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Abstract: Jensen-Shannon, J-divergence and Arithmetic-Geometric mean divergences are
three classical divergence measures known in the information theory and statistics
literature. These three divergence measures bear interesting inequality among the three
non-logarithmic measures known as triangular discrimination, Hellingar’s divergence and
symmetric chi-square divergence. However, in 2003, Eve studied seven means from a
geometrical point of view, which are Harmonic, Geometric, Arithmetic, Heronian,
Contra-harmonic, Root-mean square and Centroidal. In this paper, we have obtained new
inequalities among non-negative differences arising from these seven means. Correlations
with generalized triangular discrimination and some new generating measures with their
exponential representations are also presented.
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1. Introduction

Let

Fn :{Pz(pllpb---vpn) pi >0’zpi :1}’ nZZ,
i=1
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be the set of all complete finite discrete probability distributions. For all P,Q €T", let us consider two
groups of measures:

e Logarithmic Measures
I(P|Q)= E I E I
(PlQ) = { P; n(p qi]+ Q; n(ijqﬂ

IPIQ)=X(p ~a)in(2),

T(PIIQ) = z(p';q'jm(p-*q-)

Pi G

The above three measures are classical divergence measures in the literature on information theory
and statistics known as Jensen-Shannon divergence, J-divergence and Arithmetic-Geometric mean
divergence respectively. These three measures bear the following two relations:

0 I(PIIQ)S%J(PIIQ)ST(PIIQ);
() 1PIQ+T(IQ=I(PIQ).

e Non-logarithmic Measures

AP(IQ) = 2(‘; +‘jq’ |

NP 1Q) =33 (P ~a)

and

The above three measures A(P ||Q), h(P Q) and ‘P(P |Q) are respectively known as triangular

discrimination, Hellingar’s divergence and symmetric chi-square divergence. These measures allow
the following inequalities among the measures.

1 1
—A(P[[Q)<h(P[|Q) < —Y¥(P Q).
4 16

If we consider all the six measures, they satisfy [1] the following inequalities:

%A(PMQ)S I(PIQ)<h(P Q) S%J(PIIQ)ST(PIIQ)S%‘P(PIIQ).
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e Generalized Symmetric Divergence Measures

Let us consider the measure

5L(PIQ) =[s(s—1)]-{i(pfq,l ) } $#01

¢(PIQ)=
IPIQ) = z —q '”(ZJ s=01

for all P,Qel', . The measure ¢ (P|Q) is generalized J-divergence extensively studied in
Taneja [2,3]. It admits the following particular cases:

() £PIQ=6(PIQ=3¥(PIQ);
(i)  SG(PIQ)=4(PIQ)=I(PIQ):;
(i) ,,(PIQ)=8h(P|Q).

Again consider another generalized measure

'Ts(PllQ)‘[S(S1)]{2(“5;%5}(&;%) 1}, 50,1

i=1

+ 0

T(PIIQ)=i[pi;qi)ln£ PEh ] s=1

2P

E(PIQ={1(PIQ)=3 {Zp. [p_ j+zq.|n[ 2 ﬂ 5=0

for all P,QeI',. The measure & (P || Q) known as generalized arithmetic and geometric mean
divergence. It also admits the following particular cases:

() £.(PIQ=FAPIQ);
i) &PIQ=1(PIQ):;
(i) &(PIQ=T(PIQ);
V) &PIQ=¥(PIQ).

We observe that the six measures given in above inequality appear as particular cases of the above

two generalized measures. These two generalizations are mainly the generalizations of the logarithmic
measures | (P||Q), J(P|Q) and T (P|Q). The non-negativity of the arithmetic-geometric mean

divergence, T(P||Q) is based on the well-known arithmetic and geometric means, i.e., we can write
it as

— n A(p"q)
T(PIIQ)—gA(p“qi)m(G( P ')]
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where A(a,b) and G(a,b) are arithmetic and geometric means respectively. Moreover, the measure
I(P]|Q) can also be written in terms of arithmetic mean

IGWQ)=§JA(nmppqqu—A(nAJMA(nﬂJ]

On the other side, these means plays important roles, being applied in different areas, especially in
information theory and statistics. Eve [4] studied some interesting geometrical interpretation of some
means, famous as Eve’s seven means.

Our aim here is to present generalizations of non-logarithmic measures, starting from triangular
discrimination. Also connections Eve’s seven means with the non-logarithmic measures are given. We
performed this through inequalities, where some new generalized means are also presented.

2. Seven Means

Let a,b>0 be two positive numbers. Eves [4] studied the geometrical interpretation of the
following seven means:

e Arithmetic mean: A(a,b) =(a+b)/2;

e Geometric mean: G(a,b) = Jab ;

e Harmonic mean: H (a,b) = 2ab/(a+b);

e Heronian mean: N(a,b) = (a%/% + b)/3;

e Contra-harmonic mean: C(a,b) =(a’+b? )/(a +b);

e Root-mean-square: S(a,b)=/(a®+ bz)/z :

e Centroidal mean: R(a,b)=2(a’ +ab+b2)/3(a+b).

We can easily verify that the following inequality having the above seven means:

H<G<N<A<R<S<C (1)

Let us write, M(a,b)=b f,,(a/b) , where M stands for any of the above seven means, then
we have

f () < fo (x) < £ (X)) < (%) < fo(x) < f(x) < fc (%) )

where  f,(x) =2x/(x+1), fo () =X, fN(x):(x+ x+1)/3, fa(x)=(x+1)/2,

fR(x)=2(x2+x+1)/3(x+1), fo(x) = (x2+1)/2 and fc(x)z(x2+1)/(x+l), Vx>0, x#1. In
all cases, we would have equality sign if x=1,i.e., f,(1)=1.

As I(P||Q) and T(P||Q), the means H(a,b), N(a,b), C(a,b), S(a,b) and R(a,b) may also be
written in terms of the means A(a,b) and G(a,b).
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2.1. Inequalities among Differences of Means

For simplicity, let us write

Dy =b fys(ab) 3)

where f, ()= f,(x)—f,(x), with U=V . Thus, according to (3), the inequality (1) admits 21

non-negative differences. These differences satisfy some simple inequalities given by the
following pyramid:

Dy 5
DNG < DNH ;
DAN < DAG < DAH ;
DRA < DRN < DRG < DRH ’
Dgg < Dsp < Dgy < Dgg < Dgy;
DCS < DCR < DCA < DCN < DCG < DCH '

(4)

where, for example, D, =G-H , D, :=N -G, etc. After simplifications, we have the following
equalities among some of these measures:

0] 3D =2D,, =2D;, =Dy, =6Dg, =3Dg, =A;

(i) 3D,y =D,; =3D,; :=h;

(iii)  Deg =Dgy -

The measures A(a,b) and h(a,b) are the well know triangular discsrimination [5] and Hellinger’s
distance [6] given by A(a,b)=(a—b)?/(a—b) and h(a,b)=4(va —\/B)z respectively. Not all the
measures appearing in the above pyramid (4) are convex in the pair (a,b) e R>. Recently, the
author [7] has proved the following theorem for the convex measures.

Theorem 2.1. The following inequalities hold:

Des
% DSN % DCN S 1 3
Dgp < 1D, <2D,, < $Dce £2Dgs r<h 5)
3 Dgg < 2Dy

The proof of the above theorem is based on the following two lemmas [8,9].
Lemma 2.1. Let f:1cR, >R be a convex and differentiable function satisfying f(1)=0 .

Consider a function

¢ (a,b) = af (gj a,b>0,
then the function ¢ (a,b) is convex in R? . Additionally, if f'(1)=0, then the following

inequality hold:

b-a
a

os¢f<a,b>s( J¢f,(a,b).
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Lemma2.2. Let f,f,:1 cR, - R be two convex functions satisfying the assumptions:

0  LO=f®=0 f,O="1Q1=0;
(i) f, and f, are twice differentiable in R, ;
(iii)  there exists the real constants «, f# suchthat 0<a < £ and

a5 1r0050,
f, (%)

for all x >0 then we have the inequalities:
X (a,b) < , (ab)<p ¢, (a,b),

for all a,b e (0,00), where the function ¢,(a,b) is as defined in Lemma 2.1.

2.2. Generalized Triangular Discrimination
For all a,b >0 consider the following measure generalizing triangular discrimination

(a-b)*(a+b)

(a,b)= — teZ
L zt(@) (6)
In particular, we have
L,(a,b)=2A(a,b),
_ _(a-by’
L,(a,b) =K(a,b) = Jb
~b)*(a+b
L@t = 22 D)
2 _p2 2
Lz(a,b)zéF(a,b)z%

and
(a- b)2 (a+ b)3

8(ab)’

From above, we observe that the expression (6) contains some well-known measures such as
K(a,b) (reference Jain and Srivastava [10]), F(a,b) (reference Kumar and Johnson [11]) and

W(a,b) , the latter being symmetric to > — measure [12]. L(a,b) will be considered here for the first
time. The generalization (6) considered above is little different from the one considered by Topsoe [13]:

a—b 2t
W, tENJr.

