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Abstract: As a typical intelligent device, magnetorheological (MR) dampers have been widely applied
in vibration control and mitigation. However, the inherent hysteresis characteristics of magnetic
materials can cause significant time delays and fluctuations, affecting the controllability and damping
performance of MR dampers. Most existing mathematical models have not considered the adverse
effects of magnetic hysteresis characteristics, and this study aims to consider such effects in MR
damper models. Based on the magnetic circuit analysis of MR dampers, the Jiles–Atherton (J-A) model
is adopted to characterize the magnetic hysteresis properties. Then, a weight adaptive particle swarm
optimization algorithm (PSO) is introduced to the J-A model for efficient parameter identifications of
this model, in which the differential evolution and the Cauchy variation are combined to improve
the diversity of the population and the ability to jump out of the local optimal solution. The results
obtained from the improved J-A model are compared with the experimental data under different
working conditions, and it shows that the proposed J-A model can accurately predict the damping
performance of MR dampers with magnetic hysteresis characteristics.

Keywords: magnetorheological damper; Jiles–Atherton hysteresis model; magnetic hysteresis
characteristic; particle swarm optimization algorithm

1. Introduction

Magnetorheological (MR) fluid, first invented and developed by Rabinow, is a type of
solid/liquid two-phase suspension consisting of ferromagnetic particles, base fluid, and
additives [1]. Its most important feature is that under the action of the applied magnetic
field, the ferromagnetic particles in the MR fluid are transformed from random ordering
to an orderly arrangement along the direction of the magnetic field and show a chain-like
structure [2], and then return to the flow state when the magnetic field is withdrawn. Based
on the MR effect, MR dampers are widely used as a kind of semi-active control device in
various vibration-damping areas [3,4].

However, the magnetic hysteresis nonlinearity brought by MR material is also a
key factor limiting its better application in engineering. Hysteresis nonlinearities for MR
dampers arise from two main sources: hysteresis nonlinearities between the damping force
and the velocity and hysteresis nonlinearities between the magnetic induction and the
magnetic field strength. The hysteresis nonlinearity of the damping force and velocity is
mainly caused by the nonlinear rheological properties of the MR fluid, and the effect can
be eliminated by modelling the hysteresis dynamics. As for the hysteresis nonlinearity
between the magnetic induction and magnetic field strength, it is due to the magnetic prop-
erties of the ferromagnetic particles in the MR fluid, which leads to hysteresis nonlinearity
between the magnetic induction and the magnetic field’s magnetic induction during the
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magnetization process, which can be eliminated by modelling the hysteresis characteristic
of the MR dampers to eliminate the effect it brings.

The hysteresis phenomenon refers to when the magnetization of ferromagnetic parti-
cles in MR fluid reaches a certain degree and after reaching the saturation magnetization,
then the magnetic field strength is gradually reduced so that the ferromagnetic particles are
in a demagnetised state, and the magnetic induction in the demagnetised state is greater
than that in the same magnetic field strength during the magnetization process, which indi-
cates that the magnetization state of the ferromagnetic particles is always lagging behind
the change to the applied magnetic field. For the MR damper, the most obvious effect of
the hysteresis characteristic is that the output damping force of the MR damper has a large
error with the desired damping force; however, this error is not constant, and when the
magnetic field strength changes slowly, and the magnetization state of the ferromagnetic
particles in the MR fluid can keep up with the change of the magnetic field, this error
is not obvious.

Currently, many models have been proposed for the mathematical modelling of MR
dampers. The Bouc–Wen model and its improved model use the Bouc–Wen operator to
reflect the hysteresis properties of MR dampers to characterize the force–velocity rela-
tionship curve [5]. The hysteresis double viscosity model characterizes the force–velocity
relationship with a continuous segmented function [6]. Non-parametric models include
polynomial models, Sigmoid models and neural network models [7]. These models are
all based on the force–displacement and force–velocity relationships, but the non-linear
relationship between the current and the internal magnetic induction of the MR dampers,
which is called the magnetic hysteresis characteristic, is neglected. According to the experi-
mental data, ignoring the magnetic hysteresis characteristic of MR dampers, there is a large
gap between the mechanical model and the experimental data. Therefore, it is necessary to
consider the hysteresis property of the damper in the mechanical model.

