
Citation: Shi, Y.; Zhang, H.; Guo, W.;

Zhou, M.; Li, S.; Li, J.; Ding, Y.

LighterFace Model for Community

Face Detection and Recognition.

Information 2024, 15, 215. https://

doi.org/10.3390/info15040215

Academic Editor: Francesco Camastra

Received: 19 January 2024

Revised: 19 February 2024

Accepted: 22 February 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

LighterFace Model for Community Face Detection
and Recognition
Yuntao Shi 1,2, Hongfei Zhang 1,2, Wei Guo 1,2,*, Meng Zhou 1,2 , Shuqin Li 1,2, Jie Li 1,2 and Yu Ding 1,2

1 School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China;
shiyuntao@ncut.edu.cn (Y.S.); 2267396892@mail.ncut.edu.cn (H.Z.); zhoumeng@ncut.edu.cn (M.Z.);
lsq@ncut.edu.cn (S.L.); lijie1986@ncut.edu.cn (J.L.); dingyu@ncut.edu.cn (Y.D.)

2 Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China
* Correspondence: guowei0903@ncut.edu.cn

Abstract: This research proposes a face detection algorithm named LighterFace, which is aimed
at enhancing detection speed to meet the demands of real-time community applications. Two
pre-trained convolutional neural networks are combined, namely Cross Stage Partial Network
(CSPNet), and ShuffleNetv2. Connecting the optimized network with Global Attention Mechanism
(GAMAttention) extends the model to compensate for the accuracy loss caused by optimizing the
network structure. Additionally, the learning rate of the detection model is dynamically updated
using the cosine annealing method, which enhances the convergence speed of the model during
training. This paper analyzes the training of the LighterFace model on the WiderFace dataset and a
custom community dataset, aiming to classify faces in real-life community settings. Compared to
the mainstream YOLOv5 model, LighterFace demonstrates a significant reduction in computational
demands by 85.4% while achieving a 66.3% increase in detection speed and attaining a 90.6% accuracy
in face detection. It is worth noting that LighterFace generates high-quality cropped face images,
providing valuable inputs for subsequent face recognition models such as DeepID. Additionally,
the LighterFace model is specifically designed to run on edge devices with lower computational
capabilities. Its real-time performance on a Raspberry Pi 3B+ validates the results.

Keywords: community safe; face recognition; lightweight convnets; deep learning

1. Introduction

Currently, community security is a growing concern. Communities have a large
number of people coming in and out every day, and it is very common for strangers to
blend into the crowd. In order to avoid them from committing illegal acts and to facilitate
management, an efficient supervision system is necessary. The face detection algorithm
integrated into surveillance cameras facilitates real-time identification of targeted faces.
However, the development of face detection technology prompts critical considerations
regarding the safeguarding of personal privacy. It is imperative to ensure that the processing
of face images and associated data does not infringe upon individual privacy rights. Edge
computing emerges as a viable solution to address these concerns, as it allows for the
processing of face information without relying on internet connectivity, an approach which
maximizes the protection of personal privacy and security. Navigating the challenge of
efficiently processing image information for face detection using limited local computing
resources becomes a complex task. The utilization of these constrained resources in the
most effective manner requires strategic solutions to balance the imperative of accurate
face detection with the need to uphold privacy rights.

Over the past decade, a great deal of research has been devoted to designing people-
identification systems that are both efficient and economical. These systems aim to swiftly
and accurately identify individuals, promptly alerting a remote monitoring point in the
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event of a potential threat, such as an unauthorized person attempting to infiltrate a neigh-
borhood. Two primary categories of people-recognition systems have emerged in this
pursuit. The first category involves what is commonly referred to as the sensory system.
This system relies on sensors, such as fingerprint readers [1,2], ID card readers, or iden-
tification card readers, strategically deployed for identification purposes. However, this
approach is susceptible to impersonation and spoofing, compromising the reliability of the
identification process. In contrast, facial recognition devices present a more robust alter-
native, overcoming the limitations associated with the sensory system. Facial recognition
technology enhances security measures by providing a non-intrusive and less susceptible
means of identifying individuals, thereby contributing to more effective and secure people
recognition systems.

