
Information 2013, 4, 262-282; doi:10.3390/info4030262

information
ISSN 2078-2489

www.mdpi.com/journal/information

Article

Lightweight Proofs of Retrievability for Electronic Evidence
in Cloud

Xiuli Song 1,* and Hongyao Deng 2

1 Department of Computer Science and Technology, Chongqing University of Posts and

Telecommunications, Chongqing 400065, China
2 School of Mathematics & Computer Science, Yangtze Normal University, Chongqing 408000,

China; E-Mail: hydeng_2004@163.com

* Author to whom correspondence should be addressed; E-Mail: songxl@cqupt.edu.cn;

Tel./Fax:+86-2362461404.

Received: 27 March 2013; in revised form: 4 June 2013 / Accepted: 19 June 2013 /

Published: 5 July 2013

Abstract: Proofs of Retrievability (PoR) is one of the basic functions of electronic evidence

preservation center in cloud. This paper proposes two PoR schemes to execute the workflow

of evidence preservation center, which are named Finer Grained Proofs of Retrievability

(FG-PoR) and More Lightweight Proofs of Retrievability (ML-PoR). The two PoR schemes

do not use multi-replication technology or erasure code technology, but employ the

verification tags and signatures to implement provable data possession and data recovery

dual functions. When some data blocks have been lost in Archive Storage Area (ASA),

FG-PoR can recover each data block of evidence matrix, but ML-PoR can only recover a

column of evidence matrix. The analysis results show our two PoR schemes do not only

provide the integrity verification guarantee but also have robust recovery guarantee to

electronic evidence in cloud. The two schemes can allow for lower computation and storage

costs than other similar schemes; moreover, ML-PoR can provide lower costs than FG-PoR.

Keywords: cloud storage; proofs of retrievability; Nyberg-Rueppel signature; electronic

evidence preservation; computation and storage costs

OPEN ACCESS

Information 2013, 4 263

1. Introduction

In a general operating environment, electronic evidence is derived from systematic data and

network data. Systematic data include system logs, audit records, temporary or hidden files, hard disk

drive exchange partition, etc. Network data include logs of firewall, Intrusion Detection Systme (IDS),

and router, E-mail information, real-time chats, network monitoring records, etc. Electronic evidence

may provide massive information and resource bases in various forms. In cloud computing

environments, it provides users with flexible services in a transparent manner. One fundamental aspect

of service is that data is being centralized or outsourced into a “cloud”, which is a collection of devices

and resources connected through the Internet. Electronic evidence is a special kind of data, and it must

be integrated before it is sent to a court of law. When it is being collected from the cloud, it should be

fixed in a specific form and stored safely on the local or cloud server so as to prevent them from being

destructed by nature and man. This operating process is called electronic evidence preservation [1].

Cloud forensics is a cross discipline of cloud computing and electronic forensics. Cloud computing

is a shared collection of configurable networked resources (e.g., networks, servers, storage,

applications and services) that can be reconfigured quickly with minimal effort [2]. Electronic

forensics is the application of computer science principles to recover electronic evidence for

presentation in a court of law [3]. Cloud forensic investigations are likely to involve evidence

acquisition, preservation and analysis in a cloud. From the investigators’ perspective, storing electronic

evidence remotely in a cloud in a flexible, on demand manner brings appealing benefits: relief of the

burden of storage management, access to data with independent geographical locations, and avoiding

capital expenditure on hardware, software and personnel maintenance [4]. Also, it can reduce the

litigants to the objectivity of the evidence, simplify the review procedure of evidence in court, and

effectively assess the fairness and justice in the administration.

While cloud computing makes these advantages more appealing than ever, it also brings new and

challenging security threats to the outsourced electronic evidence. On one hand, electronic evidence

has its own vulnerability, such that it can more easily be deleted, forged, altered and removed than

traditional printed evidence. On the other hand, cloud computing is open and has a virtual operation

environment for all users. When the outsourced electronic evidence is stored to a cloud, it might be

unclear as to where evidence is processed within the cloud, and such processing might occur in

different jurisdictions. Once electronic evidence is extracted from the cloud and is sent to the court, it

must be true, reliable and integrated, in accord with legal requirements [5]. So how to ensure the

integrity of electronic evidence in cloud is a considerable challenge to both cloud service providers and

research institutes.

2. Related Work

When the users send their data to the Cloud Storage Server (CSS), they should pay a fee to obtain

an appropriate storage space to preserve their data. The CSS is not fully trusted because the storage

devices are under the control of the Cloud Service Provides (CSP), not the users. The importance of

ensuring the integrity of data in untrusted storage servers has been highlighted by some researchers,

and they have proposed two basic schemes to check the availability and integrity of cloud storage data. The

Information 2013, 4 264

two basic schemes are called provable data possession (PDP) [6] and proofs of retrievability (PoR) [7]. A

PDP scheme can only verify the integrity of a file on the server, but cannot ensure the retrievability of

a file [8]. However, a PoR scheme is a challenge response protocol. In the protocol, the server can

demonstrate to the client that a file is intact and retrievable without any loss and corruption.

The provable data possession (PDP) scheme was built upon by Ateniese et al. [6]. In the scheme,

the user could utilize RSA-based homomorphic tags to challenge the server. The server proved

possession of the file by sending back a few randomly sampled blocks of the file. In a subsequent

study, Curtmola et al. [9] described a multiple replica PDP (MR-PDP) scheme, which ensured that

multiple replicas of the user’s files were stored at the untrusted storage server. Barsoum [10]

constructed two efficient multi-copy PDP (EMC-PDP) protocols which were called Deterministic

EMC-PDP (DEMC-PDP) and Probabilistic EMC-PDP (PEMC-PDP). PEMC-PDP depended on spot

checking by validating a random subset of the file blocks instead of validating all the blocks in

DEMC-PDP to reduce computation and storage overhead.

The proofs of retrievability (PoR) scheme was first proposed by Juels et al. [7], and this scheme

used spot-checking and error-correcting codes to ensure both “possession” and “retrievability” of the

files on remote servers. Shacham and Waters [11] also proposed a PoR scheme. In this scheme, the file

was encoded using erasure code and was split into some blocks. The server used homomorphic

algorithm to compact all data tags into a short tag, and it was taken as the response to the client.

Bowers et al. [8] introduced a retrievable scheme for cloud storage data, which permitted a set of

servers to prove to a client that a stored file was intact and retrievable. In [2], Cong Wang et al. utilized

the homomorphic token to ensure the integrity of erasure-coded data with additional feature of data

error localization. In a subsequent work, Qian Wang et al. [12] allowed a third party auditor to verify

the integrity of the data stored in cloud based on Merkle hash tree.