For modelling the hysteresis characteristics of MR dampers, many scholars have pro-
posed models and improved upon them. Common hysteresis models are the Jiles–Atherton
hysteresis model (J-A), the Preisach hysteresis model, the energetic hysteresis model and
the magnetic domain minimization model. The Preisach hysteresis model was proposed
in 1935 by the German physicist Preisach F [8]. The classical Preisach model assumes that
a magnetic material consists of a number of dipoles as a series of hysteresis operators,
and argues that the magnetic induction of a magnetic material is equal to the sum of the
magnetic induced strengths exhibited by all the hysteresis operators. The Stoner–Wohlfarth
model [9,10] was proposed by Stoner and Wohlfarth in 1948, and is a vector hysteresis
model that can be used to simulate the process of material magnetization. The J-A hysteresis
model is a differential equation model based on the domain wall theory proposed by Jiles
and Atherton [11]. The model suggests that the hysteresis phenomenon arises due to the
change in impedance during magnetization, mainly due to the domain walls being held
back and secondarily due to the interaction between the magnetic moments [12,13]. The J-A
hysteresis model has been widely used in the modelling of hysteresis materials by virtue of
its simple parameter identification, small computational effort and short time-consumption.

Although the J-A hysteresis model can clearly represent the physical significance of
ferromagnetic materials, it is based on the fact that it is a differential equation model, which
requires the determination of the values of five parameters, and its computational process
is complicated, which brings a lot of inconvenience for its application in engineering [14].
Therefore, in order to improve the accuracy of the J-A hysteresis model, the identification
of its parameters has also become a top priority [15]. In recent years, there have also
been many scholars using different algorithms to achieve the identification of the key
parameters of the J-A hysteresis model. Leite [16] used a Genetic Algorithm to identify
the unknown parameters of the J-A hysteresis model; the identification results have small
error and high accuracy, but the classical Genetic Algorithm cannot solve the local optimal
solution problem. Trapanese [17] introduced chaos theory and a simulated annealing
algorithm to the classical genetic algorithm, which solved the problem of the classical
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genetic algorithm [18] and improved the accuracy of identification, but the calculation
speed is slow and the convergence time is long; Chen [19] proposed an improved J-A
hysteresis model, so that the number of parameters to be identified increased from five to
seven, and the key parameters were identified using a differential evolutionary algorithm,
which was able to identify the parameter values more quickly, but it had a large error in
accuracy and the algorithm had a complicated calculation process. Wang [20] used a neural
network to identify the key parameters of the J-A hysteresis model, and the identification
results were highly accurate, and the fitted hysteresis curves were in good agreement with
the measured curves of the real test, but the neural network relied too much on the training
dataset, and it could not work when the data were insufficient, which could easily lead
to the loss of information [21]. In addition to this, there are many emerging intelligent
algorithms being studied. Wu [22] proposed a lithium battery light-up estimation method
based on REF and GWO-PF based on the gray wolf algorithm, and the study showed
that the improved algorithm always has an average error within 0.15%, and possesses a
better accuracy in battery power estimation; Aggarwal [23] proposed an adaptive Fruit Fly
Optimization Algorithm (FOA)to optimize a workflow scheduling model and the results
show that the algorithm is superior in terms of minimum flow time; Deng [24] introduced
a dynamic stochastic search technique based on the Slime Mold Algorithm(SMA), and
the results show that the multi-objective SMA outperforms other algorithms in terms of
convergence as well as accuracy.