Artificial intelligence-based computer vision strategies have proven to be efficient and
widely deployed in numerous communities [3], particularly with high-coverage cameras [4].
However, challenges can arise due to the limited computational power of the built-in chips
in these cameras, driven by economic cost considerations. Despite the advancements in
face detection, especially following the release of the challenging WiderFace [5] benchmark
dataset, mainstream face detection models may not be feasible for deployment under
current conditions. Several algorithms have emerged to address specific challenges in
face detection, showcasing innovative solutions. For instance, img2pose [6] leverages a
Fast Region-based Convolutional Neural Network (R-CNN) to regress the six-degrees
-of-freedom poses of faces in photos without requiring preliminary face detection. While
optimized for pose estimation, it does increase computational requirements. Limb Line Free
Form Deformation (LFFD) [7], on the other hand, focuses on the importance of receptive
and effective receptive fields in face detection, utilizing a lightweight homemade backbone
network suitable for edge computation. However, there is still room for optimizing this
network structure for embedded terminals with the aim to enhance speed. RetinaFace [8]
adopts a unique approach by manually labeling five facial markers in the WiderFace
dataset, enriching detection features and proposing a single-phase solution with superior
detection accuracy. Although well-suited for deployment in embedded terminals, further
improvements in operational speed are desirable. TinaFace [9] improves face detection
accuracy by enhancing the network structure based on ResNet50. This modification reflects
a significant increase in accuracy, highlighting the ongoing efforts to refine and advance face
detection capabilities. The algorithms mentioned above will be compared in subsequent
comparative experiments, as detailed in Table 1.

Table 1. Comparison of performance and detection speed of different detection algorithms.

Name BackBones AP@0.5WF Detection Speed (CPU)/ms Detection Speed (ARM)/ms

YoloV5s CSPNet 92.6% 69.66 4578
TinaFace ResNet50 96.3% 92.24 ----

LFFD LFFDNet 88.1% 64.70 4114
RetinaFace ResNet50 96.1% 91.45 ----

YoloV5n CSPNet 89.2% 39.08 1934
LighterFace CSPNet 90.6% 36.16 1543

Face detection serves as a crucial prerequisite for effective face recognition, with the
accuracy of face detection directly influencing the overall face recognition rate. While deep
learning-based face detection algorithms have shown superior performance compared to
traditional methods, challenges persist, particularly in accurately recognizing small-scale
and heavily occluded faces. SSH (Single Shot multibox Detector with Scale Hierarchy)
improves upon SSD [10], presenting a multi-branch approach within VGG-net [11] to detect
multi-scale faces. This approach addresses limitations in face recognition accuracy, particu-
larly in challenging scenarios. FDDB introduces Light-Head Faster R-CNN as a strategic
enhancement for face detection performance. By incorporating multi-scale training and
testing along with deformable Convolutional Neural Networks (CNN) [12], this method
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aims to achieve improved accuracy and efficiency within the FDDB framework. Face
R-FCN [13], building upon R-FCN, employs smaller-sized location-sensitive RoI (Region of
Interest) pooling kernels and additional minor anchor points. The method also integrates
regular average pooling with location-sensitive average pooling, contributing to enhanced
face detection accuracy. A Focusing Attention Network (FAN) introduces an attention
mechanism into face detection through anchor-level attention, which is particularly bene-
ficial for improving recall in cases of occluded faces while maintaining a low false alarm
rate. PyramidBox addresses stern face detection challenges by proposing low-level feature
pyramid networks [14], PyramidAnchors, and context-sensitive prediction modules. More-
over, it introduces a data anchor sampling method to augment training samples at different
scales, emphasizing the importance of contextual information in face detection. These
advancements collectively represent a continuous effort to refine face detection algorithms,
aiming to overcome challenges and improve accuracy, especially in scenarios involving
small-scale faces and occlusions.

