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Abstract: Integrated photonic chips leverage the recent developments in integrated circuit technology,
along with the control and manipulation of light signals, to realize the integration of multiple optical
components onto a single chip. By exploiting the power of light, integrated photonic chips offer
numerous advantages over traditional optical and electronic systems, including miniaturization,
high-speed data processing and improved energy efficiency. In this review, we survey the current
status of quantum computation, optical neural networks and the realization of some algorithms on
integrated optical chips.
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1. Introduction
1.1. Background and Motivation

The rapid development of technology has given rise to two fields that hold the
potential to significantly reshape the landscape of computation: quantum computing and
machine learning. Quantum computing (QC) is a computational paradigm that leverages
the principles of quantum mechanics to perform complex computations more efficiently
than classical computers, particularly for specific problem domains [1]. Quantum
computing has attracted much interest over the past decade due to possible quantum
advantages in solving computationally complex problems using various models, including
the qubit model on trapped ion systems [2,3] and super-conducting systems [4,5],
measurement-based quantum computing [6,7], and Gaussian boson sampling (GBS) on a
photonic platform [8]. Researchers have identified several quantum algorithms that
outperform their classical counterparts, including Shor’s algorithm for integer
factorization [9] and Grover’s algorithm for unstructured search [10]. By exploiting the
quantum nature of multiple photons, such as quantum superposition, interference and
entanglement, some quantum algorithms have been put forward to offer the potential to
reduce computational time for problems in machine learning [11,12], chemistry [13,14] and
other areas [15].

In parallel, machine learning (ML) has emerged as a type of artificial intelligence that
can process large amounts of data and learn patterns from this data. This approach enables
more accurate results in predicting outcomes without being explicitly programmed to do
so. This technology is used in a wide range of applications, including recommendation
systems, image recognition and autonomous vehicles [16,17].
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The integration of quantum computing and machine learning can possibly unlock
new opportunities and challenges for various application domains, such as healthcare
and medical diagnosis, finance and risk assessment, telecommunications and networking,
smart cities and transportation, environmental monitoring and climate modeling, etc. By
combining the computational advantages of quantum computing with machine learning,
this integrated approach has the potential to transform the way machine learning models
are developed, trained and deployed.

Although quantum computing has been systematically studied from different
perspectives, there are few existing reviews focusing on quantum computing and machine
learning on an integrated photonics platform. However, in comparison with other physical
platforms, such as superconducting and trapped-ion systems, photonic systems operate at
room temperature and are generally less susceptible to lossy errors. Therefore, the
photonic systems are worthy of exploration for quantum computing and quantum
machine learning. In addition, the integrated platforms have the advantages of
ultracompact size, high-density integration and high programmability, which make them
more appealing for realizing a large-scale programmable quantum microprocessor. We
thus provide a detailed review on the intersection of quantum computing and machine
learning from the perspective of the integrated photonics platform. It is the hope of the
authors that this comprehensive review will allow researchers to understand the status and
challenges of quantum computing on silicon photonics platforms and, thus, inspire and
contribute to their further development.

1.2. Objective and Scope of the Review

The objective of this review is to provide an integrative understanding of quantum
computing and machine learning, exploring their fundamental principles, state-of-the-art
techniques and emerging applications. Our aims are as follows:

• Discuss the current state of research in quantum computing and machine learning;
• Present case studies and experimental results that demonstrate the potential to

integrate quantum computing;
• Examine the challenges and opportunities associated with integrating these technologies;
• Outline future directions and open research questions in this rapidly evolving field.

In this review, we aim to provide a comprehensive understanding of the principles,
techniques and emerging applications of the integration of quantum computing and
machine learning. We discuss the current state of research based on integrated photonic
platforms in this rapidly evolving field, identify the challenges and opportunities
associated with integrating these technologies and outline future directions and open
research questions.

1.3. Organization of the Review

This review is organized into eight sections, and the structure is as follows:

• Section 2 provides an overview of the quantum mechanics principles and QC basics,
including quantum superposition, quantum entanglement, quantum measurements,
qubit, quantum gates and circuits and quantum algorithms and complexity;

• Section 3 provides an overview of quantum algorithms and complexity in terms of
quantum machine learning and quantum optimization algorithms;

• Section 4 introduces the fundamental devices in integrated quantum photonic and
typical quantum operations;

• Section 5 explores state-of-the-art chip-based quantum computing approaches and
techniques;

• Section 6 highlights challenges and open issues in chip-based quantum computing,
including quantum limitations and resource constraints, noise and error mitigations,
model and data heterogeneity, standardization, interoperability and ethics and
legal considerations;
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• Section 7 outlines future directions and open research questions, such as quantum
circuit optimization;

• Section 8 concludes the review by summarizing its key points and discussing the
potential impact of quantum-assist computing in the field of machine learning.

2. Quantum Mechanics Principles and Quantum Computing Basics
2.1. Quantum Mechanics Principles

Quantum computing essentially harnesses some unique properties of quantum
mechanics to gain a speedup for some specific computational problems compared to similar
tasks on classical computers [18]. One such feature of quantum theory is superposition.
Quantum superposition is a unique property of quantum mechanics [1] that allows a
quantum state to be in multiple states at the same time until it is measured. This phenomenon
is related to the wave-like nature of quantum particles, such as electrons or photons, which
allows them to occupy different positions, energies or other properties at the same time.
Mathematically, a quantum system’s state is represented by a vector in a complex Hilbert
space, and the superposition principle implies that any linear combination of these basis
vectors is also a valid state for the system. Superposition is crucial for understanding the
behavior of quantum systems and is a key concept underlying many quantum phenomena,
such as the so-called “quantum parallelism” and quantum entanglement.

Quantum entanglement is another unique phenomenon, in which the states of two
or more qubits become intertwined, such that the state of one qubit cannot be described
independently of the state of the other(s) [19]. Quantum entanglement gives rise to non-
classical correlations. This property arises due to the superposition principle and has
profound implications for quantum computing. Entangled qubits can be created through
operations like the controlled-NOT (CNOT) gate and can be utilized to perform complex,
correlated operations on multiple qubits simultaneously. Quantum entanglement may
provide more efficient computation and communication, as well as novel protocols for
secure information exchange and distributed computing [20], although the latter statement
has never been rigorously proven.

Quantum measurement, also known as the “measurement problem”, is a key concept
in quantum mechanics that describes the process of observing or measuring a quantum
system [21]. Due to the superposition principle, a quantum system can exist in multiple
states simultaneously until a measurement is performed. Upon measurement, the quantum
system collapses into one of the possible states, with probabilities determined by the
squared magnitudes of the coefficients associated with each state. This collapse is inherently
probabilistic, and the outcome cannot be predicted with certainty. Quantum measurement
challenges our classical understanding of how physical systems behave, and it is still a
topic of ongoing research and debate.