The J-A hysteresis model is chosen for simulation in this paper. Based on the classical
PSO, this paper introduces weight adaptation in the initial stage of the algorithm to update
the inertia weights in each iteration; at the same time, it integrates differential evolution
and Cauchy’s variations to maintain the diversity of particle swarms, which helps the
swarms to be able to jump out of the locally optimal solutions and converge better. Finally,
the effectiveness of the method is verified by experiments, and the improved algorithm has
been proven to show better performance.

2. Mathematical Model of MR Damper
2.1. Jiles–Atherton Hysteresis Model

MR dampers have a variety of operating modes and structures, and the most common
structure at present is the shear valve single-cylinder double-outlet rod form, as shown
in Figure 1, which is mainly composed of MR fluid, a piston rod, sleeve, coil and piston.
Under the action of the magnetic field, when the piston moves in a straight line relative to
the sleeve, the MR fluid is converted from a Newtonian fluid to a solid-like fluid, which
results in the formation of a yield stress. The hysteresis characteristics of the MR fluid will
in turn affect the output accuracy of the damper during the change in the magnetic field,
so it is extremely critical to model the hysteresis of the MR fluid before performing the
mechanical analysis of the MR dampers.
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The J-A model splits the actual magnetization M into a reversible magnetization
component Mrev and an irreversible magnetization component Mirr [25]:

M = Mrev + Mirr (1)

Mrev and Mirr can be obtained from the hysteresis-free magnetization Man:

Mrev = c(Man − Mirr) (2)

where c is the reversible magnetization factor.
The Man is described by a modified Langevin function [26]:

Man = MS

[
coth(

He

β
)− β

He

]
(3)

where MS is the saturation magnetization. He is the effective magnetic field strength, and β
is the shape parameter of the hysteresis-free magnetization.

He can be expressed as:
He = H + αM (4)

where α is the domain–wall interaction coefficient and H is the magnetic field strength.

µ0

∫
MdHe =µ0

∫
MandHe − µ0kδ

∫ dMirr
dHe

dHe (5)

where k is the hysteresis loss parameter, µ0 is the vacuum permeability, and δ is a parameter
indicating the direction of change of the magnetic field; when dH/dt > 0, (the magnetic
field gradually increases with time), δ = 1; and when dH/dt < 0, (the magnetic field
gradually decreases with time), δ = −1.

The derivation of Equation (5) is obtained:

dMirr
dHe

=
Man − M

kδ
(6)

Based on the above equations, the differential equation for the J-A model is expressed as:

dM
dH

=
(Man − M) + ckδ dMan

dHe
kδ − α(Man − M)

(7)

From electrodynamics, it is clear that

B = µ0(H + M) (8)

The calculated metric for the magnetic field strength in a magnetic circuit is:

H =
N · I

Le
(9)

where I is the excitation current, and Le is the effective magnetic circuit length.
According to Equations (8) and (9), the M-H equation in the J-A hysteresis model

can be converted to the B-I equation. Considering that the J-A hysteresis model is a time-
based differential equation in the actual simulation, the conversion of Equation (7) to
differentiation with respect to time t yields

dM
dt = (1 − c) Man−Mirr

kδ−α(Man−Mirr)
dH
dt + c dMan

dt

Man = MS

[
coth(He

β )− β
He

] (10)
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2.2. Bingham Model

In this paper, the Bingham model [27] is adopted as the mathematical model of MR
dampers. As shown in Figure 2. the model consists of a Coulomb friction element as well
as a linear viscous unit, and the physical meaning of the parameters characterized by the
Bingham model is clear and precise and the number of variable parameters is small, which
can satisfy most of the engineering requirements and is widely used. Its mathematical
expression is [28]

F = fcsgn(
.
γ) + c0

.
γ (11)

where F is the output damping force of the model, fc is the static friction force of the friction
element and c0 is the damping coefficient of the damper element.

.
γ is the shear strain rate.
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The MR damper force–displacement relationship can be further derived as [29]:

F =
3APL fc

hd
sgn(

.
γ) +

12ηLA2
P

πDh3
d

.
γ (12)

where Ap is the effective area of the piston, L is the effective length of the piston; hd is the
effective clearance between the piston and the cylinder; and D is the diameter of the piston.

