model, vulnerabilities affecting the controller are understood as a “weakness of an asset

or group of assets that can be exploited by one or more threats” [26] or as a “weakness in an

information system, system security procedures, internal controls, or implementation that could be

exploited by a threat source” [22], while a threat can be defined as “a state of the system or system

environment which can lead to adverse effects” [20]. Consequently, the disturbances in Figure 5 are

an abstraction incorporating all threats relevant to security and play a role in assessing security.

With this complexity of controller interactions, when designing a Controller one has to take into

account the Controller’s internal state, which may be a cause of significant disruptions to the

Controlled Process, when a Controller fails. This is the subject of fault tolerance.

Technically, in safety engineering, external disruptions are representing hazards and in the

model from Figure 5 can be viewed as affecting the Controlled Process, as specific disturbances.

Formally, a hazard is “an intrinsic property or condition that has the potential to cause harm or

damage” [21]. To assure dependability, the Controller has to be designed to deal with safety

hazards, but they are not always easy to capture and are especially difficult to account for in the case

of hardware or software faults.

Pairing this understanding of safety related concepts of Hazards and Faults with security

related concepts of Threats and Vulnerabilities, one arrives at the aggregated model suitable for

security modeling, as shown in Figure 6, which matches, from a different perspective, the model of

Figure 2.

Figure 5. Illustration of basic terms and an attack surface.

Figure 5 shows that multiple controller interfaces to the process, the operator, the network, and
the database, are all subject to security threats, forming the attack surface. More importantly, to take
the analogy further, just like control theory assumes that the controlled process (a plant) is subject to
disturbances, security theory, if one is developed for this model, could assume that known or unknown
threats play the role of disturbances to the controller, via its all interfaces.

In this model, vulnerabilities affecting the controller are understood as a “weakness of an asset or
group of assets that can be exploited by one or more threats” [26] or as a “weakness in an information
system, system security procedures, internal controls, or implementation that could be exploited by
a threat source” [22], while a threat can be defined as “a state of the system or system environment
which can lead to adverse effects” [20]. Consequently, the disturbances in Figure 5 are an abstraction
incorporating all threats relevant to security and play a role in assessing security.

With this complexity of controller interactions, when designing a Controller one has to take
into account the Controller’s internal state, which may be a cause of significant disruptions to the
Controlled Process, when a Controller fails. This is the subject of fault tolerance.

Technically, in safety engineering, external disruptions are representing hazards and in the model
from Figure 5 can be viewed as affecting the Controlled Process, as specific disturbances. Formally,
a hazard is “an intrinsic property or condition that has the potential to cause harm or damage” [21].
To assure dependability, the Controller has to be designed to deal with safety hazards, but they
are not always easy to capture and are especially difficult to account for in the case of hardware or
software faults.

Pairing this understanding of safety related concepts of Hazards and Faults with security related
concepts of Threats and Vulnerabilities, one arrives at the aggregated model suitable for security
modeling, as shown in Figure 6, which matches, from a different perspective, the model of Figure 2.

Information 2016, 7, 33 6 of 33Information 2016, 7, 33 6 of 33

Figure 6. Modern cyberphysical system: disturbances and attacks.

4. Principles of Measurement

With measures we often take things for granted, especially if it concerns such “trivial”

quantities as length (distance) and weight (mass), but it has not always been so. As legend has it, it

was Henry I, the King of England, who decreed in the first half of the XII-th century that a yard shall

be “the distance from the tip of the King’s nose to the end of his outstretched thumb”, proclaiming

what is believed to be the first standard of measuring length [27]. It appears that at the current stage

of understanding how to measure security as a system property, we are at the point comparable to

the early days of attempting to measure length. All methods we have are as vague as the one applied

by Henry I in defining the unit of length. This section is devoted to clarification of the basic concepts

of measurement and how they can be applied to building a model of security as a system property

that could be used to measure security.

4.1. Hermann von Helmholtz’s Concept of Measurement

Although there are several concepts of measurement, they all seem to converge to the idea

formulated in the 1-th century by Herman von Helmholtz, in his groundbreaking work “Zählen und

Messen” [28], in which Helmholtz says: “The special relation which can exist between the attributes

of two objects and which is designated by us by the name equality is characterized by […] Axiom I: If

two magnitudes are equal to a third, they are equal to each other.”

This statement, which may seem trivial from today’s perspective, actually is very constructive

and quite distinctly sets the stage for conducting measurements in a way that it determines the

following:

• a property (called an attribute by Helmholtz) of an object to be measured;

• a standard, that is, in Helmholtz’ words, the third magnitude, to which others are compared;

• implying an existence of a procedure used to make the comparisons between magnitudes.

This procedure is further characterized by von Helmholtz in the same work, as follows: “The

procedure by which we put the two objects under proper conditions in order to observe the stated

result and to be able to establish its occurrence or its non-occurrence, we shall designate as the

method of comparison.”

Defining measurement procedures as a method of comparison, von Helmholtz gives several

examples of physical quantities that can be measured, by comparison with a standard, including

distance, time, brightness, pitch of tone, and weight, measured with the use of scales, for which he

explains the measurement principle further: “… the bodies the weights of which we compare can

consist of the most different materials and can be of different form and volume. The weight which

we call equal is only an attribute of these bodies discriminated by abstraction.”

Figure 6. Modern cyberphysical system: disturbances and attacks.

4. Principles of Measurement

With measures we often take things for granted, especially if it concerns such “trivial” quantities
as length (distance) and weight (mass), but it has not always been so. As legend has it, it was Henry I,
the King of England, who decreed in the first half of the XII-th century that a yard shall be “the distance
from the tip of the King’s nose to the end of his outstretched thumb”, proclaiming what is believed to
be the first standard of measuring length [27]. It appears that at the current stage of understanding
how to measure security as a system property, we are at the point comparable to the early days of
attempting to measure length. All methods we have are as vague as the one applied by Henry I in
defining the unit of length. This section is devoted to clarification of the basic concepts of measurement
and how they can be applied to building a model of security as a system property that could be used
to measure security.

4.1. Hermann von Helmholtz’s Concept of Measurement

Although there are several concepts of measurement, they all seem to converge to the idea
formulated in the 19-th century by Herman von Helmholtz, in his groundbreaking work “Zählen und
Messen” [28], in which Helmholtz says: “The special relation which can exist between the attributes of
two objects and which is designated by us by the name equality is characterized by [. . .] Axiom I: If
two magnitudes are equal to a third, they are equal to each other.”

This statement, which may seem trivial from today’s perspective, actually is very constructive and
quite distinctly sets the stage for conducting measurements in a way that it determines the following:

‚ a property (called an attribute by Helmholtz) of an object to be measured;
‚ a standard, that is, in Helmholtz’ words, the third magnitude, to which others are compared;
‚ implying an existence of a procedure used to make the comparisons between magnitudes.

This procedure is further characterized by von Helmholtz in the same work, as follows: “The
procedure by which we put the two objects under proper conditions in order to observe the stated
result and to be able to establish its occurrence or its non-occurrence, we shall designate as the method
of comparison.”

Defining measurement procedures as a method of comparison, von Helmholtz gives several
examples of physical quantities that can be measured, by comparison with a standard, including
distance, time, brightness, pitch of tone, and weight, measured with the use of scales, for which he
explains the measurement principle further: “ . . . the bodies the weights of which we compare can
consist of the most different materials and can be of different form and volume. The weight which we
call equal is only an attribute of these bodies discriminated by abstraction.”

Information 2016, 7, 33 7 of 33

To summarize, the contribution of von Helmholtz was to make a clear distinction between three
factors necessary for a measurement to make sense: (1) a property to be measured; (2) a standard
against which comparisons are made; and (3) a procedure to determine how to make the comparisons.
In modern terms, the standard can be viewed as a metric, and the measurement procedure relates to a
measure, that is, the measuring instrument.

The contribution of von Helmholtz is significant, in terms of the logic of measurement and the
associated theory. However, without questioning his work, newer theories treat the measurement
processes as statistical in nature. The principal assumption of the statistical approach to measurements
is that due to the inherent uncertainties in the measurement process, the result of a measurement always
consists of two numbers: the value of the measured quantity and the estimation of the measurement
uncertainty with which this value has been obtained (error).

4.2. Lessons from Measurements in Physics

To help realize the challenge of measuring system properties, one can look closer at the extreme
of measuring strictly physical properties (quantities). In addition to length, mentioned above, among
physical properties we are most familiar with are time and mass.

The current definition of a second, a metric (unit) of time, involves atomic radiation and reads as
follows [29]: “the duration of 9 192 631 770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the cesium 133 atom.” It must be noticed
that this definition, just like the one of a unit of length, evolved historically from much less precise
definitions and understanding of respective quantities. A historical background can be found in [29].

The metric of mass (its unit), a kilogram, is currently the only physical unit that officially remains
defined based on a physical artifact, a prototype stored in the International Bureau of Weights and
Measures. However, there is a substantial push towards defining it more precisely, using the number
of atoms in a silicon 28 crystal [30]. Developing this new definition has yet to be fully successful,
but (in the context of considering the definition of security) it is worth mentioning, why this is so:
“The measurement uncertainty is 1.5 higher than that targeted for a kilogram redefinition [. . .]. The
measurement accuracy seems to be limited by the working apparatuses.” Clearly, any measurement of
security must involve the use of measuring devices and assessment of their accuracy.

It may be further argued that security is not a physical property and cannot be measured directly,
so considering such measurements would make little sense. In physics, however, there are quantities,
which do not measure directly certain properties of matter. One such example is temperature, which is
essentially a quantity corresponding to and measuring kinetic energy.

It is clear from these lessons that several points have to be taken into consideration, if one is to
develop scientifically based security measurements:

‚ The process of designing a validated metric of security may take years, if not decades;
‚ Any measures of security must be treated as (physical or mental) measurement devices

(instruments), to which regular statistical measurement theory applies;
‚ Security is likely to be measured only indirectly, possibly via its inherent components.

Following the observation from [31], for the assessment of a value of a system property,
where there is no science or theory developed, one could try conducting measurement experiments.
Nevertheless, if experimental assessment of a system property quantitatively is impossible, one can
apply simulation. As Glimm and Sharp, for example, point out [32]: “It is an old saw that science has
three pillars: theory, experiment, and simulation.” This principle is broadly applied in physics, the
mother of modern sciences, but it has also been adopted in various ways in computing [33].

However, before any theory, experiment or simulation is developed, putting all of the cards on
the table is necessary by developing an initial model of the phenomena whose properties are to be
measured. This is the critical first step to conduct the measurement. The authors’ previous work
involved building all three types of models: Theory, Experiment, and Simulation, with respective

Information 2016, 7, 33 8 of 33

examples in [34] on rough sets vs. Bayesian Belief Networks (BBN’s), [35] on software tools assessment,
and [36] on threat modeling.

With respect to theoretical approaches, a combination of basic concepts of BBN’s and rough sets
are shown to enhance the process of reasoning under uncertainty in the case of missing values of certain
properties of a cyberphysical system [34]. Rough set is a formal approximation of a conventional set,
in terms of a pair of sets, which define the lower and upper bounds of the original set. The rough sets
theory helps make BBN’s more valuable in the case of the occasional lack of evidence. On the other
hand, when supportive theory has not yet been developed, what is left is experimental measurements.
To assess the quality of software tools for real-time software development, four metrics and their
respective measures were established in [35]: functionality, usability, efficiency, and traceability, and
experiments conducted on a specially designed testbed to assess the tools’ quality. In [36], in turn,
simulation studies on a remote robotic device have proven to be a valuable aid to the early detection
and prevention of potentially serious flaws in the core of a cyberphysical system with the functionality
applicable for software-intensive aviation system.

4.3. Defining the Measurement Process

Summarizing the considerations of this section, the critical elements in measurements of any
property are the following:

1. Clearly identify the property to be measured. It is at this point where building a model of the
phenomenon is necessary. We use the term “property”, which corresponds to von Helmholtz’
“attribute”, although in measurement theory [37], it is called measurand.

2. Establish a metric to quantitatively characterize the property. Ideally, this would be a unit
of measurement, but for vaguely defined properties it can be just a standard against which
measurements are applied, or a scale against which the property can be evaluated.

3. Develop a measure, which would apply the metric to related objects under investigation. Ideally,
this is just a measuring instrument, but for vaguely defined metrics it can be a formula or any
other mental device to apply a metric and make comparisons. One important characteristic of a
measure should be its linearity, that is, any two identical changes in the property value should be
reflected as two identical changes in the measure.

4. Design the measurement process to deliver results. An important part of this process is calibration
of the measuring device [37], an activity almost never thought of in soft sciences. Another crucial
component of this process is the collection and availability of data.

5. Make sure that each instance of a measurement delivers a result composed of the value of the
measurement and the estimate of its accuracy (an error). Alternatively, and consistently with
current views in measurement theory, it could be a range of values designating one value as the
“measured quantity value” [37].

So, knowing all of this, the question is, are we able to develop a model for security measurement?
The model should embrace all important factors regarding this phenomenon.

Thus far, we have determined the model for security assessment for one particular class of systems,
cyberphysical systems, and defined security as a term. What is necessary in the next step is developing
the measurement process (with metrics and measures) for measuring security in the proposed context.
This is, of course, an open question and a tremendous challenge.

4.4. Guidelines for Applying the Process

The model of Figures 5 and 6 forms the basis for building a case study for security assessment,
by analyzing threats and vulnerabilities. In this paper, because of the need for a more quantitative
approach, a strongly quantitative method is advocated, based on assessing the vulnerabilities as per
the Common Vulnerability Scoring System (CVSS) [38].

