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Abstract: Proofs of Retrievability (PoR) is one of the basic functions of electronic evidence 

preservation center in cloud. This paper proposes two PoR schemes to execute the workflow 

of evidence preservation center, which are named Finer Grained Proofs of Retrievability 

(FG-PoR) and More Lightweight Proofs of Retrievability (ML-PoR). The two PoR schemes 

do not use multi-replication technology or erasure code technology, but employ the 

verification tags and signatures to implement provable data possession and data recovery 

dual functions. When some data blocks have been lost in Archive Storage Area (ASA),  

FG-PoR can recover each data block of evidence matrix, but ML-PoR can only recover a 

column of evidence matrix. The analysis results show our two PoR schemes do not only 

provide the integrity verification guarantee but also have robust recovery guarantee to 

electronic evidence in cloud. The two schemes can allow for lower computation and storage 

costs than other similar schemes; moreover, ML-PoR can provide lower costs than FG-PoR. 

Keywords: cloud storage; proofs of retrievability; Nyberg-Rueppel signature; electronic 

evidence preservation; computation and storage costs 
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1. Introduction 

In a general operating environment, electronic evidence is derived from systematic data and 

network data. Systematic data include system logs, audit records, temporary or hidden files, hard disk 

drive exchange partition, etc. Network data include logs of firewall, Intrusion Detection Systme (IDS), 

and router, E-mail information, real-time chats, network monitoring records, etc. Electronic evidence 

may provide massive information and resource bases in various forms. In cloud computing 

environments, it provides users with flexible services in a transparent manner. One fundamental aspect 

of service is that data is being centralized or outsourced into a “cloud”, which is a collection of devices 

and resources connected through the Internet. Electronic evidence is a special kind of data, and it must 

be integrated before it is sent to a court of law. When it is being collected from the cloud, it should be 

fixed in a specific form and stored safely on the local or cloud server so as to prevent them from being 

destructed by nature and man. This operating process is called electronic evidence preservation [1]. 

Cloud forensics is a cross discipline of cloud computing and electronic forensics. Cloud computing 

is a shared collection of configurable networked resources (e.g., networks, servers, storage, 

applications and services) that can be reconfigured quickly with minimal effort [2]. Electronic 

forensics is the application of computer science principles to recover electronic evidence for 

presentation in a court of law [3]. Cloud forensic investigations are likely to involve evidence 

acquisition, preservation and analysis in a cloud. From the investigators’ perspective, storing electronic 

evidence remotely in a cloud in a flexible, on demand manner brings appealing benefits: relief of the 

burden of storage management, access to data with independent geographical locations, and avoiding 

capital expenditure on hardware, software and personnel maintenance [4]. Also, it can reduce the 

litigants to the objectivity of the evidence, simplify the review procedure of evidence in court, and 

effectively assess the fairness and justice in the administration. 

While cloud computing makes these advantages more appealing than ever, it also brings new and 

challenging security threats to the outsourced electronic evidence. On one hand, electronic evidence 

has its own vulnerability, such that it can more easily be deleted, forged, altered and removed than 

traditional printed evidence. On the other hand, cloud computing is open and has a virtual operation 

environment for all users. When the outsourced electronic evidence is stored to a cloud, it might be 

unclear as to where evidence is processed within the cloud, and such processing might occur in 

different jurisdictions. Once electronic evidence is extracted from the cloud and is sent to the court, it 

must be true, reliable and integrated, in accord with legal requirements [5]. So how to ensure the 

integrity of electronic evidence in cloud is a considerable challenge to both cloud service providers and 

research institutes. 

2. Related Work 

When the users send their data to the Cloud Storage Server (CSS), they should pay a fee to obtain 

an appropriate storage space to preserve their data. The CSS is not fully trusted because the storage 

devices are under the control of the Cloud Service Provides (CSP), not the users. The importance of 

ensuring the integrity of data in untrusted storage servers has been highlighted by some researchers, 

and they have proposed two basic schemes to check the availability and integrity of cloud storage data. The 
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two basic schemes are called provable data possession (PDP) [6] and proofs of retrievability (PoR) [7]. A 

PDP scheme can only verify the integrity of a file on the server, but cannot ensure the retrievability of 

a file [8]. However, a PoR scheme is a challenge response protocol. In the protocol, the server can 

demonstrate to the client that a file is intact and retrievable without any loss and corruption. 

The provable data possession (PDP) scheme was built upon by Ateniese et al. [6]. In the scheme, 

the user could utilize RSA-based homomorphic tags to challenge the server. The server proved 

possession of the file by sending back a few randomly sampled blocks of the file. In a subsequent 

study, Curtmola et al. [9] described a multiple replica PDP (MR-PDP) scheme, which ensured that 

multiple replicas of the user’s files were stored at the untrusted storage server. Barsoum [10] 

constructed two efficient multi-copy PDP (EMC-PDP) protocols which were called Deterministic 

EMC-PDP (DEMC-PDP) and Probabilistic EMC-PDP (PEMC-PDP). PEMC-PDP depended on spot 

checking by validating a random subset of the file blocks instead of validating all the blocks in  

DEMC-PDP to reduce computation and storage overhead. 

The proofs of retrievability (PoR) scheme was first proposed by Juels et al. [7], and this scheme 

used spot-checking and error-correcting codes to ensure both “possession” and “retrievability” of the 

files on remote servers. Shacham and Waters [11] also proposed a PoR scheme. In this scheme, the file 

was encoded using erasure code and was split into some blocks. The server used homomorphic 

algorithm to compact all data tags into a short tag, and it was taken as the response to the client. 

Bowers et al. [8] introduced a retrievable scheme for cloud storage data, which permitted a set of 

servers to prove to a client that a stored file was intact and retrievable. In [2], Cong Wang et al. utilized 

the homomorphic token to ensure the integrity of erasure-coded data with additional feature of data 

error localization. In a subsequent work, Qian Wang et al. [12] allowed a third party auditor to verify 

the integrity of the data stored in cloud based on Merkle hash tree. 