L(a.b) =2 L(@ab)-

A (a,b) =

Furthermore, there are more particular cases as known measures.
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Convexity: Let us prove now the convexity of the measure (6). We can write L,(a,b)=bf(a/b),
teZ, where

(0= (x- 1) (x:ll)t.
2 (V)

The second order derivative of the function f,_(X) is given by

, (x +1)t72
f'(x)= o1 < (x1),
L ot+2 X2( /X) A7

where

A (x,t) =(t+1)(t+3)(x4 +1)+

+4x (% +1)(2-t)(t+1) +2x* (3t-5)(t 1) (7)

From (7) we observe that we are unable to find a unique value of t when the function is positive.
But for at least t e[-1,2]-(1,3), x>0, x=1, we have fy (x)=0. Also, we have f_(1)=0. Thus

according to Lemma 1.1, the measure L, (a,b) is convex for all (a,b) eR’, t=-1,0,1and 2. Testing
individually to fix t e N, we can check the convexity for other measures as well, for example t =3,
L,(a,b) is convex.

Monotonicity: Calculating the first order derivative of the function f_(x) with respect to t,
we have

d(f,(9) _(x-1)'(x+1) In((x+1)2]_
dt (2\/;)”1 4x

We can easily check that for all x>0,x#1, d( f,_ (x))/dt >0 . This proves that the function f_(X)
is monotonically increasing with respect to t. This gives

TASh<SIK<EY<EF<EL (8)
Also we know that h(a,b) < $K(a,b) and D (a,b) =3A(a,b) . Thus combining Equations (5) and (8),
we have
2D, 3D, s{
DSAS{;D -1 }s 1D <3¥Dp Sh<iK<EVY<EHF <L (9)
3 4 1 < 3D
- 5
As a part of (9), let us consider the following inequalities:
2A< %D, <8D, <ZD, <8N <K<I¥W<IF<iL (10)

Our purpose is to study further inequalities by considering possible nonnegative differences
from (10).
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3. New Inequalities

In this section we will bring inequalities in different stages. In the first stage the measures
considered are the nonnegative differences arising from (10). This will be done many times until one
final measure.

3.1. First Stage

For simplicity, let us write the Expression (10) as
W, <W, W, <W, W, <W, <W, <W, <W, (11)

where for example W, =2A, W, =2 D, , W, =2 D_,, etc. We can write

W,(a,b)=b f (%j t=1,2,.,9 (12)
where
2(x—-1)°
fi, (X) :=2fA(x)=%,
_ 24 _8(\/;—1)2(2X+3\/;+2)
fWZ(X) '_TfCN (X)— 7(X+1) )
_ 8 _8(\/;—1)2(x+ x+1)
()= 3 Teo (X) = 3(x+1) ’
_ 24 _8(\/;—1)2(2x+\/;+2)
fW4(X) '_?fRG(X)_ 5(X+1) )
f,, (0 :=81,(x) = 4(Vx -1) ,
fiy, (X) = fK(x)=%,
1 _(x—l)z(x+1)
fu, (X) = 5 fy (X) =
1 ~ (x2 —1)2
fWB(X) '_Z fF(X) = 2X3/2 ’
and

(x—l)z(x+1)3
8x° '

f, (9= £.0) =

Calculating the second order derivative of above functions we have

14 16
fr ()=

(x+1)3’
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2[ (x+1)"+48x*" |
fy, (X) = - =,
X (x+ )
2 (x+1)3+16x3’2
fu, (X) = ” =,
3x (x+1)
2| 3(x+1)’ +16x°° |
\/\’/'4()(): ) 312 3
5x%%(x+1)
f”(x)__
y 3x° +2x+3
(0 ="
4x
f,,( )= x3 +1
) 14x* +2x* +15
fWE(X) = 16X7/2 ]
and
(x+1) 2(x4+1 + x2+1)(x—1)2
o A ]

4x*

The Inequalities (11) again admit 45 nonnegative differences. These differences satisfy some
natural inequalities given in a pyramid below:

1 .
Wow,

2 3.
DW3W2 = DW3W J

4 5 6 .

DWW < DWW = DW4W1

7 8 9 0 .
wa = DW < DWW = Dwsw1 J
11 12 13 14 15 .
DWW = DWW = DWW = DWW = DWGW ’

16 17 18 19 20 21 .
D Wy = Dw7w5 = Dw7w4 = Dw7w wa = Dw7w J

(13)

22 23 24 25 26 27 28 .
< <
DZ, <DZ, <D, <DZ, <DX, <DZ, <DZ,;
29 30 31 32 33 34 35 36
DWW = DWW S DWW < DWW S DWW S DWW < Dwgw = Dwgw1

where Dj,zwl =W, -W,, Dvi,‘jw6 =W, -W;, etc. After simplifications, we have equalities among first
four lines of the pyramid:
% Do, = % Di, =3 Ditgy, =% Dingy, = 5 D, =
(Va-b) (14)
a+b

_5 6 _ 5N/’ 38 _1N° —_1 10 _
DW‘,W1 DW._;W4 4 DW5W3 12 DW W, 2 Fww, T

In the view of above equalities, we are left only with 27 nonnegative convex measures and these are
connected with each other by the inequalities given in the theorem below.
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Theorem 3.1. The following sequences of inequalities hold:

1 1 15 14 13 12 11
DW2W1 DWW =13 DWW = DWW = DWGW = Dwﬁw5 =
21 20 19 18 17 16
DWW = wa = wa = wa = DWW = DW7W6 =
D22
28 27 26 25 24 23 WgW- (15)
< < < < < <
- DWBW1 - DW8W2 - DWSW3 - DWSW DWSWS DWBWG - DSG -
W9W1
35 34 33 32 31 30 29
DWW _DWW _DWW _DWW _DWW _DWW _DWQWB

Proof. We will prove the above theorem by parts.
1. For Duu, <7Dy, : We shall apply two approaches to prove this result.

1st Approach: Let us consider a function

() _ fu, () = Ty (x)
g (X) V\(IIZW1 !(2 Ill !
Hn fi 00 i, (00 = fi (%)

After simplifications, we have

8x (X +2x°7 + 6x + 24X +1)
G () = X 4 20x° 2 3 1)
7(+66x2 +34x¥2 4+ 20% + 64/x +3]
x® +4x> +15x% +
+20x%¥2 +15x + 4\/Y+J {> 0 x<1
3x* +6x"2 +20x° +34x>% + <0 x>1
+66X7 +34x%% + 20X + 6/X + 3]

48(x—1)(x+1)2(
g\;vzwl_wewl(x) == [

and

Buv o, = SUP G v, (X) = G, _wane (1) =
x€(0,00) 14

By the application Lemma 2.2 we get the required result.

2nd Approach: We shall use an alternative approach to prove the above result. We know that
B waw, = G, v, D = T, D / fuw, (1) =1 . In order to prove the result, we need to show that

2 Dy, — Dy, > 0. By considering the dlfference % Dyw, — Dy, » We have

1 15 1 1

1 a
—Dyy — =—(W, +13W, —14W. Vy=bf, | =1,
1g i~ B, =7 ) =15 =P (b)

where

(Vx-1)
fvl(x)=—>0, Vx>0,x=1 (16)

\/;(X+1)

Since V,(a,b) > 0, we get the required result.

For simplicity, from now onward we shall use only the second approach.
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2. For Dy, <4Dyy, : Let us consider a function Gy, ww, (X)= T, (X)/ filw, (X) . After
simplifications, we have
3x* +6x"? +20x% +34x%% +
7
g ()= +66X2 + 34x¥2 + 20 + 6+/x +3
el et 3[7x4 +14X7"2 + 44%3 + TAXS? + } ’

+138X% + 74X¥2 + 44x + 14X + 7

14
A/vew1 ww, = Ywgn, W6W2( ) = 13

and

14

M i, - Dl

1 1
= 5 (W +130; —14W,) =

3. For Dy, <%Dyy, : Let us consider a function Gy, wu, (X)= fgu, (X)/ figu, (X) . After

Vl

simplifications, we have

g =2 +138x2 + 74x¥? + 44x +14x + 7
Wl Wols 7 (9x* +18x™? +52x°% +86%x%% + ’
+150%2 +86X%2 + 52X + 18X +9

39
B = 1) =—
oW, _WeWs gWeWz _WeWs ( ) 35

(7x4 +14X7"7 4 4453 + 74%%% + ]
9

and

39 DL 14 1 4

= o (AW, +35W, - 39W; ) = =2V,

% W6W3 o WGWZ

4. For Dy, <%Dyy, : Let us consider a function Gy, ww, (X) = fijw, (X)/ figw, (X) . After
simplifications, we have
5(9x4 +18x™? +52x° +86x°2 + J

g (x) = +150%% +86X¥2 +52x +18/Xx +9
Wolls Vel 3(15x4 +30x™ +76x% +122%°% + } '