Simplifying the face detection model to reduce the amount of computation and time
is a key issue under the premise of meeting the deployment conditions of embedded ter-
minals. It is imperative to ensure algorithmic accuracy for practical applications. Current
mainstream methods for achieving lightweight models, include pruning [15], knowledge
distillation [16], and optimizing neural network structure. Pruning and knowledge dis-
tillation focus on post-training optimization of the model structure, while optimizing
the neural network structure involves direct training of a lightweight network. In this
paper, the design approach is rooted in the notion of creating an efficient and accurate
face detection model suitable for deployment on embedded terminals. Historically, the
R-CNN algorithm [17] played a pivotal role in practical target detection through CNNs.
Subsequent advancements, such as Fast R-CNN [18] and Faster R-CNN [19], addressed
shortcomings and improved detection speed. The evolution of techniques like FCN [20]
and Mask R-CNN [21] contributed to the maturation of image segmentation methods. Note-
worthy lightweight algorithms, including MobileNet-SSD [22,23] and You Only Look Once
(YOLO) [24–27], have simplified object detection on mobile terminals without necessitating
the use of cloud servers.

Although existing algorithms have made remarkable progress in face detection, there
remains a need to balance the requirement of maintaining detection accuracy while reducing
computational costs. To overcome challenges posed by limited server computational
power and inadequate real-time performance, our research addresses this demand by
leveraging advanced deep learning techniques. By integrating state-of-the-art lightweight
network ShuffleNetv2 and the excellent classification task network CSPNet, our proposed
LighterFace model aims to enable real-time deployment of face detection models on edge
devices. We carried out ablation and comparison experiments, and the results demonstrate
that LighterFace runs on Raspberry Pi 3b+ with an accuracy of 90.6% and a speed of
1543 ms.

2. Materials and Methods

In this section, the proposed face recognition algorithm is introduced through the
following two components: face detection and face recognition. CSPNet addresses the issue
of redundant gradient information in the neural network backbone by integrating gradient
changes into the feature maps from start to finish. This approach reduces the model’s
parameter count and floating-point operations per second (FLOPS) while maintaining
inference speed and accuracy, ultimately reducing the model size. ShuffleNetv2 achieves a
reduction in the model’s parameter count and FLOPS by employing techniques such as
Pointwise Group Convolution and channel shuffling. The face detection model LighterFace,
presented in this paper, further optimizes the network structure by combining the afore-
mentioned two networks. To compensate for the loss in detection accuracy, GAMAttention
is integrated into the face detection model. As a result, the model’s structure is streamlined
without sacrificing a significant amount of detection accuracy. This phase involves identify-
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ing and cropping the faces within an image or video stream. The quality of face detection
significantly influences the overall accuracy of the subsequent face recognition process.

2.1. Face Detection Model

LighterFace is formulated and optimized using the Cross Stage Partial Network (CSP-
Net). The algorithmic model architecture is illustrated in Figure 1. The representative
detection model utilized in CSPNet is YOLOv5. For comparative analysis, YOLOv5 is
employed as a control group in this section to highlight the optimization advancements
achieved by LighterFace more distinctly. In the network architecture of LighterFace, de-
picted in Figure 1, the utilization of the CBRM module occurs in the initial phase, with the
feature extraction module incorporating Shuffle Block and Global Attention Mechanism
(GAMAttention).
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Figure 1. LighterFace algorithm model architecture.

2.1.1. CBRM Module Structure

In the YOLO model, the original authors employ the Stem module as the initial
component of the network. Its primary function is to perform a sequence of convolutional
and pooling operations on the input image, extracting the initial feature representation.
This facilitates subsequent layers of the network to more effectively learn and represent
semantic features of the image. The structure of the Stem module is illustrated in Figure 2a.
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Stem, first through the 3 × 3 convolution of the initial extraction of image features,
were sent to two branches to extract further features, with one branch through two convo-
lutions, to extract further image features, the other branch through the MaxPool refinement
of graphical features can significantly reduce the complexity of the image features. The fea-
tures of the two branches are then fused and, finally, a 1 × 1 convolution of the convolution
regulates the number of channels, which facilitates further extraction of image features by
the subsequent backbone network.
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According to the four guidelines mentioned in ShuffleNetv2 to reduce the amount of
computation, as shown below, there is still room for improvement in the performance of
this module [28]:

i. Equal channel width minimizes Memory Access Cost (MAC);
ii. Excessive group convolution increases MAC;

iii. Network fragmentation reduces the degree of parallelism;
iv. Element-wise operations are non-negligible.

The CBRM module is proposed based on the above four criteria, as shown in Figure 2b,
which eliminates the branching structure and reduces the number of convolutional layers
compared to the STEM module. The color image is divided into three monochrome
layers and fed into the CBRM module, which extracts the image features directly by a
3 × 3 convolution and then connects with MaxPool in series to maximize the reduction in
additional computation, which is in line with Rule ii and Rule iii.