To cloud forensics, several works have already been published in this field. Wolthusen [13] noted

that when attempting to locate evidence in a distributed and complex environment such as the cloud,

the distributed and virtual nature of the cloud would likely increase the difficulty of evidence

collection, making tracing activity and re-construction of evidence more challenging. Grispos et al. [14]

analyzed how established digital forensic procedures would be invalidated and discussed several new

research challenges in the cloud environment. Birk and Wegener [15] assessed whether it was possible

for the customer of cloud computing services to perform a traditional digital investigation from a

technical point of view. Furthermore, they discussed possible solutions and possible new

methodologies helping customers to perform such investigations.

In above works, literature [6,12] were the PDP schemes. They could only check the integrity of the

file through the server sending back random samples of the file. Literature [2,7,8,11] were all the PoR

schemes based on erasure codes. They used erasure codes technology to compact many data blocks

into fewer redundancy. This approach added storage costs of redundant data and computation costs of

encoding and decoding. Literature [9,10] were the PoR schemes based on multiple replica. In the two

schemes, each data object needed to be created some copies, and the size of data objects and their

copies were the same. Unfortunately, the storage costs of the copies in the two schemes was too high.

Literature [13,14] discussed the potential benefits and challenges of cloud computing for electronic

forensic investigations. Literature [15] mentioned possible solutions and methodologies of technology

to face the challenges. But these three papers [13–15] did not all provide technical detail on how to

Information 2013, 4 265

solve the problem. This paper proposes two verification schemes of retrievability for preservation of

electronic evidence in cloud computing environment. The two schemes are kept light-weight by employing

verification tags and signatures with neither the use of erasure codes nor the use of mutiple-replica.

3. An Electronic Evidence Preservation Center in Cloud

Due to outdated equipment and the lack of technical support, it is impossible that electronic

evidence could be preserved perfectly by the courts or the public security organs. This means

electronic evidence will usually be stored in a special preservation center. In general, a traditional

electronic evidence preservation center uses some technologies, such as encryption algorithm, digital

signature, time stamp and digital digest to ensure the security of electronic evidence [1]. In a cloud

computing environment, except for these conventional technologies, privacy protection, PDP and PoR

technologies should be considered in a preservation center. This paper designs two PoR schemes for

application in a cloud preservation center for electronic evidence. The architecture of the electronic

evidence preservation center is shown in Figure 1.

Figure 1. The architecture of electronic evidence preservation center in cloud.

From Figure 1, the preservation center contains multiple functional areas: Center Management Area

(CMA), Classification Preservation Area (CPA), Archive Storage Area (ASA), Evidence Recovery

Area (ERA). When Law Authorities or Users (LAU) send electronic evidence to the preservation

center, they only interact with the CMA, so it will greatly improve the work efficiency.

3.1. Center Management Area (CMA)

In the electronic evidence preservation center, electronic evidence would be stored using a

classification storage method by the CPA. Each evidence file is divided into fixed-size chunks, and

ASA will store these chunks. Each chunk will be assigned a label at the time of creation. The CMA

stores all metadata associated with classification evidence. Also, the CMA provides the services of

electronic evidence reception, notary and forensic services for the law authorities and users (LAU),

which is an external service window of the electronic evidence preservation center. Moreover, it

Information 2013, 4 266

executes business process supervision and coordination and management to other function areas. It

will be taken as a Trusted Audit Center (TAC) in our PoR schemes.

3.2. Classification Preservation Area (CPA)

If the CMA has received electronic evidence from the LAU, it will forward the evidence to CPA to

store temporarily. When electronic evidence has been collected from selected mobile devices,

including mobile phones, MP3/4, PDA, etc., it will be recorded as mobile terminal equipment evidence

to be preserved. When electronic evidence is extracted from computer systematic data, including a

system log, audit records, temporary files, exchange files, or hidden files, it will be recorded as

computer system evidence to be preserved. When electronic evidence has been collected from all kinds

of private computers, notebook computers, storage servers, or the hard drives of this equipment, it will

be collected as hardware equipment evidence to be preserved. Electronic evidence may be attained

from network servers and hosts, such as webpage browsing historical records, cookies, favorites, cache

information, etc. It may also be attained from network communication data including logs of firewalls,

IDS, routers, Email information, real-time chat and network monitoring records, etc. This evidence

will be recorded as online network evidence to be preserved. After electronic evidence has been

classified over a long time span in the CPA, it will be divided into chunks to be sent to the ASA. The

CPA will store the metadata of all chunks, such as the tables, mapping the labels to chunk locations.

3.3. Archive Storage Area (ASA)

In this area, there are some Chunk Storage Servers (CSS) 1 2, , , nA A A in the cloud. These servers

will store all chunks of the evidence file, and each chunk is split into some blocks. In FG-PoR schemes,

each block has a corresponding tag, and all blocks and tags will be stored in the ASA. The ASA will

provide safe, reliable, efficient storage services for massive electronic evidence in the cloud. When the

CMA asks the CPA about the integrity of a stored evidence file, the CPA will query the metadata for

the locations of the desired chunks and construct proofs of retrievability to prove that the file is intact

and retrievable.

3.4. Evidence Recovery Area (ERA)

When the LAU needs their electronic evidence, it sends a request message to the CMA. The CMA

accesses the chunks of evidence file by querying the CPA for the locations of the desired chunks; if the

chunks are not being operated on, the CPA replies with the locations, and the CMA then contacts the
ERA. The ERA retrieves the evidence from CSS 1 2, , , nA A A , and uses hash function to check the

integrity of the evidence file. Then it sends the evidence to the CMA, and further forwards it to the

LAU. The CMA could also check the integrity of the evidence file by running verifying algorithm

VeriResp(). If the ERA or the CMA has found some error data blocks of the evidence matrix, the ERA

will use the retrieved algorithm RetrData() to recover these data blocks.

Information 2013, 4 267

4. Proofs of Retrievability for Electronic Evidence

From Figure 1, we know that CPA, ERA and CMA will coordinate to ensure the integrity and

retrievability of electronic evidence. Moreover, the CMA will play the role of Trusted Audit

Center (TAC) in collaboration. The workflow of LAU, CPA, ASA, ERA and CMA as the five

functional areas is shown in Figure 2.

Figure 2. The workflow of five functional areas. “Send()” means that the sender sends the

evidence file to the receiver; “Requ()” means that the sender sends the request message to

the receiver; “Chal()” means that one side sends the challenge message to the other side;

“Resp()” means that one side sends the response values to the other side; “Query” means

that the CPA or the ERA queries chunks of the ASA; “Feedback” means that the ASA

gives feedback messages of chunks and blocks.