Information 2016, 7, 33 9 of 33

The following items have to be addressed: a metric, which for CVSS is a continuous numerical
scale; a measure, which for CVSS is a set of integrated formulas; and the measurement process, which in
this case relies on applying the measures to continuously collected data. With these assumptions, the
data can be obtained by online checking of the subject entity (embedded device, server, cyberphysical
system, etc., for which security is being measured) for known vulnerabilities, as per the Common
Vulnerability Exposure (CVE) database [39]. Calculating the security score based on the CVSS can then
be accomplished. Several authors have proposed use of CVE/CVSS data [40] for security measurement
purposes, although without theoretical underpinning.

The unpredictable nature of threats remains a challenge. Even if one can design countermeasures
for existing threats and assess those, there is high likelihood that new, unknown, threats will eventually
appear, so one has to design the security system for the unknown, as well as include this type of
unpredictability in the computational model for security assessment. The lack of sufficient information
for calculating security values suggests building the model based on one of the theories which deal
with uncertainty, for example, Bayesian belief networks or rough sets. The next section presents
five case studies that illustrate, from various perspectives, how potential measurement processes can
be designed.

5. Case Studies

5.1. Case Study #1: Using Markov Chains

The security model assumed here takes into account availability, as a dominating security
component of the C-I-A triad [23]. This case study presents aspects of evaluating security in a
cyberphysical system, based on availability assessment with Markov chains. The essential assumption
in the approach and the proposed model is that a security breach may cause degradation of the
service and ultimately a failure. The security model concentrates on the system’s interaction with the
environment via a communication channel. It is based on a previous publication [41].

5.1.1. Methodology: Markov Model

The essential assumption in the approach and the model proposed in this case study is that a
security breach is not a binary event (full or no security) but that it usually causes degradation of
system services and may lead to a failure. Under this assumption, a cyberphysical system working in
a 24/7 regime, at any given point in time will be in one of the following states: (1) the normal state;
(2) the failure state; or (3) one of the possible intermediate degraded states, depending on the violation
of security and the system’s ability to detect and recover from those violations.

Due to the dynamic state transition observed here, we consider a Markov model which typically
includes the state with all elements operating and a set of intermediate states representing partially
failed conditions, leading to the state in which the system is unable to perform its function. The model
may include failure transition paths, as well as repair transition paths. The corresponding failure
and repair rates between states can be derived from system analysis. The Markov model equations
describe the situation where the transition path between two states reduces the probability of the state
it is departing, and increases the probability of the state it is entering, at a specified rate.

A Markov chain may be constructed to model the changes of the system state depending on
the probability of certain security vulnerabilities and probabilities that the system can be restored
back to the regular state. The transition paths and the probability of transition between the various
states define the system equations whose solution represents the time-history of the system. In a
regular Markov model, the state is directly visible to the observer, and therefore the state transition
probabilities are the only parameters.

In the system where deviations from the regular state are due to potential external attacks, we can
identify the attack’s effects and their probabilities (e.g., for a communication system, percentage of
messages corrupted, lost, incorrectly inserted, etc.). In turn, the system in such a degraded state can

Information 2016, 7, 33 10 of 33

return to the regular state due to application of a mitigation mechanism or fail (also with assumed
rate). Even after failure, we can consider a system that can be repaired assuming a certain repair rate.
Such a model is useful to quantify how a specific vulnerability, expressed in terms of the probability of
potential attacks, affects the system and what is the effective reliability and availability of the system.
Respective simulations can give a basis for understanding how effective each mitigation method needs
to be in order to ensure that the system meets or exceeds its required level of security.

5.1.2. Cooperative Adaptive Cruise Control

The Cooperative Adaptive Cruise Control (CACC) system selected as the case study [42,43] is
a cyberphysical system for automobiles which automatically monitors and adjusts a vehicle’s speed
according to the traffic conditions in its immediate vicinity.

In the CACC, as shown in Figure 7, to effect a change in the vehicle’s speed, the system issues
commands to the throttle device as well as to the brake pedal. The CAAC, in addition to receiving the
necessary data it needs from sensors on the vehicle, communicates via a wireless network connection
with other vehicles in the vicinity (Other CACC Systems) and with a centralized SMDC (Street
Monitoring Data Center). These external interfaces have the highest risk of malicious attack. Security
violation can result from external connection, i.e., by incorrect data from SMDC or from unauthorized
external communication imitating other CACC equipped vehicle.

Information 2016, 7, 33 10 of 33

probability of potential attacks, affects the system and what is the effective reliability and availability

of the system. Respective simulations can give a basis for understanding how effective each

mitigation method needs to be in order to ensure that the system meets or exceeds its required level

of security.

5.1.2. Cooperative Adaptive Cruise Control

The Cooperative Adaptive Cruise Control (CACC) system selected as the case study [42,43] is a

cyberphysical system for automobiles which automatically monitors and adjusts a vehicle’s speed

according to the traffic conditions in its immediate vicinity.

In the CACC, as shown in Figure 7, to effect a change in the vehicle’s speed, the system issues

commands to the throttle device as well as to the brake pedal. The CAAC, in addition to receiving

the necessary data it needs from sensors on the vehicle, communicates via a wireless network

connection with other vehicles in the vicinity (Other CACC Systems) and with a centralized SMDC

(Street Monitoring Data Center). These external interfaces have the highest risk of malicious attack.

Security violation can result from external connection, i.e., by incorrect data from SMDC or from

unauthorized external communication imitating other CACC equipped vehicle.

Figure 7. Context diagram of the CACC design.

The specific vulnerabilities fall into four categories:

• Message Introduction: an untrue SMDC or Other CACC message is injected.

• Message Deletion: SMDC or Other CACC System message is not received by CACC.

• Message Corruption: the contents of an SMDC or Other CACC message are altered before being

received by the CACC.

• Message Flooding: multiple frequent SMDC or Other CACC System messages are received

causing the CACC to choke and not perform its required tasks within the deadlines.

To enhance the level of security, changes have been made to the original CACC architectural

model by adding authentication and secure communication components. The level of security added

will determine the probability with which the state transitions will occur. The probability for

detection and recovery increases when the overall reliability of the system increases.

For the presented example, the following assumptions and simplifications were made:

Figure 7. Context diagram of the CACC design.

The specific vulnerabilities fall into four categories:

‚ Message Introduction: an untrue SMDC or Other CACC message is injected.
‚ Message Deletion: SMDC or Other CACC System message is not received by CACC.
‚ Message Corruption: the contents of an SMDC or Other CACC message are altered before being

received by the CACC.
‚ Message Flooding: multiple frequent SMDC or Other CACC System messages are received

causing the CACC to choke and not perform its required tasks within the deadlines.

To enhance the level of security, changes have been made to the original CACC architectural
model by adding authentication and secure communication components. The level of security added

Information 2016, 7, 33 11 of 33

will determine the probability with which the state transitions will occur. The probability for detection
and recovery increases when the overall reliability of the system increases.

For the presented example, the following assumptions and simplifications were made:

‚ It is assumed that only one security breach can occur at any given time.
‚ Only one message channel is modeled. To model both the SMDC and the Other CACC channels

simultaneously, more states and associated transitions would be required.
‚ It is assumed that an undetected or unsuccessfully handled security breach leads to a system

failure even though the system may not physically fail.

Relex/Winchill [44] reliability analysis software was used to assess the reliability of the Markov
model in Figure 8. Each edge in the state machine has the probability that this transition will occur.

Information 2016, 7, 33 11 of 33

• It is assumed that only one security breach can occur at any given time.

• Only one message channel is modeled. To model both the SMDC and the Other CACC channels

simultaneously, more states and associated transitions would be required.

• It is assumed that an undetected or unsuccessfully handled security breach leads to a system

failure even though the system may not physically fail.

Relex/Winchill [44] reliability analysis software was used to assess the reliability of the Markov

model in Figure 8. Each edge in the state machine has the probability that this transition will occur.

Figure 8. Markov model of the CACC system (no repairs). Init Cond: is 1 (true) for the initial state

and 0 (false) for non-initial state (it is just a notation of the used tool).

5.1.3. Experimental Results

In this example, the probability of security breaches, i.e., of corruption of a valid message, an

injection of a false message, having a message deleted, or getting a flood of false messages, as well as

the related attack detection, recovery and the failure probabilities were assumed (Table 1). Case 1

represents low and Case 2 high attack rates.

Table 1. Probabilities of transitions.

Probability Assigned Values

Corrupted Valid Message Case 1: 0.005/Case 2: 0.05

Introduced False Message Case 1: 0.005/Case 2: 0.05

Deleted Valid Message Case 1: 0.001/Case 2: 0.01

Message Flooding Case 1: 0.001/Case 2: 0.01

Return to Regular (security mitigation works) 0.99/0.9/0.5

Failing Return to Regular (security mitigation fails) 0.01/0.1/0.5

Return from Fail to Regular (repair rate) 0 (no repair)/0.5/0.9

In the initial Markov model, the failure state was modeled as a terminal state. However,

availability of the system could be increased by adding the possibility of a repair. In the CACC

system, the monitor process is able to reset the system, if it detects a failure. This would be

equivalent to a transition from the failure state back to the normal state.

The updated Markov model is shown in Figure 9. The repair rate of the system is a parameter

one would like to explore. Two cases, one with repair rate 0.5 and other with 0.9 were simulated.

The baseline model (Figure 8) does not incorporate a transition from the failure state to the

normal state, which corresponds to there being no possibility of repair after it has failed. The

Figure 8. Markov model of the CACC system (no repairs). Init Cond: is 1 (true) for the initial state and
0 (false) for non-initial state (it is just a notation of the used tool).

5.1.3. Experimental Results

In this example, the probability of security breaches, i.e., of corruption of a valid message, an
injection of a false message, having a message deleted, or getting a flood of false messages, as well
as the related attack detection, recovery and the failure probabilities were assumed (Table 1). Case 1
represents low and Case 2 high attack rates.

Table 1. Probabilities of transitions.

Probability Assigned Values

Corrupted Valid Message Case 1: 0.005/Case 2: 0.05
Introduced False Message Case 1: 0.005/Case 2: 0.05

Deleted Valid Message Case 1: 0.001/Case 2: 0.01
Message Flooding Case 1: 0.001/Case 2: 0.01

Return to Regular (security mitigation works) 0.99/0.9/0.5
Failing Return to Regular (security mitigation fails) 0.01/0.1/0.5

Return from Fail to Regular (repair rate) 0 (no repair)/0.5/0.9

In the initial Markov model, the failure state was modeled as a terminal state. However,
availability of the system could be increased by adding the possibility of a repair. In the CACC

Information 2016, 7, 33 12 of 33

system, the monitor process is able to reset the system, if it detects a failure. This would be equivalent
to a transition from the failure state back to the normal state.

The updated Markov model is shown in Figure 9. The repair rate of the system is a parameter
one would like to explore. Two cases, one with repair rate 0.5 and other with 0.9 were simulated.

Information 2016, 7, 33 12 of 33

resulting reliability is 93.0531% with mean availability of 98.9873%. Since the first time to failure is

estimated to be 83.33 h, we can deduce that in such a scenario our system meets the expectations

imposed on security. Even though 83.33 h may seem like a low value, one must remember that this is

counted for a car, which has been reset and restarted (a car is rarely supposed to run 80 h without

a stop).

Figure 9. CACC Markov model showing repair from the failure state.

The results are summarized in Table 2 for two scenarios (low and high attack rate).

Table 2. Simulation results.

Availability Security Correlation Slope Intercept Predicted Security Prediction Error (%)

case 1: low attack rate/no repair

97.7408 50 0.9999996 39.324 −3793.510 50.005 0.010%

98.7572 90 - 39.324 −3793.510 89.973 −0.030%

98.9873 99 - 39.324 −3793.510 99.022 0.022%

case1: low attack rate/0.5 repair probability

98.3877 50 0.9999998 80.005 −7821.549 50.003 0.007%

98.8874 90 - 80.005 −7821.549 89.982 −0.020%

99.0003 99 - 80.005 −7821.549 99.015 0.015%

case1: low attack rate/0.9 repair probability

98.5872 50 0.9999998 117.478 −11531.829 50.003 0.007%

98.9275 90 - 117.478 −11531.829 89.981 −0.021%

99.0044 99 - 117.478 −11531.829 99.015 0.015%

case 2: high attack rate/no repair

80.4847 50 0.9999546 4.822 −338.064 50.052 0.104%

88.7127 90 - 4.822 −338.064 89.730 −0.301%

90.6804 99 - 4.822 −338.064 99.218 0.220%

case 2: high attack rate/0.5 repair probability

85.7505 50 0.9999823 9.736 −784.806 50.032 0.064%

89.8385 90 - 9.736 −784.806 89.831 −0.187%

90.7943 99 - 9.736 −784.806 99.137 0.138%

case 2: high attack rate/0.9 repair probability

87.3755 50 0.9999877 14.214 −1191.917 50.027 0.053%

90.1779 90 - 14.214 −1191.917 89.859 −0.156%

90.829 99 - 14.214 −1191.917 99.114 0.115%

It is shown that the addition of repair increases the availability. A higher repair rate results in

only a marginal increase in the system availability. For a system with higher attack rate (Case 2),

when only half of the attacks are mitigated, introducing 0.9 probability of repair increases

Figure 9. CACC Markov model showing repair from the failure state.

The baseline model (Figure 8) does not incorporate a transition from the failure state to the
normal state, which corresponds to there being no possibility of repair after it has failed. The resulting
reliability is 93.0531% with mean availability of 98.9873%. Since the first time to failure is estimated
to be 83.33 h, we can deduce that in such a scenario our system meets the expectations imposed on
security. Even though 83.33 h may seem like a low value, one must remember that this is counted for a
car, which has been reset and restarted (a car is rarely supposed to run 80 h without a stop).