To cloud forensics, several works have already been published in this field. Wolthusen [13] noted 

that when attempting to locate evidence in a distributed and complex environment such as the cloud, 

the distributed and virtual nature of the cloud would likely increase the difficulty of evidence 

collection, making tracing activity and re-construction of evidence more challenging. Grispos et al. [14] 

analyzed how established digital forensic procedures would be invalidated and discussed several new 

research challenges in the cloud environment. Birk and Wegener [15] assessed whether it was possible 

for the customer of cloud computing services to perform a traditional digital investigation from a 

technical point of view. Furthermore, they discussed possible solutions and possible new 

methodologies helping customers to perform such investigations. 

In above works, literature [6,12] were the PDP schemes. They could only check the integrity of the 

file through the server sending back random samples of the file. Literature [2,7,8,11] were all the PoR 

schemes based on erasure codes. They used erasure codes technology to compact many data blocks 

into fewer redundancy. This approach added storage costs of redundant data and computation costs of 

encoding and decoding. Literature [9,10] were the PoR schemes based on multiple replica. In the two 

schemes, each data object needed to be created some copies, and the size of data objects and their 

copies were the same. Unfortunately, the storage costs of the copies in the two schemes was too high. 

Literature [13,14] discussed the potential benefits and challenges of cloud computing for electronic 

forensic investigations. Literature [15] mentioned possible solutions and methodologies of technology 

to face the challenges. But these three papers [13–15] did not all provide technical detail on how to 
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solve the problem. This paper proposes two verification schemes of retrievability for preservation of 

electronic evidence in cloud computing environment. The two schemes are kept light-weight by employing 

verification tags and signatures with neither the use of erasure codes nor the use of mutiple-replica. 

3. An Electronic Evidence Preservation Center in Cloud 

Due to outdated equipment and the lack of technical support, it is impossible that electronic 

evidence could be preserved perfectly by the courts or the public security organs. This means 

electronic evidence will usually be stored in a special preservation center. In general, a traditional 

electronic evidence preservation center uses some technologies, such as encryption algorithm, digital 

signature, time stamp and digital digest to ensure the security of electronic evidence [1]. In a cloud 

computing environment, except for these conventional technologies, privacy protection, PDP and PoR 

technologies should be considered in a preservation center. This paper designs two PoR schemes for 

application in a cloud preservation center for electronic evidence. The architecture of the electronic 

evidence preservation center is shown in Figure 1. 

Figure 1. The architecture of electronic evidence preservation center in cloud. 

 

From Figure 1, the preservation center contains multiple functional areas: Center Management Area 

(CMA), Classification Preservation Area (CPA), Archive Storage Area (ASA), Evidence Recovery 

Area (ERA). When Law Authorities or Users (LAU) send electronic evidence to the preservation 

center, they only interact with the CMA, so it will greatly improve the work efficiency. 

3.1. Center Management Area (CMA) 

In the electronic evidence preservation center, electronic evidence would be stored using a 

classification storage method by the CPA. Each evidence file is divided into fixed-size chunks, and 

ASA will store these chunks. Each chunk will be assigned a label at the time of creation. The CMA 

stores all metadata associated with classification evidence. Also, the CMA provides the services of 

electronic evidence reception, notary and forensic services for the law authorities and users (LAU), 

which is an external service window of the electronic evidence preservation center. Moreover, it 
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executes business process supervision and coordination and management to other function areas. It 

will be taken as a Trusted Audit Center (TAC) in our PoR schemes. 

3.2. Classification Preservation Area (CPA) 

If the CMA has received electronic evidence from the LAU, it will forward the evidence to CPA to 

store temporarily. When electronic evidence has been collected from selected mobile devices, 

including mobile phones, MP3/4, PDA, etc., it will be recorded as mobile terminal equipment evidence 

to be preserved. When electronic evidence is extracted from computer systematic data, including a 

system log, audit records, temporary files, exchange files, or hidden files, it will be recorded as 

computer system evidence to be preserved. When electronic evidence has been collected from all kinds 

of private computers, notebook computers, storage servers, or the hard drives of this equipment, it will 

be collected as hardware equipment evidence to be preserved. Electronic evidence may be attained 

from network servers and hosts, such as webpage browsing historical records, cookies, favorites, cache 

information, etc. It may also be attained from network communication data including logs of firewalls, 

IDS, routers, Email information, real-time chat and network monitoring records, etc. This evidence 

will be recorded as online network evidence to be preserved. After electronic evidence has been 

classified over a long time span in the CPA, it will be divided into chunks to be sent to the ASA. The 

CPA will store the metadata of all chunks, such as the tables, mapping the labels to chunk locations.  

3.3. Archive Storage Area (ASA) 

In this area, there are some Chunk Storage Servers (CSS) 1 2, , , nA A A  in the cloud. These servers 

will store all chunks of the evidence file, and each chunk is split into some blocks. In FG-PoR schemes, 

each block has a corresponding tag, and all blocks and tags will be stored in the ASA. The ASA will 

provide safe, reliable, efficient storage services for massive electronic evidence in the cloud. When the 

CMA asks the CPA about the integrity of a stored evidence file, the CPA will query the metadata for 

the locations of the desired chunks and construct proofs of retrievability to prove that the file is intact 

and retrievable. 