In our work, we provide two PoR schemes: Finer Grained Proofs of Retrievability (FG-PoR) and

More Lightweight Proofs of Retrievability (ML-PoR) to execute the workflow of the electronic

evidence preservation center. There are six algorithms in the three functional areas of CPA, ERA and

CMA. The CMA has three algorithms TagSigGen(), KeyGen(), and VeriResp(); the CPA has an

algorithm RespGen(); the ERA has two algorithms RetrData() and VeriHash(). These six algorithms

will be described in Section 4.1. It is assumed the LAU has an evidence file B and will send it to the

ASA to store. The CMA will send challenge message Chal() to the CPA so as to make regular checks

on the integrity and availability of electronic evidence at appropriate intervals. The CPA will query the

metadata for the locations of the challenged chunks and compute response values to send back to the

CMA. When the CMA has found out some data blocks are incorrect, it will tell the information to the

ERA, then the ERA uses retrieved algorithm RetrData() to recover electronic evidence. When all

incorrect data blocks have been recovered, the ERA will send them back to the ASA again.

Information 2013, 4 268

4.1. Notation and Preliminaries

Let B be an electronic evidence file: it is divided into n chunks, and each chunk is split into m

blocks: , 1
1

{ }i j i n
j m

B b  
 

 , where each block *
,i j pb Z . These evidence blocks may be expressed in the

following matrix form

1,1 ,1

1, ,

n

m n m

b b

B

b b

 
   
 
 


  


 (1)

In execution processes of the workflow of five functional areas, our two schemes FG-PoR and

ML-PoR both consist of six algorithms. We start with the precise definition of FG-PoR scheme and

ML-PoR scheme.

Definition 1. FG-PoR scheme and ML-PoR scheme are both collection of six polynomial-time

algorithms (KeyGen, TagSigGen, RespGen, VeriResp, VeriHash, RetrData) such that:
(,)pk sk KeyGen(). This algorithm is run by the CMA to generate public key pk and private

key sk .
(,)S  TagSigGen (,)sk B . This algorithm is run by the CMA. It takes as input the private key sk

and the evidence blocks set B , and outputs the tags set  and signatures set S .
()R  RespGen (,)B   . This algorithm is run by the CPA. It takes as input the evidence blocks

subset B and the tags subset  , and returns a response value R as output. It will query the ASA

whether the ASA is actually storing all evidence blocks intact or not.
(0,1) VeriResp (, ,)pk R S . This algorithm is run by the CMA. It takes as input the public key pk ,

the response value R and signatures subset S , It will output 1 if the integrity of all evidence blocks is

verified, otherwise will output 0.
(0,1) VeriHash(H,H′). This algorithm is run by the ERA. It takes as input two sets of hash values

of evidence blocks H and H′. H is saved previously, and H′ is computed when it is needed. If H and

H′ are equal, outputs 1, otherwise outputs 0.
()B  RetrData(Ω′,S′). This algorithm is run by the ERA. It takes as input the set of tags Ω′ and the

set of signatures S′ of the error evidence blocks returned from the ASA, and outputs the correct

evidence blocks B .

4.2. Nyberg-Rueppel Signature Scheme

The Nyberg-Rueppel signature scheme first appeared in the literature in [16], named after its

authors K. Nyberg and R.A. Rueppel. Its security is based on the intractability of discrete logarithm

problem. Camenisch et al. [17] described this scheme as follows:
The parameters consist of a prime p , a prime factor q of 1p  , and an element *

pg Z of order q .

The signer’s private key is a random element qx Z , while the corresponding public key is modxy g p .

To sign a message pm Z , the signer selects qr Z at random and computes r and s as follows:

)(mod pmgu r

Information 2013, 4 269

)(mod qrxus 

The pair (,)u s is the signature of the message m . The signer sends the message m and the

signatures (,)u s to the receiver.

When the receiver has received m and the signatures (,)u s , to verify the validity of a signature, it

checks that the following equality holds:

)(mod puygm us

If the equation is true, then the signature is valid. Otherwise, the signature is invalid.

4.3. Finer Grained Proofs of Retrievability (FG-PoR)

We propose two schemes, Finer Grained Proofs of Retrievability (FG-PoR) and More Lightweight

Proofs of Retrievability (ML-PoR), which are both based on the Nyberg-Rueppel signature scheme.

The execution processes of FG-PoR consist of the following six steps. Before describing the execution

processes, we first give a definition for FG-PoR scheme.

Definition 2. A FG-PoR scheme built on the six algorithms (KeyGen, TagSigGen, RespGen,

VeriResp, VeriHash, RetrData) can guarantee data possession. Also, it can recover each data block of

all chunks of the evidence file.

4.3.1. Key Generation

The CMA runs the KeyGen() algorithm to generate key pair (,)pk sk . Chooses two primes p and

q , q is a factor of 1p  , and an element *
pg Z of order q . Chooses a secret random element *

qx Z ,

and sets modxy g p . Chooses a secret key 1 {0, 1}lk  , l is the length of the key 1k . Thus the secret

key is 1{ , }sk x k and the public key is { , , , }pk p q g y .

4.3.2. Tags and Signatures Generation

Given evidence blocks , 1
1

{ }i j i n
j m

B b  
 

 , the CMA runs the TagSigGen() algorithm to create a tag ,i j

and a signature ,i js for each block ,i jb as

,

, , (mod)i jr

i j i jb g p  , , , , (mod)i j i j i js x r q  , (1),(1)i n j m    (2)

where
1, ()i j kr f i j  *

qZ (1),(1)i n j m    , ()f  is a pseudo-random function. The tags set may

be expressed in the following matrix form

1,1 ,1

1, ,

n

m n m

 

 

 
    
 
 


  


 (3)

The CMA sends the set of evidence blocks , 1
1

{ }i j i n
j m

B b  
 

 and the set of corresponded tags

, 1
1

{ }i j i n
j m

  
 

  to the CPA; the CPA categorizes the chunks and sends all blocks to the ASA, and only

saves metadata of the chunks on it. Then the CMA computes , ,()i j i jh h b (1),(1)i n j m    and sends

Information 2013, 4 270

hash values set , 1

1

{ }i j i n
j m

H h  
 

 to the ERA. Finally, the CMA deletes all copies of B ,  and H . It

preserves only signatures set , 1
1

{ }i j i n
j m

S s  
 

 and metadata of the evidence file on its own storage. The

storage distribution of the electronic evidence blocks and their tags on the CSS of the ASA is given in

Figure 3.