2.1.2. ShuffleBlock

ShuffleNet is a machine-effective CNN that can be used in monolithic devices. It
proposes Channel Shuffle, as shown in Figure 3, and group convolution (GConv) divides
the features into three groups. After extracting the features by convolution operation, the
features between different groups are not in any communication. The Channel Shuffle
operator is introduced to mix the features of different groups evenly to ensure that the
information can flow between different groups to improve the detection accuracy.

Information 2024, 15, x FOR PEER REVIEW 5 of 17 
 

 

 

  
(a)  (b) 

Figure 2. (a) Stem module architecture (comparison group); (b) CBRM module architecture (Lighter-
Face). 

According to the four guidelines mentioned in ShuffleNetv2 to reduce the amount of 
computation, as shown below, there is still room for improvement in the performance of 
this module [28]: 

i. Equal channel width minimizes Memory Access Cost (MAC); 
ii. Excessive group convolution increases MAC; 

iii. Network fragmentation reduces the degree of parallelism; 
iv. Element-wise operations are non-negligible. 

The CBRM module is proposed based on the above four criteria, as shown in Figure 
2b, which eliminates the branching structure and reduces the number of convolutional 
layers compared to the STEM module. The color image is divided into three monochrome 
layers and fed into the CBRM module, which extracts the image features directly by a 3 × 
3 convolution and then connects with MaxPool in series to maximize the reduction in ad-
ditional computation, which is in line with Rule ii and Rule iii. 

2.1.2. ShuffleBlock 
ShuffleNet is a machine-effective CNN that can be used in monolithic devices. It pro-

poses Channel Shuffle, as shown in Figure 3, and group convolution (GConv) divides the 
features into three groups. After extracting the features by convolution operation, the fea-
tures between different groups are not in any communication. The Channel Shuffle oper-
ator is introduced to mix the features of different groups evenly to ensure that the infor-
mation can flow between different groups to improve the detection accuracy.  

Input

GConv1

GConv2

Feature

Output

Channels Channels

Channel
Shuffle

 
Figure 3. The Channel Shuffle schematic (LighterFace). The data from different channels (red, blue, 
green) are not interconnected. Channel Shuffle can extract data from different channels and rear-
range them to establish connections. 

In the YOLO model, the authors use the C3 module as an essential part of the back-
bone network. The structure of the C3 module is shown in Figure 4. It is faster and more 
accurate than the CSPBottleneck, which can further extract feature information and 

Figure 3. The Channel Shuffle schematic (LighterFace). The data from different channels (red, blue,
green) are not interconnected. Channel Shuffle can extract data from different channels and rearrange
them to establish connections.

In the YOLO model, the authors use the C3 module as an essential part of the backbone
network. The structure of the C3 module is shown in Figure 4. It is faster and more accurate
than the CSPBottleneck, which can further extract feature information and increase the
depth and width of the network for better learning of semantic features in images. However,
the degree of lightweight of the multiple separated convolutions it uses could be improved.
According to the Rule i criterion of ShuffleNetv2, the higher the number of channels, the
more significant the gap between the number of input channels and the number of output
channels, which results in the C3 module running at a less-than-optimal speed on a CPU
or ARM.

When designing the Shuffle Block, the Shuffle Block network at stride = 1 is shown
in Figure 5a. The whole does not use grouped convolutional modules, which conforms to
Rule ii. The feature channel is divided into two branches before the start of the unit module,
and one branch retains the original features, while the other branch uses the same input
and output channels of two convolutional modules and one DepthWiseConv (DWConv)
module to extract features in series. DWConv is less computationally intensive than normal
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Conv, which can reduce the computational complexity of the overall model, which is by
Rule i and Rule iii. In order to reduce the computation time of other operations, such as
Add, the features of the two branches are fused using Concat to avoid the Add, while other
Element-wise operations are avoided by using Concat to fuse the features of two branches
to avoid Add and other operations, which is by Rule iv. Finally, the feature information of
each channel is fused by Channel Shuffle.
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The Shuffle Block network at stride = 2 is depicted in Figure 5b on the right. The
primary difference from Figure 5a is the inclusion of deep convolutions in the branches
that retain the original features. This ensures that no critical information is lost during the
features extracting process.