3.4. Evidence Recovery Area (ERA) 

When the LAU needs their electronic evidence, it sends a request message to the CMA. The CMA 

accesses the chunks of evidence file by querying the CPA for the locations of the desired chunks; if the 

chunks are not being operated on, the CPA replies with the locations, and the CMA then contacts the 
ERA. The ERA retrieves the evidence from CSS 1 2, , , nA A A , and uses hash function to check the 

integrity of the evidence file. Then it sends the evidence to the CMA, and further forwards it to the 

LAU. The CMA could also check the integrity of the evidence file by running verifying algorithm 

VeriResp( ). If the ERA or the CMA has found some error data blocks of the evidence matrix, the ERA 

will use the retrieved algorithm RetrData( ) to recover these data blocks. 
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4. Proofs of Retrievability for Electronic Evidence 

From Figure 1, we know that CPA, ERA and CMA will coordinate to ensure the integrity and 

retrievability of electronic evidence. Moreover, the CMA will play the role of Trusted Audit  

Center (TAC) in collaboration. The workflow of LAU, CPA, ASA, ERA and CMA as the five 

functional areas is shown in Figure 2.  

Figure 2. The workflow of five functional areas. “Send( )” means that the sender sends the 

evidence file to the receiver; “Requ( )” means that the sender sends the request message to 

the receiver; “Chal( )” means that one side sends the challenge message to the other side; 

“Resp( )” means that one side sends the response values to the other side; “Query” means 

that the CPA or the ERA queries chunks of the ASA; “Feedback” means that the ASA 

gives feedback messages of chunks and blocks. 

 

In our work, we provide two PoR schemes: Finer Grained Proofs of Retrievability (FG-PoR) and 

More Lightweight Proofs of Retrievability (ML-PoR) to execute the workflow of the electronic 

evidence preservation center. There are six algorithms in the three functional areas of CPA, ERA and 

CMA. The CMA has three algorithms TagSigGen( ), KeyGen( ), and VeriResp( ); the CPA has an 

algorithm RespGen( ); the ERA has two algorithms RetrData( ) and VeriHash( ). These six algorithms 

will be described in Section 4.1. It is assumed the LAU has an evidence file B  and will send it to the 

ASA to store. The CMA will send challenge message Chal( ) to the CPA so as to make regular checks 

on the integrity and availability of electronic evidence at appropriate intervals. The CPA will query the 

metadata for the locations of the challenged chunks and compute response values to send back to the 

CMA. When the CMA has found out some data blocks are incorrect, it will tell the information to the 

ERA, then the ERA uses retrieved algorithm RetrData( ) to recover electronic evidence. When all 

incorrect data blocks have been recovered, the ERA will send them back to the ASA again. 
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4.1. Notation and Preliminaries 

Let B  be an electronic evidence file: it is divided into n  chunks, and each chunk is split into m  

blocks: , 1
1

{ }i j i n
j m

B b  
 

 , where each block *
,i j pb Z . These evidence blocks may be expressed in the 

following matrix form 

1,1 ,1

1, ,

n

m n m

b b

B

b b

 
   
 
 


  


 (1) 

In execution processes of the workflow of five functional areas, our two schemes FG-PoR and  

ML-PoR both consist of six algorithms. We start with the precise definition of FG-PoR scheme and 

ML-PoR scheme. 

Definition 1. FG-PoR scheme and ML-PoR scheme are both collection of six polynomial-time 

algorithms (KeyGen, TagSigGen, RespGen, VeriResp, VeriHash, RetrData) such that: 
( , )pk sk KeyGen( ). This algorithm is run by the CMA to generate public key pk  and private 

key sk . 
( , )S  TagSigGen ( , )sk B . This algorithm is run by the CMA. It takes as input the private key sk  

and the evidence blocks set B , and outputs the tags set   and signatures set S . 
( )R  RespGen ( , )B   . This algorithm is run by the CPA. It takes as input the evidence blocks 

subset B  and the tags subset  , and returns a response value R  as output. It will query the ASA 

whether the ASA is actually storing all evidence blocks intact or not. 
(0,1) VeriResp ( , , )pk R S . This algorithm is run by the CMA. It takes as input the public key pk , 

the response value R  and signatures subset S , It will output 1 if the integrity of all evidence blocks is 

verified, otherwise will output 0. 
(0,1) VeriHash(H,H′). This algorithm is run by the ERA. It takes as input two sets of hash values 

of evidence blocks H  and H′. H  is saved previously, and H′ is computed when it is needed. If H  and 

H′ are equal, outputs 1, otherwise outputs 0. 
( )B  RetrData(Ω′,S′). This algorithm is run by the ERA. It takes as input the set of tags Ω′ and the 

set of signatures S′ of the error evidence blocks returned from the ASA, and outputs the correct 

evidence blocks B . 

4.2. Nyberg-Rueppel Signature Scheme  

The Nyberg-Rueppel signature scheme first appeared in the literature in [16], named after its 

authors K. Nyberg and R.A. Rueppel. Its security is based on the intractability of discrete logarithm 

problem. Camenisch et al. [17] described this scheme as follows: 
The parameters consist of a prime p , a prime factor q  of 1p  , and an element *

pg Z  of order q . 

The signer’s private key is a random element qx Z , while the corresponding public key is modxy g p . 

To sign a message pm Z , the signer selects qr Z  at random and computes r  and s as follows: 

)(mod pmgu r  



Information 2013, 4 269 

 
)(mod qrxus   

The pair ( , )u s  is the signature of the message m . The signer sends the message m  and the 

signatures ( , )u s  to the receiver. 

When the receiver has received m  and the signatures ( , )u s , to verify the validity of a signature, it 

checks that the following equality holds: 

)(mod puygm us  

If the equation is true, then the signature is valid. Otherwise, the signature is invalid. 

4.3. Finer Grained Proofs of Retrievability (FG-PoR) 

We propose two schemes, Finer Grained Proofs of Retrievability (FG-PoR) and More Lightweight 

Proofs of Retrievability (ML-PoR), which are both based on the Nyberg-Rueppel signature scheme. 

The execution processes of FG-PoR consist of the following six steps. Before describing the execution 

processes, we first give a definition for FG-PoR scheme. 