Figure 3. The storage distribution of evidence blocks and tags on the Chunk Storage

Servers (CSS) in Finer Grained Proofs of Retrievability (FG-PoR).

4.3.3. Challenge Choice

After the CMA has sent challenge values to the CPA, and the CPA has given back response values

to the CMA, the CMA will check the integrity of all evidence blocks by the response values. The
challenge values are 2 3 4(, , , , ,)IDChal E c d k k k , where IDE is the identity number of the evidence file B ,

and it may be expressed as || ||IDE evidencename n m . c is the number of challenged columns of the

evidence matrix, 1 c n  . d is the number of challenged rows of the evidence matrix, 1 d m  .

2 3 4, , {0,1}lk k k  are three fresh keys and are chosen randomly for each challenge.

Let ()f  be a pseudo-random function, ()  be a pseudo-random permutation. At each challenge,

both the CMA and the CPA use key 2k to generate indices of challenged columns
2
()t ki t

(1 , 1)tt c i n    , also use key 3k to generate indices of challenged rows
3
()kj  

(1 , 1)d j m    . They further use key 4k to derive c d coefficients
4, ()

ti j k tf i j
    *

qZ ,

(1 , 1)tt c i n    , (1 , 1)d j m    .

4.3.4. Response Generation

The CPA runs the RespGen() to generate response values to prove that the ASA is still preserve all
evidence blocks intact. The ASA has held evidence blocks , 1

1

{ }i j i n
j m

B b  
 

 and corresponded tags

, 1
1

{ }i j i n
j m

  
 

  in Section 4.3.2. Grounded on indices of challenged columns and rows ti , j , the CPA

chooses subset of evidence blocks , 1
1

{ }
ti j t c

d

B b



 
 

 and subset of tags , 1
1

{ }
ti j t c

d



  

 
  from the ASA by

querying the metadata of evidence chunks, then it generates response values (, ,)R v  based on B and 

.

Information 2013, 4 271

The subset of evidence blocks B and the subset of tags  may be expressed in the following

matrix form

1 1 1

1

, ,

, ,

c

d c d

i j i j

i j i j

b b

B

b b

 
 

  
 
 


   


,

1 1 1

1

, ,

, ,

c

d c d

i j i j

i j i j

 

 

 
 

   
 
 


   


 (4)

The computational processes of response values (, ,)R v  are as follows

,

,
1 1

() (mod)i jt

t

c d

i j
t

p







 
 

 , ,

,
1 1

() (mod)i jt

t

c d

i j
t

b p








 

 , , ,
1 1

(mod)
t t

c d

i j i j
t

v q
 



 
 

  , ()H  (5)

The CPA takes response values (, ,)R v  as a proof that the ASA possesses electronic evidence B ,

finally the CPA sends (, ,)R v  to the CMA.

4.3.5. Response Verification

After the CMA has received response values (, ,)R v  from the CPA, it takes out indices of

challenged columns ti , challenged rows j , and coefficients ,ti j
 . Then the CMA chooses the subset

of signatures , 1
1

{ }
ti j t c

d

S s



 
 

 from the set of signatures , 1
1

{ }i j i n
j m

S s  
 

 which has been saved previously.

Further, the CMA computes

, ,
1 1

(mod)
t t

c d

i j i j
t

w s q
 




 

  (6)

Now it runs verify algorithm VeriResp() to check the following equation

((mod))?v wH y g p 


 (7)

If the above equation is true, the verify algorithm returns 1, the CMA believes that the ASA

preserves well evidence blocks set B . Otherwise, the verify algorithm returns 0.

The above equation holds because:

, ,
,1 1

, ,
, ,1 1

,
1 1

,
1 1

(mod)

() (mod)

() (mod)

c d

i j i jt t
i jt t

t

c d

i j i jt t
i j i jt t t

t

v w

c d
w

i j
t

x c d
r w

i j
t

y g p

y g p

g b g g p

 
 



 
  



 




 






 

 





 



 











, , ,
,1 1

, , , ,
,1 1 1 1

()

,
1 1

,
1 1

() (mod)

() (mod)

c d

i j i j i jt t t
i jt t

t

c d c d

i j i j i j i jt t t t
i jt t t

t

x r c d
w

i j
t

s sc d

i j
t

g b g p

g b g p

  
 



   
  



 




 




 

   




 



 




 






,

,
1 1

() (mod)i jt

t

c d

i j
t

b p








 







Information 2013, 4 272

Further

((mod)) ()v wH y g p H    

4.3.6. Evidence Retrieve

At a later time, the LAU needs its evidence file B , it sends a request message Requ ()IDE to the

CMA. The CMA will forward message Requ ()IDE to the CPA and the ERA. The ERA queries the

chunks and the blocks of the evidence file from the ASA. After the ERA has got feedback message
' '

, 1
1

{ }i j i n
j m

B b  
 

 , it will use hash function to compute the hash value of each element of evidence matrix

'B to get the set ' '
, 1

1

{ }i j i n
j m

H h  
 

 . Each element of the set 'H is calculated as following

' '
, ,()i j i jh h b (1),(1)i n j m    (8)

The ERA runs VeriHash() algorithm to compare the set of hash values
' '

, 1
1

{ }i j i n
j m

H h  
 

 with

, 1
1

{ }i j i n
j m

H h  
 

 , which has been saved in Section 4.3.2. If 'H H , then 'B B , it means that all evidence

blocks are intact. If one or several hash values of the set are not equal, then this means that these

evidence blocks may have been altered in network transmitting or on the ASA storage. In Section 4.3.5,

when the verify algorithm returns 0, it shows also that some evidence blocks may be incorrect in

the ASA.

Assume checked out evidence block '
, ,t tb b  , in order to get original evidence block ,tb  , the

ERA queries its tag ,t  from the ASA, and asks the CMA to send back corresponding signature ,ts  .

As long as tag ,t  and ,ts  are not damaged, the ERA will use RetrData() algorithm to recover

evidence block ,tb 
, ,

, , (mod)t ts
t tb g y p 
  ([1,2,], [1,2,])t n m   (9)

In fact

, ,

, , , ,

, , , ,

,

()

,

()
,

,

(mod)

(mod)

(mod)

t t

t t t t

t t t t

s
t

x r r

t

x r x r
t

t

g y p

g y b g p

g g b g p

b

 

   

   




 


 






 

 







4.4. More Lightweight Proofs of Retrievability (ML-PoR)

We modify FG-PoR scheme to attain a More Lightweight Proofs of Retrievability (ML-PoR)

scheme. It consists of the following six steps, but it has a weaker recovery guarantee than FG-PoR. We

give a definition for ML-PoR scheme that is described as follows.