+186x2 +122x¥2 + 76X + 30/x +15

25
= 1 = —
A/vsw3 _WW, gwﬁwg_wew4( ) 21
and
25 1 4
o1 v, — D, = Z(4W6 +21W, —25W,) = Zv1 .
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5. For Dy, <Dy, : Let us consider a function Gy, ww, (X)= fw, (X)/ fiu (X) . After

simplifications, we have
15x* +30x"2 + 76x° +122x%% +
+186x% +122x¥2 + 76x + 30v/x +15
2
15(Vx +1) (x+1)°

7
ANGWA —WeWs - gW6W4 _WeWs (1) - g

Owaw, wane (x) =

and

5 1 2
3 Dy, — Do, = g(2W6 +5W, —7W,) = gvl-

6. For Dy, <%Dy, : Let us consider a function Gy, ww (X)= fuw, (X)/ fiw (X) . After

simplifications, we have

g () = 3Vx (x+1)’
W T 4 (x5 12X +5x +1)
1
A'Vews _WWy = gW6W5 _Wow, (1) = Z
and
1 1 1. 1. (a
Z DV%in B D\st - Z(W7 +4W; —W, — 4W6) = §V2 = gb fv2 (E) ,
where
8
PN L) P
X)=—=>—+—"*-_> , X > ,X +
Ve x(x+1) (17)

7. For Dy, <£Dy,, : Let us consider a function Gy, ww, (X)= fu, (X)/ fu, (X) . After

simplifications, we have
2
) 7(\/;+1) (x4+5x3+12x2+5x+1)
X) = ,
S L?x5 +14x%? +42x* +68x"? +115x°% + ]

+156X52 +115X2 + 68X%2 + 42X + 14X + 7

28
= 1 = —
A/v7w1_w7w2 Owow, _wow, @) 27

and

28 1 1., 1 a
>7 D, — Dy, = o (W, + 270, —28W,) = =V, = 2 b, [Bj ,

where

(x+6\/;+1)(\/§—1)6
f, (X) = >0, Vx>0, x#1 (18)
s x(x+1)
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8. For Dy, <%Dy,, : Let us consider a function Gy, wu,(X)= filw, (X)/ i, (X .

simplifications, we have

3(7x5 +14x%% + 42x* +68x"? +115x° + J

+156%%2 +115%2 + 68x¥2 + 42X +14/x +7
gw7w2 ATA (X) = [

3x° +6x¥2 +18x* +28x? + 47x° + ’
160X + 47x% + 28x%2 + 18X + 64X + 3

81
A/\@W2 waw, = Ywow, W7W3( ) = 77
and
81 20 1 2
77 W7W3 W W, = ﬁ(4W7 + 77W2 - 81W3) = ﬁvs .

9. For Dy, <&Dy), : Let us consider a function Gy, ww, (X) = filw, (X)/ T, (4 .

simplifications, we have

+60X%2 +47x% +28x¥% +18x + 6/X +3
5x° +10x%2 + 30x* + 44X + 73x% + J ’

+84x5% + 73x% + 44%%% + 30X +10/X + 5
55

B, ww, = Gww, ww, O =— =1

(SXS +6XY2 +18x* +28X"2 + 47X° + ]

Owow, wow, (x)= (

and

55 1 2
= Dyw, — Djw, = a(4W7 +51W, —55W, ) = =V

51 W WW,

10. For Dy, <#Dyy, : Let us consider a function Gy, ww, (X)= fVQ;WA(x)/ f, (X)

simplifications, we have
5x° +10x%2 + 30x* + 44x"? + 73x° +
(+84x5’2 +73%2 + 44%¥ + 30x +10Vx + 5]
5<x+\/;+1)2 (x +1)3

17
IBW7W4 wws = Gww, W7W5( )=— 15

gw7w4 _WoWg ( ) =

and

17 8 1 1
= Divw, — Divw, = E(2W7 +15W, —17W;) = Vs

210

After

After

After
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11. For Dy, <3Dy, : Let us consider a function Gy, wu, (X)= filw, (X)/ fu, (X) . After

simplifications, we have

2
) 4(x +/x +1)
X) = 1
gW7W5_W7W6 4X2 +5X3/2 +6X+5\/;+4
3
AN7VV5 W T gW7W5 AAA (1) = E
and
3 1 1. 1 a
E \;L\IEjWG B Vlv77W5 - _(W7 + 2W5 - 3\/\/6) = _V4 ==—b fv4 (Ej )
where

fVA(x):WT_l)>O, Vx>0, x#1 (19)

12. For Dy, <%Dgy, : Let us consider a function Gy, ww, (X)= fijy, (X) / fa, (X) . After
simplifications, we have

X (x+1)° (457 +5x° + 6+ 5/x +4)

15+ 36472 +304/x +492x° + 364X + )

+150%%% +90x + 90x° + 30x*Y2 +15x° +

+257x* +257x% +150x%?

Owaw, _wiyw, (x)=

:Bw7wG waw, = Gwow, ww, @)= 3

and
1 1 1 . a
5 DV%SWl B D&ISWG = g(Wa + W, =W, - 3W7) = EVS =b fv5 (Ej ,
where
(\/§+1)2 (\/Y—l)8
f, (x)= >0, Vx>0, x=#1 (20)

x¥% (x+1)
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13. For Dy, <#Dy}, : Let us consider a function Gy wu, (X)= va;wl(X)/f\Asz(X) . After
simplifications, we have

15+ 364x%2 + 30+/x +492x% + 364Xx72 +
7| +150x”2 + 90X + 90x° + 30x*2 +
+15x% + 257x* + 257x% +150x°*?

35+ 828x%2 + 70+/x +1084x° +828x"% +
3| +350x%? +210x + 210x° + 70x*% +
+35x° +589x* + 5892 + 350x%?

42

ﬂ\/\/BW1_W8W2 = Owaw, _ww, D= Z

Owaw, wyw, (x) =

and
42 27 28 1

1 1 a
—=DZ, —D&, == (W, +41IW, —42W,) = —V, :=—bf, | = |,
41 e TV 41( )= 164 °° 164 (bj

where

(x2 +6%%2 4+ 22X + 6\/;+1)<\/;—1)6

>0, Vx>0, x=#1 21
x¥2(x+1) 21)

fve (x) =

14. For Dy}, <#Dyj, : Let us consider a function gy, wu (X)= fmzwz(x)/fm;'swa(x) . After

simplifications, we have
35+828x%2 + 704/ +1084x3 + 828%™ +
9| +350x”2 +210x + 210x° + 70x*? +
+35x° +589x* +589x? + 350x*2
45+1028x52 + 90/x +1284x° +1028x"% +
7| +450x% + 270x + 270x° + 90x™? +
+45x° + 739x" + 739X + 450x¥2

123
ANBWQ w, = Gww, Wgwg( 1)= 119

gwﬁw2 _WyW, (X) =

and

1

1
% D\,f,SW3 - D\f,zwz = m(4W8 +119W, —123K;) =

V..
119 °
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15. For Dy, <Dy}, : Let us consider a function Gy, ww, (X)= va;ws(X)/f\AZw4(X) . After
simplifications, we have

45+1028x%2 + 90/ +1284x3 +1028x"2 +
5| +450%%2 + 270x + 270x° + 90x'Y2 +
+45x% + 739x* + 739x2 + 4502

75+150+/x +1189x2 + 450x° +1884 X3 +
3| +75x°® +150x*Y? + 450% +1189x* +
+750%x%% + 750%°% +1628x""? +1628x°2

85

= 1 = —
AN8W3_W8W4 gw8w3_wsw4( ) 81

Owiaw, ww, (x) =

and
8_5 25 1

a1 Dy, — D, = 4W, +81W, —85W, = ﬁvﬁ .
16. For Dy, <3 Dy, : Let us consider a function Gy, w, (X) = fi, (X) / f, (X) . After
simplifications, we have
75+ 150X +1189%2 + 450%° +1884x3 +
+75x® +150x*¥? + 450x +1189x* +
+750x? + 750%°%2 +1628x""? +1628x°?