2.1.3. GAMAttention

This module [29] serves to mitigate information loss and enhance global dimensional
interaction features. The overall process is defined by

F2 = AMc(F1)⊗ F1, (1)
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F3 = AMs(F2)⊗ F2, (2)

where F1 = RC×H×W is input to the GAM, the intermediate state is obtained by channel
attention module and spatial attention module and element by element multiplication, and
the output is shown in Figure 6.
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Figure 6. GAMAttention module architecture. GAMAttention achieves this by performing element-
wise multiplication with both the Channel Attention Module and the Spatial Attention Module.

The channel attention module employs a 3D arrangement to preserve information
across three dimensions. Subsequently, it enhances the spatial dependence of the cross-
dimensional channels by employing a two-layer multilayer perceptron (MLP). The structure
of the channel attention module is visually represented in Figure 7.
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between the detection frame and the labeling frame but also considers the relative propor-
tion of the two rectangular frames. This approach contributes to a more efficient conver-
gence speed in the training process and overall performance, leading to an enhanced de-
tection effect. 

Figure 7. The schematic diagram of channel attention module, which uses 3D permutation to retain
information across three dimensions.

In the spatial attention module, to incorporate spatial information, this paper chooses
not to use max-pooling for spatial information extraction. Instead, it employs two convolu-
tional layers to extract the output of the channel attention module, aligning with Rule iv
in ShuffleNet. The influence factor is utilized in this paper to configure the weight of the
channel and spatial attention modules, preventing dispersion in the training results. The
structure of the spatial attention module is depicted in Figure 8.
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2.1.4. Loss Function

This paper uses the loss function, as shown, to improve the stability of training and
convergence speed.

IOU =
S1

S2
, (3)

α =
v

1 − IOU + v
, (4)
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v =
4

π2

(
arctan

wl
hl

− arctan
xp

yp

)2
, (5)

CIOU = IOU − ρ2

c2 − av, (6)

LossCIOU = 1 − CIOU, (7)

where the ratio of overlapping area of the predicted and labeled boxes is (IOU), S1 is
the overlapping area of the two boxes, and S2 is the total area. The similarity of the
width-to-height ratios of the two boxes are considered from multiple perspectives (av).

As shown in Figure 9, the loss function in this not only takes into account the dis-
tance between the detection frame and the labeling frame but also considers the relative
proportion of the two rectangular frames. This approach contributes to a more efficient
convergence speed in the training process and overall performance, leading to an enhanced
detection effect.
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2.2. Face Feature Extraction DeepID

High-accuracy face detection is crucial for the overall face recognition system, provid-
ing multiple advantages that enhance the effectiveness and reliability of face recognition
technology. LighterFace contributes to expediting the face recognition process by swiftly
identifying and localizing faces in images or video streams. By reducing the computational
load in subsequent stages of the face recognition pipeline, LighterFace enhances overall
efficiency. Building on this foundation, we further DeepID for face detection, with the goal
of enhancing both the accuracy and speed of the face recognition system. This integration
aims to optimize the detection capabilities, contributing to an overall improvement in the
performance of the face recognition system.

2.2.1. Network Infrastructure

DeepID is an efficient approach for extracting face features using the deep convolu-
tional network. Figure 10 shows the feature extraction process. The convolutional network
learns to classify all the faces available for training based on their identity and activates
corresponding features through neurons in a hidden layer. Each convolutional network
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takes the face features from the previous layer as input and extracts local low-level features
at the bottom. The number of features decreases progressively along the feature extraction
cascade, while increasingly global and high-level features are formed at the top layer. A
highly compact 160-dimensional face feature vector is obtained at the end of the cascade,
which contains rich identity information and directly predicts a more significant number of
identity classes.
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2.2.2. Face Privacy Protection

Amid growing public concerns about the privacy of face datasets, ensuring the protec-
tion of face privacy has become an essential consideration in the field of face recognition
technology. In this paper, facial images undergo a transformation into 160-dimensional face
feature vectors using DeepID, which are then stored in the database. Notably, these feature
vectors are associated with the names of individuals in the community rather than being
directly linked to the original face images and names. This strategic approach ensures
that the feature vectors cannot be reversed or inverted back to reveal the original images,
thereby significantly minimizing the risk of privacy leakage for residents in the community.