Definition 3. A ML-PoR scheme built on the six algorithms (KeyGen, TagSigGen, RespGen,

VeriResp, VeriHash, RetrData) can guarantee data possession, and it can recover each chunk of the

evidence file.

Information 2013, 4 273

4.4.1. Key Generation

Key generation is the same as FG-PoR, and the secret key is 1{ , }sk x k and the public key is
{ , , , }pk p q g y .

4.4.2. Tags and Signatures Generation

Let ()f  be a pseudo-random function, the CMA uses secret key 1k to derive random sequence

1
()j kr f j (1)j m  (10)

Given the evidence blocks , 1
1

{ }i j i n
j m

B b  
 

 , the CMA computes

1, 2, ,, ,j j j n jB b b b    (1)j m  (11)

The CMA runs the TagSigGen() algorithm to create a tag and a signature for each jB as

(mod)jr

j jB g p  , (mod)j j js x r q  (1)j m  (12)

Further, the CMA computes hash value for each column of evidence matrix B as

,1 ,2 ,(|| ||, ,||)i i i i mh h b b b  (1)i n  (13)

Here, the storage distribution of the electronic evidence blocks and their tags on the CSS of the

ASA is shown in Figure 4.

Figure 4. The storage distribution of evidence blocks and tags on the Chunk Storage

Servers(CSS) in More Lightweight Proofs of Retrievability (ML-PoR).

4.4.3. Challenge Choice

Here, challenge values are 3 4(, , ,)IDChal E d k k . Both the CMA and the CPA use ()  keyed with 3k

to generate indices of challenged rows
3
()kj   (1 , 1)d j m    , and use ()f  keyed with 4k to

derive coefficients
4
()j kf j

   qZ (1 , 1)d j m    .

Information 2013, 4 274

4.4.4. Response Generation

The CPA chooses the subset of evidence blocks 1{ }j dB B
   and the subset of tags 1{ }j d    

to computes

1

() (mod)j
d

j p







 


 ,
1

() (mod)j
d

jB p










 ,
1

(mod)
d

j jv q
 



 


  , ()H  (14)

The CPA takes response values (, ,)R v  as a proof that the ASA possesses electronic evidence B ,

and the CPA sends response values (, ,)R v  to the CMA.

4.4.5. Response Verification

After the CMA has received the response values (, ,)R v  from the CPA, it chooses the subset of

signatures 1{ }j dS s
   from the set of signatures 1{ }j j mS s   and computes

1

(mod)
d

j jw s q
 






  (15)

Then it runs VeriResp() algorithm to check the following equation

((mod))?v wH y g p 


 (16)

4.4.6. Evidence Retrieve

After the ERA has queried evidence blocks ' '
, 1

1

{ }i j i n
j m

B b  
 

 from the ASA, it uses hash function to

compute hash value of each column of evidence matrix 'B to get '
ih)1(ni 

' ' ' '
,1 ,2 ,(|| ||, ,||)i i i i mh h b b b  (1)i n  (17)

The ERA runs VeriHash() algorithm to compare the set of hash values '
1' { }i i nH h   with

1{ }i i nH h   , if 'H H , then 'B B , so this means that all evidence blocks are intact. If one or several

hash values are not equal, then it means that some column vectors of evidence matrix have been

altered in network transmitting or on the ASA storage.
Assume the ERA has checked '

t th h (1,2, ,)t n  , it means tth column elements ,1 ,2 ,|| ||, ,||t t t mb b b

have been altered. To recover ,1 ,2 ,|| ||, ,||t t t mb b b , the ERA queries the ASA to get the set of tags

1{ }j j m    . As long as the set of tags  is not damaged, the ERA will use  and the set of signatures

1{ }j j mS s   to recover jB .

(mod)j js

j jB g y p  (1)j m  (18)

In each row of evidence matrix, except for the element ,t jb , other elements are intact. So the ERA

further computes following equation to recover ,t jb (1)j m  .

, 1, 2, ,, ,t j j j n j jb b b b B     (1)j m  (19)

When some data blocks have been lost in the ASA, FG-PoR can recover each data block of

evidence matrix, but ML-PoR can only recover a column of evidence matrix.

Information 2013, 4 275

5. Security and Performance Analysis

By generating a tag to each row of evidence matrix instead of generating a tag to each element of

evidence matrix, the ML-PoR scheme can reduce computation costs and storage costs of the set of tags

compared to the FG-PoR scheme. On the other hand, the ML-PoR scheme uses XOR operation to
converge all elements of a row of evidence matrix into jB , so it adds extra computation costs. To

reduce explaining duplication, for security analysis, we will only focus on the FG-PoR scheme. For

performance analysis, we will consider both the FG-PoR scheme and ML-PoR scheme.

5.1. Security Analysis

In this section, we present a security analysis for our FG-PoR scheme. Depending on the hardness

of the Discrete Logarithm Problem (DLP), we reduce the security of our FG-PoR to the security of

DLP, and model hash function H() as random oracles. In order to facilitate the discussion, we merge

the CPA with the ASA into an area, which is called Cloud Storage Area (CSA).

Definition 4. Discrete Logarithm Problem (DLP): Given qx Z and pg Z of order q , and set

modxy g p , compute log gx y . It is pointed out that no probabilistic algorithm could solve DLP

with non-negligible advantage within polynomial time.

Theorem 1. As ()H is a random oracle, by the definition of a random oracle, the CSA can guess

hash values '() ()H H  on the premise '  with only negligible probability.

Proof 1. Let us assume that the CSA has lost some of evidence blocks, but preserves well all tags, it

can be proved that the CSA can’t pass the CMA’s possession verification.
Assume challenged subset of evidence blocks is , 1

1

{ }
ti j t c

d

B b



 
 

 , but the CSA has lost evidence

blocks ,{ }
ti j r t s

l k

b



 
 

, where 1
1

{ , } { , }t r t s t t c
l k d

i j i j 
 
   
   

 , so the CSA forges evidence blocks ,{ }
ti j r t s

l k

e



 
 

 to

replace ,{ }
ti j r t s

l k

b



 
 

, and computes

, , ,
1 1

'
, , ,

1 1 1 1

() () () (mod)i j i j i jt t t

t t t

r l s k c d

i j i j i j
t t r l t s k

b e b p  

  

  

  


 

       

    (20) (20)

where ' '()H  .