2.2. Quantum Computing Basics

The fundamental unit of quantum computing is the quantum bit, or qubit, which,
unlike classical bits, can represent not only 0 and 1 but also a superposition of both
states [22]. Mathematically, a qubit can be described as a linear combination of its basis
states |0⟩ and |1⟩ as

|ψ⟩ = α |0⟩+ β |1⟩ , (1)

where α and β are complex numbers satisfying |α|2 + |β|2 = 1. This unique property
allows quantum computers to process a vast amount of information simultaneously by
encoding multiple possibilities in a single qubit, thus enabling them to solve problems that
are intractable for classical computers [23].

Quantum gates are the fundamental operations used to manipulate the states of qubits
in a controlled manner [24]. Unlike classical gates, which operate on bits, quantum gates
operate on qubits and are represented as unitary matrices. Some common quantum gates
include the Pauli-X, -Y and -Z gates, the Hadamard gate and the CNOT gate. These gates
can be combined to form quantum circuits, which can then be used to implement quantum
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algorithms. Notably, quantum gates are reversible, meaning that they can transform a
quantum state back to its original state, and the inverse of a quantum gate can easily be
computed [25].

2.3. Quantum Computing with Linear Optics

A qubit is often encoded in photonics using a single photon with two optical modes.
These modes can encompass various degrees of freedom, including time, polarization,
frequency and orbital angular momentum [26–28]. This survey specifically concentrates
on path encodings of a photon. To represent a qubit, it is common to use two waveguides,
where the upper waveguide indicates a logical state of |0⟩ when a single photon is present
and the lower waveguide represents a logical state of |1⟩. Likewise, this definition can be
extended to encompass the encoding of d-dimensional qubits when the photon can occupy
d distinct waveguides (|0⟩, |1⟩, · · · , |d − 1⟩).

In linear photonic quantum information processing, the core operation is multipartite
entangled states, considered as resources of quantum communication and computation.
Due to the absence of nonlinearities, the generation of entanglement in photonics
inherently relies on probabilistic methods [29]. A photonic implementation of a C-Phase
two-qubit gate using interferometers is depicted in Figure 1b, whose scheme is developed
in Refs. [30,31]. The interferometer in this setup has six modes and comprises three beam
splitters with a transmissivity of 1/3. The two input qubits correspond to two photons that
enter the four spatial modes of the interferometer. Specifically, the first qubit is associated
with the top two spatial modes, while the second qubit is associated with the bottom two
spatial modes. To ensure the proper definition of qubits in the output, only those output
scenarios where one photon occupies the top two spatial modes and the other photon
occupies the bottom two spatial modes are selectively considered, disregarding all other
possible output results. The selective process, called post-selection, is a probabilistic way of
generating entangled output configuration. It is easy to see that the success probability of
the C-Phase is 1/9. Another basic requirement in quantum computation is the generation
of multiple pairs of entangled photons, which is core to realizing graph states and
error-protected qubits [32]. Figure 1c shows a simple scheme to produce an entangled
qubit–pair source. Four coherently pumped spiral waveguides (1.5 cm long) initially have
two pairs of maximally entangled photons. These photons are then spatially separated
using integrated filters of asymmetric Mach–Zehnder interferometers (AMZIs) and
Mach–Zehnder interferometers (MZIs). The entangled source |00⟩ + |11⟩ is produced
through the waveguide crossers. With these two simple examples, two key elements are
identified in linear optical quantum computing: quantum interference in the linear optical
circuits and post-selection. The measurements represent non-unitary operations, and such
effective interaction is often called measurement-induced nonlinearity. However, this
probabilistic post-selection limits the gate numbers and cascaded layers, which further
limits the performance of universal quantum computation.

The detection system is a multi-channel superconducting single-photon detector. It can
absorb an amount of energy equivalent to a single photon and convert it into an electrical
signal in the superconducting circuit. Then, the signal is amplified and processed by the
time tagger to measure the coincidence count.
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(a) (b)

(c)

Figure 1. Schematic of the integrated units performing gates and states. (a) On-chip polarizing beam
splitter. (b) Probabilistic C-Phase entangling gate. (c) Bell state |00⟩+ |11⟩.

3. Quantum Machine Learning

Quantum computing uses entanglement, superposition and interference to perform
certain tasks significantly faster than classical computing, sometimes exponentially. In fact,
although such speedups have been observed for a well-designed problem, for data science,
achieving such speedups is still uncertain, even at a theoretical level. This is precisely one
of the main goals in building quantum machine learning (QML) [33]. QML algorithms
for universal quantum computers have been proposed and small-scale demonstrations
have been implemented. Relaxing the requirement of universality, quantum machine
learning for NISQ processors has emerged as a rapidly advancing field that may provide
a plausible route towards practical quantum-enhanced machine learning systems. From
the aspect of machine learning models, machine learning algorithms are classified into
the three categories: supervised learning, unsupervised learning, reinforcement learning.
From the aspect of quantum data encoding, the quantum machine learning is classified
into discrete variable quantum computing and continuous variable quantum computing,
as shown in Figure 2.

In Table 1, we present a comprehensive summary of quantum machine learning
algorithms along with their diverse applications across various platforms. The subsequent
section provides a succinct yet informative introduction to these quantum neural networks,
shedding light on their unique attributes and applications within the quantum
computing landscape.

Table 1. Summary for quantum machine learning algorithms.

Algorithms References Applications Platform

Quantum Convolutional Neural Networks [9,34] MNIST calssification TensorFlow
Quantum Long Short-Term Memory [35,36] Damped harmonic oscillator, MELVIN dataset PyTorch

Quantum Generative Adversarial Network [37,38] Shorfactoring, decryption Strawberry Fields
Quantum Transfer Learning [39] Image classification, quantum state classification Strawberry Fields, TensorFlow

Quantum Reinforcement Learning [40,41] Quantum state generation, eigenvalue problem TensorFlow
Hybrid Classical–Quantum Neural Network [42,43] Binary classification Strawberry Fields, TensorFlow



Information 2024, 15, 95 6 of 25

Figure 2. Summary of various quantum machine learning tasks.

3.1. Quantum Neural Networks

For a classical neural network model, artificial neural networks (ANNs) are comprised
of an input layer, one or more hidden layers and an output layer. The connections between
layers have two parts: the linear part and the nonlinear part, as shown in Figure 3a. The
linear part can be expressed by a vector–matrix multiplier. The nonlinear activation function
is a nonlinear function. As a comparison, quantum neural networks (QNNs) combine
the architecture of traditional neural networks with principles of quantum computing,
thereby establishing a novel paradigm for data processing. QNNs are usually represented
as variational circuits, which are parameterized quantum circuits that are optimized using
classical optimization techniques (Figure 3b). The power of quantum neural networks is
also an important open question, attracting significant attention. Currently, quantum neural
networks have demonstrated their quantum advantage in specific tasks, as evidenced by
recent studies [44,45].