The results are summarized in Table 2 for two scenarios (low and high attack rate).
It is shown that the addition of repair increases the availability. A higher repair rate results in

only a marginal increase in the system availability. For a system with higher attack rate (Case 2), when
only half of the attacks are mitigated, introducing 0.9 probability of repair increases availability by
8.56%. Similarly, when up to 90% of the attacks are mitigated, the availability is increased 1.65%. We
may infer that not much effort needs be expended in designing a system with a repair capability. For
higher attack rates, more value may be obtained in increasing the detection and recovery rates for the
specific attacks, i.e., security mitigation rather than expending resources on system repair.

The results in Table 2 show a high correlation between security and availability. Six scenarios
(with only three data points) are shown. A linear regression allows computation of the slope and
intersection and predicted values show only marginal prediction error. Due to a marginally minimal
set of data, the regression holds only in the very near vicinity of the values of the independent variables.
However, the results are promising in that the security can be assessed if only the availability of the
system, the attack rate frequency, and the repair status and its probability are known.

The presented case study suggests viewing the attacks and related security breaches as a system
failure, thus allowing one to reason about security by modeling availability with the existing tools. In
general, a probability increase of successful attack detection and mitigation/recovery would result in a
decrease in system performance because more effort, and hence execution time, is needed. A tradeoff,
therefore, needs to be made, since performance is always an important consideration. For the defined
probabilities of attack and the specified probabilities of detecting and handling the attack effects, a

Information 2016, 7, 33 13 of 33

Markov model allows estimation of the system availability, providing valuable information on the
level of security to be applied and to determine system’s sensitivity to security breaches.

Table 2. Simulation results.

Availability Security Correlation Slope Intercept Predicted
Security

Prediction
Error (%)

case 1: low attack rate/no repair

97.7408 50 0.9999996 39.324 ´3793.510 50.005 0.010%
98.7572 90 - 39.324 ´3793.510 89.973 ´0.030%
98.9873 99 - 39.324 ´3793.510 99.022 0.022%

case1: low attack rate/0.5 repair probability

98.3877 50 0.9999998 80.005 ´7821.549 50.003 0.007%
98.8874 90 - 80.005 ´7821.549 89.982 ´0.020%
99.0003 99 - 80.005 ´7821.549 99.015 0.015%

case1: low attack rate/0.9 repair probability

98.5872 50 0.9999998 117.478 ´11531.829 50.003 0.007%
98.9275 90 - 117.478 ´11531.829 89.981 ´0.021%
99.0044 99 - 117.478 ´11531.829 99.015 0.015%

case 2: high attack rate/no repair

80.4847 50 0.9999546 4.822 ´338.064 50.052 0.104%
88.7127 90 - 4.822 ´338.064 89.730 ´0.301%
90.6804 99 - 4.822 ´338.064 99.218 0.220%

case 2: high attack rate/0.5 repair probability

85.7505 50 0.9999823 9.736 ´784.806 50.032 0.064%
89.8385 90 - 9.736 ´784.806 89.831 ´0.187%
90.7943 99 - 9.736 ´784.806 99.137 0.138%

case 2: high attack rate/0.9 repair probability

87.3755 50 0.9999877 14.214 ´1191.917 50.027 0.053%
90.1779 90 - 14.214 ´1191.917 89.859 ´0.156%
90.829 99 - 14.214 ´1191.917 99.114 0.115%

5.1.4. Summary of the Measurement Process

In summary, the following steps of security assessment are identified using the above method,
consistent with the outline of security measurement (Section 4.3). Given the attack surface is defined
within the framework of a cyberphysical system (Figures 4–6), respective steps include: (1) security
model restricted to the availability component of the C-I-A triad; (2) metric defined on a probabilistic
scale [0,1]; (3) measure defined by the Markov chain computational formula; (4) the measurement
process determined by simulation; and (5) accuracy defined statistically as a prediction error.

5.2. Case Study #2: Threat Modeling

This case study analyzes the application of threat modeling to assess quantitative security of a
cyberphysical system using an example from the automotive domain: Inter Vehicle Communication
(IVC). Threats are modeled using the Threat Modeling Tool [45], generating the Analysis Report
from which they are mapped to vulnerabilities, which in terms of DREAD characteristics lead to risk
assessment. The description of this case study is loosely based on an earlier publication [46].

5.2.1. Outline of Threat Modeling

The modeling of threats in computer systems has been used at least since the beginning of this
century, and involves a number of techniques. The essential process has been described in [45] and

Information 2016, 7, 33 14 of 33

discussed in practice [47], and includes the following five steps: (1) Understand the Adversary’s View;
(2) Create a System Model; (3) Determine and Investigate the Threats; (4) Mitigate the Threats; and
(5) Validate the Mitigations.

In this work, we are only interested in selecting the right model of the system (Step 2) and
determining and investigating the threats (Step 3), since this is sufficient for security assessment. The
model of a cyberphysical system assumed, as presented in Figures 3–6 (for a generic system and a case
study, respectively), maps very nicely onto the thread modeling process discussed in [45,47], which
uses data flow diagrams. Principles of creating data flow diagrams correspond nearly identically to
our representation of cyberphysical systems and do not need additional discussion.

Regarding Step 3, the traditional way of determining and investigating threats is split into three
phases: (1) Identifying/defining threats using the STRIDE method; (2) Using threat trees to assess
vulnerabilities; and (3) Characterizing risks associated with vulnerabilities using the DREAD method,
where STRIDE, which stands for Spoofing, Tampering, Repudiation, Information disclosure, Denial of
service, and Elevation of privilege, and DREAD, which stands for Damage potential, Reproducibility,
Exploitability, Affected users, and Discoverability, are relatively well described techniques of dealing
with threats and corresponding risks [45,47].

While STRIDE, attack trees, and DREAD are common in general security analysis, in the case of
cyberphysical or embedded systems, there are no well-known examples of the application of these
techniques for practical security analysis. A thorough literature study for IVC systems revealed only a
couple of examples [48,49].

5.2.2. Inter Vehicle Communication (IVC)

Aijaz et al. [48] developed the most complete list of vulnerabilities for IVCs, which correspond
partially to and overlap with the CACC system, discussed in Section 5.1. They distinguish four groups
of applications that cover the attack surface and form respective subtrees in the global attack tree
structure. This includes: car-to-car, car-to-infrastructure, car-to-home, and router-based applications.
For the first two groups, which are the only ones of interest in the current project, the following two
subtrees, with corresponding leaves are listed:

‚ for car-to-car traffic: either disseminate false messages by generating new message, replaying
existing message, and modifying a message, or—disturb the system;

‚ for car-to-infrastructure applications: either disseminate false messages (in seven different
ways), or disturb the system by paralyzing onboard or roadside units, or by affecting the
communication channel.

More recently, Vestlund [49] presented a thorough analysis of threats for IVC, but technically
used fault tree analysis (FTA) rather than attack trees, defining the difference as follows: “attack trees
describe the attacker’s possible method of attack, while FTA describes the system’s vulnerabilities and
failure events.” The analysis is both broader than that in [48], because it includes additional groups of
applications, and deeper, since it goes into the behaviors at the level internal to a vehicle, including its
Electronic Control Units (ECUs) and their interconnection via a message bus, such as Controller Area
Network (CAN).

A relatively large number of cases for fault/attack trees have been built by the author [49], but
regarding the message communication in IVC, only the following threat classes are important:

‚ communication denial
‚ modified communication data
‚ intercepted communication data
‚ falsified communication.

Both studies, [48,49] validate the selection of the CACC model and its respective functionalities,
as described in Section 5.1. Following this model, to verify the usefulness of threat modeling for

Information 2016, 7, 33 15 of 33

establishing state transition probabilities for the Markov chain (strictly, the Discrete Time Markov
Chain—DTMC), an actual example of a message exchange system over the CAN network has been
set up. It includes two CAN nodes communicating over the CAN bus, with additional Internet
connectivity for both nodes. The arrangement, which imitates part of the functionality of a larger
CACC system, is shown implemented in the Microsoft Threat Modeling Tool [45] in Figure 10. The
vulnerabilities exist at the inter-node boundaries, where CAN frames are passing between nodes, and
where status and command messages are subjected to interference.

Figure 10. Representation of a CAN example in the modeling tool.

5.2.3. Experimental Results

One specific report of interest, which the tool generates, leading to quantitative analysis, is the
Threat Model Analysis Report shown, in part, in Figure 11. It connects system components with
threat types. With this information on hand, one can extract the parts, which affect communication,
and use a DREAD related technique similar to that proposed in [47] to assign numerical values to
specific vulnerabilities, which can then be normalized to probabilities. For example, Discoverability,
wd, Reproducibility, wr, and Exploitability, we, would denote the likelihood of threats, and Affected
users, au, and Damage potential, dp—their severity, leading to a numerical risk assessment, according
to the following formula:

risk = (wd + wr + we) * (au + dp)

Information 2016, 7, 33 16 of 33

where au and dp are expressed in financial terms. The intermediate step from STRIDE, as generated by
the tool (threat types in Figure 11), to DREAD involves mapping from the threats onto vulnerabilities.
Once this is done, assigning values of likelihoods, in the simplest case, can rely on counting the relative
frequency of occurrence of threats.

Information 2016, 7, 33 16 of 33

work is needed to include the completion of a more extensive IVC model, and involvement of other

types of cyberphysical systems, such as SCADA, RFID or time triggered applications.

Figure 11. Example of an analysis in the modeling tool.

5.2.4. Summary of the Measurement Process

Threat modeling is not commonly used in cyberphysical systems but this case study proves that

the method can be effective, if the attack surface is precisely defined, as in the case of IVC, making

the model theoretically valid. The mapping of this method into five steps of security measurement,

as outlined in Section 4.3, may look as follows: (1) security property is evaluated by security risk

assessment, built around five DREAD characteristics (Discoverability, Reproducibility and

Exploitability determining the likelihoods of threats, and Affected users and Damage potential

determining the severity of threats); (2) a usually discrete scale, on which risk is assessed, forms the

metric; (3) the measure is the risk assessment formula, traditionally understood as the weighted sum

Figure 11. Example of an analysis in the modeling tool.

However, this method of quantitatively assessing the risk and corresponding probabilities of
security breaches is still vague and requires a significant amount of well-informed judgment in the
assessment process to get to numerical values. An alternative approach, based on assessing the
vulnerabilities as per the Common Vulnerability Scoring System (CVSS) [38], is more promising since
it has specific formulas to calculate risk. Both these methods, however, have been developed for

Information 2016, 7, 33 17 of 33

analyzing security of Internet based applications and are not specific to cyberphysical systems, mostly
because of a lack of publicly available data for such systems. This situation may change with the
recent establishment of a disclosure framework for industrial control systems [50]. Additional work is
needed to include the completion of a more extensive IVC model, and involvement of other types of
cyberphysical systems, such as SCADA, RFID or time triggered applications.

5.2.4. Summary of the Measurement Process

Threat modeling is not commonly used in cyberphysical systems but this case study proves
that the method can be effective, if the attack surface is precisely defined, as in the case of IVC,
making the model theoretically valid. The mapping of this method into five steps of security
measurement, as outlined in Section 4.3, may look as follows: (1) security property is evaluated
by security risk assessment, built around five DREAD characteristics (Discoverability, Reproducibility
and Exploitability determining the likelihoods of threats, and Affected users and Damage potential
determining the severity of threats); (2) a usually discrete scale, on which risk is assessed, forms the
metric; (3) the measure is the risk assessment formula, traditionally understood as the weighted sum
of the products of severity of threat (or magnitude of the potential loss) and its likelihood (probability
that the loss will occur), for all factors involved, forming the computational procedure construed
according to threat modeling principles; (4) the measurement process is defined by the measure and
the use of a modeling tool for computations; (5) errors may be introduced in several steps during this
process and require separate error analysis, which has not been done in this research.

5.3. Case Study #3: Fault Injection in Time-Triggered Systems

This case study analyzes the application of the fault injection method to assess quantitatively
security of a system with Time-Triggered Protocol (TTP), in an automotive application (brake-by-wire
system). The security model makes use of a vulnerability as the primary feature to evaluate security,
and then applies simulation to uncover security breaches by fault injection. It shows how to assess the
extent security is violated by fault injection, thus showing how vulnerable the system is as a whole. It
is based on earlier publications [51,52].

5.3.1. Fault Injection Method [52]

Fault injection techniques have been developed by academia and industry for system
dependability evaluation identifying fault effects and improving system fault robustness (see [53,54]
and references therein).

The fault injection campaign is composed of fault injection experiments related to specific system
resources, fault classes, their triggering time and location. In fault injection experiments, we have to
specify not only the fault load but also workload in accordance with the analysis goal, e.g., checking
fault susceptibility, error detection mechanisms, integrity/security violation, etc. An important issue
is to trace fault effect propagation from its source via physical effects (failure) to application level
impacts (errors). In this process, we can check the effectiveness of various error detectors. They may
relate to low level hardware mechanisms (e.g., segmentation faults, access violation, invalid opcode,
parity error—signaled as system exceptions, watchdog timer alarms, etc.) or microkernel mechanisms
(alarms related to detected deadline misses, abnormal termination of a system call, exceptions).

Dealing with security problems relying on Denial of Service (DoS) attacks, we should select
appropriate fault models directly (e.g., transmission flooding, simulated attacks), or indirectly
(simulating internal system errors which can be attributed to external violations). In this process, an
important issue is to identify objects susceptible to threats (e.g., access ports), sensitive information
within the system and possible paths of accessing or modifying it [55]. We should also take into
account the problem of security compromises as a consequence of other faults in the system (e.g.,
transient disturbances) and checking if they do not increase the probability of security threats, data
leakage, open access paths to sensitive data, reveal passwords, create side channels for attacks, etc.