Definition 2. A FG-PoR scheme built on the six algorithms (KeyGen, TagSigGen, RespGen, 

VeriResp, VeriHash, RetrData) can guarantee data possession. Also, it can recover each data block of 

all chunks of the evidence file. 

4.3.1. Key Generation 

The CMA runs the KeyGen( ) algorithm to generate key pair ( , )pk sk . Chooses two primes p  and 

q , q  is a factor of 1p  , and an element *
pg Z  of order q . Chooses a secret random element *

qx Z , 

and sets modxy g p . Chooses a secret key 1 {0,  1}lk  , l  is the length of the key 1k . Thus the secret 

key is 1{ , }sk x k  and the public key is { , , , }pk p q g y . 

4.3.2. Tags and Signatures Generation 

Given evidence blocks , 1
1

{ }i j i n
j m

B b  
 

 , the CMA runs the TagSigGen( ) algorithm to create a tag ,i j

and a signature ,i js  for each block ,i jb  as 

,

, , (mod )i jr

i j i jb g p  , , , , (mod )i j i j i js x r q  , (1 ),(1 )i n j m     (2) 

where 
1, ( )i j kr f i j  *

qZ (1 ),(1 )i n j m    , ( )f   is a pseudo-random function. The tags set may 

be expressed in the following matrix form 

1,1 ,1

1, ,

n

m n m

 

 

 
    
 
 


  


 (3) 

The CMA sends the set of evidence blocks , 1
1

{ }i j i n
j m

B b  
 

  and the set of corresponded tags 

, 1
1

{ }i j i n
j m

  
 

   to the CPA; the CPA categorizes the chunks and sends all blocks to the ASA, and only 

saves metadata of the chunks on it. Then the CMA computes , ,( )i j i jh h b (1 ),(1 )i n j m     and sends 
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hash values set , 1

1

{ }i j i n
j m

H h  
 

  to the ERA. Finally, the CMA deletes all copies of B ,   and H . It 

preserves only signatures set , 1
1

{ }i j i n
j m

S s  
 

  and metadata of the evidence file on its own storage. The 

storage distribution of the electronic evidence blocks and their tags on the CSS of the ASA is given in 

Figure 3. 

Figure 3. The storage distribution of evidence blocks and tags on the Chunk Storage 

Servers (CSS) in Finer Grained Proofs of Retrievability (FG-PoR). 

 

4.3.3. Challenge Choice 

After the CMA has sent challenge values to the CPA, and the CPA has given back response values 

to the CMA, the CMA will check the integrity of all evidence blocks by the response values. The 
challenge values are 2 3 4( , , , , , )IDChal E c d k k k , where IDE  is the identity number of the evidence file B , 

and it may be expressed as || ||IDE evidencename n m . c  is the number of challenged columns of the 

evidence matrix, 1 c n  . d  is the number of challenged rows of the evidence matrix, 1 d m  .

2 3 4, , {0,1}lk k k   are three fresh keys and are chosen randomly for each challenge.  

Let ( )f   be a pseudo-random function, ( )   be a pseudo-random permutation. At each challenge, 

both the CMA and the CPA use key 2k  to generate indices of challenged columns 
2
( )t ki t  

(1 ,   1 )tt c i n    , also use key 3k to generate indices of challenged rows 
3
( )kj    

(1 ,   1 )d j m    . They further use key 4k to derive c d coefficients
4, ( )

ti j k tf i j
    *

qZ , 

(1 ,   1 )tt c i n    , (1 ,   1 )d j m    . 

4.3.4. Response Generation 

The CPA runs the RespGen( ) to generate response values to prove that the ASA is still preserve all 
evidence blocks intact. The ASA has held evidence blocks , 1

1

{ }i j i n
j m

B b  
 

 and corresponded tags 

, 1
1

{ }i j i n
j m

  
 

   in Section 4.3.2. Grounded on indices of challenged columns and rows ti , j , the CPA 

chooses subset of evidence blocks , 1
1

{ }
ti j t c

d

B b



 
 

  and subset of tags , 1
1

{ }
ti j t c

d



  

 
   from the ASA by 

querying the metadata of evidence chunks, then it generates response values ( , , )R v   based on B  and 

. 
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The subset of evidence blocks B  and the subset of tags   may be expressed in the following 

matrix form 

1 1 1

1

, ,

, ,

c

d c d

i j i j

i j i j

b b

B

b b

 
 

  
 
 


   


,

1 1 1

1

, ,

, ,

c

d c d

i j i j

i j i j

 

 

 
 

   
 
 


   


 (4) 

The computational processes of response values ( , , )R v  are as follows 

,

,
1 1

( ) (mod )i jt

t

c d

i j
t

p







 
 

 , ,

,
1 1

( ) (mod )i jt

t

c d

i j
t

b p








 

 , , ,
1 1

(mod )
t t

c d

i j i j
t

v q
 



 
 

  , ( )H   (5) 

The CPA takes response values ( , , )R v   as a proof that the ASA possesses electronic evidence B , 

finally the CPA sends ( , , )R v   to the CMA. 

4.3.5. Response Verification  

After the CMA has received response values ( , , )R v   from the CPA, it takes out indices of 

challenged columns ti , challenged rows j , and coefficients ,ti j
 . Then the CMA chooses the subset 

of signatures , 1
1

{ }
ti j t c

d

S s



 
 

  from the set of signatures , 1
1

{ }i j i n
j m

S s  
 

  which has been saved previously. 

Further, the CMA computes  

, ,
1 1

(mod )
t t

c d

i j i j
t

w s q
 




 

   (6) 

Now it runs verify algorithm VeriResp( ) to check the following equation 

( (mod ))?v wH y g p 


 (7) 

If the above equation is true, the verify algorithm returns 1, the CMA believes that the ASA 

preserves well evidence blocks set B . Otherwise, the verify algorithm returns 0. 