Figure 3. The structure of classical neural networks and Variational Quantum Classifier.
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3.2. Variational Quantum Classifier

Variational Quantum Classifier (VQC) [46] is a type of quantum machine learning
algorithm that leverages the principles of quantum computing to perform classification
tasks on data. VQC is built on the concept of variational circuits. The goal of a VQC is
to find the optimal parameters that minimize a cost function, which typically represents
the difference between the predicted output and the actual output for a given dataset. As
shown in Figure 3, the structure of VQC consists of three parts, including the encoding
layer, circuit layer and measurement, which correspond to the input layer, hidden layer
and output layer of classical neural networks, respectively. The VQC algorithm can be
broken down into the following steps:

• Data encoding: The classical data are encoded into a quantum state using a quantum
feature map. This process translates the input features into a higher-dimensional
Hilbert space, where quantum effects can be exploited for classification;

• Variational circuit: The parameterized quantum circuit, often referred to as the ansatz,
processes the encoded quantum data. The circuit’s parameters are adjusted through
the optimization process to minimize the cost function;

• Measurement: The output of the variational circuit is measured, collapsing the
quantum state into a classical probability distribution. This measurement provides
the predictions for the input data.

• Optimization: A classical optimization algorithm, such as gradient descent, is used
to update the parameters of the variational circuit based on the cost function. This
iterative process continues until the cost function converges to a minimum value,
which signifies the best possible classification performance;

• Evaluation: Once the optimal parameters are found, the VQC can be evaluated on
unseen data for classification tasks. Overall, the research on VQC has provided
insights into the theoretical foundations and practical applications of this algorithmic
approach. VQC is frequently utilized to build a QNN, which is a counterpart to the
conventional neural network.

Variational Quantum Classifiers are promising for a variety of machine learning
applications, particularly in cases where quantum advantages may lead to improved
performance compared to classical ML algorithms.

3.3. Quantum Convolutional Neural Networks (QCNN)

QCNN [34] is an area of research that explores the potential of quantum computing
to accelerate the training and inference of neural networks. Ref. [9] proposes a quantum
version of the convolutional neural network (CNN), which is a widely used architecture in
classical machine learning. The authors show that QCNN can achieve better performance
than classical CNNs on certain image recognition tasks.

3.4. Quantum Long Short-Term Memory

Ref. [35] extends the classical LSTM into the quantum realm by replacing the classical
neural networks in the LSTM cells with VQCs, which would play the roles of both feature
extraction and data compression. In Ref. [36], the researchers demonstrate that a long
short-term memory (LSTM) neural network can successfully learn to model quantum
experiments by correctly predicting output state characteristics for given setups without
the necessity of computing the states themselves.

3.5. Quantum Generative Adversarial Network (QGAN)

QGAN [37] is an emerging area of research that aims to apply the principles of
quantum computing to the field of generative modeling. Refs. [37,38] introduce the notion
of QGAN, where the data consist either of quantum states or of classical data, and the
generator and discriminator are equipped with quantum information processors.
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3.6. Quantum Transfer Learning

Ref. [39] extends the concept of transfer learning, widely applied in modern machine
learning algorithms, to the emerging context of hybrid neural networks composed of
classical and quantum elements. This paper proposes different implementations of hybrid
transfer learning, but we focus mainly on the paradigm in which a pre-trained classical
network is modified and augmented by a final variational quantum circuit.

3.7. Quantum Reinforcement Learning

Early versions of quantum reinforcement learning (RL) were based on the Grover
algorithm, which resulted in a quadratic speedup compared to classical versions [47,48].
However, these methods could only be used for tasks with discrete action and state spaces.
Subsequently, with the development of quantum neural networks, the QRL algorithm was
extended to continuous space, rendering it more compatible with contemporary NISQ
devices [40,41].

3.8. Hybrid Classical–Quantum Neural Network

Although there are many quantum analogs of the classical DNN, NISQ will be the
only quantum devices that can be used in the near-term, where only a limited number
of qubits without error-correcting can be used. For this reason, Ref. [42] introduces the
quantum deep neural network (QDNN), which is a composition of multiple quantum
neural network layers (QNNLs). Unlike other approaches of quantum analogs of DNNs,
QDNN still keeps the advantages of the classical DNN such as the non-linear activation,
the multi-layer structure and the efficient backpropagation training algorithm. The inputs
and the outputs of the QDNN are both classical, which makes the QDNN more practical.
Ref. [43] proposes a hybrid quantum–classical neural network architecture where each
neuron is a variational quantum circuit.

4. Integrated Quantum Photonic Platforms

Recent years have seen remarkable strides in integrated photonic quantum
technology. Figure 4 presents a timeline highlighting pivotal milestones, from the first
implementation of two-photon quantum interference on an integrated photonic chip in
2008 [49] to the recent breakthroughs in large-scale quantum computing [50]. Currently,
various optical platforms have been developed, primarily including silicon-on-insulator
(SOI) [51–55], silica (SiO2) [49,56–58], silicon nitride (Si3N4) [59,60], lithium niobate
(LN) [61,62] and others. An integrated photonic platform necessitates integrating essential
photonic functional components like light sources, manipulation and detectors.
Leveraging well-established manufacturing processes, the silicon-based photonic platform
enables the integration of these essential functionalities onto a single chip, courtesy of its
high-confinement silicon waveguides, high integration density, compatibility with
metal-oxide-semiconductor (CMOS) fabrication techniques and scalability for mass
production. The SOI platform, in particular, has reached a relatively mature stage of
integration, showing consistent rapid advancements and promising potential for
further development.
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Figure 4. Timeline of key demonstrations of integrated quantum photonics. Thees technologies
include on-chip interference and CNOT gate [49], Shor’s algorithm [63], quantum walk [64], high
visibility interference [65], on-chip SNSPD [54], boson sampling [66], on-chip QD source [67], Grover’s
search algorithm [68], measurement of 6-photon on chip [69], quantum communication [70,71],
universal linear optics [72], molecular vibronic dynamics [73], high-dimension quantum device [74],
8-photon processing [75], error-corrected qubits [76], large-scale quantum device [50] and
topologically protected quantum source [77].

4.1. Fundamental Devices

A silicon-based photonic chip typically comprises devices such as waveguides, beam
splitters, optical couplers and modulators. In this section, a concise overview is provided.

4.1.1. Waveguides

The optical waveguide serves as a fundamental component in a quantum photonic
chip, and the integration of optical elements onto a single chip is achieved through the
fabrication of optical waveguides. Common optical waveguides include strip and ridge
waveguides, used, respectively, for passive and active optical devices. The characteristics
of waveguides are determined by the materials used and the manufacturing techniques
employed. Presently, owing to continuous technological advancements, photon absorption
and losses in silicon-based waveguides have reached notably low levels [78]. Among these
platforms, silicon-on-insulator (SOI) has emerged as a highly favored integrated quantum
optics platform due to its compatibility with CMOS manufacturing techniques.