The MRD-SEU-D050 MR damper used in this article is shown in Figure 3. It adopts
the MR fluid developed by Professor Xu Zhao Dong’s team, whose expression for the yield
stress versus the magnetic induction is [30]

fc = 146960B0.5811V1.706ρ0.2Ms0.8 + 1083.2V − 287.03 (13)

where B is the magnetic induction, V is the volume fraction of ferromagnetic particles in
the MR fluid and ρ is the particle diameter of the ferromagnetic particles.
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MRD-SEU-D050 MR damper is a three coil MR damper with a maximum piston stroke
of 40 mm, which can output a large damping force. The force–displacement curves under
different constant currents are shown in Figure 4.
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As shown in Figure 5, the J-A model can characterize the B-I relationship, and B is an
important parameter in the force–displacement relationship of the MR damper, so the MR
damper force–current relationship can be easily obtained by fusing the J-A model with the
MR damper model.

Information 2024, 15, 101 7 of 19 
 

 

damper force–current relationship can be easily obtained by fusing the J-A model with 
the MR damper model. 

 
Figure 5. Schematic block diagram of the relationship between the J-A model and the MR damper model. 

According to Equation (10), it can be seen that in the J-A hysteresis model, k,  , 
, Ms and c are five key parameters that affect the accuracy of the hysteresis curve. In order 
to enable the J-A hysteresis model to characterize the hysteresis properties of the MR 
damper well, it is necessary to identify the five key parameters in the J-A hysteresis model. 
In this study, an improved PSO is used to identify these five parameters. 

  

Figure 5. Schematic block diagram of the relationship between the J-A model and the MR damper model.

According to Equation (10), it can be seen that in the J-A hysteresis model, k, β, α, Ms
and c are five key parameters that affect the accuracy of the hysteresis curve. In order to
enable the J-A hysteresis model to characterize the hysteresis properties of the MR damper
well, it is necessary to identify the five key parameters in the J-A hysteresis model. In this
study, an improved PSO is used to identify these five parameters.

3. Particle Swarm Optimization Algorithm
3.1. Classical Particle Swarm Optimization Algorithm

The Particle Swarm Optimization Algorithm (PSO) is a classical intelligent algorithm,
but as researchers delve deeper, more intelligent algorithms are being developed. Com-
pared with the Grey Wolf Algorithm, the PSO has a better global search ability, which
can be better applied to the multi-peak optimization problem; compared with the Wale
Optimization Algorithm, which has the drawbacks of slow computation time and poor
interpretability, the PSO can make up for these problems; compared with the Fruit-fly Opti-
mization Algorithm, some improvements to the PSO can avoid neglecting the differences
between different individuals while still maintaining high objectivity. Therefore, this paper
chooses PSO as the optimization algorithm for parameter identification.

In PSO, the fitness value of each particle is calculated iteratively, tracking the individual
extremes and the population extremes to update its position and velocity until an optimal
solution is obtained [31].

The formula for updating the velocity and position of particle i in the nd dimension j is
υij(d + 1) = ωυij(d) + c1r1

[
pij(d)− xij(d)

]
+ c2r2

[
pgj(d)− xij(d)

]
xij(d + 1) = xij(d) + υij(d + 1)
1 ≤ i ≤ n 1 ≤ j ≤ D

(14)
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where d is the current iteration number, c1, c2 are acceleration factors, r1, r2 are uniform
random numbers in the range [0, 1] used to increase the randomness of the particles while
flying, n is the number of particles and d is the decision dimension, and ω is inertia factor.
υij(d) denotes the jth dimensional component of the velocity vector of the particle i flight at
the dth iteration; xij(d) denotes the jth dimensional component of the velocity vector of the
flight of particle i at the dth iteration; pij(d) denotes the historical optimal solution searched
by particle i up to the dth iteration; and pgj(d) is the global optimal solution searched by
the whole particle swarm.