75(x+1)°(Vx +1)

27

= X)=—
IB WeW, _ WgWg gW8W4 _WeWs ( ) 25

Owyw, wyw, (x) =

and

27 o4 25 1 1
—D;, — D =—(2W, +25W, - 27K, ) =—V..
o5 WaWs WaW, 50 ( 8 4 5) 50 °

17. For Dy, <Dy, : Let us consider a function Gy, w, (X)= fvg'sws(x)/ fg, (X) . After

simplifications, we have

5(x+1)
gW5W5 _WyWs (X) = # )
5X°+6X+5
5
ﬂ WeWs _WeWe = gW3W5 _ WgWg (1) = Z
and
5 1 1. 1 a
R e T )
where

(x+6vx +1)(vx -1)
fy, (X) = NEE >0, Vx>0, x#1 (22)
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18. For Dy}, <2Dy}, : Let us consider a function Gy, ww, (X)= Ty, (X)/ fy, (X)

simplifications, we have
(15X +18x +15)(Vx +1)
15%° +14x%2 +13x2 +12x%2 +13x +14+/x +15
ANBWB wyw, = Gww, waw, =2

Owaw, wiw, ()=

and

2DV%’§W7 - D\/%/jws =Wy +W; —2W; = %VS = %b fva (Ej )

where

(Vx+1) (Vx-1)

3/2
X

fy, (X) = >0, Vx>0, x#1

19. For Dy, <4Dyyw, : Let us consider a function Gy, ww, (X)= fvg'swa(x)/fm’,’gwl(x) .

simplifications, we have

" 3\/;(x+1)3(5x2+6x+5)
X)=
Suug gy 4(x+3)(3x+1)(x* +2X° +6x° + 2x +1)’
1
ﬂWBWe _Wew, gWBWG _WoW, (1) D)
and
1 1 1 1 a
D% W, +2W, — K, —2W, ) = —V, ==—bf, | = |,
2 WoWy DWSWG 2 ( + ) 16 * 16 % (bJ
where

(Vx+1) (Vx-1)

f, (X)= >0, Vx>0, x#1
Vs 16x% (x +1)

20. For Dy, <Dy, : Let us consider a function Gy, wu, (X)= fVQ’gwl(x)/ fgn, (X) -

simplifications, we have

7(x+3)(3x+1)(x4 +2x°+6x% + 2x+1)(\/;+1)2
21+ 42+/x + 42X 4 21x7 +399x° + 775x° +
+399x” + 775x* +960x"? + 566X +133x +
+224x%% + 224x"? 1 566x% +133x%°

56
= X)=—
'B WoW; _ WoW, gWng _WoW, ( ) 55

gwgwl_wgw2 ( ) =

and
56 D35 36 = 1 (W +55VV —-56K ) L VlO L —b fV E !
55 440 ° 440 Mo\ b

% Woly — =Wy

where
X3 +6x%% +23x% + (\/_ 1)6
X —
f(x)= +68x¥2 + 23X+ 6/x +1
VlO -

xz(x+1) >0, Vx>0, x=1

214

After

(23)

After

(24)

After

(25)
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21. For Dy, <12Dy), : Let us consider a function Gy, wu,(X)= fmzwz(x)/ o, (X)
simplifications, we have
21+ 42/% + 42X 4 21x" +399%° + 775%° +
3| +399x% + 775x* +960x™? + 566X +133x +
+224x¥% +224x"% + 566> +133x°

9+18Vx +9x” +323x* +171x° +57x° +
7| +323x% +171x% +18x™2 + 962 +
+238x%% +238x%? + 57x + 96x%? + 384%™

165
= 1 = —
ﬂwng wws = Gwgw, waw, 1) 161

Owgw, wyw, (x) =

and

1 1

165
Dy, — Diw, = E(4W9 +161W, —165W, ) = 35vlo :

161 s

22. For Dy}, <4#3Dy), : Let us consider a function Gy, ww, (X)= fyu, (X)/ figu, (X) .

simplifications, we have
9+18v/x +9x +323x* +171x° +57x° +

5| +323x° +171x% +18x™2 + 96x'2 +
+238x°%% +238x%% + 57x + 96x%% + 384%™

15+ 30+/x + 95x + 386x°'2 + 5762 +
3| +160x*% + 95x° + 30x™¥2 +160x"? +15x” +
+517x* + 285x° +517x° + 285x? + 386>
115

= 1 —
ﬂW9W3 _WoW, gwg\/\/3 _WgW, ( ) 111

gW9W3 _WW, (X) =

and

115
DY, —Dy, = i(4w9 +111W, —115W, ) = ivm :
111 222

m WoW, — —WoW,

23.For Dy}, <%Dgi, : Let us consider a function Gy, wu, (X) = fiw, (X)/ filu, (X)

simplifications, we have
15+ 30/x +95x + 386x°2 +576x% +

+160x%? + 95x° + 30x*¥2 +160x Y2 +15x” +
+517x* +285x° +517x> + 285x? + 386x%>?

X) =
gWgW4_WgW5( ) 5( . 3[3X4+6X7/2+10X3+14X5/2+ J
X+

+18x2 +14x¥2 + 10X +6+/x + 3

37
= 1 = —
:&NQWMWQW5 gwgwhwgw5 ( ) 35
and
37 1 1
= Dy, — Diw, = g(zwg +35W, —37W;) = mv10 :

215

. After

After

After
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24.For Dy, <%Dgy, © Let us consider a function Gy, w, (%)= f, (X)/ i, (X)

simplifications, we have

3x* +6x"2 +10x% +14x%% +
+18X% +14x%2 +10X + 6+/X +3

3x3+3x%2 +4x% + '
(x+ X +1)

gwgw5 _WoW, (X) =

+4%%2 + 4% +3x +3
7
A/‘/9W5 _WoWs = gW9W5 AR (1) = E
and
! 1 1 1 a
E DV3V2W6 - DV?Ist - E(Wg +6W, — 7W6) = Evu = Eb fv11 [Bj )
where

(3" +6x° + 22x+6Vx +1)(J§—1)6

2

fy, (x) = >0, Vx>0, x#1

X

25.For Dy, <%Dg,. : Let us consider a function Gy, ww, (X)= f\,\','awz(x)/fvg'gwe(x) .

simplifications, we have

15x% +14x%% +13x% +
X
+12x¥2 +13x +14+/x +15

Owaw, waw, (x) =

3 +3x7 +4x2 +
4(x +4/X +1)
+4x%% 4 4%+ 3x +3
1
ANSWZ _WqW = gWgW2 _WyWj (1) = 5
and
1 1 1 1 a
3 Do, ~ Dl =G (Wo + W, — W, —3W,) =2 Vi, =2 b, (Ej'
where
(x& +1)2 (&_1)8
fy,, () = > >0, Vx>0, x#1

X

26. For Dy, <3Dg, : Let us consider a function Gy, ww, (X)= T, (X)/ fig, (X) .

simplifications, we have

+4X3? 4 4% +3X +3

3(x+1)(x* +1)(\/§+1)2

33 +3x%2 +4x% +
(x+ X +l)

Owgw, _wigw, (x)=

:ngwe_vvng = Owgw, ww, D= E

and

216

After

(26)

After

(27)

After
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3 1 1 a
> D\f,‘:W7 - vazwe - E(Wg +2W, —3W, ) = Evlg =bf,_ (E) ,

with

fvla(x)z(x_l) (X+4§+1)(&_1) >0, Vx>0, x#1 (28)

27.For Dy, <2Dg, : Let us consider a function Gy, ww, (X)= fuw, (X)/ fiw, (X) . After
simplifications, we have
12(x+1)(x2+1)(\/§+1)2

X) = ,
Gur v (X) (12x4 +9x™ +10x® +11x%% + }

F12x% +11x¥2 10X + 9/x +12

AN9W7 —WoWg = gW9W7 _WoWg (1) =2
and

where
(x+2)(Vx +1) (Vx -1)

8x?

f, (X)= >0, Vx>0, x=1 (29)

Combining the results 1-27, we get the proof of (15).
Remarks. Based on the equalities given in (14), we have the following proportionality relations:

0) 4A=2(C+H)=3R+H;

(i) 3R=C+2A=2C+H;

(i) 3N =2A+G;

(iv) 3C+2H =3R+2A;

(v) C+6A=H +6R;

(vii C+3N=G+3R;

(vii) 3N +2A=2C+2H +G;

(viii) 27R+2G =14A+9C +6N ;

(ix)  3(N+3R)=8A+3C+G;

(X)  3G+8H+9C =3R+8A+9N ;

(xi) 4G +14H +17C =9R +14A+12N ;

(xii)  5G +24H +31C = 21R + 24A+15N .
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3.1.1. Reverse Inequalities

We observe from the above results that the first four inequalities appearing in pyramid are equal
with some multiplicative constants. The other four inequalities satisfies reverse inequalities given by
() Duw, <D, < Di, < Dy, < Dy, <

14 M4 6 13 10 12 1.
<5 Dwﬁw2 <3 Dwﬁw3 =3 DW6W4 = 2DW6W5’

(i) Dvlv‘jwe < Dy, < Dj,fWA < Dvljj% < ijjwz < szviwl <

< £ Dy, <% Duw, <2 D, <3 Dy, < 2D,
(iii) Dyl <Dy, <Dy, < Daly, < Dy, <Dy, < Dy <

< % Dy, <15 Dygy, <% DGy, < 8Dgy. <3Dg, <3D3, ;
(iv) szvng < Dvij% < DvijWG < D@jws < D@jWA < Dvijws < Dvijwz < Dv?;jwl <

56 35 24 34 40 133 8 32 4 M3t 30 29
<% Dwng S 3 Dwgw3 Sz Dwgw4 <3 Dwgw5 <3 Dwgw6 = 2DW9W7 = A'Dwg,w8 .