The above equation holds because: 

, ,
,1 1

, ,
, ,1 1

,
1 1

,
1 1

(mod )

( ) (mod )

( ) (mod )

c d

i j i jt t
i jt t

t

c d

i j i jt t
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x c d
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i jt t

t

c d c d

i j i j i j i jt t t t
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t

x r c d
w

i j
t

s sc d

i j
t

g b g p
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 



   
  


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
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
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




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






 






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Further 

( (mod )) ( )v wH y g p H      

4.3.6. Evidence Retrieve 

At a later time, the LAU needs its evidence file B , it sends a request message Requ ( )IDE  to the 

CMA. The CMA will forward message Requ ( )IDE  to the CPA and the ERA. The ERA queries the 

chunks and the blocks of the evidence file from the ASA. After the ERA has got feedback message 
' '

, 1
1

{ }i j i n
j m

B b  
 

 , it will use hash function to compute the hash value of each element of evidence matrix 

'B to get the set ' '
, 1

1

{ }i j i n
j m

H h  
 

 . Each element of the set 'H is calculated as following 

' '
, ,( )i j i jh h b (1 ),(1 )i n j m     (8) 

The ERA runs VeriHash( ) algorithm to compare the set of hash values 
' '

, 1
1

{ }i j i n
j m

H h  
 

  with 

, 1
1

{ }i j i n
j m

H h  
 

 , which has been saved in Section 4.3.2. If 'H H , then 'B B , it means that all evidence 

blocks are intact. If one or several hash values of the set are not equal, then this means that these 

evidence blocks may have been altered in network transmitting or on the ASA storage. In Section 4.3.5, 

when the verify algorithm returns 0, it shows also that some evidence blocks may be incorrect in  

the ASA. 

Assume checked out evidence block '
, ,t tb b  , in order to get original evidence block ,tb  , the 

ERA queries its tag ,t   from the ASA, and asks the CMA to send back corresponding signature ,ts  . 

As long as tag ,t  and ,ts   are not damaged, the ERA will use RetrData( ) algorithm to recover 

evidence block ,tb   
, ,

, , (mod )t ts
t tb g y p 
  ( [1,2, ], [1,2, ])t n m    (9)

In fact 

, ,

, , , ,

, , , ,

,

( )

,

( )
,

,

(mod )

(mod )

(mod )

t t

t t t t

t t t t

s
t

x r r

t

x r x r
t

t

g y p

g y b g p

g g b g p

b

 

   

   




 


 






 

 







  

4.4. More Lightweight Proofs of Retrievability (ML-PoR) 

We modify FG-PoR scheme to attain a More Lightweight Proofs of Retrievability (ML-PoR) 

scheme. It consists of the following six steps, but it has a weaker recovery guarantee than FG-PoR. We 

give a definition for ML-PoR scheme that is described as follows. 

Definition 3. A ML-PoR scheme built on the six algorithms (KeyGen, TagSigGen, RespGen, 

VeriResp, VeriHash, RetrData) can guarantee data possession, and it can recover each chunk of the 

evidence file. 
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4.4.1. Key Generation 

Key generation is the same as FG-PoR, and the secret key is 1{ , }sk x k  and the public key is
{ , , , }pk p q g y . 

4.4.2. Tags and Signatures Generation 

Let ( )f   be a pseudo-random function, the CMA uses secret key 1k  to derive random sequence 

1
( )j kr f j (1 )j m   (10) 

Given the evidence blocks , 1
1

{ }i j i n
j m

B b  
 

 , the CMA computes 

1, 2, ,, ,j j j n jB b b b    (1 )j m   (11) 

The CMA runs the TagSigGen( ) algorithm to create a tag and a signature for each jB  as 

(mod )jr

j jB g p  , (mod )j j js x r q  (1 )j m   (12) 

Further, the CMA computes hash value for each column of evidence matrix B  as 

,1 ,2 ,( || ||, ,|| )i i i i mh h b b b  (1 )i n   (13) 

Here, the storage distribution of the electronic evidence blocks and their tags on the CSS of the 

ASA is shown in Figure 4. 

Figure 4. The storage distribution of evidence blocks and tags on the Chunk Storage 

Servers(CSS) in More Lightweight Proofs of Retrievability (ML-PoR). 

 

4.4.3. Challenge Choice 

Here, challenge values are 3 4( , , , )IDChal E d k k . Both the CMA and the CPA use ( )   keyed with 3k  

to generate indices of challenged rows 
3
( )kj    (1 ,   1 )d j m    , and use ( )f   keyed with 4k  to 

derive coefficients 
4
( )j kf j

   qZ  (1 ,   1 )d j m    . 
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4.4.4. Response Generation 

The CPA chooses the subset of evidence blocks 1{ }j dB B
    and the subset of tags 1{ }j d    

 
to computes 

1

( ) (mod )j
d

j p







 


 ,
1

( ) (mod )j
d

jB p










 ,
1

(mod )
d

j jv q
 



 


  , ( )H   (14) 

The CPA takes response values ( , , )R v   as a proof that the ASA possesses electronic evidence B , 

and the CPA sends response values ( , , )R v   to the CMA. 

4.4.5. Response Verification  

After the CMA has received the response values ( , , )R v   from the CPA, it chooses the subset of 

signatures 1{ }j dS s
    from the set of signatures 1{ }j j mS s    and computes 

1

(mod )
d

j jw s q
 






   (15) 

Then it runs VeriResp( ) algorithm to check the following equation 

( (mod ))?v wH y g p 


 (16) 

4.4.6. Evidence Retrieve 

After the ERA has queried evidence blocks ' '
, 1

1

{ }i j i n
j m

B b  
 

  from the ASA, it uses hash function to 

compute hash value of each column of evidence matrix 'B  to get '
ih )1( ni   

' ' ' '
,1 ,2 ,( || ||, ,|| )i i i i mh h b b b  (1 )i n   (17) 

The ERA runs VeriHash( ) algorithm to compare the set of hash values '
1' { }i i nH h    with 

1{ }i i nH h   , if 'H H , then 'B B , so this means that all evidence blocks are intact. If one or several 

hash values are not equal, then it means that some column vectors of evidence matrix have been 

altered in network transmitting or on the ASA storage. 
Assume the ERA has checked '

t th h ( 1,2, , )t n  , it means tth column elements ,1 ,2 ,|| ||, ,||t t t mb b b  

have been altered. To recover ,1 ,2 ,|| ||, ,||t t t mb b b , the ERA queries the ASA to get the set of tags

1{ }j j m    . As long as the set of tags   is not damaged, the ERA will use  and the set of signatures 

1{ }j j mS s    to recover jB . 

