
Citation: Aziz, M.M.A.; Tamal,

M.T.M.; Mohammed, N. Secure

Genomic String Search with Parallel

Homomorphic Encryption.

Information 2024, 15, 40. https://

doi.org/10.3390/info15010040

Academic Editors: Jose de

Vasconcelos, Hugo Barbosa and Carla

Cordeiro

Received: 8 November 2023

Revised: 28 December 2023

Accepted: 29 December 2023

Published: 11 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Secure Genomic String Search with Parallel
Homomorphic Encryption
Md Momin Al Aziz * , Md Toufique Morshed Tamal and Noman Mohammed

Department of Computer Science, University of Manitoba, Winnipeg , MB R3T 5V6, Canada;
morshed@cs.umanitoba.ca (M.T.M.T.); noman@cs.umanitoba.ca(N.M.)
* Correspondence: azizmma@cs.umanitoba.ca

Abstract: Fully homomorphic encryption (FHE) cryptographic systems enable limitless computations
over encrypted data, providing solutions to many of today’s data security problems. While effective
FHE platforms can address modern data security concerns in unsecure environments, the extended
execution time for these platforms hinders their broader application. This project aims to enhance
FHE systems through an efficient parallel framework, specifically building upon the existing torus
FHE (TFHE) system chillotti2016faster. The TFHE system was chosen for its superior bootstrapping
computations and precise results for countless Boolean gate evaluations, such as AND and XOR. Our
first approach was to expand upon the gate operations within the current system, shifting towards
algebraic circuits, and using graphics processing units (GPUs) to manage cryptographic operations
in parallel. Then, we implemented this GPU-parallel FHE framework into a needed genomic data
operation, specifically string search. We utilized popular string distance metrics (hamming distance,
edit distance, set maximal matches) to ascertain the disparities between multiple genomic sequences
in a secure context with all data and operations occurring under encryption. Our experimental data
revealed that our GPU implementation vastly outperforms the former method, providing a 20-fold
speedup for any 32-bit Boolean operation and a 14.5-fold increase for multiplications.This paper
introduces unique enhancements to existing FHE cryptographic systems using GPUs and additional
algorithms to quicken fundamental computations. Looking ahead, the presented framework can be
further developed to accommodate more complex, real-world applications.

Keywords: fully homomorphic encryption; GPU parallel operations; secure computation on GPU;
parallel FHE framework; secure string search using FHE

1. Introduction

In recent times, the study of fully homomorphic encryption (FHE) [1] has been a
significant area of cryptographic research. FHE cryptosystems, renowned for their robust
security assurances, are characterized by their ability to carry out numerous operations on
encrypted data. As there is a growing demand for data-oriented applications designed to
manage confidential human data, the notion of computing within the scope of encryption
emerges as increasingly prevalent [2–4]. As such, FHE presents a perfect cryptographic
solution to these privacy issues by facilitating arbitrary operations on encrypted data within
an untrusted computational setting.

Despite the security provided by the cryptosystem, FHE’s performance speed is a
drawback for routine computations, leading to its limited adoption and scant real-world
applications. For instance, a roughly 7-s duration is required to add two 32-bit encrypted
numbers, while multiplication operations are notably slower, taking about 8 min (Table 1).
To encourage the broader utilization of FHE in real-world applications, improvements to
its speed are imperative—this can be achieved either through theoretical techniques to cut
back on computational complexity or through simultaneous operations.

Information 2024, 15, 40. https://doi.org/10.3390/info15010040 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15010040
https://doi.org/10.3390/info15010040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-6161-8275
https://orcid.org/0000-0001-8547-9951
https://doi.org/10.3390/info15010040
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15010040?type=check_update&version=2

Information 2024, 15, 40 2 of 27

Our study suggests a parallel framework for executing FHE computations using graph-
ics processing units (GPUs). Over the years, GPU technology has significantly contributed
to various machine learning algorithms by expediting model training processes over exten-
sive datasets. Following a similar approach, we tap into the multicore features of GPUs
and propose a parallel FHE framework that uses the torus FHE (TFHE) cryptosystem [5].

Our goal is to apply the proposed FHE operations to genomic data and assess the
framework’s efficiency. Previously, when genomic data were processed in plain text without
any protective measures, numerous safety issues surfaced [6,7]. Therefore, encrypting
data during storage or computation should enhance security in case of a data breach or
compromised system. Furthermore, we plan to enhance the proposed framework to include
three common string search functions: hamming distance, edit distance, and set-maximal
matches. These search functions hold crucial significance for applications such as ancestry
search [8] and similar patients query [9,10], often involving confidential personal data. The
effectiveness of these search operations is critically important, illustrated by their recent
use in solving a high-profile crime case, the ’Golden State Killer’ [11].

Contributions

Our study can be principally divided into two phases: (a) the development of a
parallel fully homomorphic encryption (FHE) computation framework and (b) the exe-
cution of string search operations using our proposed framework. We outline our chief
contributions below:

• We primarily expand Boolean gates (i.e., XOR, AND, etc.) from an existing FHE
framework [12] to secure algebraic circuits comprising addition and multiplication.

• Taking full advantage of the latest enhancements in GPU architecture, we introduce
parallel FHE operations. We further propose several enhancement methods, like bit
coalescing, compound gates, and tree-based additions, for the execution of the secure
algebraic circuits.

• We conducted a series of experiments to contrast the execution time of the sequential
TFHE [12] with our proposed GPU parallel framework. Data from Table 1 demonstrate
that our proposed GPU parallel method is 14.4 and 46.81 times quicker than the
existing technique for standard and matrix multiplications, respectively. We also
compared our performance with existing GPU-based TFHE frameworks, such as
cuFHE [13], NuFHE [14], and Cingulata [15].

• Lastly, we focused on different string search operations in the genomic dataset (ham-
ming distance, edit distance, and set-maximal matches) and executed them under
encryption. Experimental outcomes reveal that the framework requires approximately
12 min to execute hamming distance and set-maximal matching on two genomic
sequences with 128 genomes. In addition, for 8 genomes, the framework takes 11 min
for an edit distance operation, significantly improving from the previous 5 h attempt
by Cheon et al. [16].

Table 1. Comparison of the execution times (seconds) of our CPU and GPU framework for 32-bit
numbers with TFHE [17], cuFHE [13], NuFHE [14], and Cingulata [15] (vector/matrix length of 32).

Gate Op.
Addition Multiplication

Regular Vector Regular Matrix (min)

GPU-parallel 0.07 1.99 11.22 33.93 186.23

CPU-parallel 0.50 7.04 77.18 174.54 2514.34

TFHE [12] 1.40 7.04 224.31 489.93 8717.89

cuFHE [13] - 2.03 - 132.23 -

NuFHE [14] - 4.16 - 186 -

Cingulata [15] - 2.16 - 50.69 -

Information 2024, 15, 40 3 of 27

In this work, we extend our previous work [18] on a CPU–GPU-parallel FHE frame-
work. Notably, existing GPU-enabled TFHE libraries, cuFHE [13] and NuFHE [14], have
implemented TFHE Boolean gates using GPUs, whereas our goal was to construct an
optimized arithmetic circuit framework. Our design choices and algorithms reflect this
improvement, and as a result, our multiplications are around 3.9 and 4.5 times faster than
cuFHE and NuFHE, respectively. The code is readily available at https://github.com/
UofM-DSP/CPU-GPU-TFHE (accessed on 4 January 2024).

The rest of this work is organized as follows: We discuss the required background
of the work in Section 2. Section 3 discusses the underlying methods including the GPU-
parallel framework and the string search operations using such parallel operations. In
Section 4, we show the experimental analysis, whereas Section 5 discusses it in detail.
Section 6 presents the related works, and finally, this work is concluded in Section 7.

2. Background

In this section, we describe the employed cryptographic scheme, TFHE [12], and later
define the string search problem.

2.1. Torus FHE (TFHE)

In this study, we utilize torus fully homomorphic encryption (TFHE) [12], where
plaintexts and ciphertexts are defined over a real torus, T = R/Z, a set of real numbers
called modulo 1. Ciphertexts are built through learning with errors (LWE) [19] and are
expressed as torus LWE (TLWE). Here, an error term, taken from a Gaussian distribution,
χ, is integrated into each ciphertext. When we consider a key size (dimension) of m ≥ 1, a
secret key present in an m-bit binary vector, and an error part of the chi distribution, an
LWE sample is denoted as (a, b). Here, a signifies a vector of torus coefficients of length m
(key size), with each element ai derived from the uniform distribution over the real torus,
and b = a · s + e.

The error term (e) in the LWE sample increases and proliferates with the number of
operations (for instance, addition, multiplication). Therefore, the bootstrapping technique
is used to decrypt and renew the ciphertext’s encryption to mitigate the noise.

TFHE views binary bits as plaintext, producing LWE samples as ciphertexts. Con-
sequently, computations of LWE samples (Ln) in ciphertext are equivalent to binary bit
computations in plaintext. By translating binary vector representations of integer numbers
into LWE sample vectors, we can represent encrypted integers. For instance, an encrypted
version of an n-bit integer would be an n-LWE sample. Hence, the operations of a binary
addition circuit between two n-bit numbers can parallel the equivalent operations on
LWE samples of encrypted integers. In this paper, we use the terms bit and LWE sample
interchangeably, and we select TFHE for the following reasons:

• Fast and Exact Bootstrapping: TFHE provides the fastest exact bootstrapping requiring
around 0.1 s. Some recent encryption schemes [20,21] also propose faster bootstrap-
ping and homomorphic computations in general. However, they do not perform
exact bootstrapping and are erroneous after successive computations on the same
ciphertexts.

• Ciphertext Size: Compared with the other HE schemes, TFHE offers a smaller cipher-
text size as it operates on binary plaintexts (only 32 kb compared to 8mb for one 32-bit
number). Nevertheless, this minimal storage advantage allows us to utilize the limited
and fixed memory of GPU when we optimize the gate structures.

• Boolean Operations: TFHE also supports Boolean operations that can be extended to
construct arbitrary functions. These binary bits can then be operated in parallel if their
computations are independent of each other.

Current Approach: The existing application of TFHE includes foundational crypto-
graphic functions like encryption, decryption, and all binary gate operations [12]. Notably,
despite the somewhat sequential calculation of gates in the original application, the base ar-
chitecture employs advanced vector extensions (AVXs) [22]. AVX, an enhancement to Intel’s

https://github.com/UofM-DSP/CPU-GPU-TFHE
https://github.com/UofM-DSP/CPU-GPU-TFHE

Information 2024, 15, 40 4 of 27

x86 instruction set, supports parallel vector operations. The bootstrapping process calls for
substantial fast Fourier transform (FFT) operations that grow in complexity in O(n log n).
The current model uses the Fastest Fourier Transform in the West (FFTW) [23], which
inherently incorporates AVX.