Information 2016, 7, 33 18 of 33

Beyond the classical error detection mechanisms available in commercial systems (invalid opcode,
access violation, memory parity, etc.) we may include special software assertions checking program
control flow, etc. Moreover, these mechanisms can be supported with on-line monitoring of event or
performance logs provided by the system or applications. These logs characterize normal operations
so many security DoS attacks may disturb the image of logs (operational profile) and facilitate their
detection or threat prediction.

One important problem in security of cyberphysical systems is the definition of their
vulnerabilities, which can affect the controller. In order to define them, one first needs to differentiate
a cyberphysical system from a traditional computing system. Among typical characteristics of
cyberphysical systems, one can find [56]: multiple interacting nodes, incorporation into control systems
operating without human intervention, purpose other than general computing and communications,
natural or engineered contexts.

Figure 12 shows an example high-level model that takes into account the above system features.
This model consists of the following main subsystems, consistent with those presented in Figures 5
and 6: Plant (the controlled process), Controller (main computing device issuing control commands to
the Plant), and Observer (implicit, not shown, used to measure plant’s response via its output variables).

Figure 12. System view of the security monitoring in a cyberphysical system.

The Plant inputs are Controller outputs and environment disturbances (non-malicious and
malicious). The malicious disturbances can be modeled as security threats and they affect mainly
a controller or plant operation. In modern embedded systems, the controller often interfaces with
a network (real-time and non-real-time), database, and a user. These interfaces are not shown in
Figure 12 but are implicitly included in the controller.

Security threat models are mostly concerned with network, database and user interfaces because
a breach in those can reduce confidentiality, integrity and availability of exchanged information in a
cyberphysical system. In this project, we are mainly concerned with network interface security threats.

Information 2016, 7, 33 19 of 33

Specifically, in our modeling approach, after [41], we consider: introduction of spurious network
messages, message deletion, message corruption, message flooding.

5.3.2. Brake-by-Wire System [51]

To analyze the behavior of time-triggered systems under various faults, an anti-lock braking
system (ABS) in a Brake-by-Wire version was chosen as an example. For simulations, a 4-node TTTech
development cluster with a disturbance node [57] was used in conjunction with Matlab’s Simulink and
Real-Time Workshop [58]. The basic models of anti-lock braking systems were transformed to improve
performance under various faults. Models of an ABS system on a single wheel (QVM—Quarter Vehicle
Model) and of an entire car (FVM—Four-wheel Vehicle Model) were used in the simulations but to
simplify the presentation only single wheel models are described in this paper.

An ABS system serves to prevent the wheel lock. The ability of a vehicle to lock the brakes is
related to the fact that the static coefficient of friction between tires and the road surface is much greater
than the dynamic coefficient of friction. That is, when the part of the tire in contact with the road is
moving relative to the road, it takes less force to continue moving. This results in the wheel lock and
increased stopping time and distance traveled by the vehicle between the time of brake application
and the end of the vehicle’s movement. Preventing the wheel lock is accomplished by appropriately
regulating the application of the vehicle’s brakes.

In a typical ABS system (Figure 13), there are several major components. These are speed sensors,
brake (pedal) position sensors, brake line valves to relieve pressure, and the real-time controller.
When the operator of a vehicle attempts to apply the brakes, the wheel-speed sensors detect the
deceleration of the wheels. If the deceleration on a wheel is too large, the ABS controller forces the
appropriate valves to relieve pressure on that wheel’s brake. This decreases the brake-force on that
wheel, and decreases the deceleration of the wheel. This is crucial as great deceleration typically
leads to wheel-lock. Two preexisting Simulink ABS models were considered in this work: QVM and
FVM [51,52].

Information 2016, 7, 33 19 of 33

application and the end of the vehicle's movement. Preventing the wheel lock is accomplished by

appropriately regulating the application of the vehicle’s brakes.

In a typical ABS system (Figure 13), there are several major components. These are speed sensors,

brake (pedal) position sensors, brake line valves to relieve pressure, and the real-time controller.

When the operator of a vehicle attempts to apply the brakes, the wheel-speed sensors detect the

deceleration of the wheels. If the deceleration on a wheel is too large, the ABS controller forces the

appropriate valves to relieve pressure on that wheel’s brake. This decreases the brake-force on that

wheel, and decreases the deceleration of the wheel. This is crucial as great deceleration typically

leads to wheel-lock. Two preexisting Simulink ABS models were considered in this work: QVM and

FVM [53,54].

Figure 13. Illustration of an ABS system operation (brake-by-wire).

5.3.3. Simulation and Quantitative Analysis

The main emphasis of experiments was to measure the impact of disturbing various

components on the simulated system with the presence of specific faults. For illustration of the

encountered behavior related to security measurement, all in a 4-node TTTech development

cluster [57], let us consider a disturbance scenario where the pedal sensor runs on a separate node

(Node D), while the remaining three nodes (Nodes A, B and C) redundantly calculate the brake

force. The wheel speed monitor runs on one of the brake force calculating nodes. Similarly, the brake

model runs on another node containing the brake force calculation.

Simulation models were tested under individual node disturbance (fault injection) scenarios to

simulate component failures. The nodes of the cluster communicated via a dual-channel bus, to

which each node is connected, over TTP protocol. The fault injection scenarios specified a particular

schedule for the disturbance node to “communicate” on the bus. Essentially, the disturbance node

was set to send a high (jamming) signal on the bus at specific time periods for specific lengths of time

so as to prevent a specific node from being able to send its messages. In all experiments in the

disturbance scenario, execution began between rounds 1100 and 1400 and lasted 3000 rounds.

Different fault models were selected for this and other distributed QVM/FVM simulations.

These fault models define the disruption of the communication of individual nodes via the TTTech

disturbance node, to simulate component disruption in a manner similar to that which may be

observed in a real ABS.

Figure 13. Illustration of an ABS system operation (brake-by-wire).

5.3.3. Simulation and Quantitative Analysis

The main emphasis of experiments was to measure the impact of disturbing various components
on the simulated system with the presence of specific faults. For illustration of the encountered

Information 2016, 7, 33 20 of 33

behavior related to security measurement, all in a 4-node TTTech development cluster [57], let us
consider a disturbance scenario where the pedal sensor runs on a separate node (Node D), while the
remaining three nodes (Nodes A, B and C) redundantly calculate the brake force. The wheel speed
monitor runs on one of the brake force calculating nodes. Similarly, the brake model runs on another
node containing the brake force calculation.

Simulation models were tested under individual node disturbance (fault injection) scenarios to
simulate component failures. The nodes of the cluster communicated via a dual-channel bus, to which
each node is connected, over TTP protocol. The fault injection scenarios specified a particular schedule
for the disturbance node to “communicate” on the bus. Essentially, the disturbance node was set to
send a high (jamming) signal on the bus at specific time periods for specific lengths of time so as to
prevent a specific node from being able to send its messages. In all experiments in the disturbance
scenario, execution began between rounds 1100 and 1400 and lasted 3000 rounds.

Different fault models were selected for this and other distributed QVM/FVM simulations.
These fault models define the disruption of the communication of individual nodes via the TTTech
disturbance node, to simulate component disruption in a manner similar to that which may be observed
in a real ABS.

Sample results of the simulation are illustrated in Figure 14. The first cycle shows the ideal
characteristics with no disturbance during this time of the simulation. The second cycle shows the
ideal characteristics even though disturbance scenario was executed at round 1100; the second cycle
simulation ran to completion with no changes. However, the decline of the wheel speed in the
third cycle became linear which was incorrect. For such simulations some techniques for multifactor
measurements of system vulnerability were developed. In general, the vulnerability to be measured is
the range of modification (degeneration) of the ideal time characteristic of the cyberphysical system
under various faults. We analyzed various metrics to quantitatively evaluate this characteristic.

Information 2016, 7, 33 20 of 33

Sample results of the simulation are illustrated in Figure 14. The first cycle shows the ideal

characteristics with no disturbance during this time of the simulation. The second cycle shows the

ideal characteristics even though disturbance scenario was executed at round 1100; the second cycle

simulation ran to completion with no changes. However, the decline of the wheel speed in the third

cycle became linear which was incorrect. For such simulations some techniques for multifactor

measurements of system vulnerability were developed. In general, the vulnerability to be measured

is the range of modification (degeneration) of the ideal time characteristic of the cyberphysical system

under various faults. We analyzed various metrics to quantitatively evaluate this characteristic.

We considered both simple and complex metrics. The simple metrics is based on comparing

so-called critical points in the ideal time characteristics (ideal, that is, without faults) and the critical

points in characteristics obtained under fault. The critical points are related to critical functionality of

the controlled device. An example of a critical point in our ABS system was to identify the complete

stop time (time for a vehicle to reach speed zero). We could express the corresponding metric as a

value between 0 and 1 computed by dividing the ideal duration of the time to stop, td, and the time to

stop under the fault, tf.

In the simulation from Figure 14, the second cycle finished unchanged giving the vulnerability

metric (1 − td/tf) = 0 (perfect) for the cycle that already started when the fault was generated.

However, for the next cycle where the ideal time to stop, td, was around 800, the delayed time to

stop, tf, because of the fault, was around 3000. That gave us the vulnerability metrics equal to value

of (1 − 800/3000) = 73%, which practically represents the failure of the system.

A more complex metric is based on comparing complete ideal characteristics and the actual

characteristics obtained under fault. For this ABS system, we could express the complex metric also

as a value between 0 and 1 but computed by dividing the area below the ideal characteristic and the

characteristic under the fault. In our example, the second cycle finished unchanged giving complex

vulnerability metric also 0 (perfect) for the cycle that already started when the fault was generated.

For the next cycle, the complex metric can be calculated by comparing the areas under both curves.

Figure 14. Results of disabling Node B of QVM. TDMA stands for Time Division Multiple Access

method of multiple nodes to the bus, while TDMA Round is a duration of a single experiment.

In summary, for cyclic systems modelled by cyclic simulations, we have to distinguish between

modification of ideal characteristics by a fault generated during the current cycle and for the next

one. Calculation of simple or complex time characteristics (metrics) can be done and is generally

related to a specific model of cyberphysical systems and its functionality. For example, for some

devices not the time to stop but reduction of the speed to half might be critical. As a result the

vulnerability (and, at the same time, security) measurement is relative to such metrics.

In addition, for cyberphysical systems exhibiting cyclic behavior, the aggregate metrics can be

introduced. The aggregate metrics involve counting/averaging across multiple cycles, e.g., taking

into account missing or significantly modified spikes. This metric accounts for the loss of

functionality in the system for a longer time. Our simulation studies show that, in addition to

Figure 14. Results of disabling Node B of QVM. TDMA stands for Time Division Multiple Access
method of multiple nodes to the bus, while TDMA Round is a duration of a single experiment.

We considered both simple and complex metrics. The simple metrics is based on comparing
so-called critical points in the ideal time characteristics (ideal, that is, without faults) and the critical
points in characteristics obtained under fault. The critical points are related to critical functionality of
the controlled device. An example of a critical point in our ABS system was to identify the complete
stop time (time for a vehicle to reach speed zero). We could express the corresponding metric as a
value between 0 and 1 computed by dividing the ideal duration of the time to stop, td, and the time to
stop under the fault, tf.

In the simulation from Figure 14, the second cycle finished unchanged giving the vulnerability
metric (1 ´ td/tf) = 0 (perfect) for the cycle that already started when the fault was generated. However,
for the next cycle where the ideal time to stop, td, was around 800, the delayed time to stop, tf,

Information 2016, 7, 33 21 of 33

because of the fault, was around 3000. That gave us the vulnerability metrics equal to value of
(1 ´ 800/3000) = 73%, which practically represents the failure of the system.

A more complex metric is based on comparing complete ideal characteristics and the actual
characteristics obtained under fault. For this ABS system, we could express the complex metric also
as a value between 0 and 1 but computed by dividing the area below the ideal characteristic and the
characteristic under the fault. In our example, the second cycle finished unchanged giving complex
vulnerability metric also 0 (perfect) for the cycle that already started when the fault was generated. For
the next cycle, the complex metric can be calculated by comparing the areas under both curves.

In summary, for cyclic systems modelled by cyclic simulations, we have to distinguish between
modification of ideal characteristics by a fault generated during the current cycle and for the next one.
Calculation of simple or complex time characteristics (metrics) can be done and is generally related to
a specific model of cyberphysical systems and its functionality. For example, for some devices not the
time to stop but reduction of the speed to half might be critical. As a result the vulnerability (and, at
the same time, security) measurement is relative to such metrics.

In addition, for cyberphysical systems exhibiting cyclic behavior, the aggregate metrics can be
introduced. The aggregate metrics involve counting/averaging across multiple cycles, e.g., taking into
account missing or significantly modified spikes. This metric accounts for the loss of functionality in
the system for a longer time. Our simulation studies show that, in addition to detecting anomalous
time-triggered system behavior related to malicious attacks of network messages in a TTP-based
system, it is also possible to calculate a numerical value of the degree of security violations.

5.3.4. Summary of the Measurement Process

The Brake-by-Wire model fits well into a cyberphysical system framework, with its process
(sensors and actuators) and network interfaces to represent the attack surface. With this, respective
steps in security assessment using fault injection can be mapped onto those from Section 4.3, as follows:
(1) The primary feature (attribute), which determines security implications is vulnerability; (2) The
metric involves the departure (distance) from the intended behavior and is mapped on the continuous
scale for the interval [0,1]; (3) The measure is a related computational formula defined for a particular
fault injection method; (4) The measurement process is defined by injecting faults into a pre-built
Simulink model (based on differential equations) and observing effects in terms of departure from
the standard (prescribed) behavior; (5) Accuracy of the measurement is governed by the error of the
simulation process, which includes building the model itself, that may introduce a systematic error.