3.2. Second Stage

In this stage we shall bring inequalities based on measures arising from the stage. The above
27 parts generate some new measures given by

Vi(P[IQ) :=Zn“qi f, (qﬂJ t=12,..,14 (30)

where f, (X), t=1,2,...,14 are given by (16)—(29) respectively. In all the cases we have f, (1)=0,
t=1,2,...,14 . By the application of Lemma 2.1, we can say that the above 14 measures are convex. We
may try to connect 14 measures given in (30) through inequalities.

Theorem 3.2. The following inequalities hold:

1y, <1V, <ly
Vlg%vsg{z e 8}37_12\/113%\/133%\/14 (31)

1 1
%Vs < mvlo
and

V, <3Vs <3V <§Vy, (32)

Proof. We shall prove the above theorem following similar lines to Theorem 3.1. Since we need the
second derivatives of the functions given by (16)-(29) to prove the theorem, their values are

as follows:
433 +12x%% + 25x% +

(V1) |7

£ = +40X%¥2 + 25X +12+/X + 3

“ 4%°% (x +1)3 ’

6 x3+3x%2 +6x% +

2(x-1)| ",

) +8x%2 + 6% +3Vx +1

fi, (X) = ,

xg(x+l)3
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a X4+ 4x"? +13x3 +24x5% +
2(Vx-1) |
+36X% +24%¥% +13x + 4JX +1

f ”(X) — ,
% x3(x+1)3
o (Vx-1) (ax 7+ a)
fv4(X) = 4X3 !
( Jx 1)6 15x* +42x™? +108x3 +174x%% +
£7(x) = +218%% +174%%% +108X + 42+/x +15
% 4x7" (X +1)3 ’
3x° +12x72 +39x* + 96x™"% +
5(+/x —1)4 11663 + 232X7% + 1662 +
£(0) = +96x%2 +39x +12+/x +3
Yo 4™ (x+1)3 ’
” 15(\&—1)4(x2+4x3’2+x2+6x+4\/§+1)
1tv7(x) = 4x72 J
) (\/; —1)4 (15x2 +28x%¥2 4 34x% + 28X +15)
fVE(X) = 4X7/2 1
(f 1)2 (f 1)6 6x* +9x"? +32x3 +35x% +
X+ X —
£ 0x) = +60X2 + 35x¥2 +32X% + 9/X + 6
¥ x* (x+1)3
3x5 +12x"2 + 40x° +100x%2 + 217x* +
2(Vx —1)4 +352%72 + 472%° + 352552 + 21752 +
£ () = +100x%? + 40X +12+/x +3
Yo x*(x +1)3 '
2(\/_ 1)4 33 +12x%% +31x% +
£ (x) = +43x¥2 + 31X +124/x +3
Vit - 4 !
X
” (Vx —1)6 (1262 + 2752 + 34x + 27 +12)
fVlz(X) = 4 1
2X
2(( 1)4 33 +12x%% +19x% +
£ (x) = +22%%% +19x +12/x + 3
Vis - 4
X
and
(f 1)4 6x° +9x%% +10x% +
£ () = +10x%% +10X + 9V/X +6
Vig o 4 .

X
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We will prove the above theorem by parts. In view of procedure used in Theorem 3.1, we shall
write the proof of each part in summarized way.

1. For V(a,b<$V,(a,b): Let us consider a function g, , (X)= fv’l'(x)/ fy. (X) . After simplifications,
we have
3x° +12x>% + 25x° +
X
0 ()= +40x*? +25x +124/x +3
- 8(24)(3 +~/X +36x%% +13x32 + ] ’

+24%% +4AX +13x""? + x%% + 4x*

1
:Bvl_v3 =0y, v, = g
and

$V,(a.b)-V,(a.b)=ZU,(a.b) = 2b, [%j |

where
f ) 0, Vx>0, x#1 33
X)=~——">0, VX>0, x#
Ul( ) X(X+1) > ( )
2. For V,(a,b) <4V,(a,b) : Let us consider a function g, , (X)= f\f;(x)/ fy, (x) . After simplifications,

we have
4(24x3 +/X +36x72 +13x¥% + J
+24X% + 4% +13x™"% + x*7 + 4x°
(452 + 7x+ 43 ) (x +1)

&3 v, =9y, v, Q=4

gv3 v, (X) =

and
4V,(a,b)-V,(a,b) =3U,(a,b).

3. ForV,(a,b) <}V,(a,b): Let us consider a function g,, \, (X) = f\,';(x)/ fy (x) . After simplifications,

we have
2(4x3’2 +7x+4\/§)
B 00 = 15(4\/;+ 6X +1+ X2 +4x3’2) ’
B, v, =9, v, (D) =%
and
W, @b)-V,(ah)= U, @b)=3b, (%)
where

Jx-1)
fuz(x):(XT)>O, Vx>0, x#1 (34)
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4. For V,(a,b) <2V (a,b): Let us consider a function g, , (X)= f\,;’(x)/ fy, (X). After simplifications,

we have

g 2453 + X +36x%2 +13x%% +
+24%% +4x +13x"? + x%% +- 4x*
Oy, VG(X) = '
- ; 166X2 +96X¥% +124/X +39x + 3+ 3x° +
+232x%2 +12x%? + 96x"? +166x%° + 39x*

2
ﬂv3_v6 =0y, v, @®= 5
and

2 1 1 a
ab V@b -5 e =102

where

(\/;—1)8(2x+7\/§+2)

x¥2(x+1)

fy, (x) = >0, Vx>0, x=1 (35)

5. For V,(a,b)<2V,(a,b) : Let us consider a function 9, v, (X)="f/(X)/f](X) . After

simplifications, we have

+232x%% +12x%2 + 96x""? +166x> + 39x*
12x% +100x% + 40x¥2 + 3/x +12x +
8| +100x° +217x%% +217x%2 + 472x™% +

+352x3 +352x* + 40x™2 + 3x1¥2

5 [166x2 +96X%2 +12/X +39% + 3+ 3x° + ]

gv6 Vi (X) =

Thisgives &, , =9, (1= % . Let us consider now, and

9 1 1 a
—V..(a,b)-V.(a,b)=—U,(a,b)=—bf, | — |,
V@) Vi(ah)= 2, @) = = [b)
where
(\/§—1)8(9x2 +40x%2 +86x+40VX +9)
fy, (X) = >0, Vx>0, x=1 (36)

x*(x+1)
6. For V,(a,b)<%V,(a,b) : Let us consider a function gvm_\,n(x)zf\,’l’o(x)/f\,’l’l(x) . After
simplifications, we have

12x° +100X% + 40x¥2 + 3J/x +12x +
+100x° +217x%2 +217x%? + 472X +
+352x° +352x" + 40x™* + 3x'¥?
v, (X) = (43x2 +31x¥% 43X + J xr1) ’
+12x +31x%2 +3x"? +12x°
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16
A/w Vy T gV1o_V11 (1) - E
and
16 7 7 N
Evll(a’ b) -V, (a,b) = §U5(a, b) = §b fu5 (Bj ,
where
Jx-1) (X2 +8x¥2 +38x +8x +1
( )( )>0,VX>O,X¢1 (37)

fu, () = x*(x+1)

7. For V,(a,b) <3V, (a,b): Let us consider a function g, , (X)= f\,’;(x)/ fy (x) . After simplifications,

we have
166X2 +96X%% +12+/x +39x + 3+ 3%° +
6 (0= +232x%2 +12x%? + 96x"? +166X° + 39x*
o 3(4VX +6X+14 X +4x% ) (x+1)°
9
:Bv6 v, =0y, v, M= Z
and
9 5 5 a
Zv7(a, b)-V,(a,b) = ZU6(a’ b) = Zb fi, (Ej ,
where
(\&—1)8(x+8&+1)
fy, (X) = >0, Vx>0, x=#1 (38)

X% (x +1)
8. For V,(a,b) <2V,(a,b): Let us consider a function gv7_vg(x) = f\,’;(x)/ fv;f(x) . After simplifications,
we have

15(4\/?+ 6X+1+ X2 +4x3’2)

X)= ,
G, () 15x2 + 28x%2 + 34x + 28/x +15
A@ VT gv7 V, D=2

and
2V,(a,b)-V, =U,(a,b).