As the set of tags , 1
1

{ }i j i n
j m

  
 

  is stored perfectly in the CSA, the subset of challenge tags

, 1
1

{ }
ti j t c

d



  

 
  is also stored perfectly. Though some evidence blocks are forged, the values of , v

based on the subset of challenge tags  are no change.
Therefore, the CSA generates response values '(, , ())R v H  .

After the CMA has received response values '(, , ())R v H  , he computes the value of w , and

verifies the relation '((mod))? ()v wH y g p H 


 whether it is true or not. In Section 4.3.5, we have proved

the relation
,

,
1 1

(mod)) () (mod)i jt

t

c d
v w

i j
t

y g p b p







 

 

 

Information 2013, 4 276

To make the equation '()? ()H H 


 true, unless the CSA can solve the random oracle. This means it can

find hash values '()H  and ()H  to let '() ()H H  on the premise '  , but this is not feasible [18].

In view of this, the CMA thinks that evidence blocks have been altered on the CSA.

Theorem 2. If the DLP is hard in our ML-PoR scheme, then there is no CSA that can forge an

evidence block, corresponded tag and signature to pass the verification equation except by true

evidence block to compute response values.

Proof 2. Let
'

,ti jb
 , '

,ti j
 and

'
,ti js

 be the malicious CSA’s forged evidence block, corresponded

tag and signature, and ,ti jb


, ,ti j
 and ,ti js

 be the expected values from an honest CSS. If the forged

values '
,ti jb


, '

,ti j
 and

'
,ti js


 make the equation true, then we can find a solution to the DLP.

In our FG-PoR, the expected values ,ti jb


, ,ti j
 and ,ti js


 satisfy the following equation

, ,

, , (mod)i j i jt t

t t

s

i j i jb g y p 

 







Also,

, , ,

, , (mod)i j i j i jt t t

t t

s r

i j i jb g y b g p  

 


 (21)

Assume '
, ,t ti j i j 

  , then have
'

, ,t ti j i js s
 
 , '

,ti j
 and

'
,ti js


 satisfy the following equation

' '
, ,' '

, , (mod)i j i jt t

t t

s

i j i jb g y p 

 

 


Also,
' '

, , ,' '
, , (mod)i j i j i jt t t

t t

s r

i j i jb g y b g p  

 


 (22)

Obviously '
, ,t ti j i jb b

 
 , otherwise '

, ,t ti j i j 
  , which contradicts our assumption.

Since the Equations (21) and (22) are both valid, dividing the two equations, we obtain
' ' '

, , , , , ,()i j i j i j i j i j i jt t t t t t
s s x

g y g          
 

As '
, ,t ti j i j 

  and '
, ,t ti j i js s
 
 , have '

, , 0
t ti j i j 

   , '
, , 0

t ti j i js s
 
  . Therefore we have found a

solution to DLP ' ' 1
, , , ,()()

t t t ti j i j i j i jx s s
   

     .

From Proof 2, no CSA can forge whichever evidence block, corresponded tag and signature to

satisfy Equation (21), so the CSA can only use a true set of blocks, tags and signatures to compute
response values (, ,)R v  .

Remark 1. Our FG-PoR scheme ensures all tags and signatures are different. Firstly, the CMA uses
random number ,i jr to generate tag ,i j for each evidence block ,i jb . Then it uses random number ,i jr

to blind tag ,i j to get signature ,i js . Even if the contents of two evidence blocks are the same, they

have different indices, so their tags and signatures are different. It avoids evidence blocks of different

indices having the same tags and signatures.

Information 2013, 4 277

Remark 2. Our FG-PoR scheme ensures challenged blocks and response values of each challenge are
different. When the CMA gives a challenge information chal to the CSA, including key 2 3,k k . The CSA

uses pseudo-random permutation ()  keyed with 2k to generate indices of challenged columns ti and

keyed with 3k to generate indices of challenged rows j . In each challenge, the key 2 3,k k are different, so

ti and j are different, finally, challenged subset of evidence blocks , 1
1

{ }
ti j t c

d

B b



 
 

 are not the same.

Further, the CSA uses pseudo-random function ()f  keyed with 4k to derive coefficients ,ti j
 , and

uses coefficients ,ti j
 to generate response values. In each challenge, 4k is chosen randomly, so

coefficients ,ti j
 are derived randomly. Moreover, challenged subset of evidence blocks B are not the

same, and then response values (, ,)R v  of each challenge are not the same. It avoids the CSA to use

its own expected challenge blocks to calculate the response values, or using previous response values

instead of response values is needed in this challenge.

Remark 3. Our FG-PoR scheme ensures robust evidence recovery function. When the ERA thinks

that the set of evidence blocks B has been altered in the CSA, he will ask the CSA to send back the set
of tags , 1

1

{ }i j i n
j m

  
 

  . Assume evidence block ,tb  is incorrect; the ERA takes ,ts  from the set of

signatures , 1
1

{ }i j i n
j m

S s  
 

 , and uses following equation to recover ,tb 

, ,

, , (mod)t ts
t tb g y p 
  (23)

Thus, our FG-PoR scheme has good robustness; electronic evidence can be stored intact in an

evidence preservation center in the cloud.

5.2. Performance Analysis

Comparing our FG-PoR and ML-PoR with the DEMC-PDP [10], PEMC-PDP [10] and [11](Section 6),

to the five schemes, communication costs are mainly composed of the costs of challenge and response
values. In [11](Section 6), the verifier takes the set of indices and random values ciivi 1)},{(as

challenge values and sends them to the storage server. Moreover, the storage server returns 1(,{ })i i s   

as response values to the verifier, so communication costs of [11](Section 6) are the highest in the five

schemes. The communication costs of DEMC-PDP, FG-PoR and ML-PoR are roughly equivalent.

To computation costs, we ignore the costs that the storage server and the verifier derive challenge

blocks indices ,ti  , ,tj  and random coefficient ,ti j
 in the five schemes. To tags and signatures

generation, response generation and response verification three steps, the computation costs of five

schemes are listed in Table 1. In Table 1, the operation symbols denote meaning: H: hash function

operation; A: addition operation; M: multiplication operation; E: exponentiation operation; P: pairing

operation; X: xor operation

Information 2013, 4 278

Table 1. Comparison of communication, computation and storage costs for the five schemes.