Why TFHE? Several attempts have been made to enhance the performance and numer-
ical operations of FHE [24–26], which are critical to our work (refer to Section 6 for details).
Among the most prominent FHE schemes, torus FHE (TFHE) successfully delivers an
arbitrary depth of circuits with a faster bootstrapping technique. Furthermore, it demands
less storage compared with other encryption models (Table 8, available in related works
for comparison). With TFHE, the plaintext message space is binary, which means that
computations are entirely based on Boolean gates. Every gate operation necessitates a
bootstrapping procedure in gate bootstrapping mode.

Why GPU? Most FHE schemes build upon the learning with errors (LWE) principle.
In this context, plaintexts encrypted with polynomials can be portrayed using vectors.
Hence, most calculations operate on vectors, making them highly parallelizable. In contrast,
graphics processing units (GPUs) offer a vast number of computing cores, more so than
CPUs. These cores can therefore effectively compute parallel vectors operations. Thus,
these cores can be employed to parallelize FHE computations. It is crucial, however, to take
into account the fixed and limited memory capacity of GPUs (8–16 GB) and their relative
computing power compared with a CPU core. For in-depth comparisons, readers may refer
to the Appendix A of this paper.

2.2. Sequential Framework

In this section, we present a brief overview of the sequential arithmetic circuit con-
structions using Boolean gates as background, which we extend later.

2.2.1. Addition

A carry-ahead 1-bit full adder circuit takes two input bits along with a carry to compute
the sum and a new carry that propagates to the next bit’s addition. Therefore, in a full
adder, we have three inputs as ai, bi, and ci−1, where i denotes the bit position. Here, the
addition of bit a1 and b1 in A, B ∈ Bn requires the carry bit from a0 and b0. This dependency
enforces the addition operation to be sequential for n-bit numbers [27]. In this work, we
also used half adders for numeric increments and decrements.

2.2.2. Multiplication
Naive Approach

For two n-bit numbers, A, B ∈ Z, we multiply (AND) the number A with each bit bi ∈ B,
resulting in n numbers. Then, these numbers are left shifted by i bits individually,
resulting in [n, 2n]-bit numbers. Finally, we accumulate (reduce by addition) the n shifted
numbers using addition.

Karatsuba Algorithm

We consider the divide-and-conquer Karatsuba algorithm for its improved time com-
plexity O(nlog3

) [28]. It relies on dividing the large input numbers and performing smaller
multiplications. For n-bit inputs, the Karatsuba algorithm splits them into smaller numbers
of n/2-bit size and replaces the multiplication with additions and subsequent multiplica-
tions (Line 12 of Algorithm 1). Later, we introduce parallel vector operations for further
optimizations.

Information 2024, 15, 40 5 of 27

Algorithm 1: Karatsuba Multiplication [28]
Input: X, Y ∈ Bn

Output: Z ∈ B2n

2 if n < n0 then
3 return BaseMultiplication(X, Y)
4 end
5 X0 ← X mod 2n/2

6 Y0 ← Y mod 2n/2

7 X1 ← X/2n/2

8 Y1 ← Y/2n/2

9 Z0 ← KaratsubaMultiply(X0, Y0)
10 Z1 ← KaratsubaMultiply(X1, Y1)
11 Z2 ← KaratsubaMultiply(X0 + Y0, X1 + Y1)

12 return Z0 + (Z2 − Z1 − Z0)2n + (Z1)22n

2.3. CPU-Based Parallel Framework

We propose a CPU framework utilizing the multiple cores available in computers. Since
the existing TFHE implementation uses AVX2, we employ that in our CPU framework.

2.3.1. Addition

Figure 1 illustrates the bitwise addition operation considered in our CPU framework.
Here, any resultant bit ri depends on its previous ci−1 bit. The dependency restricts
incorporating any data-level parallelism in the addition circuit construction.

��−1

��−1 �1

�1

�0

�0

��−2 �0

��

��

��−1

��

��

�0�0�1�1��−1

Figure 1. Bitwise addition of two n-bit numbers, A and B. ai, bi, ci, and ri are the ith-bit of A, B, carry,
and the result.

Here, it is possible to exploit task-level parallelism where two threads execute the
XOR and AND operations (Figure 1) simultaneously. We observed that the time required
to perform such fork-and-join between two threads is higher than that when executing
them serially. This is partially due to the costly thread operations and eventual serial
dependency of the results. Hence, we did not employ this technique for CPUs.

2.3.2. Multiplication

Among the three key operations, AND, left shift, and accumulation (addition), used
in multiplications, AND and left shift can be carried out concurrently. For instance, when
we have two 16-bit numbers, A and B (∈ B16), and four functional threads, we distribute
the AND and left shift operations among these threads.

Conversely, the accumulation operation is more demanding as it requires the execution
of n additions for n-bit multiplication. This operation of accumulating values necessitates
adding and storing values to the same variable, thereby rendering the operation atomic.
As a result, all threads that were engaged in performing the previous AND and left shift
operations must wait for the accumulation to complete. This is known as global thread

Information 2024, 15, 40 6 of 27

synchronization [29]. However, due to its computational expensiveness, we avoid using
this approach in any parallel framework.

Instead, we adopted a customized reduction operation within OpenMP [29], which
exploits the globally shared memory (CPU) to store interim results. This approach predicts
the addition of any results upon completion, thus avoiding the need for global thread syn-
chronization and ultimately enhancing performance. We found that this custom reduction
greatly improved performance when compared with the traditional approach of waiting
for threads to complete their tasks, otherwise known as global thread synchronization.

2.4. String Search: Problem Definition

We are proposing privacy-preserving methods to measure string distances using
hamming, edit distance, and set-maximal matching. We define the query string as q,
whereas the target genomic sequence is denoted as y. For simplicity, we assume that all
sequences have an equal number of m genes, where each gene is biallelic. Biallelic genes
are represented as {0, 1}, resulting in a query to be a bit vector where q = [q1, q2, . . . , qm]
as qi ∈ {0, 1}. On the other hand, any target sequence is defined as y = [y1, y2, . . . , ym] as
yi ∈ {0, 1}.

In this problem, the query q and data y are encrypted with a fully homomorphic
encryption (FHE) scheme [12]. Upon encryption, we denote the query as a vector of
encrypted bits and is represented with q. The encrypted data y is hosted in a cloud
environment where a researcher is sending his/her encrypted query. Notably, the target
can be a set of genomic sequences, denoted as Y . The target is to exactly calculate or
approximate a string distance score for q against y under FHE with a certain algorithm,
such as hamming or edit distance. Since it is an asymmetric encryption scheme, we assume
that the cloud server only has access to the public key. On the other hand, the researcher
and data owner have the private key to decrypt the result and encrypt the genomic data,
respectively. The targeted string distance metrics are formally defined below:

Definition 1 (Hamming distance). The hamming distance hd(q, y) measures the difference or
number of genes that are different in two sequences, q and yi: hd(q, y) = ∑k∈[1,m](q[k] ̸= y[k]).

Definition 2 (Edit distance). The edit distance ed(q, y) between two sequences (q, y) is defined as
the minimum cost taken over all edit sequences that transform query q into y. That is, ed(x, y) =
min{C(s)|s is a sequence of edit operations (insert, update, or delete) transforming q into y}.

Definition 3 (Set-maximal distance). A set-maximal score or distance sd(q, y) denotes the maxi-
mum number of consecutive matching genes between q and y, which have the following conditions:

1. There exists some index k2 > k1 such that q[k1, k2] = y[k1, k2] (same substring);
2. q[k1 − 1, k2] ̸= yi[k1 − 1, j2] and q[k1, k2 + 1] ̸= y[j1, j2 + 1]; and
3. For all other genes, k′ ̸= k and k′ ∈ [1, m], if there exist k′2 > k′1 q[k′1, k′2] = y[k′1, k′2] then

it must be k′2 − k′1 < k2 − k1.

The set-maximal distance is defined as sd(q, y) = k2 − k1.

3. Methods

In this section, we outline our proposed solutions to compute the string distance
metrics for the targeted algorithms. First, we propose the GPU-parallel FHE framework on
top of which we build the string search operations described later.

3.1. GPU-Based Parallel Framework

In this section, we present three generalized techniques to introduce GPU parallelism
(GPU) for any FHE computations. Then, we adopt them to implement and optimize the
arithmetic operations. Notably, our CPU-parallel (CPU) framework is also described in
Section 2.3.

Information 2024, 15, 40 7 of 27

3.1.1. Proposed Techniques for Parallel HE Operations

This section introduces general techniques adopted for the GPU-based parallel framework.

Parallel TFHE Construction

Figure 2 refers to the depiction of Boolean circuit computation. In this computation,
every LWE sample is composed of two elements: a and b. a is a 32-bit integer vector
determined by the secret key size (m), and its memory needs are less than those in other
FHE implementations (Section 6). In this parallel TFHE construction, only the vector a is
stored in the GPU’s global memory.

Moreover, this setup uses the native CUDA-enabled FFT library (cuFFT). This library
employs the parallel CUDA cores for FFT operations, with a batching technique that allows
for many FFT operations to be carried out concurrently. However, the same cuFFT tool also
sets a limit to the parallel number of batches. It arranges these batches in an asynchronous
launch queue and processes a specific number of these batches simultaneously. This number
is strictly dependent on the hardware capacity and specifications [30].

BS	key

KS	key

Bootstrapping

KeySwitch

∧�0 �1

CPU

GPU

�0 �1

� �

�

�

�
�−1 ... �1 �0

�
�−1 ... �1 �0

�
�−1 ... �1 �0

�
�−1 ... �1 �0

�
�−1 ... �1 �0

�
�−1 ... �1 �0

Figure 2. Arbitrary operation between two bits where BS and KS key represent bootstrapping and
key switching keys, respectively.

Bit Coalescing (BC)

Bit coalescing combines n-LWE samples in a contiguous memory to represent n-
encrypted bits. The encryption of an n-bit number, X ∈ Bn, requires n-LWE samples
(ciphertext), and each sample contains a vector of length m. Instead of treating the vectors
of ciphertexts separately, we coalesce them altogether (dimension 1×mn), as illustrated in
Figure 3.

The main idea of such a structure is to boost parallel processes by extending the
length of the vector in sequential memory. While the length of the vector is increased
through vector coalescing, we incorporate additional threads to optimize parallelization
and decrease execution time.

Information 2024, 15, 40 8 of 27

�0

Plaintext	Bits

�
→

�−1

��−1

�
→

�−2 �
→

0

�0�
�−1 �

�−2

LWE		Samples

�
�−2

Figure 3. Coalescing n-LWE samples (ciphertexts) for n-bits where Ai vectors are contiguously
located in GPU memory. B values for all n bits are also located togethar as the GPU memory is
marked in gray.