3. Experiment and Discussion

The overall network framework is implemented, and train using Pytorch 1.10.0 +
cu102 version is also implemented and trained on a server configured with an Intel Xeon
Silver 4210R processor and an NVIDIA Quadro RTX 5000 graphics card. The edge device
used in real-world community applications is the Raspberry Pi 3B+, which is also the ARM
configuration mentioned in the experimental section later in the paper.

The research results in this paper are mainly based on two aspects: (1) model accuracy
(2) model running speed. The evaluation indexes of AP@0.5, the number of model parame-
ters, the amount of model computation and the average speed of detecting test set images
are chosen as the evaluation indexes of the detection module with the following formulas:

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

AP =
n

∑
k=1

P(k)× ∆r(k), (10)
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where TP is the number of samples that were correctly classified as positive by the model.
FP is the number of samples that were incorrectly classified as positive by the model. TN
is the number of samples that were correctly classified as negative by the model. FN is
the number of samples that were incorrectly classified as negative by the model. IOU
determines the positive and negative classes in re-image detection. In this paper, when
IOU > 0.5, it is judged as a positive class and vice versa as a negative class.

3.1. Datasets

The two datasets used to train the model in this study are WiderFace and the home-
made dataset.

In this paper, the face detection benchmark dataset WiderFace dataset (WF) is used,
in which the images are selected from the publicly available WiderFace dataset, with a
total of 32,203 images labeled with 393,703 faces. The training, validation and test sets
are differentiated in the ratio of 4:1:5. This ratio is set according to the official instructions
provided by WiderFace.

This research creates a face detection dataset for testing Community Face (CF). The
dataset is shown in Figure 11. This dataset is used to prove that the model of this paper
also keeps the leading performance in different datasets, in which the images come from
the web and real community photos. In the WiderFace dataset, there is a lack of data on
Asian faces. To address this gap, we specifically selected individuals entering and leaving
communities in real-life projects, focusing solely on Asians. We annotated only real faces,
excluding images containing distractions, such as faces on billboards or packaging boxes.
There are 9240 images labeled 11,962 faces. The ratio of the training set, verification set,
and test set is set to 6:2:2. Due to weather, light, and occlusion, faces become blurred in the
images. In order to ensure that the trained model has better detection ability for blurred
faces as well, there are a total of 902 images in the dataset that were taken in rainy and
night-time conditions.
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3.2. Experimental Setup and Technical Details

In order to facilitate the comparison, this paper reproduces several mainstream face
recognition algorithms, the original YOLOv5 and the improved algorithm based on Shuf-
fleNet.

The batch size affects both the optimization degree and the speed of the model, while
also impacting the memory usage of the CPU or GPU. Given the relatively standard training
configuration, the batch size is set to eight to reduce memory usage. Setting the number of
epochs to 100 is a common fixed value chosen by many models, as it allows the model to
be thoroughly trained to reach its optimal and most stable state. In order to avoid the local
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optimum point to find the global optimum point, the cosine annealing algorithm is used to
set the dynamic learning rate, and the formula is as follows:

lr = lrmin + (lr0 − lrmin)× ((1 + cos(
epoch
epochs

× π))/2), (11)

where lr is the new learning rate, lr0 is the initial learning rate, lrmin is the minimum
learning rate, epoch is the value corresponding to the current training to a particular epoch,
epochs is the total number of epochs trained. In the deep learning network, mainly through
the gradient descent method to find a set of parameters that can minimize the structural
risk, and the learning rate in the training process of deep learning is a very important
hyperparameter, guiding the model on how to adjust the hyperparameters of the network
weights through the gradient of the loss function. The lower the learning rate, the slower
the rate of change in the loss function. While using a low learning rate ensures that the
algorithmic model will not miss any local minima, it also means that the algorithmic model
will take longer to converge. The higher the learning rate, the faster the loss function
changes, but it tends to miss local minima. The cosine annealing algorithm avoids falling
into local minima during training by stepping out of the local minima and leading to a path
to find the global optimal solution.