Communication, Computation

and Storage Costs
DEMC-PDP [10] PEMC-PDP [10] [11](Section 6) FG-PoR ML-PoR

Communication costs of

challenge values
()k 1 2(, ,)c k k ciivi 1)},{(

2 3 4

(, , ,

, ,)
IDE c d

k k k

3 4(, , ,)IDE d k k

Communication costs of response

values
(,)  1(,{ })i i n    1(,{ })i i s    (, ,)v  (, ,)v 

Computation costs of tags and

signatures generation

2nmE nmM

nmH




2 2nmE nmM

nmH




(1)

(1)

n s E

n s M nH


  

2nmE mnM

nmA nmH


 

2mE mM mA

nmX nH

 
 

Computation costs of response

generation

2nmE nmM

nmA




(1)cE c n M

cnA

 


(1)cE c s M

csA

 


2 3cdE cdM

cdA H


 

2 3dE dM

dA H


 

Computation costs of response

verification

2 1

1 2

E M nmA

H P

 
 

(2) (1)

2

c E c M

nA cH P

  
  

(1)

(1)

c s E

c s M cH


  

2 (2)E cd M

cdA H

 
 

2 (2)E d M

dA H

 
 

Storage costs of file blocks

and tags

, 1
1

, 1
1

{ } ,

{ }

i j i n
j m

i j i n
j m

b



 
 

 
 

, 1

1

1

{ } ,

{ }

i j i n
j m

j j m

b



 
 

 

, 1

1

1

{ } ,

{ }

i j i n
j s

i i n

m



 
 

 

, 1
1

, 1
1

{ } ,

{ }

i j i n
j m

i j i n
j m

b



 
 

 
 

, 1

1

1

{ } ,

{ }

i j i n
j m

j j m

b



 
 

 

Computation costs of encoding

and decoding
No No Yes No No

As some different parameters are used in the above five schemes, it is difficult to compare clearly

which scheme is optimal in computation costs. So we consider a concrete example to compare the

differences of these schemes in computation costs and storage costs. In the five schemes, assume the
size of modulus is the same | | | |N p , each has 1024 bits, q is a 160-bit prime. Given an 80 MB

evidence file B that has 640,000 data blocks, each block is 1 Kbits (1024 bits). The parameters of five

schemes are described as follows:

 DEMC-PDP [10], PEMC-PDP [10]:
the number of file blocks is 640,000m  ;

the number of copies is 20n  ;

the number of challenged blocks is 460c  .

 [11](Section 6):

the number of file blocks is 640,000;

the number of encoded blocks is 32,400;

the number of columns is the same as the number of rows in matrix 820n s  ;

the number of challenged columns 460c  .

 Our FG-PoR, ML-PoR:

the number of file blocks is 640,000;

the number of columns is the same as the number of rows in matrix 800n m  ;

the number of challenged columns is the same as the number of challenged rows 460c d  .

Our concrete example is conducted on the system Windows 7 with two Intel Core 2 processors

running at 2.4 GHz each, and 4 GB of RAM. In our implementation, we use the GNU Multiple

Precision Arithmetic Library Edition 4.2.1 and OpenSSL version 1.0.0 cryptographic library and

choose SHA1 for Hash function. We choose a 160-bit group order for the elliptic curve group to get

80-bit security level. It has been described in [6] that if the server deletes 1% of data file, the verifier

Information 2013, 4 279

only needs to check for 460 random blocks of the file so as to detect sever misbehavior with

probability larger than 99%. So we choose 460c  to achieve a high probability of assurance.

From Table 1, we know the communication costs in [11](Section 6) are the highest in the five schemes.

Moreover, the communication costs of all schemes are much lower than computation costs and storage

costs. The computation costs of tags and signatures generation have slight impact on the overall system

performance, because the generation task of tags and signatures is completed only once during the files life

time, which may be many years. Therefore, we only consider computation costs of response generation,

computation costs of response verification, and storage costs of file blocks and tags.

To achieve more intuitive and clear directions, we count computation costs of response generation

and computation costs of response verification. Also, the sum is called computation costs of response

generation and verification. Here, computation costs are running times of the operation in Table 1. In our

implementation, the computation times of response generation and verification of DEMC-PDP [10],

PEMC-PDP [10], [11](Section 6), FG-PoR, and ML-PoR are 8388,623.63 ms, 724.79 ms, 254,200.72 ms,

279,620.18 ms and 698.56 ms. The comparison result of computation costs of the five schemes are shown in

Figure 5.

Figure 5 indicates computation costs of DEMC-PDP [10] are apparently higher than the other four

schemes. This was due to the fact that DEMC-PDP [10] and PEMC-PDP [10] store multi-copies of the

file to the server; moreover, DEMC-PDP [10] depends on checking by validating all file blocks.

To [11](Section 6), computation costs of response generation and verification are slightly lower than

our FG-PoR scheme. The communication costs of PEMC-PDP [10] and ML-PoR are roughly

equivalent and are much lower than the other three schemes.

The storage costs are storage space of file blocks, tags, signatures and coding. In our implementation,

the storage space of file blocks and tags DEMC-PDP [10], PEMC-PDP [10], [11](Section 6), FG-PoR, and

ML-PoR are 25,600,000 Kbits, 13,440,000 Kbits, 673,220 Kbits, 1280,000 Kbits and 640,800 Kbits. The

comparison result of storage costs of file blocks and tags of the five schemes are shown in Figure 6.

Figure 5. Computation costs of response generation and verification of the five schemes.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

DEMC‐PDP[10] PEMC‐PDP[10] [11] (Section 6) FG‐PoR ML‐PoR

Computation costs of response generation and verification(ms)

Information 2013, 4 280

Figure 6. Storage costs of file blocks and tags of the five schemes.

From Figure 6, we know that the storage costs of file blocks and tags of DEMC-PDP [10] and

PEMC-PDP [10] are apparently higher than the other three schemes, and the storage costs of

DEMC-PDP [10] are highest in all schemes. The storage costs of [11](Section 6) and ML-PoR are

roughly equivalent; moreover, the storage costs of ML-PoR are lowest in all schemes.

In five schemes, only [11](Section 6) uses the technologies of encoding and decoding.

The [11](Section 6) first applies the erasure codes to encode the file, and then splits encoded file into
n m sectors. It provides provable data possession and data recovery dual functions, but its erasure of

codes adds extra computation costs and storage costs, so the total costs of [11](Section 6) are higher

than our FG-PoR and ML-PoR. DEMC-PDP [10] and PEMC-PDP [10] use multi-replication

technology to achieve provable data possession and data recovery functions, but storage costs are too

high. Also, the computation costs of DEMC-PDP [10] are the highest of the five schemes. Our

ML-PoR generates only a tag to each row of evidence matrix, rather than generating a tag to each

element of evidence matrix. Therefore, it reduces computation costs and storage costs compared to that

of the FG-PoR. In overall performance, ML-PoR is superior to the other four schemes.