(mod )j js

j jB g y p  (1 )j m   (18) 

In each row of evidence matrix, except for the element ,t jb , other elements are intact. So the ERA 

further computes following equation to recover ,t jb (1 )j m  . 

, 1, 2, ,, ,t j j j n j jb b b b B     (1 )j m   (19) 

When some data blocks have been lost in the ASA, FG-PoR can recover each data block of 

evidence matrix, but ML-PoR can only recover a column of evidence matrix. 
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5. Security and Performance Analysis 

By generating a tag to each row of evidence matrix instead of generating a tag to each element of 

evidence matrix, the ML-PoR scheme can reduce computation costs and storage costs of the set of tags 

compared to the FG-PoR scheme. On the other hand, the ML-PoR scheme uses XOR operation to 
converge all elements of a row of evidence matrix into jB , so it adds extra computation costs. To 

reduce explaining duplication, for security analysis, we will only focus on the FG-PoR scheme. For 

performance analysis, we will consider both the FG-PoR scheme and ML-PoR scheme. 

5.1. Security Analysis 

In this section, we present a security analysis for our FG-PoR scheme. Depending on the hardness 

of the Discrete Logarithm Problem (DLP), we reduce the security of our FG-PoR to the security of 

DLP, and model hash function H( ) as random oracles. In order to facilitate the discussion, we merge 

the CPA with the ASA into an area, which is called Cloud Storage Area (CSA). 

Definition 4. Discrete Logarithm Problem (DLP): Given qx Z  and pg Z  of order q , and set

modxy g p , compute log gx y . It is pointed out that no probabilistic algorithm could solve DLP 

with non-negligible advantage within polynomial time. 

Theorem 1. As ( )H  is a random oracle, by the definition of a random oracle, the CSA can guess 

hash values '( ) ( )H H   on the premise '   with only negligible probability. 

Proof 1. Let us assume that the CSA has lost some of evidence blocks, but preserves well all tags, it 

can be proved that the CSA can’t pass the CMA’s possession verification. 
Assume challenged subset of evidence blocks is , 1

1

{ }
ti j t c

d

B b



 
 

 , but the CSA has lost evidence  

blocks ,{ }
ti j r t s

l k

b



 
 

, where 1
1

{ , } { , }t r t s t t c
l k d

i j i j 
 
   
   

 , so the CSA forges evidence blocks ,{ }
ti j r t s

l k

e



 
 

 to 

replace ,{ }
ti j r t s

l k

b



 
 

, and computes 

, , ,
1 1

'
, , ,

1 1 1 1

( ) ( ) ( ) (mod )i j i j i jt t t

t t t

r l s k c d

i j i j i j
t t r l t s k

b e b p  

  

  

  


 

       

    (20) (20)

where ' '( )H  .  

As the set of tags , 1
1

{ }i j i n
j m

  
 

   is stored perfectly in the CSA, the subset of challenge tags 

, 1
1

{ }
ti j t c

d



  

 
   is also stored perfectly. Though some evidence blocks are forged, the values of , v  

based on the subset of challenge tags   are no change. 
Therefore, the CSA generates response values '( , , ( ))R v H  . 

After the CMA has received response values '( , , ( ))R v H  , he computes the value of w , and 

verifies the relation '( (mod ))? ( )v wH y g p H 


 whether it is true or not. In Section 4.3.5, we have proved 

the relation  
,

,
1 1

(mod )) ( ) (mod )i jt

t

c d
v w

i j
t

y g p b p







 

 

   
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To make the equation '( )? ( )H H 


 true, unless the CSA can solve the random oracle. This means it can 

find hash values '( )H   and ( )H   to let '( ) ( )H H   on the premise '  , but this is not feasible [18].  

In view of this, the CMA thinks that evidence blocks have been altered on the CSA. 

Theorem 2. If the DLP is hard in our ML-PoR scheme, then there is no CSA that can forge an 

evidence block, corresponded tag and signature to pass the verification equation except by true 

evidence block to compute response values. 

Proof 2. Let 
'

,ti jb
 , '

,ti j
  and 

'
,ti js

  be the malicious CSA’s forged evidence block, corresponded 

tag and signature, and ,ti jb


, ,ti j
 and ,ti js

  be the expected values from an honest CSS. If the forged 

values '
,ti jb


, '

,ti j
 and 

'
,ti js


 make the equation true, then we can find a solution to the DLP. 

In our FG-PoR, the expected values ,ti jb


, ,ti j
 and ,ti js


 satisfy the following equation 

, ,

, , (mod )i j i jt t

t t

s

i j i jb g y p 

 





  

Also,  

, , ,

, , (mod )i j i j i jt t t

t t

s r

i j i jb g y b g p  

 


  (21)

Assume '
, ,t ti j i j 

  , then have 
'

, ,t ti j i js s
 
 , '

,ti j
  and 

'
,ti js


 satisfy the following equation 

' '
, ,' '

, , (mod )i j i jt t

t t

s

i j i jb g y p 

 

 
  

Also,  
' '

, , ,' '
, , (mod )i j i j i jt t t

t t

s r

i j i jb g y b g p  

 


  (22)

Obviously '
, ,t ti j i jb b

 
 , otherwise '

, ,t ti j i j 
  , which contradicts our assumption. 