4.1.2. Beam Splitters

An optical beam splitter functions by dividing an incoming light beam into two or
more separate beams, thereby distributing the input light across multiple output paths.
The most widely employed beam splitter structure is the multimode interferometer (MMI).
Other alternatives, such as directional couplers and Y-branch couplers, also exist. A typical
photonic beam splitter is shown in Figure 5. It is a multi-mode interferometer (MMI) with
specially designed interference length and multi-mode area that splits the photon into a
superposition state. For a 50:50 beam splitter, its transformation matrix can be written as

TBS =
1√
2

[
1 i
i 1

]
. (2)

The advantage of the MMI lies in its less stringent manufacturing requirements,
exhibiting robustness against manufacturing errors. In 2012, the first on-chip 1 × 2 MMI
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was experimentally demonstrated [79], followed by the design of optimized splitters to
further enhance performance and reduce device size [80,81].

Figure 5. Multi-mode interferometer to split the light passively with a fixed ratio of 1:1.

4.1.3. Phase Shifters

In addition to the MMI, the phase shifter is another component required for
constructing a linear optical interferometer. A photonic phase shifter (PS) is shown
in Figure 6. It is simply a waveguide with a TiN resistor fused to it. A current can flow
through it using the Digital-to-Analogue Converter (DAC), and the latter generates heat
and changes the refractive index of the surrounding waveguide. The changes in the optical
path induce a phase difference θ. Its transformation matrix is written as

Tθ =

[
eiθ 0
0 1

]
. (3)

In dual encoding, if the PS θ moves to the lower arm of the waveguide, its
transformation matrix is adjusted accordingly so that the element T4,4 becomes eiθ .

Figure 6. Phase shifter to induce relative phase change between two arms.

4.1.4. Modulator

A photonic modulator is a core device of integrated quantum photonics that enables
encoding information onto optical signals for various applications in quantum information
processing. The plasma dispersion (PD) effect is utilized in silicon-based modulators to
achieve electro-optic modulation. By controlling the density of free carriers through an
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applied electric field, the phase or amplitude of light passing through the material can be
modulated. In particular, silicon-based electro-optic modulators manipulate carrier density
in their active regions to leverage this effect for modulation purposes. The commonly
used optical structure for modulators is the Mach–Zehnder interferometer (MZI), which
consists of the beam splitters and the phase shifters, as previously introduced. It enables the
manipulation of photons with arbitrary splitting ratios and phase differences. The unit for
MZI is formed by two beam splitters and two tunable phase shifts, and its transformation
can be written as

TMZI =Tϕ · TBS · Tθ · TBS

=

[
eiϕ 0
0 1

]
· 1√

2

[
1 i
i 1

]
·
[

eiθ 0
0 1

]
· 1√

2

[
1 i
i 1

]
=

[
eiϕ 0
0 1

]
· 1

2

[
eiθ − 1 ieiθ + i
ieiθ + i −(eiθ − 1)

]
.

(4)

According to Eular’s formula, the matrix elements in Equation (4) can be simplified to

eiθ − 1 = ei θ
2 (ei θ

2 − e−i θ
2 ) = 2iei θ

2 sin
θ

2
, (5a)

eiθ + 1 = ei θ
2 (ei θ

2 + e−i θ
2 ) = 2ei θ

2 cos
θ

2
. (5b)

Therefore, the TMZI can be written as

TMZI =

[
eiϕ 0
0 1

]
· iei θ

2

[
sin θ

2 cos θ
2

cos θ
2 − sin θ

2

]
=iei θ

2

[
eiϕ sin θ

2 eiϕ cos θ
2

cos θ
2 − sin θ

2

]
.

(6)

The splitting ratio is determined by the inner PS angle, θ, to be sin2 θ
2 : cos2 θ

2 , and the phase
difference between two output ports is eiϕ. When the PS position is changed to add the ϕ at
the front of the MZI structure, its transformation matrix can then be expressed as

TMZI = TBS · Tθ · TBS · Tϕiei θ
2

[
eiϕ sin θ

2 cos θ
2

eiϕ cos θ
2 − sin θ

2

]
. (7)

The transformation matrices of BS and PS both satisfy the definition of a Unitary
matrix, given by

T · T† =

[
1 0
0 1

]
, (8)

and it is obvious that TMZI is also a Unitary matrix.
An N-mode integrated quantum photonic circuit is composed of several MZI

structures, and it can form a complicated N × N Unitary matrix, as shown in Figure 7. The
nth MZI between modes i and j is denoted as Mn. Its transformation matrix can be
represented as an Identity matrix IN with four matrix elements {ai,i, ai,j, aj,i, aj,j} replaced
by TMZI , which is expressed as

Mn =


1 · · ·
... ai,i ai,j

aj,i aj,j
...

· · · 1


N

, (9)
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where ai,i = TMZI(1, 1), ai,j = TMZI(1, 2), aj,i = TMZI(2, 1) and aj,j = TMZI(2, 2). Therefore,
the Unitary matrix of this N-mode photonic circuit UN can be represented as the product
of MZI transform matrices in the designed orders as

UN = ∏
n

Mn. (10)

Figure 7. Typical schematic of an N-mode photonic integrated circuit to represent an arbitrary N × N
Unitary matrix. The final Unitary matrix form is the product of the matrices for each MZI component.

4.1.5. Coupler

An optical coupler is used to efficiently couple light in and out of optical waveguides
on a chip. Its design aims to facilitate the transmission of light signals between the chip
and external optical components. Edge couplers are typically implemented at the
periphery or sidewall of a chip, facilitating the ingress or egress of light into/from the
waveguide, thereby offering notable advantages such as enhanced efficiency and
expanded bandwidth. However, it presents challenges in terms of fabrication processes.
Over the past decade, researchers have extensively studied edge couplers and proposed
various structural transformations, including edge couplers based on inverse taper with
different nonlinear profiles [82] or consisting of double-tip inverse taper [83]. Grating
coupling utilizes a grating structure to couple the light signal into the chip at a vertical
angle. It offers advantages such as compact size and flexible coupling positions, but also
has limitations like lower efficiency and narrower bandwidth. Currently, there are ongoing
expansions in the applications of grating couplers, such as two-dimensional grating
couplers [84] and polarization-splitting grating couplers [85].

4.2. Main Components

By utilizing the aforementioned fundamental devices, it becomes feasible to achieve
silicon-based photonic quantum chips, thereby enabling applications such as large-scale
quantum computing and quantum simulation. All of these applications require
functionalities encompassing photon generation, manipulation and detection. In this
paper, we provide a comprehensive introduction to each of these pivotal components.