Compound Gate

As addition is a crucial component in many arithmetic circuits, we suggest a unique
gate structure known as compound gates. These gates provide more opportunities for parallel
processes among encrypted bits. They constitute a blend of two gates and work similarly
to an ordinary Boolean gate, accepting two 1-bit inputs but delivering two distinct outputs.
This innovative gate structure’s inspiration comes from the addition circuit. For the sum
R = A + B, we calculate ri and ci using the given equations.

ri = ai ⊕ bi ⊕ ci−1 (1)

ci = ai ∧ bi | (ai ⊕ bi) ∧ ci−1 (2)

Here, ri, ai, bi, and ci denote the ith-bit of R, A, B, and the carry, respectively. Figure 1
illustrates this computation for an n-bit addition.

While computing Equations (1) and (2), we observe that AND (∧) and XOR (⊕) are
computed on the same input bits. As these operations are independent, they can be
combined into a single gate, which then can be computed in parallel. We name these gates
as compound gates. Thus, a⊕ b and a ∧ b from Equations (1) and (2) can be computed as

s, c = a⊕ b, a ∧ b︸ ︷︷ ︸
CONCAT

Here, the outputs of s =a ∧ b and c =a⊕ b are concatenated. The compound gates’
construction is analogous to the task-level parallelism in CPU, where one thread performs
∧ , while another thread performs ⊕ .

In GPU , the compound gates’ operations are flexible as ∧ or ⊕ can be replaced
with any other logic gates. Furthermore, the structure is extensible up to n-bits input and
2n-bits output.

3.1.2. Algebraic Circuits on GPU

This section presents different algebraic circuit constructions in a GPU-based parallel
framework using the general techniques.

Addition: Bitwise addition (GPU1): From the addition circuit in Section 2.3.1, we did not
find any data-level parallelism. However, we noticed the presence of task-level parallelism
for AND and XOR as mentioned in the compound gates’ construction. Hence, we incorporated
the compound gates to construct the bitwise addition circuit. We also implemented the

Information 2024, 15, 40 9 of 27

vector addition circuits using GPU1 to support complex circuits, such as multiplications
(Section 2.2.2).

Numberwise addition (GPUn): We consider another addition technique to benefit from
bit coalescing. Here, we operate on all n-bits together. For R = A + B, we first store A in R
(R = A). Then we compute Carry =R ∧ B, R = R⊕ B, and B = Carry≪ 1 for n times.

Here, we utilize compound gates to perform R∧ B and R⊕ B in parallel. Thus, in each
iteration, the input becomes two n-bit numbers, while in bitwise computation, the input
was two single bits. On the contrary, even after using compound gates, the bitwise addition
(Equations (1) and (2)) has more sequential blocks (3) than the numberwise addition (0).
We analyze both in Section 4.3.

Numeric increments and decrements: We also propose half adders for numeric incre-
ments and decrements required for several operations in string search. For example, in
Algorithms 3–5, we need to perform increments and decrements of an encrypted number.
We use half adders and subtractors to perform the operations. In Figure 4, we show the
difference of the operations. For the half adder, we perform the XOR and AND operations
for all input bits for the encrypted number, while the other input is set to 1 (or 0) under
encryption. The only difference for the half subtractor is that the input bit is inverted before
the AND operation, which represents the carry bit.

(a) Half Adder (b) Half Subtractor
Figure 4. One-bit increment and decrement using the half adder or subtractor where xi is the input
bit and the carry bit is propagated into the next bit’s operation.

The sign bit for these encrypted numbers (most significant bit) also goes through
the same operation as the rest of the bits. However, in this work, we cannot protect the
increment against overflow as the number of bits for each encrypted number is set prior
to the execution. For example, if we are incrementing a 16-bit encrypted number, and
it obtains a value of 215 + 1 (1 bit reserved for the sign bit), it will not obtain a correct
decrypted value. On the other hand, while decrementing by 1 for Algorithms 4 and 5,
we will eventually get into negative numbers, represented by the sign bit. Therefore, we
perform an OR operation in Algorithm 2 on Line 10.

Algorithm 2: Determine if input number is greater than zero
Input: Encrypted number x with |x| bits, Boolean flag hasSign if x has sign bit
Output: One bit representing whether x is greater than 0, result

2 Procedure greaterThanZero(x,hasSign)
3 i← 0
4 result← E(0)
5 while i < |x| − 1 do
6 result← result ŌR x[i]
7 i← i + 1
8 end
9 if hasSign then

10 result← result ¯AND (¯NOT x[|x|])
11 end
12 return result

Information 2024, 15, 40 10 of 27

Multiplication
Naive Approach: According to Section 2.2.2, multiplications have ∧ and≪ operations

that can be executed in parallel. It will result in n-numbers where each number will
have [n, 2n]-bits due to≪. We need to accumulate these uneven-sized numbers, which
cannot be distributed among the GPU threads. Furthermore, the addition presents another
sequential bottleneck while adding and storing (+ =) the results in the same memory
location. Therefore, this serial addition will increase the execution time. In the framework,
we optimize the operation by introducing a tree-based approach.

In this approach, we divide n-numbers (LWE vectors) into two n/2 vectors. These two
n/2 vectors are added in parallel. We repeat the process as we divide the resultant vectors
into two n/4 vectors and add them in parallel. The process continues until we obtain the
final result. Notably, the tree-based approach requires log n steps for the accumulation.
In Figure 5 for n = 8, all the ciphertexts underwent ∧ and≪ in parallel, and waited for
addition. Here, Lij represents the LWE samples (encrypted numbers), i is the level, and j
denotes the position.

�02

�00

�01

�04

�05

�07

�06

�03

�10

�13

�11

�12

�20

�21

�30

LW
E	
	S
am

pl
es

Final	
Result

Figure 5. Accumulating n = 8 LWE samples (Lij) in parallel using a tree-based reduction.

Karatsuba multiplication: We used the Karatsuba algorithm with some modifications in
our framework to achieve further efficiency while performing multiplications. However,
this algorithm requires both addition and multiplication vector operations, which tested
the efficacy of these components as well. We modified the original Algorithm 1 to introduce
the vector operations and rewrite the computations in Lines 9–12 as

⟨Temp0, Temp1⟩ = ⟨X0, X1⟩+ ⟨Y0, Y1⟩
⟨Z0, Z1, Z2⟩ = ⟨X0, X1, Temp0⟩ · ⟨Y0, Y1, Temp1⟩

⟨Temp0, Temp1⟩ = ⟨Z2, Z1⟩+ ⟨1, Z0⟩
Z2 = Temp0 + (Temp1)

′

In the above equations, X0, X1, Y0, Y1, Z0, Z1, and Z2 are taken from the algorithm,
and ⟨. . .⟩ and · are used to denote concatenated vectors and dot product, respectively. For
example, in the first equation, Temp0 and Temp1 store the addition of X0, Y0 and X1, Y1. It
is noteworthy that in the CPU framework, we utilized task-level parallelism to perform
these vector operations as described in Section 2.3.

3.1.3. Bitwise Operations

In this section, the general bitwise operations required for determining the string
distances are discussed. These algorithms will inherit the aforementioned algorithms and
extend them accordingly based on the corresponding use cases:

Information 2024, 15, 40 11 of 27

Greater Than Zero

Our string distance methods on encrypted data rely on Algorithm 2 to check whether
input > 0. Here, the algorithm takes an encrypted number as an input and checks whether
it is greater than zero. This allows us to judge whether there are any set bits on the encrypted
version of the number. In order to output that result, in Line 6, an encrypted bitwise OR
(ŌR) operation is performed between an encrypted bit X[i] and the current result.

The final result also considers the sign bit as the number can be negative. Here, the
sign bit is set as the most significant bit (MSB) or X[|X|], which is inverted and placed
on another OR operation with the result variable. Determining whether the input is less
than 0 can also be achieved by this bit. Notably, the value of the result is kept encrypted
throughout the computations, which is utilized in the upcoming algorithms.

Longest Consecutive Ones

Algorithm 3 is specifically designed to find the most extended series of consecutive
1 value bits in an encrypted number or bit stream. The encrypted number input, denoted
as X, is left shifted in each repetition until we exhaust the bit stream, which happens after
|X| repetitions.

The crucial operation of this method occurs on Line 6, where X undergoes a left shift
by a single unit. After this shift, an encrypted bitwise ¯AND operation is also performed
with the preceding value of X. One check is then performed to see if the newly created X
contains any 1 bit (or whether X > 0), and if so, a counter is incremented. This counter is
linked to the result variable, as indicated in Algorithm 2, and increments by one each time
X > 0.

It is crucial to underline that this algorithm is particularly applicable for set-maximal
distance calculations, where encrypted haplotypes are used as the X input. This further
notes that greaterThanZero accounts for the sign bit, which is not essential in set-maximal
operations. As such, Line 10 is not considered in this specific context.

Algorithm 3: Find longest consecutive ones
Input: Encrypted number x
Output: result representing the number of the longest consecutive ones

2 Procedure maxConsecutiveOnes(X)
3 numbits← |x|
4 result← greaterThanZero(x, f alse)
5 while numbits > 0 do
6 x← x ¯AND (x≪ 1)
7 result← result + greaterThanZero(x, f alse)
8 numbits← numbits− 1
9 end

10 return result

Let us assume that we have an encrypted number x = E(011101) with the sign bit
E(0), and it contains 3 consecutive ones. Here, the result bit is set to 1 since x > 0. In the
first iteration, we perform an encrypted AND operation of x (011101) and x << 1 (111010).
Since the resulting x is greater than 0, the encrypted result number is incremented. In the
following iteration, x = E(011000) is multiplied (AND) with E(110000), which results in
010000. The result number is incremented again. However, in the subsequent iterations (|x|
many times), the x values are set to 0 and result is not incremented anymore. Finally, the
result from Algorithm 3 is retrieved as E(3).

Finding Minimum and Maximum Number

The pair of Algorithms 4 and 5 employs a method to target and identify the smallest
and biggest numbers among a set of n numbers, respectively. Each encrypted number in the
set, denoted as x1, x2, . . . , xn, undergoes a decrement operation for every bit (|xi| bit size).

Information 2024, 15, 40 12 of 27

The algorithms then scan to determine whether the processed number arrived at zero or if it
still holds any set bit. In the process to locate the smallest number, the algorithm increments
the encrypted result variable only if all numbers are beyond zero. On the contrary, to find
the maximum number, the algorithm utilizes an encrypted ŌR operation to verify if even a
single number is greater than zero.