9. For V,(a,b)<iV,(a,b) : Let us consider a function gvg_vu(x)zfv’g(x)/fv’l’l(x) . After
simplifications, we have

” x(15x2 +28%%2 + 34x + 28X +15)
Oy, v, (X)= ,
Ve 8(43x2 +31x%2 43X + J

+12x 4+ 31x%% +3x"? +12x3

1
A/8 _Vll = gVB _Vll (1) = 5

and
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W, (8,0) -V, (@) = U, (@b) = b, [%j ,

where
(5] (1)

X

fu, () = >0, Vx>0, x#1 (39)

10. For V,; £3V,, : Let us consider a function gvu_vm(x): fv’l’l(x)/ f\,’l’s(x) . After simplifications,
we have

43x% +31x¥2 + 3x +12x +
+31x%2 +3x"? +12x°

gVu _Vis (X) -
i

3x% +12x%% +19x° + ’
+22%%% £19x +124/x + 3

3
A/11_\/13 = gvil_vi3 (l) = E

and

3 1 1 a
~Vi(a,b) ~V, (@,b) = SUy(@ b) =S, (Ej |

where
(Vx-1) (x+8vx +1)

X

fy, (X) = >0, Vx>0, x#1 (40)

11. For Vj,(a,b)<3V,,(a,b) : Let us consider a function ngB_VM(x):f\,’l'g(x)/f\,'l'4(x) . After
simplifications, we have

(fy’x3 +12x%% +19x% + ]

o o (X)= +22x¥? +19x +12+/x +3
o e (1Ox‘°”2 +10X+9v/x +6 +] ’

+10x% +9x%2 + 6x°
All:% _Vl4 = gvl3 _V14 (1) = 3

and

3V,,(a,b) ~Viy(a,b) = 2U,(a,b) = 2b f,, (%j ,

where

(\/; - 1)8 (\/; +1)2

fy, (X) = v >0, Vx>0, x=1 (41)
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12. For V,(a,b) < 4V,(a,b) : Let us consider a function g, ., (X)= f\,’z'(x)/ fi. (X) . After simplifications,

we have
8(3x3 +6x%2 +3x+8x% + X2 +6x°2 +\/§)

Oy, v.(X)=
ve-ts 218x% +174x%2 + 42/x +108x +
+15+174x%? + 42x™? +108x® +15x*

1
,sz Vs gv2 Vg (1) = Z

and

1 1 1 a
sz(aa b) -V, (a,b) = Zulo(a7 b) = Zb fum (E) )

where
( X —1)10
fum(x):m>0, Vx>0, x#1 (42)

13. For V,(a,b) < 3V, (a,b) : Let us consider a function g,, , (X) = fV:(x)/ fy, (X) . After simplifications,

we have

) {218x2 +174%x%7 + 42X +108x + ]

+15+174x% + 42x™* +108x° +15x*

o(Vx + 1)2 (35x2 +32%¥2 1 64/X + 9 + 60X +} ’

gv‘,_v2 (X) =
+6x%% +32x™? + 35x3 + 9x*

1
,Bvs_vg =0y, v, D= Z

and

1 1, . (a
W, (a.0)-V,(@b) = Un(ab)=5b 1, (B)

where

(Vx+1) (¥x-1)”
x*(x+1)

14. For V,(a,b)<2V,(a,b) : Let us consider a function gvg_vlz(x):f\,’;(x)/fv'l'z(x) . After

simplifications, we have

f,, ()= >0, Vx>0, x#1 (43)

2 35x% +32%x%% + 64/X + 9% + 60X
2(\/;+1) - +6X +9x+ +
+6x%2 +32x"% +35x3 + 9x*
(x+1)° (126 + 275 +34x% + 27x +12X

B, v, = Oy v, D =2

Oy, v, (x) =

and
2V;,(a,b) -Vy(a,b) =U,,(a,b).
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3.3. Third Stage

The proof of above 14 parts gives us some new measures. These are given by

U,(P|Q) ::iqi fo, [%j t=12,..11 (44)

where the functions f, (X), t=1,2,...,11 are given by (33)—(43) respectively. In all the cases, we have
fUt (1) =0, t=1,2,..,11. By the application of Lemma 2.1, we can say that the above 11 measures are

convex. Here follows the second derivatives of the functions (33)—(43), applied frequently in the
next theorem.

2(\/;—1)6(\/;+1)2(x2 +x¥? +3x+\/§+1)

fa,00 = x*(x+1)° ’
(VX -1) (15x + 26V +15)
(0= 4% (x+1)° ’
( N> _1)6 (15x4 +54x72 +144%% + 246%°2 + J
£7(x) = +314%2 + 246" +3144x +54/X +15 |
’ 2x"% (x+1)
297x + 960X + 27 + 612x%* +
2(Vx~1)' | +102v/x +1156x*% +612x™ +
) +102x%2 + 27x° + 297" + 960x°
.00 = x*(x+1)° ’
73x +312x? + 3+180x%? +
2(Vx 1) | +18Vx +312x° +180x" +
] +396X°7 +18x*% +3x° + 73x*
fo,0) = x*(x+1)’ '
(Vx 1) (462x3’2 T 4627 25’2 + 9c4>\/§ + 6032 X’ +j
£7(x) = +252X + Sz/(ix +135X +252x° +15 |
: 4x7% (x +1)
N (Vx-1)"(24x7 +9x°% ~10x + 9V/x + 24)
u, (X) = v :
o 205 1)’ (3¢ +18x + 28x +18Jx + 3)
U, (X) = v :
. (VX -1) (125 + 275 + 34x+ 27/x +12)
Ug - ’

2x*
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s 15x% +40x>? + 77x% +
(J_ —1)( ]

£ () = +96%%2 + 77X+ 40/x +15
= 4x7’2(x+1)3
and
s 3x* +9x""? +22x% +35x%% +
O
£ (0 = +42x2 +35x%% + 22X +9v/x + 3
Uy - !

x*(x+1)°
The theorem below connects only the first nine measures. The other two will be given later.

Theorem 3.3. The following inequalities hold:

o[

U, <

N

1y
Ulgﬁuesl—lluss{z z}sz—lougg U, (45)

1
56U5

Proof. We will prove the inequalities (45) by parts and shall use the same approach applied in the
above theorems. Without specifying, we will frequently use the second derivatives fy(X) ,

t=12,..,11.
1. For U,(a,b<4Uq(a,b) : Let us consider a function gul_ue(x):ij’l(x)/fU’;(x) . After
simplifications, we have
x(3x+3x3+8x2+x7’2+6x3’2+6x5’2+«/§)
.0, () = (462x3’2 +462X%7 +904/X + 6027 ]

+252% +90x"? +15x* + 252x° +15
1
;Bul_u6 = gU1_Ue (1) = E

and
1
10
2. For Ug(a,b)<¥U,(a,b) : Let us consider a function gUG_US(X):fU’;(X)/fU,;(X) . After

Uy(@.b)-U,(a.b) == Usg(ab)

simplifications, we have

+252x +90x"? +15x* + 252x° +15
gUs_U3 (X) = 3/2 5/2 2 !
2[246x + 246X +54\/;+314x +J

+144x +54x"? +144%% +15x* +15

[462 x¥2 4 462X5% + 90+/X + 602x> +J

10
= 1 —_ —
B, u, =9, v, 1

and
10

9
17 9s(@0)~Us(a,b) = U (a,b).
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3. For U,(a,b)<&U.(a,b) : Let us consider a function gUS_US(x):flj’s(x)/ij's(x) .

simplifications, we have

) 246X%% + 246X%2 + 54X +314x% +
0 (x)= +144x +54x"" +144x° +15x" +15
Vs -Us 4(73x3’2 +312x%2 + 3% +180%% + 73x°2 + } ’

+312x™? +180x* +396x° + 3x*? +18x° +18x

1

1
Borvy =00, 0,0 =

and

11 a
5—U s(a,b)—-U,(a,b) = 12(a b) = fu,, (B)

where

(Vx —1)10 (11x -2V +11)

x*(x+1)

fy, (X) = >0, Vx>0, x#1

4. For U,(a,b)<#U,(a,b) : Let us consider a function g, , (x)="f](X)/f] (x) .

simplifications, we have

5 246%%% + 246X%2 +54+/x +314%2 +
+144X +54x"? +144%% +15x* +15
(15x +26+/x +15)(x+1)’

gus_u2 (X) = )
11
ﬂu3_u2 = gu3_u2 (1) = ?

and

Eu (a,b)—U,(a,b) = —uw(a b).