4.2.1. Photon Source

Photon sources find extensive use across various applications, including boson
sampling, quantum computing, quantum communication, etc. Depending on their
application, there exist three primary techniques for preparing quantum light sources:
spontaneous parametric down-conversion (SPDC), stimulated four-wave mixing (SFWM)
and quantum dots. The first two methods of single-photon sources are probabilistic in
nature, employing nonlinear processes to generate inherently correlated photon pairs.
These methods excel in photon production while preserving high indistinguishability
between photons. However, the generation of photon pairs through these two approaches
involves a probabilistic approach, with a trade-off between generation probability and
multi-photon purity. For quantum dot photon sources, the main mechanism is based on
the emission of semiconductor material. A pair of carriers, called the exciton, is excited by
the injected laser pulse in the quantum dot. The decay of the exciton then emits a single
photon via the spontaneous emission process. This is a deterministic single-photon source
that each laser pulse would generate, theoretically, only one photon each time. There have
been reports that the best single-photon source has reached the detection efficiency of 0.5
for each laser pulse, considering all the collection efficiency, system loss and detection
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efficiency. However, the single-photon source also possesses its own drawbacks; for
instance, it requires a critical working environment, with ultra-low temperature and
high-vacuum chambers. It is difficult to maintain the indistinguishability of photons
generated from separated quantum dots, and people usually take active de-multiplexing
technologies to separate a single-photon source as a multi-photon source. Quantum dot
can only generate single photons; it is unable to generate other non-classical quantum
states such as the squeeze state, which is another fundamental resource for quantum
photonic computing.

In this review, we focus on the χ(3) nonlinear material that induces an optical
conversion process called spontaneous four-wave mixing (SFWM). It would absorb two
pump photons and generate a pair of signal and idler photons. This process is widely used
for heralded single-photon source, entangled photon pair and squeezed quantum light
source with low phase or amplitude noise beneath the standard quantum limit.

Based on the difference between signal and idler photon, the process can be divided
into two categories: the non-degenerated SFWM as seen in Figure 8a, in which the two
photons generated have the different wavelengths, and the degenerated SFWM as seen
in Figure 8b, where the two photons have the identical wavelength. From the pump laser
point of view, the non-degenerated SFWM is also called the single-pump scheme, as it
only requires a single laser pulse to create the photon pair. The degenerated SFWM is
called the dual-pump scheme, as the experimental set-up requires two laser pulses working
simultaneously to create the photon pair.

(a) (b)

Figure 8. (a) Non-degenerated and (b) degenerated spontaneous four-wave mixing process to
generate photon pairs on chips by absorbing two pump photons.

The relation between pump frequency and generated photon frequency satisfies the
laws of energy conservation and momentum conservation:

ωp1 + ωp2 = ωs + ωi, (11a)

kp1 + kp2 = ks + ki. (11b)

where k is called the wavevector. In waveguide modes, the momentum conservation is also
called the phase-matching condition; these wavevectors are the propagation constant
β(ω) = ne f f (ω)ω and ne f f (ω) is the effective index of the corresponding frequency
decided by the material nonlinear property.

To realize the photon generation, the main problem is to achieve the phase-matching
condition. Assuming the non-degenerated SFWM condition of ωp1 = ωp2 = ωp and
neglecting other nonlinear effects, the difference of propagation constant can be expressed
as

∆β =2β(ωp)− β(ωs)− β(ωi). (12)

By taking the Taylor expansion of β(ωp), the phase-matching condition can be
expressed as
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β =
∞

∑
n=0

βn
(ω − ωp)n

n!
, (13a)

βn =
∂nβ

∂βn , (13b)

where ∆β is expanded in βn. Due to the limitation of energy conservation law ωp1 + ωp2 =
ωs + ωi, the difference of frequency can be written as δω = ωs − ωp2 = −(ωi − ωp1).
Therefore, ∆β can be simplified as

∆β ≈ β2(ωp)(∆ω)2, (14)

where the higher order of terms is ignored. The second-order derivative, β2, is known
as the group velocity dispersion (GVD) of the waveguide. By selecting the point where
GVD = 0, β2 ≈ 0 can be achieved to meet the phase-matching condition.

By considering the higher-order terms for the derivative of propagation constant [86],
the phase-matching condition can be written as

∆β ≈ β2(ωp)(∆ω)2 +
β4(ωp)

12
(∆ω)4. (15)

If the waveguide is designed to make β2 and β4 assume opposite signs and the magnitude
is appropriately adjusted, phase matching can be achieved.

When the pump photon and generated photon are propagating in different modes,
their propagation constants are unrelated to each other [87]. The phase-matching condition
can thus be written as

∆β ≈ 2βp(ωp)− βi(ωp)− βs(ωp) + ∆ω(β1,i − β1,s). (16)

If the propagation constant difference ∆β matching with the group velocity β(ω) is found,
the phase matching can be realized.

Finally, the waveguide parameter can be modulated periodically with quasi-phase-
matching conditions [88], which are simplified as

∆β = ∆β0 +
2π

Λ
, (17)

where Λ is the periodicity of poling designed to match ∆β = 0.
For the simple case of β2 ≈ 0, the approximation ωp ≈ ωs ≈ ωi is taken, and the

energy conservation in the wavelength domain is expressed as

λp1 + λp2 ≈ λs + λi. (18)

The probability of the two-photon state is decided by the energy conservation and
phase-matching condition, with expression given by

|11⟩ ∝
∫ ∫

dωsdωiF(ωs, ωi) |11⟩s,i . (19)

This is interpreted as the distribution of two-photon state |11⟩s,i at mode s and i, and the
probability amplitude F(ωs, ωi) is called the Joint Spectra Amplitude (JSA). The latter is
dictated by the law of energy conservation and phase matching, and it can be expressed as

F(ωs, ωi) =
∫

dωα(ωs + ωi − ω)ϕ(ωs, ωi, ω), (20)
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where α(ωs + ωi − ω) is the complex amplitude of the pump ωp at the frequency ωs + ωi − ω.
Usually, the pump spectrum is assumed to be a Gaussian distribution with a bandwidth
decided by pump filter or laser property. ϕ(ωs, ωi, ω) is defined as

ϕ(ωs, ωi, ω) = ei ∆βL
2 sinc(

∆βL
2

), (21)

where it is determined by the phase-matching condition. L is the interaction length of
waveguide. |F(ωs, ωi)|2 is the real measured probability of the photon pair and is called
the Joint Spectra Intensity (JSI).

Taking all these factors into consideration, the state can be expressed as

|ϕ⟩ = ∏
n
⊗Ŝn

s,i(ξn) |0⟩s |0⟩i , (22)

where Ŝn
s,i(ξ) is called the squeeze operator on the mode n, and ξn is the squeeze parameter,

determined by the material nonlinearity, interaction length, pump energy density and so
on. Depending on whether the squeeze parameter condition is filtered or resonated SFWM,
the output state is given by

|ϕ⟩ =Ŝs,i(ξ) |0⟩s |0⟩i

=eξ∗ âi âs−ξ âi
† âs

† |0⟩s |0⟩i ,
(23)

and, by writing ξ = reiϕ, the state in photon number basis is expressed as

|ϕ⟩ = 1
cosh r

∞

∑
n=0

(−eiϕ tanh r)n |n⟩s |n⟩i

=
∞

∑
n=0

Cn |n⟩s |n⟩i .
(24)

The probabilities for detecting n photons at mode s or mode i are the same, which can be
expressed as

Ps(n) = Pi(n) = P(n) = |Cn|2 =
(tanh r)2n

cosh2 r
. (25)