In this study, the root-mean-square error of the measured and calculated magnetic
induction is used as the fitness function of the improved PSO, so that the parameter
identification problem is converted into a minimum value optimization problem with the
fitness function

F_obj =

√√√√√ n
∑

i=1
(Bexp − Bsim)

2

N
(15)

where Bexp is the experimental value of magnetic induction; Bsim is the calculated value of
magnetic induction; and N is the amount of experimental data.

Classical particle swarm searches for the global optimum by following the current
optimal solution; the rules of this algorithm are simpler, and it is widely used for its easier
implementation, high accuracy, fast convergence, etc. However, the PSO also leads to the
problem that it is easy to lose the diversity of the particles and fall into the local optimal
solution due to the advantage of the fast convergence speed. Therefore, in order to make
the identified parameters more accurate, the PSO needs to be improved.

3.2. Improved Particle Swarm Optimization Algorithm

(1) Weight Adaptation

When the inertia weights are large, the algorithm has a strong global search ability and
can search a large area, and when the inertia weights are small, the algorithm has a strong
local optimization ability and can search finely around the optimal solution. Therefore, in
the last few steps of optimization, in order to improve the accuracy, the inertia weight of
the PSO should be gradually reduced. In this paper, a linear decreasing weight method is
chosen [32], and its mathematical expression is entered as shown in the following equation:

ω = ωmax − (ωmax − ωmin)×
d

dmax
(16)

In this paper, ωmax is taken as 0.8 and ωmin is taken as 0.2, and at each iteration ω
is recalculated.

(2) Differential Evolution

As the number of iterations increases, the population diversity decreases and the
particle swarm tends to fall into local optimal solutions. Differential evolution is able
to maintain population diversity during iterative search, so incorporating differential
evolution improves the global search ability of the particle swarm. Differential evolution is
improved on the basis of genetic algorithm [33], and its core parts are all variation, crossover
and selection operators; in this paper, the specific definitions of variation, crossover and
selection operators of differential evolution are as follows.

(a) Population Initialization

During the initialization phase, it is necessary to randomly form M individuals
with constraint requirements in an n-dimensional space. The specific implementation
measures are

qij(0) = randlij(0, 1)(qU
ij − qL

ij) + qL
ij(1) (17)
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qU
ij , qL

ij represent the upper and lower bounds of the jth chromosome, respectively;
randlij(0, 1) is a random number in the range [0, 1].

(b) Mutation

The more common differencing strategy is to select two different individuals among
the parent individuals to perform a vector difference operation to generate a difference
vector, and then select another individual to be summed with the difference vector to
generate a new variant individual. The mathematical description is:

hij(d + 1) = qp1j(d) + F(qp2j(d)− qp3j(d)) (18)

where hij(d + 1) denotes the ith individual in the d + 1st generation of the mutant popula-
tion, qj(d) represents the parent individual, p1 p2, p3 are three mutually exclusive random
numbers and F is the scaling factor.

(c) Crossover

The purpose of the crossover operation is to randomly select an individual. Specifically,
it is to select the child variant vector for each component according to a certain probability
to generate a test individual, and the specific crossover operation formula is

uij(d + 1) =

{
hij(d + 1) if rand(0, 1) ≤ CR
xij(d) otherwise

(19)

where CR is the crossover probability, which is used to control the selection of the variant
vector values and the original vector values.

(d) Selection

The selection operand selects individuals to enter the next generation of the population
based on the magnitude of the fitness value.

xij(d + 1) =

{
uij(d + 1) if f (uij(d + 1)) ≤ f (xij(d))
xij(d)

(20)

(3) Cauchy Variation

The particle aggregation in the late iteration of the algorithm is obvious and shows
strong convergence, and it is easy to fall into the premature convergence state, so after
the algorithm falls into premature convergence, the Cauchy variation operation [34] is
introduced to maintain the diversity of the particle population, so that the algorithm has
the ability to jump out of the local optimum.