The learning rate was configured using the cosine annealing method and manually
set to 0.1 for comparison. The experimental results are depicted in Figure 12. The red line
represents the loss curve of training for 100 epochs with a learning rate set to 0.1, while
the blue line utilizes CosineAnnealingLR. Loss is one of the crucial metrics for assessing
model performance; smaller loss values indicate a smaller discrepancy between the model’s
predictions and the true labels. From the graph, it is evident that the training results with
CosineAnnealingLR are superior. When the learning rate is fixed, the model may become
trapped in the local minima. Using a fixed learning rate for loss prediction yields worse
results compared to using CosineAnnealingLR for training.
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3.3. Face Detection Accuracy and Speed

Face detection is a crucial prerequisite for the stable execution of face recognition.
The face detection algorithm LighterFace proposed in this paper is compared with other
recent face detection algorithms, including TinaFace, Retina-Face, LFFD, and YoloV5; the
comparison results are shown in Table 1. The dataset used is the WiderFace dataset, which
is more widely recognized. For a better comparison, this paper uses AP@0.5 and the
detection speed of the model on CPU and ARM to form Table 2.
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Table 2. Comparison of detection speed of different feature extraction modules with the same architecture.

Name Average Speed (CPU)/ms Average Speed (ARM)/ms

CSPNet-C3 69.66 4578
CSPNet-ShuffleBlock 37.16 1423

CSPNet-ShuffleBlock +
GAMAttention 39.50 1543

By optimizing the network structure of the feature extraction module, the detection
speed of LighterFace is very much improved. This paper uses CSPNet as the backbone,
which has less computational complexity than ResNet and LFFDNet. This paper’s final
model accuracy and detection speed are better than YoloV5 when using the same backbone.

3.4. Ablation Experiment

In this subsection, in order to better represent the improvements in LighterFace, we
conducted ablation experiments to demonstrate the performance of Shuffle Block, CBAM,
and GAMAttenion. In addition to using the standard evaluation metric of average accuracy
at IoU = 0.5 (AP@0.5) in the WiderFace dataset, this paper utilizes the more stringent
IoU = 0.5:0.05:0.95 average accuracy (AP@0.5:0.95), where different evaluation metrics
allow for multi-latitudinal reviewing of model performance. This paper evaluates the
performance of several different settings on the WiderFace validation set and self-made
data set, focusing on their AP and running speed. The experimental results are shown in
Table 3, speed and convergence speed comparison (Figure 13 and Table 2).

Table 3. Comparison of detection performance of different feature extraction modules with the same
architecture.

Name AP@0.5WF AP@0.5:0.95WF AP@0.5CF AP@0.5:0.95CF Parameters FLOPs

CSPNet-C3 92.8% 60.9% 95.2% 64.3% 7.02M 15.8
CSPNet-ShuffleBlock 86.4% 58.1% 89.3% 61.2% 0.843M 1.8

CSPNet-ShuffleBlock + GAMAttention 90.6% 59.5% 92.8% 62.9% 1.32M 2.3
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Shuffle Block replaces CSPNet with Shuffle Block. After that, the computational
complexity and model size are significantly reduced, the amount of parameters is reduced
by 87.9%, GLOPs are reduced by 88.6%, accuracy is reduced by 4.5%, and detection speed
is accelerated by 46.7%. The architectures of both networks are the same. LighterFace adds
the attention module interspersed in ShuffleNet, and all other settings remain unchanged.
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After the addition of GAMAttention, the number of parameters is reduced by 81.1%,
GLOPs are reduced by 85.4% compared to CSPNet, the accuracy is improved by 2.4%, and
the speed is slowed down by 5.3% compared to ShuffleNet.

3.5. Community Detection Scenarios

The objective of the experiment is to underscore the importance of face detection and
recognition in preventing unauthorized individuals from invading or damaging public
equipment. Additionally, the experiment aims to identify and mark specific areas within
the natural community as potentially dangerous zones. These areas include the community
entrance, the community exit, the entrance of residential buildings, and the vicinity of the
electric box. The overall layout of the experimental environment is visually represented in
Figure 14.
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Upon the appearance of a face in the surveillance area, a face detection program is
activated. The identified face is then utilized to extract face feature vectors through DeepID,
subsequently undergoing a comparison with the facial data stored in the database. This
comparison aims to ascertain whether the individual is a stranger. These detection and
identification processes are crucially time-sensitive, demanding real-time execution to
avoid missing the optimal warning window. Upon detecting a stranger, an immediate
warning is transmitted to community managers, enabling them to proactively monitor
potential intruders. This proactive strategy is strategically designed to thwart incidents
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such as burglary and vandalism, ensuring that community managers possess ample time
to remain vigilant to potential threats and respond promptly and appropriately.