Algorithm 4: Get minimum number among x1, x2, . . . , xn encrypted positive
numbers (xi ≥ 0)

Input: Positive Numbers x1, x2, . . . , xn
Output: Minimum encrypted number result

2 Procedure getMin(x1, x2, . . . , xn)
3 numinter ← 2|x0|

4 result← 0
5 while numinter > 0 do
6 gtZero ← E(1)
7 foreach xi ∈ {x1, . . . , xn} do
8 gtZero ← gtZero ¯AND greaterThanZero(xi)
9 xi ← xi − 1

10 end
11 result← result + gtZero
12 numinter ← numinter− 1
13 end
14 return result

Algorithm 5: Get maximum number among x1, x2, . . . , xn encrypted positive
numbers xi ≥ 0

Input: Positive numbers x1, x2, . . . , xn
Output: Maximum encrypted number result

2 Procedure getMax(x1, x2, . . . , xn)
3 numiter ← 2|xi |

4 result← E(0)
5 while numiter > 0 do
6 gtZero ← E(0)
7 foreach xi ∈ {x1, . . . , xn} do
8 gtZero ← gtZero ŌR greaterThanZero(xi)
9 xi ← xi − 1

10 end
11 result← result + gtZero
12 numiter ← numiter− 1
13 end
14 return result

In both of these algorithms, a numerical decrement process is included, represented as
xi ← xi − 1. A binary half subtractor is employed for this task. However, these decrement
operations may induce an underflow, considering that the input numbers xi could turn
negative in any given iteration. To deal with this, we use an operation in Algorithm 2
having MSB as greaterThanZero(xi), which emits a single bit, indicating xi > 0. For
identifying the smallest or largest among n numbers, this single bit (denoted as gtZero) is
added to the result for all numbits instances by Algorithms 4 and 5. The final result is under
encryption and utilized in edit distance approximation (Section 3.2.2) and set-maximal
matches (Section 3.2.3).

Information 2024, 15, 40 13 of 27

Alternative Approach

As an alternative strategy, full adders can also be utilized to derive the smallest or
largest numbers. For instance, deducing the maximum between x and y can be attained by
calculating x− y. If the sign bit is unset, it implies that x is larger. Similarly, the smallest
between two numbers can also be discerned by evaluating the sign bit. This method is
weighed up due to the potential exponential number of iterations, considering the total bit
count in Line 3 within Algorithms 5 and 4. Considering that |x| > 16 would necessitate
numerous rounds of computations that are under encryption, for the case of |x| ≤ 16, we
resort to the previously discussed algorithms.

3.2. Secure String Search Operations

In this section, we discuss the string search operations over encrypted data utilizing
the earlier algorithms.

3.2.1. Hamming Distance

Hamming distance hd(q, y) represents the bitwise difference of the input query q and
stored sequence y. Therefore, we perform an encrypted ¯XOR operation between q and y
where the result will have set bits (value of 1) on all occasions of mismatches. Now, we
need to perform a summation of all these bits on the XOR result to obtain the hamming
distance (Definition 1). Notably, we assume that the query q and the encrypted sequences
are of the same length.

In Algorithm 6, we outline the mechanism to generate the hamming distance hd, where
it contains an encrypted distance value for one target sequence y and query q. This can be
iterated through all sequences and performs the XOR operation between the query q and yi
sequence. Subsequently, it also adds the bits to formulate the hamming distance in Line 5.
Since the result variable is under encryption, the addition (or increment) is oblivious as we
perform the operation for every encrypted bit in result.

Algorithm 6: Hamming distances between a query and encrypted sequences
Input: Encrypted target sequence y and query q
Output: Encrypted distances between y and q, hd

2 Procedure HammingDistance(q, y)
3 result← q ¯XOR y
4 foreach bit r ∈ result do
5 hd← hd + r
6 end
7 return hd

3.2.2. Edit Distance Approximation

Edit distance is more complicated than hamming distance as it considers more than
the bitwise difference (insertion, deletion, and subtraction). Furthermore, under plaintext,
it has a O (m2) complexity, where m is the length of the sequence. Therefore, to reduce the
complexity, we opt for the banded edit distance [10,31], where we only compute on a band
of fixed size.

Algorithm 7 outlines the proposed method, where we set a fixed parameter b along
with the encrypted input sequences q and yi. Apart from the initialization, we also calculate
the variables low and high dictating the number of expensive operations in Line 11. Here,
we calculate whether the q[i] and yi[k] bits are the same or not using an encrypted XNOR
gate. If they are not the same, then the encrypted number d[i − 1, k − 1] needs to be
incremented, which is performed with the half adder. Since we do not know the output of
same_bit, we push that bit as carry and initialize the substitution variable. Similarly, the
insertion and deletion values are set from the existing distance matrix. Finally, we calculate
the minimum getMin(ins, del, sub) to predict the distance at that specific position. This

Information 2024, 15, 40 14 of 27

is set as the new value of d[i, k]. Here, the three half-adder operations are run in parallel
before the minimum operation.

Algorithm 7: Banded edit distance on encrypted sequence
Data: query q, sequence y, and band length b
Result: b-banded Edit Distance d(q, y) [31]

1 m← |q|+ 1
2 set each element of matrix dm×m to E(0)
3 for i← 1 to m do
4 d[i, 0]← E(i);
5 d[0, i]← E(i);
6 end
7 for i← 1 to m do
8 if i− b < 1 then low← 1;
9 else low← i− b;

10 if i + b > m then high← m;
11 else high← i + b;
12 for k← low to high do
13 same_bit← q[i− 1] ¯XNOR y[k− 1]
14 sub← d[i− 1, k− 1] + same_bit
15 ins← d[i, k− 1] + 1
16 del ← d[i− 1, k] + 1
17 d[i, k]← getMin(sub, ins, del)
18 end
19 end
20 return d[m, m];

3.2.3. Set-Maximal Distance

The set-maximal distance or match (SMM) represents the length of the longest match-
ing substring in two sequences [32]. This allows a health-care researcher to identify genomic
sequences that have more genes in common and probably are identical in their physical at-
tributes. The distance also has applications over similar patient queries [9], secure positional
Burrows–Wheeler transformation [33,34], etc.

The proposed secure set-maximal match using homomorphic encryption operation
depends on Algorithm 3, maxConsecutiveOnes. Initially, we perform an encrypted XNOR
between two sequences, yi and query q. Here, the XNOR operation (NOT XOR) sets a
value of 1 to the positions where the sequences are matching. Now, from this XNOR result,
we can perform the maxConsecutiveOnes algorithm and obtain the highest number of set
bits that are grouped together.

Suppose for a query q = 01100111 and some input sequence yi = 10000110, where
yi ∈ Y, then q XNOR yi will be 00011110. Now, if we perform maxConsecutiveOnes(q
XNOR yi, f alse), then the output should provide us with the encrypted result of 3. This
result denotes the number of set bits on the encrypted XNOR operation, hence the set-
maximal distance between q and yi.

Threshold SMM

In a threshold version of this match, we need to output only the distances beyond an
input threshold t. Here, an extra operation proceeding the maxConsecutiveOnes is required,
where a simple numeric comparison with threshold t would output the result. Therefore,
we can use an encrypted MUX operation [5] for this comparison. However, encrypted
MUX is an expensive operation, and we can replace it with a subtraction. Therefore, we
negate the E(t) value from the resulting maxConsecutiveOnes(q XNOR yi, f alse). Then,

Information 2024, 15, 40 15 of 27

we use the greaterThanZero algorithm on the result, which represents if the SMM distance
is beyond the threshold t.

We outline the algorithm in Algorithm 8, where the threshold value is encrypted at
first. The matching bits of the query and the sequence are calculated next with the XNOR
operation. Subsequently, we perform the comparison operation with a maximum between
result and E(t). If E(t) ≥ result, then gt_threshold is set as the OR of all bits among the
smm_distance ¯XNOR enc_t bits. Here, XNOR represents whether two vectors are the
same or not and performing another logical OR among them. Lastly, we perform the AND
operation with the distance. If the value of gt_threshold is 0, then we obtain all unset bits
on the output, with set-maximal distance in the other case.

Algorithm 8: Thresholded set-maximal matching
Input: Encrypted query q, encrypted sequence yi ∈ {y1, . . . , yn} and threshold t
Output: Encrypted SMM distance between q and yi if it is greater than some

value t
2 Procedure SMMDistance(q, yi, t)
3 enc_t← E(t)
4 result← maxConsecutiveOnes(q ¯XNOR yi, f alse)
5 smm_distance← getMax(result, enc_t)
6 gt_threshold← AND all bits in(smm_distance ¯XNOR enc_t)
7 smm_distance←!gt_threshold ¯AND smm_distance
8 return smm_distance

4. Experimental Analysis

The experimental environment included an Intel(R) Core™ i7-2600 CPU having 16
GB system memory with an NVIDIA GeForce GTX 1080 GPU (check GPU details in
Appendix A) with 8 GB memory [30]. The CPU and GPU contained 8 and 40,960 hardware
threads, respectively. We used the same setup to analyze all three frameworks: sequential,
CPU , and GPU .

We use two metrics for the comparison: (a) execution time and (b) speedup =
Tseq
Tpar

.
Here, Tseq and Tpar are the time for computing the sequential and the parallel algorithm. In
the following sections, we gradually analyze the complicated arithmetic circuits using the
best results from the foregoing analysis.

4.1. GPU-Accelerated TFHE

Initially, we discuss our performance over Boolean gate operations, deemed as building
blocks of any computation. Figure 6a depicts the execution time difference among the
sequential, CPU , and GPU frameworks for [4, 32] bits. The sequential AND operation
takes a minimum of 0.22 s (4 bits), while the runtime increases to 1.4 s for 32 bits.

In the GPU-parallel framework, bit coalescing facilitates the storing of LWE samples
in contiguous memory and takes advantage of available vector operations. Thus, it helps
to reduce the execution time from 0.22–1.4 s to 0.02–0.06 s for 4 to 32 bits. Here, for 32 bits,
our techniques provide a 20× speedup. A similar improvement is foreseen in the CPU-
parallel framework as we divide the number of bits by the available threads. However, the
execution time increases for the CPU framework since there are only a limited number of
available threads. This limited number of threads is one of the primary motivations behind
the utilization of GPU.

Information 2024, 15, 40 16 of 27

4 8 16 24 32
0.0

0.5

1.0

1.5

Bit size
Ti

m
e
[s
]

Sequential
CPU
GPU

(a) Comparison of Seq., CPU,
and GPU parallel framework

22 24 27 29
0.0

1.0

2.0

3.0

Bit size

Ti
m

e
[s
]

NuFHE
GPU
cuFHE

(b) Analysis with GPU-assisted
frameworks

1 4 8 16 24 32
0.00

0.05

0.10

0.15

Bit size

Ti
m

e
[s
]

2-Single gate
Compound gate

(c) Compound gate against 2
single gates

Figure 6. Performance analysis of GPU-accelerated TFHE with the sequential and CPU || frame-
works (a) and comparison with the existing GPU-assisted libraries (b). (c) presents the performance
of compound gates against 2 single-gate operations, while x-axis and y-axis represent bit size and
time in seconds.