Following Equation (22), a maximum entangled two-photon state from an SFWM
process can be written as

|ϕ⟩ = 1√
n
(|1⟩s,1 |1⟩i,−1 + |1⟩s,2 |1⟩i,−2 + |1⟩s,3 |1⟩i,−3 + · · ·+ |1⟩s,n |1⟩i,−n) (26)

with different modes from 1 to n. And it is known that the state describing a composition
system is decomposed as

|ϕ⟩ =
n

∑
i=1

√
λi |ui⟩ ⊗ |vi⟩ , (27)

where {|ui⟩} and {|vi⟩} are orthonormal basis states called Schmidt modes. The Schmidt
coefficients λi are the “weights” of each subsystem satisfying ∑i λi = 1. The degree of
factorizability is called the Schmidt number K and is defined as

K =
1

∑n
i=1 λ2

i
∈ [1, n]. (28)

The photon purity P of this state is defined as

P =
1
K

∈ [
1
n

, 1], (29)
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where p = 1 represents K = 1 and λ1 = 1, indicating a perfectly pure two-photon state. If
P < 1 is measured, it means the state also contains other degrees of entangled photon pairs.
For a maximally entangled state with the condition that λn = 1

n and n −→ ∞, P −→ 0, which
indicates that the state has almost no purity (maximally mixed) and is not suitable for a
heralded single-photon source.

In the weak pump regime, the multi-photon probability P(n) is relatively low and the
purity P can be directly estimated as

P =
1
K

= g(2)(0)− 1, (30)

where g(2)(0) is called the second-order correlation. It is an experimentally measurable
value that describes the statistics of photon pair correlations. From the reference [89], the
g(2) can be written as

g(2)(∆t) =
Pss(∆t)

PsPs
, (31)

where Pss(∆t) is the probability of measuring coincidence counts at the delay time of ∆t
and Ps is the probability of measuring signal photon at the detector.

With the heralded photon measured, the remaining photon state can be used as a
single-photon state, and the purity of this heralded single photon g(2)h (t) describes the
quantity of single-photon against the multi-photon emission. It can be written as

g(2)h (∆t) =
Pssi(∆t)

Ps1i(∆t)Ps2i(∆t)
Pi, (32)

where Pssi(∆t) and Psi(∆t) are the probabilities of measuring coincidence count at the delay
time of ∆t and Pi is the probability of measuring signal photon.

The noise of the measured photon counts is estimated by coincidence to accidental
ratio (CAR). Coincidence counts between signal and idler photons from the same pair
of photon generation are desired counts, while the spurious coincidence between time
uncorrelated different pairs or other noises are called the accidental coincidences. The CAR
is defined as

CAR =
Rsi − Rac

Rac
, (33)

where Rsi is the overall coincidence between signal channel and idler channel and Rac is
the accidental coincidence.

Currently, there are multiple platforms available for integrating SFWM, including
UV-writing silica waveguides [69], Si [53,87] and SoI [90] platforms. To enhance the
brightness of light sources and the purity of single-photon states, people have proposed
long spiralled waveguides and microring resonators. Furthermore, to tackle the problem of
non-deterministic photon production in parametric methods, various techniques such as
time [91] or spatial [92] multiplexing have been implemented to enhance their performance.

4.2.2. Manipulation

Various degrees of freedom of photons such as path, polarization, frequency, spatial
and temporal modes, etc., can be utilized for encoding quantum states. In particular, on
silicon-based photonic chips, it is already possible to achieve encoding and manipulation
of photon quantum states using multiple degrees of freedom. For instance, the path
information of photons within parallel-transmitting multiple waveguides enables path-
encoded quantum states. Different combinations of on-chip MZIs and phase shifters allow
for arbitrary manipulation of path-encoded quantum states. As mentioned earlier, the
optical circuit composing several MZIs are universal, meaning that the circuits can be
programmed to achieve any Unitary evolution of quantum states encoded in m paths.
There has been a study showing that an arbitrary N × N Unitary circuit can be decomposed
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by
N(N − 1)

2
MZIs with specific orders. Two of the main decomposition schemes are the

Triangle Circuit [93] and the Square Circuit [94].
Compared to other encoding methods, the advantages of path encoding lie in its

straightforward design, enabling high-precision programmable control. Moreover, it is
currently extensively employed in the design of large-scale integrated silicon-photonics
quantum chips.

4.2.3. Single-Photon Detector

Photon detection is the process of converting photon signals into electrical signals,
which is a crucial step in quantum information processing that is aimed at retrieving
information about quantum states. Single-photon detectors mainly include avalanche
photodiodes (APDs) and superconducting nanowire single-photon detectors (SNSPD).
Most APDs can operate at room temperature, but they exhibit low detection efficiency. At
present, SNSPD is the most-studied device due to its advantages such as high detection
efficiency, low time jitter, high signal-to-noise ratio, etc.

5. Recent Advances in Chip-Based Quantum-Assist Computational Works

With the progressive maturation of silicon-based integration technology, significant
strides have been made in large-scale silicon quantum experiments, resulting in continuous
enhancement of information processing capabilities and driving the advancement of optical
quantum computing systems. In this section, we provide a comprehensive overview of
recent advancements in silicon quantum photonics pertaining to the fields of quantum
computing and machine learning.

In the early stages, experiments based on integrated silicon chips primarily focused
on demonstrating fundamental gates for universal computation. For instance, work [49]
implemented single-qubit and two-qubit gates using path encoding on an integrated chip.
Following this, a demonstration was conducted using two integrated CNOT gates to execute
the Shor factorization algorithm on an integrated waveguide silica-on-silicon chip [63].
However, these two examples implemented the unheralded CNOT scheme and and did
not require auxiliary photons. A landmark achievement was the first implementation
of the heralded quantum logic gates on a single SiO2 chip in 2015 [72]. This was also
the first universal linear optical circuit to be realized on a silicon-based integrated chip,
which is constructed by a cascade of 15 MZIs across 6 modes. Meanwhile, large-scale
programmable integrated photonics quantum computing is gradually flourishing. In
2018, Qiang et al. achieved the first universal two-qubit silicon-based photonic quantum
computing chip using large-scale silicon-based integrated optical technology [95]. This
work realized the generation of entangled photons, photon state preparation, manipulation
and measurement on a single chip. This laid the foundation for the feasibility of large-
scale, high-precision, programmable photonic quantum computation using silicon-based
photonic chip technology.