The experiment was conducted over four rounds, encompassing various activities, as
outlined in Table 4. In the initial phase of the experiment, the algorithm’s performance was
tested, with LighterFace being compared against current mainstream face detection methods.

Table 4. Definitions of the 4 identified activities during the test.

Activity ID Descriptions

A1 Appeared near the entrance to the complex
A2 Appeared near the neighborhood exit
A3 Appeared near the entrance to a residential building
A4 Appeared near the powerhouse

3.6. LighterFace in the Monitoring Area

After clearly defining the community detection scene, we conducted comparative
experiments to employ YoloV5s, LFFD, YoloV5n, and LighterFace to assess their face detec-
tion accuracy and speed in the context of four identified activities. The primary objective
is to verify and compare the performance of these models. Subsequently, 100 registered
faces from each identified activity were selected for testing. The face detection mechanism
is applied to crop face images, and these images are utilized to extract face feature vectors
using DeepID. The resulting feature vectors are then compared with the facial data stored
in the face database to evaluate the efficacy of the face recognition function.

Table 5 presents the average time and accuracy results for face detection across all
algorithms, along with the accuracy of face recognition for the three datasets. Notably,
LighterFace exhibits the capability to achieve face detection within 1700 ms in real appli-
cation scenarios, utilizing a low-computing chip. The detection accuracy is consistently
maintained at approximately 90%. This high level of detection accuracy establishes a robust
foundation for subsequent face recognition. Consequently, the correct rate of the face
recognition function is also sustained at around 90%.

Table 5. LighterFace application in the monitoring area.

Name Activity ID AP@0.5 Recognition Accuracy Average Speed (ARM)/ms

YoloV5s

A1 92.5% 94% 4461
A2 92.3% 96% 4301
A3 93.8% 82% 4256
A4 91.5% 93% 4513

LFFD

A1 88.6% 87% 4186
A2 87.5% 85% 4026
A3 88.3% 79% 3956
A4 89.3% 81% 4235

YoloV5n

A1 89.6% 91% 1645
A2 87.4% 88% 1546
A3 91.3% 81% 1456
A4 88.7% 87% 1734

LighterFace

A1 90.3% 93% 1532
A2 89.6% 92% 1486
A3 91.5% 87% 1396
A4 89.6% 91% 1685

4. Conclusions

In this paper, we have proposed a real-time monitoring system for tracking people
entering and exiting a community using a face detection model. The objective was to
prevent strangers from intruding into the community, thereby enhancing overall security
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performance. The key innovation lies in developing a lightweight model with reduced
computational complexity, enabling deployment on computationally inefficient embedded
devices while maintaining commendable detection accuracy and speed. LighterFace in-
corporates a customized ShuffleBlock as the primary feature extraction module within the
CSPNet network. Through structural adjustments, the FLOPs were reduced from 15.8 to
2.3, and we achieved an 85.4% reduction in computational workload. When performing
face detection on the CPU platform, the detection speed improved from taking 69.66 ms per
frame to 39.5 ms per frame, achieving a 43.3% increase in detection speed. When conduct-
ing face detection on the ARM platform, the detection speed improved from taking 4578 ms
per frame to 1543 ms per frame, resulting in a 66.3% increase in detection speed. Evaluation
on the WiderFace dataset and a community face dataset ensures that LighterFace main-
tained high detection accuracy (AP@0.5) while prioritizing speed performance. To validate
real-world applicability, various models were deployed on a Raspberry Pi 3B+ for testing.
Results demonstrate that LighterFace can effectively support face detection on ARM chips
with low computational power. Furthermore, its compatibility with mainstream older
cameras facilitates software iterative upgrading, confirming LighterFace’s performance in
terms of speed under practical conditions.

With the proposed approach, the community can deploy the model in cameras that
come with low-computing power chips, which is expected to help reduce potential com-
munity security risks.
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