Then, we further scrutinize the execution time by dividing gate operations into three
major components—(a) bootstrapping, (b) key switching, and (c) miscellaneous. We select
the first two as they are the most time-consuming operations and fairly generalizable to
other HE schemes. Table 2 shows the difference in execution time between the sequential
and the GPU parallel for {2, . . . , 32} bits. We show that the execution time increment is less
compared with the sequential approach.

Table 2. Computation time (ms) for bootstrapping, key switching, and misc. for sequential and
GPU frameworks.

Bit Size Sequential GPU

n Bootstrapping Key Switch Misc. Total Bootstrapping Key Switch Misc. Total

2 68.89 17.13 27.04 113.05 19.64 2.65 0.45 22.74

4 138.02 34.18 47.97 220.17 18.86 2.69 0.08 21.63

8 275.67 68.31 96.48 440.46 27.83 2.69 0.06 30.58

16 137.25 137.25 425.22 699.72 40.70 2.91 0.44 44.06

32 274.3 274.30 852.51 1401.10 66.74 3.34 0.42 70.50

We further investigate the bootstrapping performance in the GPU-parallel framework
for the Boolean gate operations. Our CUDA-enabled FFT library takes the LWE samples in
batches and performs the FFT in parallel. However, due to the h/w limitations, the number
of batches to be executed in parallel is limited. It can only operate on a certain number of
batches at once, and next batches are kept in a queue. Hence, a sequential overhead occurs
for a large number of batches that can increase the execution time.

Under the same h/w setting, we benchmark our proposed framework with the ex-
isting GPU-based libraries (cuFHE and NuFHE). Although our GPU-parallel framework
outperforms NuFHE for different bit sizes (Figure 6b), the performance degrades for larger
bit sizes w.r.t. cuFHE. As the cuFHE implementation focuses more on the gate level opti-
mization, we focus on the arithmetic circuit computations. In Section 4.3, we analyze our
arithmetic circuits where our framework outperforms the existing GPU libraries.

4.2. Compound Gate Analysis

According to Section 3.1.1, the compound gates are used to improve the execution
time for additions or multiplications. Since the existing frameworks do not provide these
optimizations, we benchmark the compound gates with the proposed single-gate com-
putations. Figure 6c illustrates the performance of 1 compound gate over 2 single gates
computed sequentially. We performed several iterations for a different number of bits

Information 2024, 15, 40 17 of 27

(1, . . . , 32), as shown on the x-axis while the y-axis represents the execution time. Notably,
32-bit compound gates will have two 32-bit inputs and output two 32 bits.

Here, bit coalescing improves the execution time as it takes only 0.02 s for one com-
pound gate evaluation, compared with 0.04 s on performing 2 single gates sequentially.
However, Figure 6c shows an interesting trend in the execution time between 2 single
gates and 1 compound gate evaluation. The gap favoring the compound ones tends to
get narrower for a higher number of bits. For example, the speedup for 1 bit happens
to be 0.04/0.02 = 2 times, whereas it reduces to 1.01 for 32 bits. The reason behind this
diminishing performance is the asynchronous launch queue of GPUs.

As mentioned in Section 3.1.1, we use batch execution for the FFT operations. Hence,
the number of parallel batches depends on the asynchronous launch queue size of the
underlying GPU, which can delay the FFT operations for a large number batches. This
ultimately adversely affects the speedup for large LWE sample vectors. Nevertheless, the
analysis shows that the 1-bit compound gates are the most efficient, and we employ them
in the following arithmetic operations.

4.3. Addition

Table 3 presents a comparative analysis of the addition operation for 16-, 24-, and 32-bit
encrypted numbers. We consider our proposed frameworks: sequential, CPU , and GPU ,
and benchmark them with cuFHE [13], NuFHE [14], and Cingulata [15]. Furthermore, we
present the performance of two variants of addition operation: GPUn (numberwise) and
GPU1 (bitwise), as discussed in Section 3.1.2.

Table 3. Execution time (s) for the n-bit addition.

Frameworks 16-Bit 24-Bit 32-Bit

Sequential 3.51 5.23 7.04

cuFHE [13] 1.00 1.51 2.03

NuFHE [14] 2.92 3.56 4.16

Cingulata [15] 1.10 1.63 2.16

Our Methods

CPU 3.51 5.23 7.04

GPUn 0.94 2.55 4.44

GPU1 0.98 1.47 1.99

Table 3 demonstrates that GPUn performs better than the sequential and CPU
circuits. GPUn provides a 3.72× speedup for 16 bits, whereas 1.58× for 32 bits. However,
GPUn performs better only for 16-bit additions compared with GPU1 . For 24- and 32-bit
additions, GPU1 performs around 2× better than GPUn . This improvement in essential
as it reveals the algorithm to choose between GPU1 and GPUn .

Although both addition operations (GPUn and GPU1) utilize compound gates, they
differ in the number of input bits (n and 1 for GPUn and GPU1 , respectively). Since the
compound gates perform better for smaller bits (Section 4.2), the bitwise addition performs
better than the numberwise addition for 24/32-bit operations. Hence, we utilize bitwise
addition for building other circuits.

NuFHE and cuFHE do not provide any arithmetic circuits in their library. Therefore,
we implemented such circuits on their library and performed the same experiments. Ad-
ditionally, we considered Cingulata [15] (a compiler toolchain for TFHE) and compared
the execution time. Table 3 summarizes all the results, where we found that our proposed
addition circuit (GPU1) outperforms the other approaches.

Information 2024, 15, 40 18 of 27

We further experimented on the vector additions adopting the bitwise addition and
showed the analysis in Table 4. Like addition, the performance improvement on the vector
addition is also noticeable. The framework scales by taking a similar execution time for
smaller vector lengths ℓ ≤ 8. However, the execution time increases for longer vectors
as they involve more parallel bit computations and, consequently, increase the batch size
of FFT operations. The difference is clearer on 32-bit vector additions with ℓ = 32 which
takes almost twice the time of ℓ = 16. However, for ℓ ≤ 8, the execution times are almost
similar due to the parallel computations. In Section 4.2, we have discussed this issue,
which relies on the FFT batch size. Notably, Figure 6c also aligns with this evidence as the
larger batch size for FFT on GPUs affects the speedup. For example, ℓ = 32 will require
more FFT batches compared with ℓ = 16, which requires more time to finish the addition
operation. We did not include other frameworks in Table 4 since our GPU performed
better compared with the others in Table 3.

Table 4. Execution time (s) for vector addition.

Length 16-Bit 32-Bit

ℓ Seq. CPU GPU Seq. CPU GPU

4 13.98 5.07 1.27 28.05 10.02 2.56

8 27.86 9.96 1.78 56.01 19.29 3.58

16 55.66 19.65 2.82 111.3 38.77 5.70

32 111.32 38.99 5.41 224.31 77.18 11.22

4.4. Multiplication

The multiplication operation uses a sequential accumulation (reduce by addition)
operation. Instead, we use a tree-based vector addition approach (discussed in Section 4.4)
and gain a significant speedup. Table 5 portrays the execution times for the multiplication
operations using the frameworks. Here, we employed all available threads on the machine.
Like the addition circuit performance, here, GPU outperforms the sequential circuits and
CPU operations by a factor of ≈11 and ≈14.5, respectively, for 32-bit multiplication.

Table 5. Multiplication execution time (s) comparison.

Frameworks 16-Bit 24-Bit 32-Bit

Naive

Sequential 120.64 273.82 489.94

CPU 52.77 101.22 174.54

GPU 11.16 22.08 33.99

cuFHE [13] 32.75 74.21 132.23

NuFHE [14] 47.72 105.48 186.00

Cingulata [15] 11.50 27.04 50.69

Karatsuba

CPU 54.76 - 177.04

GPU 7.6708 - 24.62

We further implemented the multiplication circuit on cuFHE and NuFHE. Table 5
summarizes the results comparing our proposed framework with cuFHE, NuFHE, and
Cingulata. Our GPU framework is faster in execution time than the other techniques.

Information 2024, 15, 40 19 of 27

Notably, the performance improvement is scalable with the increasing number of bits.
This is due to tree-based additions following the reduction operations and computing all
Boolean gate operations by coalescing the bits altogether.

Additionally, we analyze vector multiplications available in our framework and
present a comparison among the frameworks in Table 6. We found out an increase in
execution time for a certain length (e.g., ℓ = 32 on 16-bit or ℓ = 4 on 32-bit), which is similar
to the issue in vector addition (Section 4.3). Hence, the vector operations from ℓ ≤ 16 can
be sequentially added to compute arbitrary vector operations. For example, we can use
two ℓ = 16 vector multiplications to compute ℓ = 32 multiplication, resulting in around 11
min. In the vector analysis, we did not add the computations over the other frameworks
since our framework surpassed their achievements for single multiplications.

Table 6. Execution time (in minutes) for vector multiplication.

Length 16-Bit 32-Bit

ℓ Seq. CPU GPU Seq. CPU GPU

4 8.13 3.25 0.41 32.56 12.15 1.61

8 16.29 6.17 0.75 65.12 23.48 2.96

16 32.62 11.93 1.40 130.31 46.39 5.62

32 65.15 23.58 2.68 260.52 92.44 10.79

4.5. Karatsuba Multiplication

In Table 5, we provide execution time for 16- and 24-bit Karatsuba multiplications
over encrypted numbers as well. In the CPU construction of the algorithm, the execution
time does not improve; rather, it increases slightly. We observed that for both 16- and
32-bit multiplications, Karatsuba outperforms the naive GPU multiplication algorithm on
GPU by 1.50 times. Karatsuba multiplication can also be considered a complex arithmetic
operation as it comprises addition, multiplication, and vector operations. However, the
CPU framework did not provide such difference in performance as it took more time for
the fork-and-join threads required by the divide-and-conquer algorithm.

4.6. String Search Operations

In Table 7, we report the execution time for the three string search operations. Here,
we report the execution time in seconds, where we change the size of the genomic data.
The values of m = {8, 16, . . . , 256} denote the number of genes for the query q and target y.

Table 7. Execution time (in seconds) for variable size query and target sequence m for different
distance metrics.