With the advent of the noisy intermediate-scale quantum (NISQ) era, various
platforms have emerged as choices to showcase quantum advantages in this period, and
silicon-based quantum optical platforms are also important candidates. Currently,
silicon-based photonic quantum computing has been widely applied in areas such as
quantum neural networks [96], variational algorithms [97] and coherent Ising
machines [98]. In particular, neural networks stands as a crucial area in current quantum
computing research. Here, we focus on optical neural networks that utilize the principle of
optical coherence to perform linear matrix operations in photonics circuits [93,94]. In 2017,
Shen et al. proposed an on-chip integrated optical neural network constructed by a
cascaded array of 56 programmable MZIs, where the parameters of this neural network
were real numbers [99]. This work successfully conducted experiments using a two-layer
fully connected neural network to solve the vowel recognition task. However, due to the
influence of noise, the accuracy was only 76.6%. In 2021, work [100] developed fully
connected complex-valued neural networks based on an integrated silicon photonics
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platform. The optical neural networks presented here are capable of processing
information in both phase and magnitude, resulting in significantly improved
computational speed and energy efficiency. Simultaneously, various optical neural
networks with Fourier transform and convolution structures have also been
proposed [101,102]. However, these approaches are limited by space consumption and the
difficulty in real-time programming. To tackle these challenges, work [103] proposed an
integrated diffractive optical network utilizing silicon chips with integrated ultracompact
diffractive cells and programmable MZIs. This scheme enables parallel Fourier
transformation and convolution operations. What originally required a linear matrix
calculation using N2 cascaded MZIs has now been reduced to using two ultracompact
diffractive cells and N MZIs. This significantly minimizes the size of integrated photonic
chips and reduces energy consumption. The effective training of these photon neural
networks is another crucial issue that deserves attention. A gradient-free training scheme
was proposed in Ref. [104], which is an efficient, physics-agnostic and closed-loop protocol
for training optical neural networks on chip. In addition to the aforementioned neural
networks, silicon-based optical chips can also be utilized for the implementation of
machine learning models such as quantum autoencoders [105]. Moreover, photonic neural
networks are specifically tailored for addressing diverse machine learning tasks,
encompassing prediction of molecular properties [106] and classification of financial
data [107].

Boson sampling is also an important computational task [108]. It is widely known that
sampling from a distribution that is obtainable by photons propagating through a linear
optical network becomes classically intractable as the photon number increases, which
suggests that a photonic experiment implementing a Unitary evolution of input photons
can be a viable candidate to demonstrate quantum advantage [109]. At present, the
experimental demonstration of boson sampling is mainly based on integrated photon
platforms [66,110–115]. Recently, Paesani et al., achieved the generation of an eight-photon
state and implemented the Gaussian boson sampling algorithm on a silicon-based
photonic chip [75]. Another set of the latest results is from Wang et al., who realized a
large-scale programmable silicon-based photonic chip based on graph theory, integrating
approximately 2500 components in a single device [50]. This work demonstrates
multi-photon high-dimensional quantum entanglement preparation and programmable
boson sampling for specialized quantum computing. In addition, the application of photon
sampling problems has been extensively studied in the fields of graph theory [116–120]
and quantum simulation [121,122].

Furthermore, utilizing quantum algorithms for molecular simulation is an intriguing
research direction. Typically, phase estimation [9] or variational quantum eigensolvers [97]
are employed to find the eigenvalues and eigenvectors of a Hamiltonian. Both these
algorithms have been implemented on silicon-based devices [123,124]. Recently, an
experimental realization of a combined scheme that incorporates these two algorithms has
demonstrated remarkable fidelity, exceeding 99% in approximating ground- and
excited-state eigenvalues [125].

6. Challenges and Open Issues
6.1. Quantum Hardware Limitations and Resource Constraints

(1) Limited qubits:

a. Scalability: Scaling up the number of qubits in a quantum computer is a
significant challenge due to the need for error correction and fault tolerance;

b. System size: The limited number of qubits impacts the size and complexity
of quantum federated learning algorithms that can be executed, hindering the
ability to solve larger problems;

c. Resource-efficient algorithms: Designing quantum algorithms that are resource-
efficient in terms of qubits; gates can help mitigate these limitations.
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(2) Coherence time:

a. Quantum gate operations: The short coherence time limits the number of
quantum gate operations that can be performed before the quantum state
becomes decoherent, impacting the complexity of quantum federated learning
algorithms;

b. Qubit materials and designs: Investigating novel qubit materials and designs
that exhibit longer coherence times can help overcome the limitations posed by
decoherence in quantum computations;

c. Environmental noise: Reducing the impact of environmental noise on quantum
hardware can help extend coherence times and improve the performance of
quantum algorithms;

d. Dynamical decoupling: Exploring dynamical decoupling techniques, which
involve applying a sequence of control pulses to mitigate the effects of noise, can
contribute to the preservation of quantum states during computations.

(3) Connectivity:

a. Topology: Quantum hardware architectures may have different qubit
connectivity topologies, which can impact the performance of quantum
algorithms, including quantum federated learning;

b. Hardware-aware algorithms: Developing hardware-aware algorithms that
consider qubit connectivity can help optimize the implementation of quantum
federated learning on various quantum devices.

6.2. Noise and Error Mitigation

(1) Error correction:

a. Fault-tolerant quantum computation: Developing fault-tolerant quantum
computation techniques, which allow for the execution of quantum algorithms
despite the presence of errors, is crucial for the practical implementation of
quantum federated learning;

b. Resource overhead reduction: Investigating methods to reduce the resource
overhead associated with quantum error correction, such as optimized encoding
schemes and error-correction-friendly quantum circuit designs, can enable the
efficient integration of error correction into quantum federated learning algorithms.

(2) Error-aware training:

a. Noise extrapolation: Techniques such as Richardson extrapolation and zero-
noise extrapolation can be used to estimate and mitigate the impact of noise on
quantum federated learning algorithms;

b. Error-aware training: Developing error-aware training techniques that
incorporate noise models into the learning process can help enhance the
performance of quantum federate learning algorithms in noisy environments.

Addressing these challenges and open issues in greater detail will help drive
significant advancements in the field of quantum machine learning. Ongoing research and
development efforts will be essential for overcoming these obstacles and realizing the full
potential of quantum-enhanced federated learning in various applications and industries.

7. Open Opportunities and Future Directions

Integrated photonics is a rapidly evolving field with several open opportunities and
future directions. Some key areas include the following:

(1) Higher Integration Technologies:

a. Increased complexity: Developing more complex integrated photonics circuits
with higher component counts to enable advanced functionalities;
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b. Multi-functional chips: Designing chips that serve multiple purposes, integrating
various components on a single platform.

(2) Novel Materials and Components with Explorative New Materials: Researching novel
materials with unique optical properties to enhance device performance. In addition,
it is possible to explore the implementation of heterogeneous integrated photonic
chips based on multiple material systems;

(3) Machine Learning Assistance Using machine learning technologies: Combining
machine learning algorithms with integrated optical devices can improve the
performance of quantum machines.