5. For U,(a,b)<#Ug(a,b) : Let us consider a function guz_ug(x)zfd'z(x)/flj;(x) .

simplifications, we have

" Jx (15x+26\/§+15)
g X)= \
V2 -Us 8(3x2 +28x +18x%2 +18/x + 3)
and
1 1 1 a
—U.(a,b)-U,(a,b)=—U,.(a,b)=—bf, | -1,
0 s(a,b)—U,(a,b) 10 1(@,b) 10 um(bj
where

(\/;_1)10
fum(x):T>O’ Vx>0, x#1

227

After

(46)

After

After

(47)
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6. For U.(a,b)<%U,(a,b) : Let us consider a function gUS_Ua(x):fU’;(x)/ij's(x) . After

simplifications, we have

73x¥2 £ 312x%2 + 3/x +180x% +18x + 73x”"
+312x"% +180x* +396x%° + 3x*2 +18x°

X) = '
9u._v, (%) (3x5’2 +28x%% +18x? +18x+3\/;)(x +1)3
14
ﬂus_u8 = gUs_Us D= ?
and
14 9 9 a
SU,(a.b)-Us(a) = Uy, (ab) = 2b (Ej |
where
(Vx-1)" (x+10¥x +1)
fy, (X) = >0, Vx>0, x=1 (48)

X (x+1)
7. For Ug(a,b)<3U,(a,b) : Let us consider a function g,  (X)= T (X)/f)(x) . After
simplifications, we have

4(3x2 +18x%¥2 + 28X +18x + 3)
12x% +27x¥2 £ 34x + 27x +12

9u, u, (x) =

5
ﬂua_u9 = gug_u9 (1) = E
and
5 3
Eug(a,b) —Ug(a,b) = EUlS(a'b)-

8. For U,(a,b)<4U,(a,b) : Let us consider a function gug_u7(x)=ij'g(x)/ij’7(x) . After
simplifications, we have

2(12x" +27%% + 34x+ 27/x +12)
242 +9x¥2 —10x + 9/x + 24

ﬂug_u7 = gug_u7 (1) =4

gug_u7 (X) =

and
4U,(a,b) -U4(a,b) =3U,,(a,b).

Combining the parts 1-8, we get the proof of the Inequalities (45).
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3.4. Forth Stage

Still, we have more measures to compare, i.e., U,, to U,, . This comparison is given in the theorem
below. Here below are the second derivatives of the functions given by (46)—(48).
N} 15x° +40x>? + 77x* +
(Vx-1) 196XY? 1+ 77X + 403X +15
4" (x+1)’
SR-1f 15x° + 440%™ + 77X +
(Yx-1) +96X2 + 77X + 404X +15
4" (x+1)’

f, (x) =

f,, (X) =

and
g 3x* +9x"? +22x3 +35x%% +
2(\/7 _1) 2 3/2
+42X° +35X7° + 22X + 9\/§+3

fu., ()= x* (x +1)3

Theorem 3.4. The following inequalities hold:
Uy <5Uy, <3U,; <3U<5U, (49)

Proof. We shall prove the above theorem by parts.

1. For Uy,(a,b)<iU,(a,b) : Let us consider a function gUm_UM(x)zfU”lo(x)/fUZA(x) . After

— 12
simplifications, we have
15+ 77x* + 77x + 40x*% +
6 o (X)= X(+15x3 +404/x +96x%2 } |
- 8(62x3’2 +138%%2 + 3Vx +112x% + ]

24x +3x%% +62x™? + 24x* +112x3

1
= 1 = —
ﬂulo_Uu gUm_UM( ) 12

and

1

1 1 a
Eum(a’ b)-U,,(a,b) = EUB(a, b) = Eb fU1s (_j :

b

where

( 1)12
X —
fUls(X):m>O’ VX>O,X¢1 (50)

2. For U,(a,b)<3U,(a,b) : Let us consider a function gUM_Un(x):ij'M(x)/ij'n(x) . After

simplifications, we have
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g (x) = +24x +3x%2 +62x"? + 24x" +112X°
Use Vs 22x¥2 1+ 42x52 1+ 3./x + 35x2 +
+9X + 3x*2 + 22x™ + 9x* + 35%°

{GZXS/Z +138x52 + 3x +112x% + ]

By, v, = 9u,, v, D) =3
and
U, (a,b)-U,,(a,b)=2U,(a,b) .
3. For U,(a,b)<2U,(a,b) : Let us consider a function guu_uw(x):flj'n(x)/fu”w(x). After

simplifications, we have
4(22x +42x% +3+35x%% + }

19X +3x* +22%3 + 9x7"? 4 35x°"2
3(4x+ 73X +4)(x+1)°

B, v, = 90, 0, (1) =2

guu_u13 (X) =

and
2U 5(a,b)-Uy,(a,b) =U5(a,b) .

— 10

4. For Up,(a,b)<#Up,(a,b) © Let us consider a function gy  (X)= ijZB(x)/ij'lz(x) . After

simplifications, we have

3(4x+7x +4)(x+1)’
gU13_U12 (X) = 2 3/2 !
4£122x +174x%% +33+154%%2 +544/x +]

+33x* +122x% +54x""? + 1542
1

= 1) =
ﬂu13_u1z gU13_U12( ) 10

and
—1U (a,b)-U,(a b)—_—1U (a,b)
10 # SR 1o R

Remark: Interestingly, in all the four cases only with a single measure is left, i.e., U,;(a,b) given by

(Va-+b)"
(ab)*(a+b)

U, (a,b) = , a,b>0, a=b (51)

3.5. Equivalent Expressions
The measures appearing in the proof of Theorems 3.2-3.4 can be written in terms of the measures
appearing in the Inequalities (9). Here follow equivalent versions of these measures.

e Measures appearing in Theorem 3.2. We can write
V, =14(K +26A - 48D, ) = % (K + 30D, — 26D, )
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= 2(K +14D,; — 30Dy )
= 5(K +12Dyg — 28Dy, ),
V, =W +64h—4A-8K ,
V, =54 (¥ +108A —192D,,, ) = Z(¥ +132D,, —108D,,)
5L(W + 68D, — 132Dy )
= 15(\¥ + 72D, —136h),

V, =¥ +32h-6K,

V, = 2(F +6K —4A—3¥),

V, = 82(F +164A — 288Dy, ) = 42(F + 204D, —164D; )
& (F +108Dg, — 204Dy )
25(F +120D, - 216h),

V, =2(F —10K +64h),

V, =2(F +2K —2¥),

. =L+16K —16A —8F ,

V,, = 440(L +880A —1536D, ) = 322(L +1104D,, —880D; )
= 222(L +592D,, —1104D,,)
= 322(L +6724D,, —1184h),

V,, = L+384h—56K ,

V, = L+12% -8K —12F ,

V,, = L+16K —12¥,

V, =L+4¥ -8F .

e Measures appearing in Theorems 3.3 and 3.4. We could write
U, =¥ +192D, —100A -8K ,
U, = 2(F +14K —64h —4‘1’),
U, =4F +576D,, —316A -9Y¥,
U, =9L +4608D,, —2576A —64F ,
U, = 2(7L +6144h +13824D,, —896K —7920A),
U, =2(5F +576h +1152D, — 90K —656A),
U, =L+384h+36%¥ -92K -18F,
U, = L +160K —36¥ — 768h ,
U, = L+12% —8K —12F,
U,, =2(F +22K +4A - 5% —128h),
U,, =L+16A+24¥Y -16F - 32K,
U,, = 1(77L - 9856K + 67584h — 73728D, + 36752A —1568F +3528¥) ,
U,, = L+44¥ -120K +512h - 20F ,
U,, =1(7L —392¥ +2240K —11776h — 7680D,,, +4400A),
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Uy, = (7L + 448A —1456K + 9728h — 7680Dy,, +3728A —168F ).

4. Generating Divergence Measures and Exponential Representations

Some of the measures given in Section 2 can be written in generating forms. Below are the
generating measures.

4.1. First Generalization of Triangular Discrimination

For all (a,b) e R?, let us consider the following measures

(a_b)z(\/g_\/B)Zt

Al(a,b) = , t=0,123,...
(a-+b)(<ab) )
In particular, we have
- _(a—b)2
S PR
Al=DE, =K 2A—(a_b)z(\/g_%)2
S P W
1 (a-b) (42—
Ay =¥ —4K +4A =
ab(a+h)

and
(a~by*(va—vb)

Al=V.=2(F +6K —4A-3¥) =
3 5 ( ) (ab)3/2 (a I b)

The Expression (52) gives first generalization of the measure A(a,b). Now we will prove its
convexity. We can write Aj(a,b) = bf,.(a/b), te N, where

(x-1) (Vx -1)

(x +1)(\/§ )t
The second order derivative of the function f,(x) is given by
(\/;_1)2t

4%* (x +1)3(\/;)

MOE (53)

MOR P AMKD,

where
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t(t+2)(x4 +1)+2t(2t+1)\/;(x3+1)+
A (X t) = +4t(2t+3)x(x2 +1)+4(7t2 +10t+16)x2 .
+2t (6t +11)x** (x +1)

Forall t=0, x>0, x=1, we have f'(x)>0. Also we have f,(1)=0. In view of Lemma 1.1,

the measure A;(a,b) is convex for all (a,b) e R*, teN.

Now, we shall present exponential representation of the measure (52) based on the function given
by (53). Let us consider a linear combination of convex functions,

f.(x) =2, fA%(x) + alfAi(x) +a, fA%(x) +a, ng(X) +...