5.4. Case Study #4. Non-Functional Requirements

This case study examines the application of non-functional requirements (NFR) method to assess
quantitatively security of a SCADA system. SCADA stands for Supervisory Control And Data
Acquisition and has been heavily used for the last 40+ years in distributed process control of larger
plants. It consists of a master unit that controls the working of the entire system by reading sensors
and activating actuators throughout a distributed plant. The process for converting non-functional
requirements to a quantitative assessment of security is outlined in this section, based on a related
earlier publication [59].

5.4.1. Outline of the NFR Approach [59]

The NFR Approach is a goal-oriented method that can be applied to determine the extent to
which objectives are achieved by a design—here the objectives are defined as achieving security for
a cyberphysical system. NFR considers properties of a system such as reliability, maintainability,
flexibility, scalability, etc., and could equally well consider functional objectives. The NFR uses a
well-defined ontology for this purpose that includes NFR softgoals, operationalizing softgoals, claim
softgoals, contributions, and propagation rules; each of these elements is described briefly below [59].
Furthermore, since strictly quantitative assessment of soft or vaguely defined properties is difficult,

Information 2016, 7, 33 22 of 33

the NFR Approach uses the concept of satisficing, a term borrowed from economics, which indicates
satisfaction within limits instead of absolute satisfaction of the goal.

NFR softgoals represent NFRs and their decompositions. Elements that have physical equivalents
(process or product elements) are represented by operationalizing softgoals and their decompositions.
Each softgoal is named using the convention: Type [Topic1, Topic2 . . .], where Type is the name of
the softgoal and Topic (could be zero or more) is the context where the softgoal is used. Topic is
optional for a softgoal; for a claim softgoal, which is a softgoal capturing a design decision, the name
may be the justification itself. Softgoals may be decomposed into other softgoals in two ways: in an
AND-contribution satisficing all child softgoals is essential to satisfice the parent; in an OR-contribution
satisficing one child softgoal is sufficient to satisfice the parent.

Contributions (MAKE, HELP, HURT, and BREAK) are usually made by operationalizing softgoals
to NFR softgoals. Reasons for these contributions are captured by claim softgoals and, in this case,
there is a contribution between a claim softgoal and the contribution being justified. Each of the four
types of contributions has a specific semantic significance: MAKE contribution refers to a strongly
positive degree of satisficing of objectives by artifacts (could be design decisions), HELP contribution
refers to a positive degree of satisficing, HURT contribution refers to a negative degree of satisficing,
and BREAK contribution refers to a strongly negative degree of satisficing.

Propagation rules propagate labels from a child softgoal to its parent across decompositions,
from operationalizing softgoals to NFR softgoals across contributions, and from claim softgoals to
contributions; propagation rules aid in the rationalization process of the NFR Approach.

There are four iterative steps for applying the NFR Approach for evaluating security:

1. Decompose NFR security.
2. Decompose the architecture of the system into its constituent operationalizing softgoals.
3. Determine the contributions made by the operationalizing softgoals to the NFR softgoals.
4. Evaluate the overall security by applying the propagation rules and observing the labels

propagated to the softgoals.

5.4.2. SCADA Installation

The NFR Approach is applied to assess safety and security of control system in oil pipelines,
where these two properties are critically important. The system architecture for an oil pipeline SCADA
system is shown in Figure 15. A typical oil-pipeline control system has several Remote Terminal Units
(RTU’s) that are connected to field instruments that measure physical quantities such as pressure,
temperature, or rate of flow of the oil in the pipeline. The field instruments also contain actuators that
can affect the state of oil flow such as changing the rate of flow or the pressure. The RTUs communicate
with a central master station using communication links such as Ethernet, satellite, cable, cellular, or
fiber optic transmission media. The central Master Station gets the complete operational view of the
entire system that allows planners to take appropriate actions based on business needs.

Information 2016, 7, 33 22 of 33

Propagation rules propagate labels from a child softgoal to its parent across decompositions,

from operationalizing softgoals to NFR softgoals across contributions, and from claim softgoals to

contributions; propagation rules aid in the rationalization process of the NFR Approach.

There are four iterative steps for applying the NFR Approach for evaluating security:

1. Decompose NFR security.

2. Decompose the architecture of the system into its constituent operationalizing softgoals.

3. Determine the contributions made by the operationalizing softgoals to the NFR softgoals.

4. Evaluate the overall security by applying the propagation rules and observing the labels

propagated to the softgoals.

5.4.2. SCADA Installation

The NFR Approach is applied to assess safety and security of control system in oil pipelines,

where these two properties are critically important. The system architecture for an oil pipeline

SCADA system is shown in Figure 15. A typical oil-pipeline control system has several Remote

Terminal Units (RTU’s) that are connected to field instruments that measure physical quantities such

as pressure, temperature, or rate of flow of the oil in the pipeline. The field instruments also contain

actuators that can affect the state of oil flow such as changing the rate of flow or the pressure. The

RTUs communicate with a central master station using communication links such as Ethernet,

satellite, cable, cellular, or fiber optic transmission media. The central Master Station gets the

complete operational view of the entire system that allows planners to take appropriate actions

based on business needs.

Figure 15. Typical oil pipeline control system.

Figure 16. CPSR system architecture.

Figure 15. Typical oil pipeline control system.

The system analyzed for safety and security properties is the SCADA system at the Center for
Petroleum Security Research (CPSR) at UT Tyler. The architecture of the CPSR is shown in Figure 16.

Information 2016, 7, 33 23 of 33

The system consists of an Allen-Bradley Control Logix (Rockwell Automation, Inc., Milwaukee, WI,
USA) that serves as the master and RS Logix 500 units (also from Rockwell) serving as RTUs. The
latter controls field equipment such as valves, meters, and sensors.

Information 2016, 7, 33 22 of 33

Propagation rules propagate labels from a child softgoal to its parent across decompositions,

from operationalizing softgoals to NFR softgoals across contributions, and from claim softgoals to

contributions; propagation rules aid in the rationalization process of the NFR Approach.

There are four iterative steps for applying the NFR Approach for evaluating security:

1. Decompose NFR security.

2. Decompose the architecture of the system into its constituent operationalizing softgoals.

3. Determine the contributions made by the operationalizing softgoals to the NFR softgoals.

4. Evaluate the overall security by applying the propagation rules and observing the labels

propagated to the softgoals.

5.4.2. SCADA Installation

The NFR Approach is applied to assess safety and security of control system in oil pipelines,

where these two properties are critically important. The system architecture for an oil pipeline

SCADA system is shown in Figure 15. A typical oil-pipeline control system has several Remote

Terminal Units (RTU’s) that are connected to field instruments that measure physical quantities such

as pressure, temperature, or rate of flow of the oil in the pipeline. The field instruments also contain

actuators that can affect the state of oil flow such as changing the rate of flow or the pressure. The

RTUs communicate with a central master station using communication links such as Ethernet,

satellite, cable, cellular, or fiber optic transmission media. The central Master Station gets the

complete operational view of the entire system that allows planners to take appropriate actions

based on business needs.

Figure 15. Typical oil pipeline control system.

Figure 16. CPSR system architecture. Figure 16. CPSR system architecture.

Security requirements include the following: only authorized personnel control the system,
all events are logged for audit, and encrypted data are used for wireless transmissions. The NFR
approach is used to evaluate the security of this cyberphysical system, which is addressed in the
following section.

5.4.3. Applying the NFR Approach

The Softgoal Interdependency Graph (SIG) for this cyberphysical system is shown in Figure 17.
The upper part shows the decomposition of security requirements, while the lower part shows the
decomposition of the architecture of CPSR, the example cyberphysical system. The arrows between
them show the contributions made by architectural (design) elements to requirements. Justifications
for these contributions are captured by the claim softgoals.

NFR security for the system is represented by the softgoal Security [CPS] which is
AND-decomposed into softgoals Access Control [Personnel], Audit Log [Events], and Encryption
[Wireless], which refer to, respectively, the activities of access control, logging events for audit, and
wireless encryption, all three of which help improve security and, therefore, the AND-decomposition
of the NFR security.

Wireless encryption can be unidirectional or bidirectional, so softgoal Encryption [Wireless]
is OR-decomposed into two NFR softgoals: Encryption [Wireless, RTUtoMaster] and Encryption
[Wireless, MastertoRTU], representing the two directions in which wireless encryption can be done
(either from RTU to Master or from Master to RTU). The final step in the application of the NFR
Approach is to apply the propagation rules, the details of which have been presented in an earlier
paper [59].

One of the major benefits of the NFR Approach is that quantitative evaluation of properties is
possible. The first step for quantitative analysis is to map qualitative aspects of the SIG into quantitative
aspects as shown in Figure 18.

Information 2016, 7, 33 24 of 33

Information 2016, 7, 33 23 of 33

The system analyzed for safety and security properties is the SCADA system at the Center for

Petroleum Security Research (CPSR) at UT Tyler. The architecture of the CPSR is shown in Figure 16.

The system consists of an Allen-Bradley Control Logix (Rockwell Automation, Inc., Milwaukee, WI,

USA) that serves as the master and RS Logix 500 units (also from Rockwell) serving as RTUs. The

latter controls field equipment such as valves, meters, and sensors.

Security requirements include the following: only authorized personnel control the system, all

events are logged for audit, and encrypted data are used for wireless transmissions. The NFR

approach is used to evaluate the security of this cyberphysical system, which is addressed in the

following section.

5.4.3. Applying the NFR Approach

The Softgoal Interdependency Graph (SIG) for this cyberphysical system is shown in Figure 17.

The upper part shows the decomposition of security requirements, while the lower part shows the

decomposition of the architecture of CPSR, the example cyberphysical system. The arrows between

them show the contributions made by architectural (design) elements to requirements. Justifications

for these contributions are captured by the claim softgoals.

Security[CPS]

Encryption

[Wireless]

Access Control

[Personnel]

Audit Log

[Events]

Encryption

[Wireless,

RTUtoMaster]

Encryption

[Wireless,

MastertoRTU]

Master

CPSR

RTU

Pressure

Sensors Flowmeters
Valves

Master

logs

events
Any lab

student can

use the system

Wireless

communication

is not encrypted

++

++

++
++

++

--

--

--

2

2

2

2

2

2

2

2

2

2

2

2

2

2

-8

-2

-2

-2

4 -4

--

++

2

-2

-4

-4

-8

Figure 17. SIG for evaluating security of the cyberphysical system and phase 1 in the NFR approach.

NFR security for the system is represented by the softgoal Security [CPS] which is

AND-decomposed into softgoals Access Control [Personnel], Audit Log [Events], and Encryption

[Wireless], which refer to, respectively, the activities of access control, logging events for audit, and

wireless encryption, all three of which help improve security and, therefore, the

AND-decomposition of the NFR security.

Wireless encryption can be unidirectional or bidirectional, so softgoal Encryption [Wireless] is

OR-decomposed into two NFR softgoals: Encryption [Wireless, RTUtoMaster] and Encryption

[Wireless, MastertoRTU], representing the two directions in which wireless encryption can be done

(either from RTU to Master or from Master to RTU). The final step in the application of the NFR

Figure 17. SIG for evaluating security of the cyberphysical system and phase 1 in the NFR approach.

Information 2016, 7, 33 24 of 33

Approach is to apply the propagation rules, the details of which have been presented in an earlier

paper [59].

One of the major benefits of the NFR Approach is that quantitative evaluation of properties is

possible. The first step for quantitative analysis is to map qualitative aspects of the SIG into

quantitative aspects as shown in Figure 18.

Operationalizing softgoal "Master"

and claim softgoal "Master logs events" both

satisficed; each gets a metric of +2.

Metric MAKE contribution = +1

Both softgoals not-critical; criticality metric = 0

Criticality MAKE contribution = 0

Metric propagated = (softgoal metric + criticality metric)

 * (contribution metric + contribution's criticality metric)

Metric propagated by "Master logs events" softgoal

= (2 + 0) * (1 + 0) = +2

Contribution propagated by "Master" = 1 * 2 = +2

(due to contribution of 2 by "Master logs events")

Therefore, metric propagated by "Master" softgoal

= (2 + 0) * (2 + 0) = +4

M1: label (leaf softgoal) metric (leaf softgoal)

M2: label (contribution) metric (contribution)

M3A: criticality (softgoal) metric (criticality(softgoal))

M3B: criticality (contribution) metric (criticality(contribution))

M4:{metric (leaf softgoal),

 metric (contribution),

 metric (criticality(softgoal)),

 metric (criticality(contribution))}

metric (individual contribution

 of leaf softgoal)

M5: {metric_i (individual contribution

 of child softgoal i)}

metric (parent softgoal)

M6: {metric_i (individual contribution

 of child softgoal i)}

metric (parent contribution)

Figure 18. Mapping qualitative aspects of SIG to a quantitative evaluation scheme (left) and example

of single-value quantitative scheme calculation (right).

First, as per M1, the label for the leaf softgoals is converted to a corresponding metric; thus, a

satisficed leaf softgoal (it could be an operationalizing softgoal, an NFR or a claim softgoal) is

converted to a corresponding metric and a denied softgoal is converted to its corresponding metric.

Then, as per M2, each contribution (MAKE, HELP, HURT, BREAK) is converted to a corresponding

quantitative representation. If either softgoals or contributions have associated criticalities, then we

generated metrics for these criticalities (M3A and M3B).

Then, by M4, the quadruple of <leaf softgoal metric, leaf softgoal criticality metric, contribution

metric, and contribution criticality metric> is converted into a metric representing the individual

contribution of the leaf softgoal to its parent (which could be a softgoal or a contribution). By

mapping rule M5, the collection of all individual contributions from child softgoals is converted into

a metric for the parent softgoal.

Likewise, by mapping rule M6, the collection of all individual contributions from child

softgoals is converted into a metric for the parent contribution. These metrics are then propagated

recursively up the SIG, with each newly evaluated softgoal as the next leaf softgoal.The metrics

propagated are indicated inside rectangles in Figure 17.