8. Conclusions

Integrated photonic quantum technologies provides a new pathway for quantum
computing and machine learning, harnessing the innate properties of photons to achieve
rapid information processing and transmission. The silicon-based photon platform exhibits
significant promise in this domain, as evidenced by our comprehensive review
summarizing the latest advancements. Furthermore, we highlight some opportunities and
challenges faced by integrated photonic quantum technology currently, seeking to offer
novel perspectives for future advancements in this field. With ongoing technological
progress, we firmly anticipate that integrated chip technology will assume an increasingly
pivotal role across diverse applications.
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momentum transformation in optical microresonators. Science 2017, 358, 344–347. [CrossRef] [PubMed]

57. Zhang, X.; Cao, Q.T.; Wang, Z.; Liu, Y.x.; Qiu, C.W.; Yang, L.; Gong, Q.; Xiao, Y.F. Symmetry-breaking-induced nonlinear optics at
a microcavity surface. Nat. Photonics 2019, 13, 21–24. [CrossRef]

58. Li, M.; Li, C.; Chen, Y.; Feng, L.T.; Yan, L.; Zhang, Q.; Bao, J.; Liu, B.H.; Ren, X.F.; Wang, J.; et al. On-chip path encoded photonic
quantum Toffoli gate. Photonics Res. 2022, 10, 1533–1542. [CrossRef]

59. Lu, X. Chip-integrated visible-telecom entangled photon pair source for quantum communication. In Proceedings of the
Photonics for Quantum 2019, New York, NY, USA, 23–25 January 2019; SPIE: Bellingham, WA, USA, 2021; Volume 11917,
p. 119170Z.

60. Zhang, X.; Bell, B.A.; Mahendra, A.; Xiong, C.; Leong, P.H.W.; Eggleton, B.J. Integrated silicon nitride time-bin entanglement
circuits. Opt. Lett. 2018, 43, 3469–3472. [CrossRef]

61. Höpker, J.P.; Bartnick, M.; Meyer-Scott, E.; Thiele, F.; Krapick, S.; Montaut, N.; Santandrea, M.; Herrmann, H.; Lengeling, S.;
Ricken, R.; et al. Towards integrated superconducting detectors on lithium niobate waveguides. arXiv 2017, arXiv:1708.06232.
Available online: http://arxiv.org/abs/1708.06232 (accessed on 18 Augest 2017).

62. Jin, H.; Liu, F.M.; Xu, P.; Xia, J.L.; Zhong, M.L.; Yuan, Y.; Zhou, J.W.; Gong, Y.X.; Wang, W.; Zhu, S.N. On-Chip Generation
and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits. Phys. Rev. Lett. 2014,
113, 103601. [CrossRef]

63. Politi, A.; Matthews, J.C.F.; O’Brien, J.L. Shor’s Quantum Factoring Algorithm on a Photonic Chip. Science 2009, 325, 1221.
[CrossRef]

64. Peruzzo, A.; Lobino, M.; Matthews, J.C.; Matsuda, N.; Politi, A.; Poulios, K.; Zhou, X.Q.; Lahini, Y.; Ismail, N.; Wörhoff, K.; et al.
Quantum walks of correlated photons. Science 2010, 329, 1500–1503. [CrossRef]

65. Laing, A.; Peruzzo, A.; Politi, A.; Verde, M.R.; Halder, M.; Ralph, T.C.; Thompson, M.G.; O’Brien, J.L. High-fidelity operation of
quantum photonic circuits. Appl. Phys. Lett. 2010, 97, 211109. [CrossRef]

66. Crespi, A.; Osellame, R.; Ramponi, R.; Brod, D.J.; Galvao, E.F.; Spagnolo, N.; Vitelli, C.; Maiorino, E.; Mataloni, P.; Sciarrino,
F. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics 2013, 7, 545–549.
[CrossRef]

67. Arcari, M.; Söllner, I.; Javadi, A.; Hansen, S.L.; Mahmoodian, S.; Liu, J.; Thyrrestrup, H.; Lee, E.H.; Song, J.D.; Stobbe, S.; et al.
Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 2014, 113, 093603.
[CrossRef] [PubMed]

68. Ciampini, M.A.; Orieux, A.; Paesani, S.; Sciarrino, F.; Corrielli, G.; Crespi, A.; Ramponi, R.; Osellame, R.; Mataloni, P. Path-
polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 2016, 5, e16064. [CrossRef]

69. Spring, J.B.; Mennea, P.L.; Metcalf, B.J.; Humphreys, P.C.; Gates, J.C.; Rogers, H.L.; Söller, C.; Smith, B.J.; Kolthammer, W.S.;
Smith, P.G.; et al. Chip-based array of near-identical, pure, heralded single-photon sources. Optica 2017, 4, 90–96. [CrossRef]

http://dx.doi.org/10.1038/s41567-021-01287-z
http://dx.doi.org/10.1007/JHEP02(2021)212
http://dx.doi.org/10.1109/TSMCB.2008.925743
http://www.ncbi.nlm.nih.gov/pubmed/18784007
http://dx.doi.org/10.1126/science.1155441
http://www.ncbi.nlm.nih.gov/pubmed/18369104
http://dx.doi.org/10.1038/s41566-023-01187-z
http://dx.doi.org/10.1063/1.2814040
http://dx.doi.org/10.1088/1367-2630/14/4/045003
http://dx.doi.org/10.1038/nphoton.2013.339
http://dx.doi.org/10.1038/ncomms2307
http://www.ncbi.nlm.nih.gov/pubmed/23271658
http://dx.doi.org/10.1038/s41377-019-0153-y
http://www.ncbi.nlm.nih.gov/pubmed/31069073
http://dx.doi.org/10.1126/science.aao0763
http://www.ncbi.nlm.nih.gov/pubmed/29051375
http://dx.doi.org/10.1038/s41566-018-0297-y
http://dx.doi.org/10.1364/PRJ.452539
http://dx.doi.org/10.1364/OL.43.003469
http://arxiv.org/abs/1708.06232
http://dx.doi.org/10.1103/PhysRevLett.113.103601
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1063/1.3497087
http://dx.doi.org/10.1038/nphoton.2013.112
http://dx.doi.org/10.1103/PhysRevLett.113.093603
http://www.ncbi.nlm.nih.gov/pubmed/25215983
http://dx.doi.org/10.1038/lsa.2016.64
http://dx.doi.org/10.1364/OPTICA.4.000090


Information 2024, 15, 95 23 of 25

70. Wang, J.; Bonneau, D.; Villa, M.; Silverstone, J.W.; Santagati, R.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; et al.
Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 2016, 3, 407–413. [CrossRef]

71. Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M.G.; Natarajan, C.M.; et al.
Chip-based quantum key distribution. Nat. Commun. 2017, 8, 13984. [CrossRef]

72. Carolan, J.; Harrold, C.; Sparrow, C.; Martín-López, E.; Russell, N.J.; Silverstone, J.W.; Shadbolt, P.J.; Matsuda, N.; Oguma, M.;
Itoh, M.; et al. Universal linear optics. Science 2015, 349, 711–716. [CrossRef] [PubMed]

73. Sparrow, C.; Martín-López, E.; Maraviglia, N.; Neville, A.; Harrold, C.; Carolan, J.; Joglekar, Y.N.; Hashimoto, T.; Matsuda, N.;
O’Brien, J.L.; et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature 2018, 557, 660–667.
[CrossRef] [PubMed]

74. Wang, J.; Paesani, S.; Ding, Y.; Santagati, R.; Skrzypczyk, P.; Salavrakos, A.; Tura, J.; Augusiak, R.; Mančinska, L.; Bacco, D.; et al.
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