Since the Equations (21) and (22) are both valid, dividing the two equations, we obtain  
' ' '

, , , , , ,( )i j i j i j i j i j i jt t t t t t
s s x

g y g          
   

As '
, ,t ti j i j 

   and '
, ,t ti j i js s
 
 , have '

, , 0
t ti j i j 

   , '
, , 0

t ti j i js s
 
  . Therefore we have found a 

solution to DLP ' ' 1
, , , ,( )( )

t t t ti j i j i j i jx s s
   

     . 

From Proof 2, no CSA can forge whichever evidence block, corresponded tag and signature  to 

satisfy Equation (21), so the CSA can only use a true set of blocks, tags and signatures to compute 
response values ( , , )R v  . 

Remark 1. Our FG-PoR scheme ensures all tags and signatures are different. Firstly, the CMA uses 
random number ,i jr  to generate tag ,i j  for each evidence block ,i jb . Then it uses random number ,i jr  

to blind tag ,i j  to get signature ,i js . Even if the contents of two evidence blocks are the same, they 

have different indices, so their tags and signatures are different. It avoids evidence blocks of different 

indices having the same tags and signatures. 
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Remark 2. Our FG-PoR scheme ensures challenged blocks and response values of each challenge are 
different. When the CMA gives a challenge information chal  to the CSA, including key 2 3,k k . The CSA 

uses pseudo-random permutation ( )   keyed with 2k  to generate indices of challenged columns ti  and 

keyed with 3k  to generate indices of challenged rows j . In each challenge, the key 2 3,k k  are different, so 

ti  and j  are different, finally, challenged subset of evidence blocks , 1
1

{ }
ti j t c

d

B b



 
 

 are not the same. 

Further, the CSA uses pseudo-random function ( )f   keyed with 4k  to derive coefficients ,ti j
 , and 

uses coefficients ,ti j
  to generate response values. In each challenge, 4k  is chosen randomly, so 

coefficients ,ti j
  are derived randomly. Moreover, challenged subset of evidence blocks B  are not the 

same, and then response values ( , , )R v   of each challenge are not the same. It avoids the CSA to use 

its own expected challenge blocks to calculate the response values, or using previous response values 

instead of response values is needed in this challenge. 

Remark 3. Our FG-PoR scheme ensures robust evidence recovery function. When the ERA thinks 

that the set of evidence blocks B  has been altered in the CSA, he will ask the CSA to send back the set 
of tags , 1

1

{ }i j i n
j m

  
 

  . Assume evidence block ,tb   is incorrect; the ERA takes ,ts   from the set of 

signatures , 1
1

{ }i j i n
j m

S s  
 

 , and uses following equation to recover ,tb   

, ,

, , (mod )t ts
t tb g y p 
   (23) 

Thus, our FG-PoR scheme has good robustness; electronic evidence can be stored intact in an 

evidence preservation center in the cloud. 

5.2. Performance Analysis 

Comparing our FG-PoR and ML-PoR with the DEMC-PDP [10], PEMC-PDP [10] and [11](Section 6), 

to the five schemes, communication costs are mainly composed of the costs of challenge and response 
values. In [11](Section 6), the verifier takes the set of indices and random values ciivi 1)},{(  as 

challenge values and sends them to the storage server. Moreover, the storage server returns 1( ,{ } )i i s     

as response values to the verifier, so communication costs of [11](Section 6) are the highest in the five 

schemes. The communication costs of DEMC-PDP, FG-PoR and ML-PoR are roughly equivalent. 

To computation costs, we ignore the costs that the storage server and the verifier derive challenge 

blocks indices ,ti  , ,tj   and random coefficient ,ti j
  in the five schemes. To tags and signatures 

generation, response generation and response verification three steps, the computation costs of five 

schemes are listed in Table 1. In Table 1, the operation symbols denote meaning: H: hash function 

operation; A: addition operation; M: multiplication operation; E: exponentiation operation; P: pairing 

operation; X: xor operation 
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Table 1. Comparison of communication, computation and storage costs for the five schemes.  

Communication, Computation 

and Storage Costs 
DEMC-PDP [10] PEMC-PDP [10] [11]( Section 6) FG-PoR ML-PoR 

Communication costs of 

challenge values 
( )k  1 2( , , )c k k  ciivi 1)},{(  

2 3 4

( , , ,

, , )
IDE c d

k k k
 

3 4( , , , )IDE d k k  

Communication costs of response 

values 
( , )   1( ,{ } )i i n     1( ,{ } )i i s     ( , , )v   ( , , )v   

Computation costs of tags and 

signatures generation 

2nmE nmM

nmH




 
2 2nmE nmM

nmH




 
( 1)

( 1)

n s E

n s M nH


  

 
2nmE mnM

nmA nmH


 

 
2mE mM mA

nmX nH

 
 

Computation costs of response 

generation 

2nmE nmM

nmA




 
( 1)cE c n M

cnA

 


 
( 1)cE c s M

csA

 


 
2 3cdE cdM

cdA H


 

 
2 3dE dM

dA H


 

 

Computation costs of response 

verification 

2 1

1 2

E M nmA

H P

 
 

 
( 2) ( 1)

2

c E c M

nA cH P

  
  

 
( 1)

( 1)

c s E

c s M cH


  

 
2 ( 2)E cd M

cdA H

 
 

 
2 ( 2)E d M

dA H

 
 

Storage costs of file blocks  

and tags 

, 1
1

, 1
1

{ } ,

{ }

i j i n
j m
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Computation costs of encoding  

and decoding 
No No Yes No No 

As some different parameters are used in the above five schemes, it is difficult to compare clearly 

which scheme is optimal in computation costs. So we consider a concrete example to compare the 

differences of these schemes in computation costs and storage costs. In the five schemes, assume the 
size of modulus is the same | | | |N p , each has 1024 bits, q  is a 160-bit prime. Given an 80 MB 

evidence file B  that has 640,000 data blocks, each block is 1 Kbits (1024 bits). The parameters of five 

schemes are described as follows: 

 DEMC-PDP [10], PEMC-PDP [10]: 
the number of file blocks is 640,000m  ; 

the number of copies is 20n  ; 

the number of challenged blocks is 460c  . 