Any quantitative scheme that satisfies this mapping can be used to calculate safety and security

metrics. Example calculations using the single-value scheme are shown in Figure 18 (right).

Applying this scheme, we get a metric of −8 for security; details are given in [59]. However, we have

the complete rationale for these metrics and more importantly we know how to improve (or even

reduce) a desired metric. Also, the SIG maintains the historical record of decisions. Since the metrics

trace back to the requirements of the system, we can quickly (re-)calculate the impact of changed

requirements on these metrics. Besides deterministic quantitative scheme, the NFR Approach

permits probabilistic, fuzzy logic, and other schemes to be used for deriving metrics.

5.4.4. Summary of the Measurement Process

The initial step is to make sure that SCADA fits into the model of a cyberphysical system of

Section 3, which it does perfectly with its measurement/control interfaces and network interfaces,

defining the attack surface. The following steps summarize how the security assessment process

using the NFR approach, as described in details above, follows the security measurement guidelines

of Section 4.3. It turns out that the NFR approach fits very naturally into Steps (1)–(5) of the

guidelines, namely: (1) security decomposition into individual factors (softgoals) forms a valid

Figure 18. Mapping qualitative aspects of SIG to a quantitative evaluation scheme (left) and example
of single-value quantitative scheme calculation (right).

First, as per M1, the label for the leaf softgoals is converted to a corresponding metric; thus, a
satisficed leaf softgoal (it could be an operationalizing softgoal, an NFR or a claim softgoal) is converted
to a corresponding metric and a denied softgoal is converted to its corresponding metric. Then, as per
M2, each contribution (MAKE, HELP, HURT, BREAK) is converted to a corresponding quantitative
representation. If either softgoals or contributions have associated criticalities, then we generated
metrics for these criticalities (M3A and M3B).

Then, by M4, the quadruple of <leaf softgoal metric, leaf softgoal criticality metric, contribution
metric, and contribution criticality metric> is converted into a metric representing the individual
contribution of the leaf softgoal to its parent (which could be a softgoal or a contribution). By mapping

Information 2016, 7, 33 25 of 33

rule M5, the collection of all individual contributions from child softgoals is converted into a metric for
the parent softgoal.

Likewise, by mapping rule M6, the collection of all individual contributions from child softgoals
is converted into a metric for the parent contribution. These metrics are then propagated recursively
up the SIG, with each newly evaluated softgoal as the next leaf softgoal. The metrics propagated are
indicated inside rectangles in Figure 17.

Any quantitative scheme that satisfies this mapping can be used to calculate safety and security
metrics. Example calculations using the single-value scheme are shown in Figure 18 (right). Applying
this scheme, we get a metric of ´8 for security; details are given in [59]. However, we have the
complete rationale for these metrics and more importantly we know how to improve (or even reduce)
a desired metric. Also, the SIG maintains the historical record of decisions. Since the metrics trace back
to the requirements of the system, we can quickly (re-)calculate the impact of changed requirements
on these metrics. Besides deterministic quantitative scheme, the NFR Approach permits probabilistic,
fuzzy logic, and other schemes to be used for deriving metrics.

5.4.4. Summary of the Measurement Process

The initial step is to make sure that SCADA fits into the model of a cyberphysical system of
Section 3, which it does perfectly with its measurement/control interfaces and network interfaces,
defining the attack surface. The following steps summarize how the security assessment process using
the NFR approach, as described in details above, follows the security measurement guidelines of
Section 4.3. It turns out that the NFR approach fits very naturally into Steps (1)–(5) of the guidelines,
namely: (1) security decomposition into individual factors (softgoals) forms a valid model as a basis
for assessment; (2) the degrees of satisficing, from strongly positive to strongly negative, form the
metric for comparisons; (3) combinations of individual contributions of softgoals constitute an NFR
measure; (4) application of propagation rules across the SIG defines the measurement process; and
(5) due to the discrete nature of a metric, which is integer, a minimum error in an estimate is determined
by the distance between two consecutive values of the metric.

5.5. Case Study #5: Security Patterns

This case study analyzes the application of security patterns to assess quantitatively the security of
a cyberphysical system using an example of web services. This is in line with the pervasive nature of the
Internet of Things (IoT), which poses new challenges to the developers of cyberphysical systems. This
section is based on earlier publications [60,61]. In subsequent subsections, we describe an approach to
measuring security with security patterns indirectly, using the following features: complexity, usability,
ease of implementation and efficiency of the pattern.

5.5.1. Overview of Security Patterns

A pattern is a recurring combination of meaningful units that occurs in some context and
which embody expert experience and good design practices within the field. Patterns provide a
systematic approach to building systems that possess non-functional properties such as security, safety
or reliability. The use of patterns is fairly new to software development, however, their use and
application have provided significant benefits to the quality of software systems [62,63].

Security patterns, in particular, provide a solution to a security problem within a given context.
The Pattern Oriented Software Architecture (POSA) template [64] defines a systematic way to describe
patterns. It consists of a number of units, each describing one aspect of a pattern, and is designed to
capture the experience of professionals that have solved common problems.

The previous work by one of the co-authors [61], and summarized elsewhere [63], introduces
two comprehensive methodologies for integrating security properties during system development
with the use of security patterns. In these approaches, a specific security problem is mapped to a
given security policy which is realized with the use of a security pattern as a solution. The security

Information 2016, 7, 33 26 of 33

pattern describes the countermeasures and defenses that should be implemented to handle a particular
security problem. In other words, these approaches inform how to develop a system from inception
through to implementation stage that meticulously considers security at each stage.

In essence, each security requirement is tested and compared to the actual results obtained on a
set of defined threats that the system is supposed to protect against. Figure 19 shows a secure software
lifecycle, indicating where security can be applied (white arrows) and where to audit for compliance
with security principles and policies (dark arrows). A security test case is an implementation that
realizes a security requirement and, when it is executed, we can determine if the expected result of the
security requirement is the same as to the actual result obtained from the test case.
Information 2016, 7, 33 26 of 33

Figure 19. Overview of security verification over the life cycle.

Other system properties that affect security directly, such as safety and reliability, can be easily

integrated and evaluated using patterns. Work in [60,61] provides several hybrid patterns for

integrating security and reliability during system development. In general, security patterns provide

a versatile yet effective means of integrating security at a granular level throughout the entire system

development cycle that can be measured at each stage.

5.5.2. Example of Web Services

Unhandled faults and vulnerabilities in software development can have catastrophic

consequences. When a fault manifests itself and is not contained, it can result in a failure, which

indicates that the system is not following the specifications. A policy can avoid or handle a failure or

a threat. A pattern realizes the policy that can handle the fault and vulnerability. By enumerating all

the faults and vulnerabilities starting at the requirements stage and having appropriate patterns to

handle them, one can build secure and reliable systems.

Security and reliability aspects in a computer system are expressed differently at different

architectural layers (levels) and stages of the software development process. Case in point, web

services are widely used in the software units of cyberphysical systems with the adoption of the

Service-Oriented Architecture (SOA) and the Cloud Architecture. Assessing the level of security and

reliability in such services may not always be straightforward. Typically, vendors are not

forthcoming in sharing the security countermeasures and defenses they utilize in their web services.

Figure 20 illustrates a solution that integrates both security and reliability properties in a web service

[61]. The solution utilizes a role-based access control defense, which ensures that only authorized

users can access a service. This protects the confidentiality and integrity of the web service.

Figure 20 shows a class diagram for the Secure Reliability pattern that implements

authorization for each user that wishes to access a service. It also guarantees reliability by ensuring

that the service has redundancy, so that if it fails, it is immediately replaced by another service that

will carry out the exact same operation. As shown in Figure 20, every user is a member of a role, and

each role has specific rights associated with it. The service entity implements a strategy pattern,

which chooses a software or hardware service, depending on the needs of the application. The

reference monitor enforces the authorized use of the service. One approach to assess a web service is

with the use of security and reliability certificates [60] as outlined in the next sub-section.

Figure 19. Overview of security verification over the life cycle.

Moreover, software testing tools such as Eclipse, JUnit and Maven allow for detail unit, component,
system level testing [65], and test coverage for each security test case to further allow for verification
of the expected security requirements. These tools provide useful information that includes: the time
it takes for a threat to be handled and the type of failure that occurs if the threat is not mitigated as
expected. These test results can be easily measured quantitatively based on the implementation of a
particular method that implements security and one that does not. Coverage is an important factor
that is measurable; and with the use of tools it is easier to determine what percentage of a system
passes or fails for each security test case.

Other system properties that affect security directly, such as safety and reliability, can be easily
integrated and evaluated using patterns. Work in [60,61] provides several hybrid patterns for
integrating security and reliability during system development. In general, security patterns provide a
versatile yet effective means of integrating security at a granular level throughout the entire system
development cycle that can be measured at each stage.

5.5.2. Example of Web Services

Unhandled faults and vulnerabilities in software development can have catastrophic
consequences. When a fault manifests itself and is not contained, it can result in a failure, which
indicates that the system is not following the specifications. A policy can avoid or handle a failure or a
threat. A pattern realizes the policy that can handle the fault and vulnerability. By enumerating all the
faults and vulnerabilities starting at the requirements stage and having appropriate patterns to handle
them, one can build secure and reliable systems.

Security and reliability aspects in a computer system are expressed differently at different
architectural layers (levels) and stages of the software development process. Case in point, web
services are widely used in the software units of cyberphysical systems with the adoption of the
Service-Oriented Architecture (SOA) and the Cloud Architecture. Assessing the level of security and
reliability in such services may not always be straightforward. Typically, vendors are not forthcoming
in sharing the security countermeasures and defenses they utilize in their web services. Figure 20

Information 2016, 7, 33 27 of 33

illustrates a solution that integrates both security and reliability properties in a web service [61]. The
solution utilizes a role-based access control defense, which ensures that only authorized users can
access a service. This protects the confidentiality and integrity of the web service.Information 2016, 7, 33 27 of 33

Figure 20. Class diagram for the Secure Reliability Pattern.

The security defenses, such as authorization via RBAC (Role Based Access Control), which are

implemented using the pattern described above can be assessed using our security assessment

approach and, based on the weighted average, we can determine whether or not the security pattern

will be feasible and meet the expected security needs.

5.5.3. Security and Reliability Certificates Checking

Assessing security and reliability properties can be achieved with the use of machine-readable

certificates. Let us consider the following example (Figure 21), given an enhanced SOA

infrastructure composed of the following main parties [60]:

1. Client (c)—the entity that needs to select or integrate a remote service based on its reliability

and security requirements. Here, the Client is a user who would be authorized by the reference

monitor defense depicted in Figure 20.

2. Service provider (sp)—the entity implementing remote services accessed by c.

3. Certification Authority (CA)—an entity trusted by one or more users to assign certificates.

4. Evaluation Body (EB)—an independent, trusted component carrying out monitoring activities.

EB is trusted by both c and sp to correctly check the certificate validity on the basis of the

monitoring rules and metrics.

5. Service Discovery (UDDI)—a registry of services enhanced with the support for security and

reliability certificates. Universal Description, Discovery, and Integration (UDDI) is an

XML-based standard for describing, publishing, and finding web services. It is a specification

for a distributed registry of web services that is a platform-independent, open framework.

The service invocation process enhanced with certification [60] is composed of two main stages,

illustrated in Figure 21. First (Steps 1–2), CA grants a reliability certificate to a service provider, sp,

based on a service implementation and a security and reliability pattern. Then (Steps 3–9), upon

receiving the certificate for the service, s, sp publishes the certificate together with the service

interface in a service registry. Next, the client, c, searches the registry and compares the certificates of

the available services. Once the client has chosen a certificate, it will ask the trusted component, EB,

to confirm its validity. EB checks that the monitoring rules hold and returns a result to c. If the result

is positive, c proceeds to call the service. The SOA paradigm supports runtime selection and

composition of services, which makes it difficult to guarantee a priori the security and reliability of a

process instance.

Figure 20. Class diagram for the Secure Reliability Pattern.

Figure 20 shows a class diagram for the Secure Reliability pattern that implements authorization
for each user that wishes to access a service. It also guarantees reliability by ensuring that the service
has redundancy, so that if it fails, it is immediately replaced by another service that will carry out
the exact same operation. As shown in Figure 20, every user is a member of a role, and each role has
specific rights associated with it. The service entity implements a strategy pattern, which chooses
a software or hardware service, depending on the needs of the application. The reference monitor
enforces the authorized use of the service. One approach to assess a web service is with the use of
security and reliability certificates [60] as outlined in the next sub-section.

The security defenses, such as authorization via RBAC (Role Based Access Control), which
are implemented using the pattern described above can be assessed using our security assessment
approach and, based on the weighted average, we can determine whether or not the security pattern
will be feasible and meet the expected security needs.

5.5.3. Security and Reliability Certificates Checking

Assessing security and reliability properties can be achieved with the use of machine-readable
certificates. Let us consider the following example (Figure 21), given an enhanced SOA infrastructure
composed of the following main parties [60]:

1. Client (c)—the entity that needs to select or integrate a remote service based on its reliability
and security requirements. Here, the Client is a user who would be authorized by the reference
monitor defense depicted in Figure 20.

2. Service provider (sp)—the entity implementing remote services accessed by c.
3. Certification Authority (CA)—an entity trusted by one or more users to assign certificates.
4. Evaluation Body (EB)—an independent, trusted component carrying out monitoring activities. EB

is trusted by both c and sp to correctly check the certificate validity on the basis of the monitoring
rules and metrics.

5. Service Discovery (UDDI)—a registry of services enhanced with the support for security and
reliability certificates. Universal Description, Discovery, and Integration (UDDI) is an XML-based
standard for describing, publishing, and finding web services. It is a specification for a distributed
registry of web services that is a platform-independent, open framework.