Method
m

8 16 32 64 128 256

Hamming distance 2.89 11.84 47.95 189.81 758.73 3035.0

Set-maximal 3.76 13.3 51.24 195.72 771.08 3061.48

Set-maximal (with t) 7.15 20.67 64.43 223.14 827.76 3173.34

Edit distance 662 2577 9989 39,022 154,194 612,435

The results show that hamming distance requires the least amount of time. It is
also clear from Definition 1 as it requires an XOR operation. The set-maximal matches
(Definition 3) need more operations as maxConsecutiveOnes in Algorithm 3 employs the
half adder for all bits. Furthermore, the threshold version of SMM takes more time since

Information 2024, 15, 40 20 of 27

we need to perform the getMax operation. For example, for a target and query sequence
size of m = 128, it takes around 14 and 13 min with and without an existing threshold.
However, for a smaller size of m, we can see that the time difference is more significant as
it takes 3.76 s to perform SMM, compared with 7.15 s.

Edit Distance (2) takes the highest amount of time for the same genome size m. For
example, for a sequence of size m = 32, edit distance under FHE takes around 2 h, whereas
hamming or set-maximal matches take less than a minute. Notably, in these methods, we
use Algorithms 5 and 4 for m < 32, whereas we use the alternative (subtraction) method
for larger sequences.

5. Discussion

In this section, we provide answers to the following questions about our proposed
framework:

Is the proposed framework sufficient to implement any computations? This paper
discusses in detail the proper implementation of Boolean gates using GPUs to enhance
performance. It further explains the process of conducting basic arithmetic computations
like addition, multiplication, and matrix operations using the suggested model. However,
the implementation of more sophisticated algorithms like secure machine learning, as
referenced in sources [35,36], is not within the scope of this paper. Future research will dive
into the potential to optimize this model further for machine learning algorithms.

For the GPU framework, how do we compute on encrypted data larger than the
fixed GPU memory?

Limitations like fixed GPU memory sizes and varying access speeds are common to
all GPU applications. These issues also arise in deep learning when managing larger
datasets. The resolution lies in segmenting the data or utilizing multiple GPUs. The model
we are proposing can also apply these solutions as it is flexible enough to manage larger
ciphertexts.

How can we achieve further speedup on both frameworks? In the case of the CPU
model, we have tried to implement as many hardware and software level optimizations
as we were able to. Nonetheless, our GPU model partially relies on the slower global
GPU memory. The memory speed is crucial as different device memories have various
read/write speeds. L1, or shared memory, is the fastest after the register. We used a
combination of shared and global memory due to the size of the ciphertext. Going forward,
we plan to use only shared memory, which is smaller but is expected to enhance the speed
compared with the present method.

How would the bit security level affect the reported speedup? Currently, our model
is comparable to the TFHE implementation [37], offering a security level of 110 bits, which
may not be enough for certain applications. That being said, our GPU model is adaptable
to any desired bit security level. However, any changes will also alter the execution times.
For instance, security levels lower than 110 bits will result in faster execution and vice
versa for higher bit security. Future research will incorporate and evaluate the speedup for
evolving bit security levels.

Impact on computational accuracy while computing in GPUs. In the earlier GPU
architecture, GPUs offered lower precision than the IEEE-754 (Available online: https://
ieeexplore.ieee.org/document/8766229, accessed on 8 January 2024) floating point standard.
However, the GPUs we used for testing did not have such issues as they offered double
precision. Nevertheless, it is important to understand that, during FHE encryption and
operations, we tend to lose precision as encrypted bits get noisier with each gate operation.
Therefore, any result from FHE computation does not offer the IEEE floating point standard,
to the best of our knowledge. Consequently, our framework also suffers from the same
lower precision inherited by FHE limitations.

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

Information 2024, 15, 40 21 of 27

6. Related Works
6.1. Parallel Frameworks for FHE

In this section, we discuss the other HE schemes from Table 8 and categorize schemes
based on their number representation:

1. Bitwise;
2. modular; and
3. approximate.

Table 8. A comparative analysis of existing homomorphic encryption schemes for different parame-
ters on a 32-bit number.

Year Homomorphism Bootstrapping Parallelism Bit security Size (kb) Add. (ms) Mult. (ms)

RSA [38] 1978 Partial × × 128 0.9 × 5

Paillier [39] 1999 Partial × × 128 0.3 4 ×
TFHE [12] 2016 Fully Exact AVX [22] 110 31.5 7044 489,938

HEEAN [20] 2018 Somewhat Approximate CPU 157 7168 11.37 1215

SEAL (BFV) [40] 2019 Somewhat × × 157 8806 4237 23,954

cuFHE [13] 2018 Fully Exact GPU 110 31.5 2032 132,231

NuFHE [14] 2018 Fully Exact GPU 110 31.5 4162 186,011

Cigulata [15] 2018 Fully Exact × 110 31.5 2160 50,690

Our Method - Fully Exact GPU 110 31.5 1991 33,930

Bitwise encryption works by encrypting the bit representation of a number. Its
computation is also performed bit by bit, with each bit being handled independently of
others. This characteristic is particularly beneficial for our parallel framework as the bit
independence allows for parallel operation and reduces dependencies. The advantages
of this process include increased speed in bootstrapping and a reduction in ciphertext
size, suitable attributes considering the constraints of fixed-memory GPUs. This concept
was first formalized and dubbed as GSW in 2013 [41], and has since been advanced over
time [12,17,25].

Modular encryption techniques employ a fixed modulus, represented as q, that de-
fines the size of the ciphertexts. This approach has witnessed vast improvements [42,43],
particularly due to its reasonable execution time (Table 8). The quick addition and multipli-
cation times from FV [26] and SEAL [40] demonstrate their superior speed compared with
our GPU-based framework.

However, these schemes present a compromise between bootstrapping and efficiency.
Often categorized as somewhat homomorphic encryption, they predefine the number of
computations or the magnitude of multiplications, lacking a process for noise reduction.
The resultant larger ciphertexts are consequent of large q values.

For example, we selected the ciphertext moduli of 250 and 881 bits for FV-NFLlib [26]
and SEAL [40], respectively. The polynomial degrees (d) were chosen as 13 and 15 for the
two frameworks as it was required to comply with the targeted bit security to populate
Table 8. It is noteworthy that smaller q and d will result in a faster runtime and smaller
ciphertexts, but they will limit the number of computations as well. Therefore, this mod-
ular representation requires fixing the number of homomorphic operations limiting the
use cases.

Approximate number representations were recently proposed by Cheon et al.
(CKKS [44]) in 2017. These schemes also provide efficient single instruction multiple data
(SIMD) [45] operations similar to the modular representations as mentioned above. How-
ever, they have an inexact but efficient bootstrapping mechanism, which can be applied
in less precision-demanding applications. The cryptosystem also incurs larger ciphertexts
(7MB) similar to the modular approach as we tested it for q = 1050 and d = 15. Here,
we did not discuss HELib [46], the first cornerstone of all HE implementations, since its
cryptosystem BGV [43] is enhanced and utilized by the other modular HE schemes (such
as SEAL [40]).

Information 2024, 15, 40 22 of 27

Our goal is to parallelize a fully homomorphic encryption (FHE) scheme. Most
homomorphic encryption (HE) schemes following modular encryption are either somewhat
or adopt approximate bootstrapping while requiring more memory post encryption. As a
result, we opt for a bitwise bootstrappable encryption scheme: TFHE.

In terms of hardware solutions, few have been studied and utilized to enhance the
efficiency of FHE computations. Following the formulation of FHE with ideal lattices,
most efficiency enhancements have been approached from the standpoint of asymptotic
runtimes. A select few approaches have dealt with the inclusion of existing multiprocessors
like GPU or FPGAs [47] to achieve quicker homomorphic operations. Dai and Sunar ported
another scheme, LTV [48], to GPU-based implementation [49,50]. LTV is a variant of HE
that performs a limited number of operations on a given ciphertext.

Lei et al. ported FHEW-V2 [25] to GPU [51] and extended the Boolean implementation
to 30-bit addition and 6-bit multiplication with a speed up to ≈2.5. Since TFHE extends
FHEW and performs better than its predecessor, we consider TFHE as our
baseline framework.

In 2015, a GPU-based HE scheme, CuHE [49], was proposed. However, it was not
fully homomorphic as it did not have bootstrapping; hence, we did not include it in our
analyses. Later in 2018, two GPU FHE libraries, cuFHE [13] and NuFHE [14], were released.
Both libraries focused on optimizing the Boolean gate operations. Recently, Yang et al. [52]
benchmarked cuFHE and its predecessor, TFHE, and analyzed the speedup, which we also
discuss in this article (Table 8).

Our experimental analysis shows that only performing the Boolean gates in parallel
is not sufficient to reduce the execution time of a higher-level circuit (i.e., multiplication).
Hence, besides employing GPU for homomorphic gate operations, we focus on an arith-
metic circuit. For example, we are 3.9 times faster than cuFHE in 32-bit multiplications.

Recently, Zhou et al. improved TFHE by reducing and performing the serial operations
of bootstrapping in parallel [53]. However, they did use any hardware acceleration to the
existing FHE operations. We consider this work as an essential future direction that can be
integrated to our framework for better executing times.

Cingulata or Armadillo [15] is also a related work that proposed a compiler toolkit
designed to work on homomorphically encrypted data, written in C++. Cingulata can
handle a large number of parallel operations to mitigate the homomorphic encryption’s
performance overhead. However, in this work, we propose to perform similar optimization
on GPUs, using CUDA-enabled computations.

More recently, Concrete [54], an open-source compiler using TFHE, was proposed,
which simplifies the complexities of general computation under FHE. It provides several
translations that allow arbitrary computations to be performed under encryption using
a vanilla Python script with additional decorators. In the future, we look forward to
extending our GPU-parallel features according to this framework.

6.2. Secure String Distances in Genomic Data

In one of the earlier attempts with a secure multiparty setting, Jha et al. [55] proposed
a privacy-preserving genomic sequence similarity in 2008. Their paper showed three
different methods to mirror the Levenshtein distance algorithm using a garbled circuit.
However, for a sequence of 25 nucleotides, it took around 40 s to compute the distance
metric between two strings. In 2015, Wang et al. [9] proposed an approximation of the
original edit distance in a more realistic setting, where the authors utilized a reference
genomic sequence to compute the edit distance. However, we analyzed its accuracy in one
of our earlier works [10] and showed that the accuracy drops for longer input sequences.

In a recent attempt, Shimzu et al. [33] proposed a Burrows–Wheeler transformation
for finding target queries on a genomic dataset. The authors attempted the set-maximal
matches using oblivious transfer on a two-party privacy setting. However, we employ a
completely different cryptographic technique as we do not require the researcher to stay
active upon providing their encrypted queries. Therefore, the whole computation can be

Information 2024, 15, 40 23 of 27

offloaded to a cloud server and harness its full computational capacity. One of the first
attempts with FHE to compute edit distance was conducted by Cheon et al. [44]. Given
the advances in 2017, their cryptographic scheme was impressive, though taking 16.4 s to
compute a 8 × 8 block of string inputs. However, the underlying techniques have improved,
allowing a larger string comparison using FHE techniques as we have shown in this work.