The longer distribution at both ends of the Cauchy density function not only gives
individuals a higher probability of jumping out of the local optimum, but also the variant
produces greater variability between the offspring and the parents, and thus the Cauchy
variant is more perturbing. In this paper, the one-dimensional Cauchy density function is
used, and its mathematical expression is

f (x) = 1
π

1
x2+1 −∞ < x < ∞ (21)

The new positional solution generated using the Cauchy variation is

xij(d + 1) = xij(d) + xij(d)⊕ cauchy(0, 1) (22)

where cauchy(0, 1) is the standard Cauchy distribution function and ⊕ denotes the multi-
plicative implication. xij(d) is the global optimal solution of the d-th iteration of particle
swarm optimization.

The specific flow chart is as Figure 6.
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4. Numerical Analysis
4.1. Algorithm Verification

In order to verify the feasibility of the algorithm, the PSO was initialized, the pop-
ulation size was set to 30, the maximum number of iterations was 150, the search space
for each of the five model parameters was set to a region within ±100% of its true value,
and for the ω, a linear decrease was taken between 0.8 and 0.2 during the iterations and
c1 = c2 = 2 was taken.

In order to verify the effectiveness of the proposed improved particle swarm optimiza-
tion algorithm in the parameter identification of the J-A hysteresis model, a J-A hysteresis
model with known parameters is used as a fitting object according to the parameters in
the literature [35]. Based on this B-H curve, the improved particle swarm optimization
algorithm is used to identify the parameters of the B-H curve of this J-A hysteresis model,
and the corresponding B-H curve as well as the parameter error are calculated. The results
of parameter identification are shown in Table 1. The errors of the parameter identification
results are shown in Table 2. The B-H curves fitted by the two algorithms are shown in
Figure 7, and the algorithm adaptation curves are shown in Figure 8.

Table 1. Parameter identification results.

Parameter Theoretical Value PSO Improved PSO

k (A/m) 66.6 70.96 66.51
α (A/m) 25.3 20.03 25.32
c (A/m) 0.20 0.25 0.19

Ms 1.3 × 106 1.27 × 106 1.31 × 106

β 8.43 × 10−5 7.61 × 10−5 8.92 × 10−5
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Table 2. Error of parameter identification results.

Algorithm k (A/m) α (A/m) c (A/m) Ms β

Absolute Error
PSO 4.36 5.27 0.05 3 × 104 8.2 × 10−6

Improved PSO 0.09 0.02 0.01 10,000 4.9 × 10−6

Relative Error (%)
PSO 6.54 20.55 25 2.3 9.7

Improved PSO 0.13 0.07 5 0.7 5.8
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According to the results of parameter identification, of the two algorithms at the end
of 150 iterations, the improved PSO algorithm that identified the parameter values with
the theoretical parameter error is smaller and more accurate, and the fitted B-H curves are
more overlapping and more effective.

According to Figure 8, it can be seen that when the algorithm enters the local optimal
solution at the beginning of the iteration, the improved particle swarm preferentially jumps
out of the local optimal solution, and the objective function converges towards the minimum
value, and in the iteration of up to 78 generations, the objective function converges to 0.07,
whereas the classical PSO, although it has been fluctuating, cannot achieve the convergence,
and the value of fitness is still maintained at 0.422 after the completion of 150 iterations. It
is difficult to go further to obtain more accurate results.

According to Table 2, the accuracy of the PSO and the improved PSO for the identifi-
cation of key parameters in the J-A model can be compared more intuitively. The results
obtained by using the improved PSO are more accurate, and the overall relative error of the
identification results is smaller; the largest relative error arises from the β, which is only
5.8%. Compared with the PSO, the relative error is reduced by 40.2%.