6. Conclusions

Proofs of Retrievability (PoR) to cloud storage data are mainly based on multi-replication

technology and erasure code technology [19]. PoR based on multi-replication technology is required to

create some copies of the same size for each data block, so the server needs to provide extra storage

space for these copies, such as in the schemes in [9,10]. PoR based on erasure code technology needs

to blend some data blocks into less redundant blocks, so it saves storage space, but the encoding and

the decoding operation add computation costs, such as in the schemes in [8,11]. This paper proposes

two PoR schemes—FG-PoR and ML-PoR—for the storage of electronic evidence in the cloud. The

two PoR schemes do not use multi-replication technology or erasure code technology, and the two

technologies are replaced by employing verification tags and signatures. Therefore, FG-PoR and

0

5000000

10000000

15000000

20000000

25000000

30000000

DEMC‐PDP[10] PEMC‐PDP[10] [11] (Section 6) FG‐PoR ML‐PoR

Storage costs of file blocks and tags(Kbits)

Information 2013, 4 281

ML-PoR have lower computation costs and storage costs than other similar schemes. Moreover, they

not only can ensure the integrity of electronic evidence, but also provide a robust evidence

recovery guarantee.

Acknowledgments

This work is partially supported by Natural Science Foundation of Chongqing Science & Technology

Commission of China under Grant No. 2011jjA1350 and No. 2011jjA40031. Science & Technology

Research Foundation of Education Committee of Chongqing of China under Grant No. KJ110505, and

Found of Innovation Scheme of Postgraduate Education of Chongqing University of Posts and

Telecommunications of China under Grant No. Y201107.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Chen, L.; Mai, Y.H.; Huang, C.H.; Dong, Z.X.; Shi, W.M.; Song, X.L. Computer Forensics

Technology (in Chinese); Wuhan University Press: Wuhan, China, 2007.

2. Mell, P.; Grance, T. The NIST Definition of Cloud Computing; Special Publication

800–145; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011.

Available online: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (accessed on

20 March 2013)

3. Kent, K.; Chevalier, S.; Grance, T.; Dang, H. Guide to Integrating Forensic Techniques into

Incident Response; Special Publication 800-86; National Institute of Standards and Technology:

Gaithersburg, MD, USA, 2006. Available online: http://cybersd.com/sec2/800-86Summary.pdf

(accessed on 26 June 2013).

4. Wang, C.; Wang, Q.; Ren, K.; Lou, W.J. Ensuring data storage security in cloud computing.

In Proceedings of the 2009 17th International Workshop on Quality of Service (IWQos’09),

Charleston, SC, USA, 13–15 July 2009; pp. 1–9.

5. Taylor, M.; Haggerty, J.; Gresty, D.; Hegarty, R. Digital evidence in cloud computing systems.

Comput. Law Secur. Rev. 2010, 26, 304–308.

6. Ateniese, G.; Burns, R.; Curtmola, R.; Herring, J.; Kissner, L.; Peterson, Z.; Song, D. Provable data

possession at untrusted stores. In Proceedings of the 14th Association for Computing Machinery

(ACM) Conference on Computer and Communications Security, Alexandria, VA, USA,

29 October–2 November 2007; pp. 598–609.

7. Juels, A.; Kaliski, B.S. PORs: Proofs of retrievability for large files. In Proceedings of

the 14th Association for Computing Machinery (ACM) Conference on Computer and

Communications Security, Alexandria, VA, USA, 29 October–2 November 2007; pp. 584–597.

8. Bowers, K.D.; Juels, A.; Oprea, A. HAIL: A high-availability and integrity layer for cloud storage.

In Proceeding of the 16th Association for Computing Machinery (ACM) conference on Computer

and Communications Security, New York, NY, USA, 9–13 November 2009; pp. 187–198.

Information 2013, 4 282

9. Curtmola, R.; Khan, O.; Burns, R.; Ateniese, G. MR-PDP: Multiple-replica provable data

possession. In Proceedings of the 28th International Conference on Distributed Computing

Systems, Beijing, China, 17–20 June 2008; pp. 411–420.

10. Barsoum, A.F.; Hasan, M.A. Provable possession and replication of data over cloud servers. Available

online: http://cacr.uwaterloo.ca/techreports/2010/cacr2010-32.pdf (accessed on 20 June 2013).

11. Shacham, H.; Waters, B. Compact proofs of retrievability. In Proceedings of the 14th International

Conference on the Theory and Application of Cryptology and Information Security: Advances in

Cryptology, Melbourne, Australia, 7–11 December 2008; Springer-Verlag: Melbourne, Australia,

2008; pp. 90–107.

12. Wang, Q.; Wang, C.; Ren, K.; Lou, W.J. Enabling public auditability and data dynamics for

storage security in cloud computing. IEEE Trans. Parallel Distrib. Syst. 2011, 22, 847–859.

13. Wolthusen, S.D. Overcast: Forensic discovery in cloud environments. In Proceedings of the Fifth

International Conference on IT Security Incident Management and IT Forensics, Stuttgart,

Germany, 15–17 September 2009; pp. 3–9.

14. Grispos, G.; Storer, T.; Glisson, W.B. Calm before the storm: The challenges of cloud computing

in digital forensics. Int. J. Digit. Crime Forensics 2012, 4, 28–48.

15. Birk, D.; Wegener, C. Technical issues of forensic investigations in cloud computing

environments. In Proceedings of the 6th International Workshop on Systematic Approaches to

Digital Forensic Engineering, Oakland, CA, USA, 26 May 2011; pp. 1–10.

16. Nyberg, K.; Rueppel, R.A. A new signature scheme based on the DSA giving message recovery.

In Proceedings of the 1st Association for Computing Machinery (ACM) Conference on Computer

and Communications Security, Fairfax, VA, USA, 3–5 November 1993; pp. 58–61.

17. Camenisch, J.L.; Piveteau, J.M.; Stadler, M.A. Blind signatures based on the discrete logarithm

problem. In Advances in Cryptology—EUROCRYPT’94: Workshop on the Theory and Application

of Cryptographic Techniques Perugia, Italy, May 9–12, 1994. Proceedings; De Santis, A., Ed.;

Springer: Berlin and Heidelberg, Germany, 1995; pp. 428–432.

18. Liu, F.F.; Gu, D.W.; Lu, H.N.; Long, B.; Li, X.H. Reducing computational and communication

complexity for dynamic provable data possession. China Commun. 2011, 8, 67–75.

19. Wang, Y.J.; Sun, W.D.; Zhou, S.; Pei, X.Q.; Li, X.Y. Key technologies of distributed storage for

cloud computing. J. Softw. 2012, 23, 962–986.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