7. Conclusions

In this study, we developed algebraic circuits for fully homomorphic encryption (FHE),
making them available for any complex operations. In addition, we investigated the use of
CPU-level parallelism to enhance the execution speed of underlying FHE computations. A
significant innovation in our work is the introduction of a GPU-level parallel framework
that leverages novel optimizations such as bit coalescing, compound gate, and tree-based
vector accumulation. Furthermore, we implemented this framework in genomic string
operations and evaluated its effectiveness. The experimental results demonstrate that the
methodology we propose is 20 times and 14.5 times quicker than the existing method for
executing Boolean gates and multiplications, respectively.

Author Contributions: Conceptualization, M.M.A.A.; Methodology, M.M.A.A.; Software, M.T.M.T.;
Validation, M.M.A.A. and N.M.; Writing—original draft, M.M.A.A. and M.T.M.T.; Writing—review &
editing, N.M.; Supervision, N.M. All authors have read and agreed to the published version of the
manuscript.

Funding: The research is supported in part by the CS UManitoba Computing Clusters and Amazon
Research Grant. N.M. was supported in part by the NSERC Discovery Grants (RGPIN-04127-2022)
and Falconer Emerging Researcher Rh Award.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: There are no proprietary or closed-source senstiive date used for the
analysis.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. GPU Computational Hierarchy

A graphics processing unit (GPU) consists of a scalable array of multithreaded stream-
ing multiprocessors (SMs). For example, our GPU for the experiments, NVIDIA GTX
1080, has 20 SMs, where SM contains 2048 individual threads. Threads are grouped into
blocks, and the blocks are grouped to form grids. Threads in the blocks are split into warps
(32 threads) in the same SM.

For the computational unit, the GPU includes 128 CUDA (Compute Unified Device
Architecture) cores per SM. Each core execution unit has one float and one integer com-
pute processor.

Appendix A.1. Memory Hierarchy in GPU

SMs can run in parallel with different instructions. However, all the threads of a
respective SM execute the same instruction simultaneously. Therefore, GPUs are called
single instruction multiple data (SIMD) machines. Besides having a large number of threads,
the GPU memory system also consists of a wide variety of memories for the underlying
computations. Architecturally, we divide the memory system into five categories. Figure A1
portrays the memory categories and their organization. We present a brief discussion on
the memory categories:

(a) Register;
(b) Cache;
(c) Shared;
(d) Constant; and

Information 2024, 15, 40 24 of 27

(e) Global.

SM-0
Registers

L1 SMEM CMEM

SM-1
Registers

L1 SMEM CMEM

SM-N
Registers

L1 SMEM CMEM

L2	Cache

Global	Memory

Figure A1. GPU memory hierarchy.

Register. Registers are the fastest and smallest among all memories. Registers are
private to the threads.

Cache. GPUs facilitate two levels of caches, namely, L1 cache and L2 cache. In terms
of latency, the L1 cache is below the registers. Each SM is equipped with a private L1 cache.
On the contrary, the L2 cache has a latency that is higher than that of L1 cached and shared
by all SMs.

Shared memory. Being on the SM chip, shared memory has higher bandwidth and
much lower latency than the global memory. It has much lower memory space and lacks
volatility.Shared memory is private to SMs as well, but public to the threads inside the SMs.

Constant memory. Constant memory resides in the device memory and is cached in
the constant cache. Each SM has its own constant memory. Constant memory increases the
cache hit for constant variables.

Global memory. Global memory is the largest (Table A1) among all memory categories,
yet the slowest and nonpersistent. One major limitation of global memory is that it is fixed,
while the main memory can be changed for the CPUs.

Table A1. A comparison between Intel(R) Core™ i7-2600 and NVIDIA GTX 1080 configurations.

CPU GPU

Clock speed 3.40 GHz 1734 MHz

Main memory 16 GB 8 GB

L1 cache 256 KB 48 KB

L2 cache 256 KB 2048 KB

L3 cache 8192 KB ×

Physical threads 8 40,960

Appendix A.2. Computational and Memory Hierarchy Coordination

The coordination between computation and memory hierarchy is a crucial aspect
to take advantage of both faster memory and parallelism. Each thread has private local
variable storage known as registers. Threads inside the same block can access the shared
memory, constant memory, and L1 cache. The memories for one block are inaccessible
by others inside the same SM. The number of grids can be at most the number of global
memories, and the global memory is shareable from all SMs.

Bit coalescing (Section 6.1) discusses the unification of LWE samples. Hence, for
a sufficiently large n-bit (LWE sample) coalescing, the memory requirement exceeds the
existing shared memory. Therefore, the current GPU construction uses the global memory
(the slowest). The rest of the computations use registers to store the thread-specific local
variables and shared memory to share the data among the threads.

Information 2024, 15, 40 25 of 27

Appendix A.3. Architectural Differences with CPU

Number of cores. Modern CPUs consist of a small number of independent cores and
thus confine the scopes of parallelism. GPUs, on the other hand, have an array of SMs,
where each SM possesses a large number of cores. For example, in Figure A2, the CPU
comprises 4 independent cores, while the GPU consists of N SMs with n CUDA cores in
each SM. Thus, GPUs offer more parallel computing power for any computation.

CPU
Core	1 Core	2

Core	3 Core	4

Cache

Main	Memory

Control
Unit

(a) CPU architecture

GPU
SM-NSM-0 SM-1

SM-1

C0 C1 Cn
C.Unit
Cache

C0 C1 Cn
C.Unit
Cache

C0 C1 Cn
C.Unit
Cache

(b) GPU architecture
Figure A2. A schematic illustration of CPU (a) and GPU (b) architecture. Unit and Cn represent a
control unit and a core in GPU, respectively. (b) illustrates an SM construction.

Computation complexity. Although GPUs provide more scopes of parallelism, GPU
cores lack the computational power. CPU cores have higher clock cycle (3.40 GHz) than
GPU (1734 MHz), as shown in Table A1. Moreover, CPU cores are capable of executing
complex instruction of small data. On the contrary, a GPU core is simple and typically
consists of an execution unit of integers and float numbers [56].

Memory space. Table A1 provides the storage capacity of different types of memory
in the machines. Additionally, a unique aspect of CPUs is that the main memory can
be modified on H/W. GPUs lack this facility as every device is shipped with fixed-size
memory. This creates additional complexities like memory exhaustion while computing
with a large dataset/models.

Number of threads. In modern desktop machines, the number of physical threads
is equal to the number of cores. However, hyperthreading technology virtually doubles
the number of threads. Thus, the CPUs can have virtual threads twice the number of
cores. GPUs, on the contrary, provide thousands of cores. In GTX 1080, the total number of
threads is 40,960. Therefore, the GPU is faster in data parallel algorithms.

References
1. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the STOC, Bethesda, MD, USA, 31 May 31–2

June 2009; Volume 9, pp. 169–178.
2. Pham, A.; Dacosta, I.; Endignoux, G.; Pastoriza, J.R.T.; Huguenin, K.; Hubaux, J.P. ORide: A Privacy-Preserving yet Accountable

Ride-Hailing Service. In Proceedings of the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada,
16–18 August 2017; pp. 1235–1252.

3. Kim, M.; Song, Y.; Cheon, J.H. Secure searching of biomarkers through hybrid homomorphic encryption scheme. BMC Med.
Genom. 2017, 10, 42. [CrossRef] [PubMed]

4. Chen, H.; Gilad-Bachrach, R.; Han, K.; Huang, Z.; Jalali, A.; Laine, K.; Lauter, K. Logistic regression over encrypted data from
fully homomorphic encryption. BMC Med. Genom. 2018, 11, 81. [CrossRef] [PubMed]

5. Morshed, T.; Alhadidi, D.; Mohammed, N. Parallel Linear Regression on Encrypted Data. In Proceedings of the In Proceedings of
16th Annual Conference on Privacy, Security and Trust (PST), Belfast, Ireland, 28–30 August 2018; pp. 1–5.

6. Naveed, M.; Ayday, E.; Clayton, E.W.; Fellay, J.; Gunter, C.A.; Hubaux, J.P.; Malin, B.A.; Wang, X. Privacy in the genomic era.
ACM Comput. Surv. (CSUR) 2015, 48, 6. [CrossRef] [PubMed]

7. Aziz, M.M.A.; Sadat, M.N.; Alhadidi, D.; Wang, S.; Jiang, X.; Brown, C.L.; Mohammed, N. Privacy-preserving techniques of
genomic data: A survey. Briefings Bioinform. 2017, 20, 887–895. [CrossRef]

8. 23AndMe.com. Our Health + Ancestry DNA Service—23AndMe Canada. Available online: https://www.23andme.com/en-ca/
dna-health-ancestry (accessed on 20 November 2020).

http://doi.org/10.1186/s12920-017-0280-3
http://www.ncbi.nlm.nih.gov/pubmed/28786366
http://dx.doi.org/10.1186/s12920-018-0397-z
http://www.ncbi.nlm.nih.gov/pubmed/30309350
http://dx.doi.org/10.1145/2767007
http://www.ncbi.nlm.nih.gov/pubmed/26640318
http://dx.doi.org/10.1093/bib/bbx139
https://www.23andme.com/en-ca/dna-health-ancestry
https://www.23andme.com/en-ca/dna-health-ancestry

Information 2024, 15, 40 26 of 27

9. Wang, X.S.; Huang, Y.; Zhao, Y.; Tang, H.; Wang, X.; Bu, D. Efficient genome-wide, privacy-preserving similar patient query based
on private edit distance. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, 12–16 October 2015; ACM: New York, NY, USA, 2015; pp. 492–503.

10. Al Aziz, M.M.; Alhadidi, D.; Mohammed, N. Secure approximation of edit distance on genomic data. BMC Med. Genom. 2017,
10, 41. [CrossRef]

11. Guerrini, C.J.; Robinson, J.O.; Petersen, D.; McGuire, A.L. Should police have access to genetic genealogy databases? Capturing
the Golden State Killer and other criminals using a controversial new forensic technique. PLoS Biol. 2018, 16, e2006906. [CrossRef]

12. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. Faster fully homomorphic encryption: Bootstrapping in less than 0.1
seconds. In Proceedings of the Advances in Cryptology—ASIACRYPT 2016: 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam, 4–8 December 2016; Springer: Berlin/Heidelberg, Germany,
2016; pp. 3–33.