4.2. Experimental Comparison

The above simulation verifies the accuracy of the improved PSO in identifying the
parameters of the J-A model. In order to verify its ability to improve the accuracy of the
output damping force of the MR dampers, the simulation of the Bingham mechanical
model of the MR damper and the J-A hysteresis model are established in Simulink, the
specific block diagram of the Bingham mechanical model is shown in Figure 9 and that of
the J-A hysteresis model is shown in Figure 10. In Figure 9, “in1” module is the current
input module. “in2” module is the velocity input module. Since this model is a velocity-
dependent shape model, it is necessary to derive the displacement to obtain the velocity
under the relative time. The “parameter 1 of MR damper” module and “parameter 2 of
MR damper” module are calculated from the MR damper’s own parameters, which are
related to the magnetorheological damper. The subsystem fc-i incorporates the J-A model
and is derived from Equation (13). In Figure 10, the “out” module is a magnetic induction
output module. The “function” module is used in simulink to express the Langevin
function. The J-A hysteresis model is combined into the Bingham mechanical model. For
the key parameters in the J-A hysteresis model, the values identified by classical particle
swarm and improved particle swarm are used, respectively, and the results simulated
by the two algorithms are compared and analyzed with the experimental values and the
theoretical values without considering the hysteresis characteristics. In order to accurately
measure and more accurately test the experimental value of the output damping force
of the magnetorheological damper, this paper adopts the MTS electro-hydraulic servo
material performance test fatigue machine as the signal generating experiment, and adopts
the LVDT displacement meter to monitor the change in the displacement and to achieve the
purpose of variable output current through the intelligent control box. The experimental
system is shown in Figure 11. The specific parameters of the MR fluid in the MRD-SEU-
D050 magnetorheological vibration damping device used in this test are shown in Table 3.
The control current changed with the change of displacement, and its correspondence is
shown in Table 4. The fatigue machine was used to apply displacement signals to the MR
dampers at different working conditions for the performance test, respectively, and the
control current changed with the change in displacement, and its correspondence is shown
in Table 4. The damping force–displacement curves generated under the different working
conditions are shown in Figure 12.
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Table 3. Basic parameters of MR fluid.

Granule Diameter r/µm Cladding Thickness
t/µm

Volume Fraction
V/(%)

Zero-Field Viscosity
η0/(Pa·s)

1.5 0.015 35~45 2~2.5

Table 4. Correspondence between control current and displacement signal.

Displacement |x|(mm) ≤5 5 < x ≤ 10 10 < x ≤ 20 20 < x ≤ 30 30 < x ≤ 40 >40

Current
(A) 0 0.2 0.4 0.6 0.8 1.2
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According to Figure 12, it can be seen that when the frequencies of the displacement
excitation signal are 0.05 Hz, 0.1 Hz and 0.2 Hz, respectively, the curves fitted using the
model proposed in this paper have a large error with the experimental curves. This is
because, when the frequency of the displacement excitation signal is low, the control current
changes slowly, the magnetic field generated by the excitation coil changes slowly, the
change in the magnetization state of the ferromagnetic particles in the MR fluid can keep
up with the change of the applied magnetic field, and the hysteresis characteristics have a
small effect on the accuracy of the output damping force of the magnetorheological damper.
In order to verify the effect of response frequency on the hysteresis characteristics, this
paper resets the frequency of the excitation signal, and the fatigue machine generates a sine
wave with a frequency of 1 Hz as the excitation signal, and the force–displacement curve
at 1 Hz is shown in Figure 13. It was found that the force–displacement curves at 1 Hz
were similar to those at a constant current. This is because the instantaneous response of
the magnetic induction is difficult to capture when the displacement excitation signal is
accelerated by the current change corresponding to high frequency, so the damping force
will be similar to that in the case of constant current. Therefore, this paper does not consider
the effect of the response frequency of the excitation signal on the hysteresis characteristics,
so the test parameters can be reset, and a comparative analysis of the test carried out under
0.5 Hz operating conditions. The damping force–displacement curves generated at 0.5 Hz
working condition are shown in Figure 14.
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4.3. Results and Discussions