 [11]( Section 6): 

the number of file blocks is 640,000; 

the number of encoded blocks is 32,400; 

the number of columns is the same as the number of rows in matrix 820n s  ; 

the number of challenged columns 460c  . 

 Our FG-PoR, ML-PoR: 

the number of file blocks is 640,000; 

the number of columns is the same as the number of rows in matrix 800n m  ; 

the number of challenged columns is the same as the number of challenged rows 460c d  . 

Our concrete example is conducted on the system Windows 7 with two Intel Core 2 processors 

running at 2.4 GHz each, and 4 GB of RAM. In our implementation, we use the GNU Multiple 

Precision Arithmetic Library Edition 4.2.1 and OpenSSL version 1.0.0 cryptographic library and 

choose SHA1 for Hash function. We choose a 160-bit group order for the elliptic curve group to get 

80-bit security level. It has been described in [6] that if the server deletes 1% of data file, the verifier 
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only needs to check for 460 random blocks of the file so as to detect sever misbehavior with 

probability larger than 99%. So we choose 460c   to achieve a high probability of assurance. 

From Table 1, we know the communication costs in [11](Section 6) are the highest in the five schemes. 

Moreover, the communication costs of all schemes are much lower than computation costs and storage 

costs. The computation costs of tags and signatures generation have slight impact on the overall system 

performance, because the generation task of tags and signatures is completed only once during the files life 

time, which may be many years. Therefore, we only consider computation costs of response generation, 

computation costs of response verification, and storage costs of file blocks and tags. 

To achieve more intuitive and clear directions, we count computation costs of response generation  

and computation costs of response verification. Also, the sum is called computation costs of response 

generation and verification. Here, computation costs are running times of the operation in Table 1. In our 

implementation, the computation times of response generation and verification of DEMC-PDP [10],  

PEMC-PDP [10], [11](Section 6), FG-PoR, and ML-PoR are 8388,623.63 ms, 724.79 ms, 254,200.72 ms, 

279,620.18 ms and 698.56 ms. The comparison result of computation costs of the five schemes are shown in 

Figure 5.  

Figure 5 indicates computation costs of DEMC-PDP [10] are apparently higher than the other four 

schemes. This was due to the fact that DEMC-PDP [10] and PEMC-PDP [10] store multi-copies of the 

file to the server; moreover, DEMC-PDP [10] depends on checking by validating all file blocks.  

To [11](Section 6), computation costs of response generation and verification are slightly lower than 

our FG-PoR scheme. The communication costs of PEMC-PDP [10] and ML-PoR are roughly 

equivalent and are much lower than the other three schemes. 

The storage costs are storage space of file blocks, tags, signatures and coding. In our implementation, 

the storage space of file blocks and tags DEMC-PDP [10], PEMC-PDP [10], [11](Section 6), FG-PoR, and 

ML-PoR are 25,600,000 Kbits, 13,440,000 Kbits, 673,220 Kbits, 1280,000 Kbits and 640,800 Kbits. The 

comparison result of storage costs of file blocks and tags of the five schemes are shown in Figure 6. 

Figure 5. Computation costs of response generation and verification of the five schemes. 
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Figure 6. Storage costs of file blocks and tags of the five schemes. 

 

From Figure 6, we know that the storage costs of file blocks and tags of DEMC-PDP [10] and 

PEMC-PDP [10] are apparently higher than the other three schemes, and the storage costs of  

DEMC-PDP [10] are highest in all schemes. The storage costs of [11](Section 6) and ML-PoR are 

roughly equivalent; moreover, the storage costs of ML-PoR are lowest in all schemes. 

In five schemes, only [11](Section 6) uses the technologies of encoding and decoding.  

The [11](Section 6) first applies the erasure codes to encode the file, and then splits encoded file into 
n m  sectors. It provides provable data possession and data recovery dual functions, but its erasure of 

codes adds extra computation costs and storage costs, so the total costs of [11](Section 6) are higher 

than our FG-PoR and ML-PoR. DEMC-PDP [10] and PEMC-PDP [10] use multi-replication 

technology to achieve provable data possession and data recovery functions, but storage costs are too 

high. Also, the computation costs of DEMC-PDP [10] are the highest of the five schemes. Our  

ML-PoR generates only a tag to each row of evidence matrix, rather than generating a tag to each 

element of evidence matrix. Therefore, it reduces computation costs and storage costs compared to that 

of the FG-PoR. In overall performance, ML-PoR is superior to the other four schemes. 

6. Conclusions 

Proofs of Retrievability (PoR) to cloud storage data are mainly based on multi-replication 

technology and erasure code technology [19]. PoR based on multi-replication technology is required to 

create some copies of the same size for each data block, so the server needs to provide extra storage 

space for these copies, such as in the schemes in [9,10]. PoR based on erasure code technology needs 

to blend some data blocks into less redundant blocks, so it saves storage space, but the encoding and 

the decoding operation add computation costs, such as in the schemes in [8,11]. This paper proposes 

two PoR schemes—FG-PoR and ML-PoR—for the storage of electronic evidence in the cloud. The 

two PoR schemes do not use multi-replication technology or erasure code technology, and the two 

technologies are replaced by employing verification tags and signatures. Therefore, FG-PoR and 
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ML-PoR have lower computation costs and storage costs than other similar schemes. Moreover, they 

not only can ensure the integrity of electronic evidence, but also provide a robust evidence  

recovery guarantee. 
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