Information 2016, 7, 33 28 of 33

The service invocation process enhanced with certification [60] is composed of two main stages,
illustrated in Figure 21. First (Steps 1–2), CA grants a reliability certificate to a service provider, sp,
based on a service implementation and a security and reliability pattern. Then (Steps 3–9), upon
receiving the certificate for the service, s, sp publishes the certificate together with the service interface
in a service registry. Next, the client, c, searches the registry and compares the certificates of the
available services. Once the client has chosen a certificate, it will ask the trusted component, EB,
to confirm its validity. EB checks that the monitoring rules hold and returns a result to c. If the
result is positive, c proceeds to call the service. The SOA paradigm supports runtime selection and
composition of services, which makes it difficult to guarantee a priori the security and reliability of a
process instance.
Information 2016, 7, 33 28 of 33

Figure 21. An SOA enhanced with security and reliability certification.

The technique described above is based on machine-readable certificates that use reliability and

security patterns to conduct a posteriori evaluation of web services. When an assessment of the

security pattern using our security pattern assessment approach is completed, the weighted average

is then used to determine whether or not a security pattern is certifiable. Pattern properties are

assessed using the following features:

1. Complexity: The feature which refers to the number of security defenses that the pattern

provides. For example, one pattern may only provide monitoring while another may conduct

monitoring, authentication and authorization of users.

2. Usability: The feature which refers the ease with which the user can apply the pattern to solve

a problem.

3. Ease of Implementation: This feature ties back to the template used to describe a security

pattern. Some patterns do not provide enough relevant information to be useful to the user.

Here, ease of implementation is measured by how comprehensive the security pattern

description is.

4. Efficiency: This feature is measured using the degree of the side effects and consequences that is

introduced by implementing the security pattern.

Each of the four features described above is evaluated using the following scale: Low—has a

value weight of 1; Medium—has a value weight of 3; High—has a value weight of 5. Each of these

four properties may be given a different weight, for example, usability is subjective and may not

carry the same weight as efficiency or complexity.

Figure 21 illustrates the assessment process via interactions within the SOA enhanced with

security and reliability certificates [60]. The primary interaction that realizes security is with the use

of a reference monitor pattern and reliability patterns which satisfy the four security properties

described above. The reference monitor pattern is written as outlined in the POSA template [62,63].

This pattern is widely accepted and utilized as an effective security control that directly satisfies

security properties 2 and 3. Additionally, the reference monitor utilized in Figure 21 affords three

pertinent security controls—that is, monitoring, authorization and authentication—and is further

enhanced with reliability. Reliability here is realized in the form of redundancy patterns to ensure

that, if any of the security controls fail, a backup is immediately invoked to seamlessly carry out the

required security functionality, thereby satisfying properties 1 and 4.

There are many degrees to which redundancy can be implemented in the certificates described

in Figure 21, whether by N-modular, dual-modular redundancy, triple-modular redundancy or

N-Version programming [65]. Similarly, additional security controls can be added to the reference

monitor such as a secure communication channel to further increase the security of the enhanced

Figure 21. An SOA enhanced with security and reliability certification.

The technique described above is based on machine-readable certificates that use reliability and
security patterns to conduct a posteriori evaluation of web services. When an assessment of the security
pattern using our security pattern assessment approach is completed, the weighted average is then
used to determine whether or not a security pattern is certifiable. Pattern properties are assessed using
the following features:

1. Complexity: The feature which refers to the number of security defenses that the pattern provides.
For example, one pattern may only provide monitoring while another may conduct monitoring,
authentication and authorization of users.

2. Usability: The feature which refers the ease with which the user can apply the pattern to solve
a problem.

3. Ease of Implementation: This feature ties back to the template used to describe a security pattern.
Some patterns do not provide enough relevant information to be useful to the user. Here, ease of
implementation is measured by how comprehensive the security pattern description is.

4. Efficiency: This feature is measured using the degree of the side effects and consequences that is
introduced by implementing the security pattern.

Each of the four features described above is evaluated using the following scale: Low—has a
value weight of 1; Medium—has a value weight of 3; High—has a value weight of 5. Each of these
four properties may be given a different weight, for example, usability is subjective and may not carry
the same weight as efficiency or complexity.

Figure 21 illustrates the assessment process via interactions within the SOA enhanced with
security and reliability certificates [60]. The primary interaction that realizes security is with the
use of a reference monitor pattern and reliability patterns which satisfy the four security properties

Information 2016, 7, 33 29 of 33

described above. The reference monitor pattern is written as outlined in the POSA template [62,63].
This pattern is widely accepted and utilized as an effective security control that directly satisfies
security properties 2 and 3. Additionally, the reference monitor utilized in Figure 21 affords three
pertinent security controls—that is, monitoring, authorization and authentication—and is further
enhanced with reliability. Reliability here is realized in the form of redundancy patterns to ensure
that, if any of the security controls fail, a backup is immediately invoked to seamlessly carry out the
required security functionality, thereby satisfying properties 1 and 4.

There are many degrees to which redundancy can be implemented in the certificates described in
Figure 21, whether by N-modular, dual-modular redundancy, triple-modular redundancy or N-Version
programming [65]. Similarly, additional security controls can be added to the reference monitor such
as a secure communication channel to further increase the security of the enhanced SOA certificates,
however this decision must be made by the developer, to decide what degree of security and reliability
is feasible depending on the nature of system being designed. Depending on the exact implementation
of security and reliability, their value can be assessed using the scale of low, medium, or high within
each of the four security features and an appropriate corresponding ranking value (1–5) can be
determined to assess the degree of security that is achieved with the use of these certificates. Thus,
the security and reliability patterns offer effective and systematic solution toward achieving increased
security and reliability in cyberphysical systems that are measureable.

5.5.4. Outline of the Measurement Process

The SOA architecture and related patterns fall within the framework of a cyberphysical system
at the higher level through the concept of Internet of Things (IoT), which allows access to low-level
measurement and control devices via networks and related protocols that resemble an attack surface.
To assess information security in this arrangement, a pattern can be evaluated according to the
measurement process outlined in Section 4.3, as follows: (1) the property is split into four characteristics,
including complexity, usability, ease of implementation, and efficiency; (2) a metric is defined as
non-numerical scale of at least three levels (High, Medium, and Low); (3) a measure is defined by a
formula composed of a linear combination of the assessment of all four features characterizing security
patterns; (4) the measurement process follows principles of collecting data on patterns from industry
and government sources and via expert interviews, and then applying the measure; (5) the accuracy of
the measurement involves the concept of trustworthiness and is the subject of current research.

6. Conclusions

This paper discussed issues relevant to measuring security as a system property in cyberphysical
systems. After introducing a definition of security as a property, placed in the context of cyberphysical
systems, principles of measurement were presented, based on the modern view of measurement
theory. It relies on defining the attack surface, first, then decomposing security into constituent features
(attributes). This is followed by defining a metric as a scale, and a measure, which is a computational
formula to evaluate security on the scale. The measurement process involves application of respective
techniques using the measure to find a quantitative or qualitative estimate of security, and determine
the accuracy or trustworthiness of the result.

Within this framework, five case studies taking diverse approaches to security assessment and
measurement are discussed, based on, respectively: Markov chains, threat modeling, fault injection,
non-functional requirements, and security patterns. Each approach is applied to a corresponding
example of a cyberphysical system, and attempts to quantify the results in respective experiments.

In this view, results of this work can be summarized as follows:

‚ Markov chains are an effective tool for modeling degradation of services due to security threats,
and allow for an efficient assessment of security in cases when probabilities of state transitions
can be reasonably determined;

Information 2016, 7, 33 30 of 33

‚ threat modeling is useful in investigating system behavior at boundaries forming an attack
surface, and—given the tool support—results in analysis of possibilities, which can negatively
affect security, thus facilitating use of respective methods for quantitative evaluation of risks;

‚ fault injection allows introducing deliberate disturbances to a cyberphysical system by distorting
messages or message flow in the system; experiments with time-triggered protocol revealed that
it is possible to quantify the extent of damage caused by security lapses;

‚ non-functional requirements approach adds to the spectrum of quantitative evaluation methods
the ability to evaluate designs; this capability is crucial in the development of cyberphysical
systems, since it enables Design for Security, rather than security assessment as an afterthought;

‚ security patterns by their very nature allow developing preventive security measures and their
quantitative assessment; it makes them a very important tool for software designers, who may
not be experts in security.

Each of the case studies presented here uses some security defense, such as: monitoring, failure
or threat detection and various countermeasures to mitigate those threats and failures. However, not
all defenses are equally effective. It is therefore imperative that the defenses, which are utilized in
cyberphysical systems, actually work well. This gives rise to an important question: how can these
defenses be evaluated and their effectiveness measured?

At present, there is no way to determine if a system is more or less secure when one adds or
subtracts a particular application. Current approaches to evaluating security are policy based, assuring
that certain procedures have been followed. However, this does not tell us if one design is more
“secure” than another or if adding or subtracting a component strengthens or weakens the system.

Given that system developers are not typically experts in security, it makes sense to place greater
emphasis on these aspects, and the presented techniques may serve as useful solutions to this problem.
Security patterns, in particular, can be integrated in every stage of the software development life cycle
as a defense mechanism, to ensure that the implementation is sound and that it will effectively protect
the cyberphysical system from attacks.

Overall, the authors believe that this research is a step forward towards clarification of what is
needed to assess and measure security as a system property. As they say “there is no one size that fits
all”, the presented case studies shed some light on the subject by addressing the issue from a variety of
viewpoints. It is also clear that there is a need to create a better database to keep track of the security
problems we encounter, since way too often the problems are not being disclosed for a variety of
business or political reasons. While addressing most of these issues and finding answers to similar
questions are still the subject of intense research, this paper provides some uniformity in treating the
area of security measurement and can serve as a framework for further studies.

Acknowledgments: Janusz Zalewski acknowledges the 2015 Air Force Summer Faculty Fellowship at Rome Labs.
Part of this project was funded under a grant SBAHQ-10-I-0250 from the U.S. Small Business Administration
(SBA). SBA’s funding should not be construed as an endorsement of any products, opinions or services. Thanks
are due to Dawid Trawczynski for educating the authors about fault injection methods. Eduardo Fernandez is
gratefully acknowledged for his role in straightening the authors’ understanding of security patterns.

Author Contributions: All authors made significant contributions to the paper. Janusz Zalewski conceived the
concept, oversaw the development of case studies, and led the writing process. Ingrid Buckley conceived and
designed the security patterns; Bogdan Czejdo contributed to evaluation of time-triggered systems; Steven Drager
contributed to threat modeling; Andrew Kornecki was instrumental in conducting the availability case study;
Nary Subramanian proposed and applied the NFR approach. All authors have read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest. Cleared for public release on 29 February 2016:
Reference No. 88ABW-2016-0922. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of AFRL.

Information 2016, 7, 33 31 of 33

References

1. Herrmann, D.S. Complete Guide to Security and Privacy Metrics: Measuring Regulatory Compliance, Operational
Resilience and ROI; Auerbach Publications: London, UK, 2011.

2. Brotby, W.K.; Hinson, G. Pragmatic Security Metrics: Applying Metametrics to Information Security; CRC Press:
Boca Raton, FL, USA, 2013.

3. Atzeni, A.; Lioy, A. Why to Adopt a Security Metric? A Brief Survey. In Quality of Protection: Security
Measurements and Metrics; Gollmann, D., Massacci, F., Yautsiukhin, A., Eds.; Springer: New York, NY, USA,
2006; pp. 1–12.

4. Bayuk, J.; Mostashari, A. Measuring Systems Security. Syst. Eng. 2013, 16, 1–14. [CrossRef]
5. Performance Measurement Guide for Information Security; National Institute of Standards and Technology:

Gaithersburg, MD, USA, 2008.
6. Jansen, W. Directions in Security Metrics Research; National Institute of Standards and Technology:

Gaithersburg, MD, USA, 2009.
7. Barabanov, R.; Kowalski, S.; Yngström, L. Information Security Metrics: State of the Art; Swedish Civil

Contingencies Agency: Stockholm, Sweden, 2011.
8. A Community Website for Security Practitioners. Available online: http://www.securitymetrics.org

(accessed on 7 June 2016).
9. Hinson, G. Seven Myths about Security Metric. Available online: http://www.noticebored.com/html/

metrics.html (accessed on 7 June 2016).
10. Laird, L.M.; Brennan, M.C. Software Measurement and Estimation: A Practical Approach; John Wiley & Sons:

Hoboken, NJ, USA, 2006.
11. Department of Defense Trusted Computer Systems Evaluation Criteria; DoD 5200.28-STD; Department of Defense:

Washington, DC, USA, 1985.
12. Common Criteria for Information Technology Security Evaluation, Parts 1–3. Documents No. CCMB-2012-09-001,

002 and 003. Available online: http://www.commoncriteriaportal.org/cc/ (accessed on 7 June 2016).
13. ISO/IEC. ISO/IEC 15408 Information Technology—Security Techniques—Evaluation Criteria for IT Security—Part

1: Introduction and General Models; ISO/IEC: Geneva, Switzerland, 2009.
14. Bartol, N.; Bates, B.; Goertzel, K.M.; Winograd, T. Measuring Cyber Security and Information Assurance;

Information Assurance Technology Analysis Center (IATAC): Herndon, VA, USA, 2009.
15. Software Security Assessment Tools Review; Booz Allen Hamilton: McLean, VA, USA, 2009.
16. Chapin, D.A.; Akridge, S. How Can Security Be Measured? Inf. Syst. Control J. 2005, 2, 43–47.
17. Verendel, V. Quantified Security Is a Weak Hypothesis. In Proceedings of the NSPW’09, New Security

Paradigms Workshop, Oxford, UK, 8–11 September 2009; ACM: New York, NY, USA, 2009; pp. 37–50.
18. Littlewood, B.; Brocklehurst, S.; Fenton, N.; Mellor, P.; Page, S.; Wright, D.; Dobson, J.; McDermid, J.;

Gollmann, D. Towards Operational Measures of Computer Security. J. Comput. Secur. 1993, 2, 211–229.
[CrossRef]

19. International Electrotechnical Commission (IEC). Electropedia: The World’s Online Electrotechnical Vocabulary;
IEC: Geneva, Switzerland; Available online: http://www.electropedia.org/ (accessed on 7 June 2016).