As can be seen from Figure 12, we can find that when the displacement of the damper
piston reaches the maximum, there will be an output damping force of 0. This is because
when the displacement of the damper reaches the maximum—that is, the piston rod extends
the longest part, which means the piston rod needs to reverse the movement—at this time,
the piston rod compresses the air first, and when the air is compressed all the way, the
damping force will be gradually increased, which explains the displacement of 30–40 mm
as well as −40–30 mm. The output damping force is 0, and when the absolute value of
the displacement is less than 30 mm, the damping force appears to be jumping. This
situation occurs due to the structural design of the MR damper, so that the experimental
and simulated values have a large error when the absolute value of the displacement is
between 30 mm and 40 mm, and its reference value is small.

As can also be seen from Figure 14, it can be seen that the segmentation of the calculated
value without considering the hysteresis characteristic is obvious, and its size is only
affected by the control current, and when the displacement becomes bigger and bigger,
its error with the test value will also become bigger and bigger. After combining the
J-A hysteresis model into the Bingham mechanical model, it can be seen that the output
damping force curve is closer to the test value curve. When the absolute value of the
piston rod displacement is between 0 mm and 20 mm, comparing the output damping
force curves of the two algorithms, the maximum error of the simulation curve and the test
curve obtained by using the PSO is 4.68 kN, and the average error is 2.53 kN; the maximum
error of the simulation curve and the test curve obtained by using the improved PSO is
2.59 kN, and the average error is 1.46 kN; the maximum error is reduced by 44%, and the
average error is reduced by 42%, which shows that when the accuracy of the J-A model is
higher, the error between the output damping force and the test value is smaller.

The J-A hysteresis model is combined with the Bingham mechanical model, and the
improved PSO is used to identify the parameters of the J-A model. The output damping
force and the error of the experimental value have been significantly reduced, and are
within a reasonable range, but have not yet reached the optimum, the reasons for which
are analyzed as follows: (1) the rheological properties of the MR fluid are easily affected
by the temperature and its own settlement characteristics, When the external environment
changes, the yield shear stress will also change; (2) the hysteresis characteristics of the MR
fluid are not the only reason affecting the hysteresis property of the magnetorheological
damper; the magnetic field generated by the excitation coil of the damper itself after
energization and the real-time control current will also have hysteresis, which will have an
impact on the accuracy of the output damping force of the MR damper.

5. Conclusions

In this study, an improved J-A model was proposed to consider the magnetic hysteresis
properties of MR dampers, in which a weighted adaptive PSO was adopted to identify the
key parameters. The effectiveness of the proposed J-A model was verified by comparisons
with performance test data under different working conditions. The following conclusions
can be obtained:

(1) The improved adaptive PSO which introduces differential evolution algorithm and
Cauchy variation strategy on the basis of particle swarm effectively solves the problem
that classical PSO falls easily into the local optimal solution; additionally, it solves
the problem of the slow convergence of classical PSO, and improves the accuracy
of identification.

(2) The improved J-A model using the PSO can accurately describe the non-linear re-
lationship between the magnetic induction and the current inside the MR damper,
and can accurately predict the output force of MR dampers with magnetic hysteresis
properties, providing a basis for the numerical analysis and practical engineering
applications of MR dampers.
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(3) In this paper, the effect of hysteresis characteristics on the output damping force is
most obvious at 0.5 Hz; however, when the displacement signal response is in the
low-frequency band or high-frequency band greater than 1 Hz, there is a large gap
between the simulation results and the experimental values, and this paper ignores
the effect of the response frequency on the hysteresis characteristics, and at the same
time hysteresis characteristics are not only reflected in the change of the magnetic
field strength generated by the excitation coil, but also in the internal magnetic circuit
of the MR damper. Hysteresis also needs to be modeled and analyzed, which is also
the focus of subsequent research.
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