13. CUDA-Accelerated Fully Homomorphic Encryption Library. 2019. Available online: https://github.com/vernamlab/cuFHE
(accessed on 15 December 2023).

14. NuFHE, a GPU-Powered Torus FHE Implementation. 2019. Available online: https://github.com/nucypher/nufhe (accessed on
15 December 2023).

15. Cingulata. 2019. Available online: https://github.com/CEA-LIST/Cingulata (accessed on 15 December 2023).
16. Cheon, J.H.; Kim, M.; Lauter, K. Homomorphic computation of edit distance. In Proceedings of the International Conference on

Financial Cryptography and Data Security, San Juan, Puerto Rico, 26–30 January 2015; Springer: Berlin/Heidelberg, Germany,
2015; pp. 194–212.

17. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. Faster packed homomorphic operations and efficient circuit bootstrapping
for TFHE. In Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security,
Hong Kong, China, 3–7 December 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 377–408.

18. Morshed, T.; Aziz, M.; Mohammed, N. CPU and GPU Accelerated Fully Homomorphic Encryption. In Proceedings of the 2020
IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Los Alamitos, CA, USA, 7–11 December 2020;
pp. 142–153. [CrossRef]

19. Regev, O. On lattices, learning with errors, random linear codes, and cryptography. J. ACM 2009, 56, 34. [CrossRef]
20. Cheon, J.H.; Han, K.; Kim, A.; Kim, M.; Song, Y. Bootstrapping for approximate homomorphic encryption. In Proceedings of the

Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, 29 April–3 May
2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 360–384.

21. Boura, C.; Gama, N.; Georgieva, M. Chimera: A Unified Framework for B/FV, TFHE and HEAAN Fully Homomorphic
Encryption and Predictions for Deep Learning. IACR Cryptol. ePrint Arch. 2018, 2018, 758.

22. Lomont, C. Introduction to Intel Advanced Vector Extensions. Intel White Paper 2011, pp. 1–21. Available online: https:
//hpc.llnl.gov/sites/default/files/intelAVXintro.pdf (accessed on 16 December 2023).

23. Frigo, M.; Johnson, S.G. FFTW: An adaptive software architecture for the FFT. In Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Seattle, WA, USA, 12–15 May 1998;
Volume 3, pp. 1381–1384.

24. Brakerski, Z.; Gentry, C.; Halevi, S. Packed ciphertexts in LWE-based homomorphic encryption. In Proceedings of the
International Workshop on Public Key Cryptography, Nara, Japan, 26 February–1 March 2013; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 1–13.

25. Ducas, L.; Micciancio, D. FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second. Cryptology ePrint Archive,
Report 2014/816,2014 . Available online: https://eprint.iacr.org/2014/816 (accessed on 20 December 2023).

26. Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. IACR Cryptol. Eprint Arch. 2012, 2012, 144.
27. McGeoch, C.C. Parallel Addition. Am. Math. Mon. 1993, 100, 867–871. [CrossRef]
28. Karatsuba, A.A.; Ofman, Y.P. Multiplication of many-digital numbers by automatic computers. In Proceedings of the Doklady

Akademii Nauk; Russian Academy of Sciences: Moskva, Russia, 1962; Volume 145, pp. 293–294.
29. Chandra, R.; Dagum, L.; Kohr, D.; Menon, R.; Maydan, D.; McDonald, J. Parallel Programming in OpenMP; Morgan Kaufmann:

Cambridge, MA, USA, 2001.
30. NVIDIA. GeForce GTX 1080 Graphics Cards from NVIDIA GeForce. Available online: https://www.nvidia.com/en-us/geforce/

products/10series/geforce-gtx-1080/ (accessed on 20 December 2023).
31. Fickett, J.W. Fast optimal alignment. Nucleic Acids Res. 1984, 12, 175–179. [CrossRef]
32. Sotiraki, K.; Ghosh, E.; Chen, H. Privately computing set-maximal matches in genomic data. BMC Med. Genom. 2020, 13, 72.

[CrossRef]
33. Shimizu, K.; Nuida, K.; Rätsch, G. Efficient Privacy-Preserving String Search and an Application in Genomics. Bioinformatics 2016,

32, 1652–1661. [CrossRef]
34. Durbin, R. Efficient haplotype matching and storage using the positional Burrows–Wheeler transform (PBWT). Bioinformatics

2014, 30, 1266–1272. [CrossRef]
35. Xie, P.; Bilenko, M.; Finley, T.; Gilad-Bachrach, R.; Lauter, K.; Naehrig, M. Crypto-nets: Neural networks over encrypted data.

arXiv 2014, arXiv:1412.6181.

http://dx.doi.org/10.1186/s12920-017-0279-9
http://dx.doi.org/10.1371/journal.pbio.2006906
https://github.com/vernamlab/cuFHE
https://github.com/nucypher/nufhe
https://github.com/CEA-LIST/Cingulata
http://dx.doi.org/10.1109/HOST45689.2020.9300288
http://dx.doi.org/10.1145/1568318.1568324
https://hpc.llnl.gov/sites/default/files/intelAVXintro.pdf
https://hpc.llnl.gov/sites/default/files/intelAVXintro.pdf
https://eprint.iacr.org/2014/816
http://dx.doi.org/10.1080/00029890.1993.11990504
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/
http://dx.doi.org/10.1093/nar/12.1Part1.175
http://dx.doi.org/10.1186/s12920-020-0718-x
http://dx.doi.org/10.1093/bioinformatics/btw050
http://dx.doi.org/10.1093/bioinformatics/btu014

Information 2024, 15, 40 27 of 27

36. Takabi, H.; Hesamifard, E.; Ghasemi, M. Privacy preserving multi-party machine learning with homomorphic encryption.
In Proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS), Barcelona, Spain, 5–10
December 2016.

37. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast Fully Homomorphic Encryption Library. August 2016. Available
online: https://tfhe.github.io/tfhe/ (accessed on 20 December 2023).

38. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM
1978, 21, 120–126. [CrossRef]

39. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the Advances in cryptology,
EUROCRYPT, Prague, Czech Republic, 2–6 May 1999; Springer: Berlin/Heidelberg, Germany, 1999; pp. 223–238.

40. Microsoft SEAL (Release 3.2). 2019. Microsoft Research, Redmond, WA. Available online: https://github.com/Microsoft/SEAL
(accessed on 20 December 2023).

41. Gentry, C.; Sahai, A.; Waters, B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Advances in Cryptology–CRYPTO 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 75–92.

42. Brakerski, Z.; Vaikuntanathan, V. Efficient fully homomorphic encryption from (standard) LWE. SIAM J. Comput. 2014, 43, 831–871.
[CrossRef]

43. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans.
Comput. Theory 2014, 6, 13. [CrossRef]

44. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In Proceedings of
the International Conference on the Theory and Application of Cryptology and Information Security, Hong Kong, China, 3–7
December 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 409–437.

45. Flynn, M.J. Some computer organizations and their effectiveness. IEEE Trans. Comput. 1972, 100, 948–960. [CrossRef]
46. Halevi, S.; Shoup, V. Algorithms in helib. In Proceedings of the Annual Cryptology Conference, Santa Barbara, CA, USA, 17–21

August 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 554–571.
47. Doröz, Y.; Öztürk, E.; Savaş, E.; Sunar, B. Accelerating LTV based homomorphic encryption in reconfigurable hardware. In

Proceedings of the International Workshop on Cryptographic Hardware and Embedded Systems, Saint-Malo, France, 13–16
September 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 185–204.

48. López-Alt, A.; Tromer, E.; Vaikuntanathan, V. On-the-fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, New York, NY, USA, 20–22
May 2012; ACM: New York, NY, USA, 2012; pp. 1219–1234.

49. Dai, W.; Sunar, B. cuHE: A homomorphic encryption accelerator library. In Proceedings of the International Conference on
Cryptography and Information Security in the Balkans, Koper, Slovenia, 3–4 September 2015; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 169–186.

50. Dai, W.; Doröz, Y.; Sunar, B. Accelerating swhe based pirs using gpus. In Proceedings of the International Conference on
Financial Cryptography and Data Security, San Juan, Puerto Rico, 26–30 January 2015; Springer: Berlin/Heidelberg, Germany,
2015; pp. 160–171.

51. Lei, X.; Guo, R.; Zhang, F.; Wang, L.; Xu, R.; Qu, G. Accelerating Homomorphic Full Adder based on FHEW Using Multicore
CPU and GPUs. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Commu-
nications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Zhangjiajie, China , 10–12 August 2019.

52. Yang, H.; Yao, W.; Liu, W.; Wei, B. Efficiency Analysis of TFHE Fully Homomorphic Encryption Software Library Based on
GPU. In Proceedings of the Workshops of the International Conference on Advanced Information Networking and Applications,
Matsue, Japan, 27–29 March 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 93–102.

53. Zhou, T.; Yang, X.; Liu, L.; Zhang, W.; Li, N. Faster bootstrapping with multiple addends. IEEE Access 2018, 6, 49868–49876.
[CrossRef]

54. Zama. Concrete: TFHE Compiler That Converts Python Programs into FHE Equivalent, 2022. Available online: https:
//github.com/zama-ai/concrete (accessed on 20 December 2023).

55. Jha, S.; Kruger, L.; Shmatikov, V. Towards practical privacy for genomic computation. In Proceedings of the 2008 IEEE Symposium
on Security and Privacy (sp 2008), Oakland, CA, USA, 18–21 May 2008; pp. 216–230.

56. NVidia, F. Nvidia’s Next Generation Cuda Compute Architecture; NVidia: Santa Clara, CA, USA, 2009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://tfhe.github.io/tfhe/
http://dx.doi.org/10.1145/359340.359342
https://github.com/Microsoft/SEAL
http://dx.doi.org/10.1137/120868669
http://dx.doi.org/10.1145/2633600
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/ACCESS.2018.2867655
https://github.com/zama-ai/concrete
https://github.com/zama-ai/concrete

	Introduction
	Background
	Torus FHE (TFHE)
	Sequential Framework
	Addition
	Multiplication

	CPU-Based Parallel Framework
	Addition
	Multiplication

	String Search: Problem Definition

	Methods
	GPU-Based Parallel Framework
	Proposed Techniques for Parallel HE Operations
	Algebraic Circuits on GPU
	Bitwise Operations

	Secure String Search Operations
	Hamming Distance
	Edit Distance Approximation
	Set-Maximal Distance

	Experimental Analysis
	GPU-Accelerated TFHE
	Compound Gate Analysis
	Addition
	Multiplication
	Karatsuba Multiplication
	String Search Operations

	Discussion
	Related Works
	Parallel Frameworks for FHE
	Secure String Distances in Genomic Data

	Conclusions
	Appendix A
	Appendix A
	Appendix A
	Appendix A

	References