20. ISO/IEC/IEEE. 2476-2010 Systems and Software Engineering—Vocabulary; ISO/IEC: Geneva, Switzerland,
2011. [CrossRef]

21. IEEE Software and Systems Engineering Vocabulary. Available online: http://computer.org/sevocab (accessed
on 7 June 2016).

22. National Information Assurance (IA) Glossary; Available online: https://www.ncsc.gov/nittf/docs/CNSSI-
4009_National_Information_Assurance.pdf (accessed on 7 June 2016).

23. Standards for Security Categorization of Federal Information and Information Systems; National Institute of
Standards and Technology: Gaithersburg, MD, USA, 2004.

24. Zalewski, J. Real-Time Software Architectures and Design Patterns: Fundamental Concepts and Their
Consequences. Ann. Rev. Control 2001, 25, 133–146. [CrossRef]

25. Mayr, O. Zur Frühgeschichte der technischen Regelungen; Oldenburg Verlag: München, Germany, 1969; (English
translation: The Origin of Feedback Control; MIT Press: Cambridge, MA, USA, 1970).

26. ISO/IEC. 27005-2011 Information Technology—Security Techniques—Information Security Risk Management;
International Organization for Standardization: Geneva, Switzerland, 2011.

http://dx.doi.org/10.1002/sys.21211
http://www.securitymetrics.org
http://www.noticebored.com/html/metrics.html
http://www.noticebored.com/html/metrics.html
http://www.commoncriteriaportal.org/cc/
http://dx.doi.org/10.3233/JCS-1993-22-308
http://www.electropedia.org/
http://dx.doi.org/10.1109/IEEESTD.2010.5733835
http://computer.org/sevocab
https://www.ncsc.gov/nittf/docs/CNSSI-4009_National_Information_Assurance.pdf
https://www.ncsc.gov/nittf/docs/CNSSI-4009_National_Information_Assurance.pdf
http://dx.doi.org/10.1016/S1367-5788(01)80001-8

Information 2016, 7, 33 32 of 33

27. National Physical Laboratory. History of Length Measurement; Teddington: Middlesex, UK; Available
online: http://www.npl.co.uk/educate-explore/posters/history-of-length-measurement/ (accessed on
8 June 2016).

28. Von Helmholtz, H. Zählen und Messen: Erkentnisstheoretisch betrachtet. In Philosophische Aufsätze: Eduard
Zeller zu seinem fünfzigjährigen Doctorjubiläum gewidmet; Fues Verlag: Leipzig, Germany, 1887; pp. 17–52,
(English translation: Counting and Measuring; Van Nostrand: New York, NY, USA, 1980).

29. Definitions of the SI Base Units; National Institute of Standards and Technology: Gaithersburg, MD, USA.
Available online: http://physics.nist.gov/cuu/Units/current.html (accessed on 8 June 2016).

30. Andreas, B.; Azuma, Y.; Bartl, G.; Becker, P.; Bettin, H.; Borys, M.; Busch, I.; Fuchs, P.; Fujii, K.; Fujimoto, H.
Counting the Atoms in a 28Si Crystal for a New Kilogram Definition. Metrologia 2011, 48, S1–S13. [CrossRef]

31. Evans, D.; Stolfo, S. The Science of Security. IEEE Secur. Priv. 2011, 9, 16–17. [CrossRef]
32. Glimm, J.; Sharp, D.H. Complex Fluid Mixing Flows: Simulation vs. Theory vs. Experiment. SIAM News

2006, 39, 12.
33. Longman, R.W. On the Interaction Between Theory, Experiments, and Simulation in Developing Practical

Learning Control Algorithms. Intern. J. Appl. Math. Comput. Sci. 2003, 13, 101–111.
34. Zalewski, J.; Kornecki, A.J.; Wierzchon, S. Reasoning under Uncertainty with Bayesian Belief Networks

Enhanced with Rough Sets. Int. J. Comput. 2013, 12, 135–146.
35. Kornecki, A.J.; Zalewski, J. Experimental Evaluation of Software Development Tools for Safety-Critical

Real-Time Systems. Innov. Syst. Softw. Eng. A NASA J. 2005, 1, 176–188. [CrossRef]
36. Baquero, A.; Kornecki, A.J.; Zalewski, J. Threat Modeling for Aviation Computer Security. CrossTalk J. Def.

Softw. Eng. 2015, 28, 21–27.
37. International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM), 3rd ed.; Report

JCGM 200:2012; BIPM Joint Committee for Guides in Metrology: Sèvres, France, 2012.
38. Mell, P., Scarfone, K., Romanosky, S., Eds.; CVSS—A Complete Guide to the Common Vulnerability Scoring

System; Version 2.0.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007; Available
online: http://www.first.org/cvss/cvss-guide (accessed on 8 June 2016).

39. National Vulnerability Database; Version 2.2. National Institute of Standards and Technology: Gaithersburg,
MD, USA. Available online: http://nvd.nist.gov/ (accessed on 8 June 2016).

40. Wang, J.A.; Wang, H.; Guo, M.; Xia, M. Security Metrics for Software Systems. In Proceedings of the ACM-SE
’09, 47th Annual Southeast Regional Conference, Clemson, SC, USA, 19–21 March 2009. Article No. 47.

41. Kornecki, A.J.; Zalewski, J.; Stevenson, W. Availability Assessment of Embedded Systems with Security
Vulnerabilities. In Proceedings of the SEW-34, 2011 IEEE Software Engineering Workshop, Limerick, Ireland,
20–21 June 2011; pp. 42–47.

42. Cooperative Adaptive Cruise Control (CSE491–602 Class Projects), 2006. Available online: http://www.cse.
msu.edu/~chengb/RE-491/Projects/cacc_msu-ford.pdf (accessed on 8 June 2016).

43. Stevenson, W. Evaluating the Impact of Adding Security to Safety Critical Real-Time Systems; Graduate Research
Project, Embry-Riddle Aeronautical University: Daytona Beach, FL, USA, 2010.

44. Relex/Windchill Reliability Prediction Tool; PTC Product Development Company: Needham, MA, USA;
Available online: http://www.ptc.com/products/relex/reliability-prediction (accessed on 8 June 2016).

45. Swiderski, F.; Snyder, W. Threat Modeling; Microsoft Press: Redmond, DC, USA, 2004.
46. Zalewski, J.; Drager, S.; McKeever, W.; Kornecki, A. Threat Modeling for Security Assessment in

Cyberphysical Systems. In Proceedings of the CSIIRW 2013, 8th Annual Cyber Security and Information
Intelligence Workshop, Oak Ridge, FL, USA, 8–10 January 2013. Article No. 10.

47. Ingalsbe, J.A.; Kunimatsu, L.; Baten, T.; Mead, N.R. Threat Modeling: Diving into the Deep End. IEEE Softw.
2008, 25, 28–34. [CrossRef]

48. Aijaz, A.; Bochow, B.; Dötzer, F.; Festag, A.; Gerlach, M.; Kroh, R.; Leinmüller, T. Attacks on Inter Vehicle
Communication Systems—An Analysis. In Proceedings of the WIT2006, 3rd International Workshop on
Intelligent Transportation, Hamburg, Germany, 14–15 March 2006; pp. 189–194.

49. Vestlund, C. Threat Analysis on Vehicle Computer Systems. Master’s Thesis, Linköping University,
Linköping, Sweden, 2010.

50. Common Industrial Control System Vulnerability Disclosure Framework, 2012. Available online:
http://www.us-cert.gov/ (accessed on 8 June 2016).

http://www.npl.co.uk/educate-explore/posters/history-of-length-measurement/
http://physics.nist.gov/cuu/Units/current.html
http://dx.doi.org/10.1088/0026-1394/48/2/S01
http://dx.doi.org/10.1109/MSP.2011.50
http://dx.doi.org/10.1007/s11334-005-0013-1
http://www.first.org/cvss/cvss-guide
http://nvd.nist.gov/
http://www.cse.msu.edu/~chengb/RE-491/Projects/cacc_msu-ford.pdf
http://www.cse.msu.edu/~chengb/RE-491/Projects/cacc_msu-ford.pdf
http://www.ptc.com/products/relex/reliability-prediction
http://dx.doi.org/10.1109/MS.2008.25
http://www.us-cert.gov/

Information 2016, 7, 33 33 of 33

51. Czejdo, B.; Zalewski, J.; Trawczynski, D.; Baszun, M. Designing Safety-Critical Embedded Systems with
Time-Triggered Architecture. Technol. Railw. Transp. (TTN—Technika Transportu Szynowego, Poland) 2013, 19,
2265–2276.

52. Trawczynski, D.; Zalewski, J.; Sosnowski, J. Design of Reactive Security Mechanisms in Time-Triggered
Embedded Systems. SAE Intern. J. Passeng. Cars Electron. Electr. Syst. 2014, 7, 527–535. [CrossRef]

53. Arlat, J.; Crouzet, Y.; Karlsson, J.; Folkesson, P. Comparison of Physical and Software-Implemented Fault
Injection Techniques. IEEE Trans. Comput. 2003, 52, 1115–1133. [CrossRef]

54. Trawczynski, D. Dependability Evaluation and Enhancement in Real-Time Embedded Systems. Ph.D. Thesis,
Warsaw University of Technology, Warsaw, Poland, 2009.

55. Rothbart, K.; Neffe, U.; Steger, C.; Weiss, R. High Level Fault Injection for Attack Simulation in Smart Cards.
In Proceedings of the ATS 2004, 13th IEEE Asian Test Symposium, Kenting, Taiwan, 15–17 November 2004;
pp. 118–121.

56. Computer Science and Telecommunications Board. Embedded Everywhere: A Research Agenda for Networked
Systems of Embedded Computers; National Research Council: Washington, DC, USA, 2001.

57. TTTechComputertechnik AG. TTP-Powernode—Development Board. Product Description. Available online:
http://www.tttech.com/products/ttp-product-line/ttp-powernode (accessed on 8 June 2016).

58. MathWorks. Simulink. Product Description. Available online: http://www.mathworks.com/products/
simulink/ (accessed on 8 June 2016).

59. Subramanian, N.; Zalewski, J. Quantitative Assessment of Safety and Security of System Architectures for
Cyberphysical Systems Using the NFR Approach. IEEE Syst. J. 2016, 10, 397–409. [CrossRef]

60. Buckley, I.A.; Fernandez, E.B.; Anisetti, M.; Ardagna, C.A.; Sadjadi, M.; Damiani, E. Towards Pattern-based
Reliability Certification of Services. In Proceedings of the DOA-SVI’11, 1st International Symposium on
Secure Virtual Infrastructures, Hersonissos, Greece, 17–21 October 2011; Lecture Notes in Computer Science
7045, Part II. Springer: Berlin/Heidelberg, Germany, 2011; pp. 558–574.

61. Buckley, I.A.; Fernandez, E.B. Patterns Combing Reliability and Security. In Proceedings of the Third
International Conference on Pervasive Patterns and Applications, Rome, Italy, 25–30 September 2011.

62. Schmidt, D.; Stal, M.; Rohnert, H.; Buschmann, F. Pattern-Oriented Software Architecture. In Patterns for
Concurrent and Networked Objects; John Wiley & Sons: New York, NY, USA, 2000; Volume 2.

63. Fernandez, E.B. Security Patterns in Practice: Designing Secure Architectures Using Software; John Wiley & Sons:
New York, NY, USA, 2013.

64. Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M. Pattern-Oriented Software Architecture: A
System of Patterns; John Wiley & Sons: New York, NY, USA, 1996; Volume 1.

65. Buckley, I.A.; Fernandez, E.B. Enumerating software failures to build dependable distributed applications. In
Proceedings of the HASE 2011, 13th IEEE International Symposium on High Assurance Systems Engineering,
Boca Raton, FL, USA, 10–12 November 2011; pp. 120–123.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4271/2014-01-0341
http://dx.doi.org/10.1109/TC.2003.1228509
http://www.tttech.com/products/ttp-product-line/ttp-powernode
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://dx.doi.org/10.1109/JSYST.2013.2294628
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Security as a System Property
	Cyberphysical Systems
	Principles of Measurement
	Hermann von Helmholtz’s Concept of Measurement
	Lessons from Measurements in Physics
	Defining the Measurement Process
	Guidelines for Applying the Process

	Case Studies
	Case Study #1: Using Markov Chains
	Methodology: Markov Model
	Cooperative Adaptive Cruise Control
	Experimental Results
	Summary of the Measurement Process

	Case Study #2: Threat Modeling
	Outline of Threat Modeling
	Inter Vehicle Communication (IVC)
	Experimental Results
	Summary of the Measurement Process

	Case Study #3: Fault Injection in Time-Triggered Systems
	Fault Injection Method B52-information-07-00033
	Brake-by-Wire System B51-information-07-00033
	Simulation and Quantitative Analysis
	Summary of the Measurement Process

	Case Study #4. Non-Functional Requirements
	Outline of the NFR Approach B59-information-07-00033
	SCADA Installation
	Applying the NFR Approach
	Summary of the Measurement Process

	Case Study #5: Security Patterns
	Overview of Security Patterns
	Example of Web Services
	Security and Reliability Certificates Checking
	Outline of the Measurement Process

	Conclusions