+1 (x+1)\/;
(x-1) (vx-1)

+a, (X)slz (X+1) T

+

where a,,&,,a,,a,,... are the constants. For simplicity we will choose,

Lol 111
o—a,al—ﬂ’ 2 = o & T g

Thus, we have

f (X)_i(x_l)z +£(x—1)2(\/;—1)2 +i(X—1)2<\/;—1)4+
SETOC x+1 U (x+1)Wx 20 x(x+1)

1 (1 (V1)

3 (07 (x+1)

_ -y’ [Li((ﬁ —1>2J1+1[_<ﬁ e ]2+1[_<ﬁ 1’ ]ﬁ

x+1 |01 1l x 210 Jx MM Ux
Which will give us

~1)° -1)°
f.(X) Z%GXP(%J (54)

As a consequence of (54), we will have the following exponential triangular discrimination

Ey(@b)=b(a/b) =2 exp[(aJ;—? J (@b) <k (55)
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4.2. Second Generalization of Triangular Discrimination

For all (a,b) e R?, let us consider the following measures

_ 2(t+1)
M@= o123 (56)
(a+b)(ab)
In particular, we have
2
AT A (a—b)
° a+b
and
(a-b)

A?=2D% =@ _4p=—"2)
oo ab(a+b)

The Expression (33) gives the second generalization of the measure A(a,b). Now we will prove its
convexity. We can write A?(a,b) =b f.(a/b), teN, where

2(t+1)
f o~ Y
,(X) =—-""+F—.
A (x+1)x'
The second order derivative of the function f ,(x) is given by

. (X_l)Zt
fr(x)=———Z < A(x1),
A (x) (X+1)3 X2 AZ(X t)

where
A (1) =t(t+1)(x* +1)+ 2t (2t +3) x(X* +1)+2(3t* + 5t +4) x°.
Forall t=0, x>0, x=1, we have f(x)>0. Also we have f,(1)=0. In view of Lemma 2.1,
the measure A’(a,b) is convex forall (a,b)eR?, teN.
Following the similar lines of (54) and (55), the exponential representation of the measure A’(a,b)
IS given by

EAz(a,b)z(Z;kg exp{(a;bb) ) (a,b) e R?.

4.3. First Generalization of the Measure K(a,b)

For all (a,b) e R?, let us consider the following measures

(a_b)2 (\/E_\/B)Zt

K'(a,b) = - , t=0,1,2,3,... 57
t (\/%)t 1 ( )
In particular, we have
_b)2
ok =80
0 \/%
2 2
K!=2D¥, =¥ o 270 (Ya-b)
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(a-b)’ (\/5—\/5)4
(ab)SIZ

K:=V, = 2(F +2K -2¥) =

and
(a—b)z(\/g—«/g)6
(ab)’ |
The expression (57) gives the first parametric generalization of the measure K(a,b) given by (3).
We will prove now its convexity. We might write K/(a,b) =b lel (a/b), teN, where

(-1 ()
(V)

The second order derivative of the function f,(x) is given by

K=V, =L+12¥ -8K —12F =

fo (0=

fa(X)= MX A(x1),
K 42 (\/;)m

where
&(x,t):(t+1)(t+3)(x2+1)+2t(2t+3)\/§(x+1)+2(3t2+2t+1)x.
Forall t>0, x>0, x#1, we have f!,(x)>0. Also we have f_(1)=0. In view of Lemma 1.1,

the measure K (a,b) is convex forall (a,b)eR?, teN.

Following the similar lines of (54) and (55), the exponential representation of the measure K/ (a,b)

—~/b ? NG
EKl(a,b)z(\/a \/7) expL(a b) J (a,b) eR?.

is given by

Jab

4.4. Second Generalization of the Measure K(a,b)

For all (a,b) e R?, let us consider the following measures

a— b 2(t+1)
Kf(a,b)=W' t=012.3,.. (58)
In particular, we will have
_ b)z
K2 — K — (a
0 \/%
and
(a-b)’

K2=4D®, =F-2K =~——_.
1 WyWe (ab)S/z
The Expression (58) gives the second generalization of the measure K(a,b) given by (1.3). We will
now prove its convexity. We can write KZ(a,b) =b f.(@/b), teN, where
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(X . 1 2(t+1)

X
The second order derivative of the function f_,(x) is given by
(X _1)2t

fe(x) =

f(x) = x A1),

where
A(xt) = (2t +1)[ 206 + 3% +2(2t + 1) x+ 2t +3].

Forall t>0, x>0, x=1, we have f’,(x)>0. Also we have f ,(1)=0. In view of Lemma 1.1,

the measure K?(a,b) is convex forall (a,b) e R?, teN.
Following the similar lines of (54) and (55), the exponential representation of the measure KZ(a,b)
is given by

EKz(a,b)=(a\/;_E) exp((a;bb) ] (a,b) e R2.

4.5. Generalization of Hellingar’s Discrimination

For all (a,b) € Ri, let us consider the following measures

(\/a—\/B)Z(H)

h.(a,b) = ,teN 59
@) ”
In particular, we have
hy=2h=(va b,
. (Va-+b)’
h1=DW6W5=K—8h=—Ja_ ,
(/o)
h,=V, =% +32h-6K = :
ab
(Va-b)
h,=U, =2(F +14K -4¥ -64h) = ~——"—
(ab)
and
(Jg_\/B)lo
h4=u13=L+44lP—120K+512h—20F=T.
a

The measure (59) give generalized Hellingar’s discrimination. Let us now prove its convexity. We
might write h,(a,b)=b fh‘ (a/b), te N, where
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2(t+1)
(x-1)
~
(¥
The second order derivative of the function f,, () is given by

f"(x) = ﬂx A(x 1),
h, 4<&)t+5

i, () =

where
A1) =t(t+2)x (x+1) +2(* +t+1)x.

Forall t>0, x>0, x#1, we have fh:'(x) >0. Also fh[ (1) =0. In view of Lemma 2.1, the measure
h(a,b) is convex for all (a,b)eR?, teN.
Following the similar lines of (54) and (55), the exponential representation of the measure h,(a,b)
is given by
(Va-+b)

E,(a,b) =(va—b) exp . (ab)eR?.

4.6. New Measure

Forall P,Q eI, letus consider the following measures

M. (a,b) (ﬁ_%)w) t=0,12,3
a.b) = . 1=0,123,... 60
t (a+b)(vab) (60
In particular, we will have
M, =L D2, =12D 7A——(\/g_\/6)4
O_E WW, CN - (a+b) )
M, =V, = K + 26A — 48D (Va-b)
= = + —_ - @ 7
e “ (a+b)Vab’
(o —b)
M,=U, =% +192D,, —~100A 8K =~——— 2
ab(a+b)
(\/E_\/B)lo
M, =U,, = 2(F +22K +4A -5¥ —128h) =~
(a+b)(ab)
and
12
V. _U.  L[7L+448A—1456K +3728A + _(\/5—\5)
*7 7% 71+ 97280 - 7680D,, —168F (a+b)(ab)”

We will prove now the convexity of the measure (60). We can write M, (a,b)=b f, (a/b), teN,

where
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(\/—_1)2(I+2)
(x+1)(Vx)
The second order derivative of the function fM[ (x) is given by

X_12t+2
f,00 =D

a(x+1) (Vx)

fMt(X) =

x A(x.1),

where

D 2(t2+3t+2)x(x2+1)+4(t2+3t+6)x2+
X, 1) = .

A +t(t+2)\/§(x3+l)+(3t2+14t+8)x3’2(x+1)

Forall t>0, x>0, x=#1, we have fy (x)>0. Also we have f, (1)=0. In view of Lemma 2.1,

the measure M, (a,b) is convex forall (a,b) eR?, teN.
Following the similar lines of (54) and (55), the exponential representation of the measure M, (a,b)

is given by
2
a-b)' [(Ja-+b)
E.(a,b :(—ex A7 | (ab)eR?.
w(@D) =) e |, (@b e R
Remarks:

(i) The first 10 measures appearing in the second pyramid (13) represents the same measure (14)
and is same as M, . The last measure given by (51) is the same as M, . The measure (51) is
the only one that appears in all the four parts of the Theorem 3.4. Both these measures
generate the interesting measure shown in (60).

(i)  The measure K; appears in the work of Dragomir et al. [14]. An improvement over his work

can be seen in Taneja [9].

(i) Following the similar lines of (54) and (55), the exponential representation of the principal
measure L (a,b) appearing in (6) is given by

_2(a-bY’ a+b 2
E,(a,b) = —7h exp(zmj, (a,b) e R? (61)

We observe that the expression (61) is different from the one obtained above in six parts.
Applications of the generating measures (6), (52), (56), (57), (58), (59) and (60) along with their
exponential representations should be encouraged in further studies.
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