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Abstract: The presence of malicious software (malware), for example, in Android applications (apps),
has harmful or irreparable consequences to the user and/or the device. Despite the protections app
stores provide to avoid malware, it keeps growing in sophistication and diffusion. In this paper,
we explore the use of machine learning (ML) techniques to detect malware in Android apps. The
focus is on the study of different data pre-processing, dimensionality reduction, and classification
techniques, assessing the generalization ability of the learned models using public domain datasets
and specifically developed apps. We find that the classifiers that achieve better performance for
this task are support vector machines (SVM) and random forests (RF). We emphasize the use of
feature selection (FS) techniques to reduce the data dimensionality and to identify the most relevant
features in Android malware classification, leading to explainability on this task. Our approach
can identify the most relevant features to classify an app as malware. Namely, we conclude that
permissions play a prominent role in Android malware detection. The proposed approach reduces
the data dimensionality while achieving high accuracy in identifying malware in Android apps.

Keywords: android applications; datasets; explainability; feature selection; machine learning; malware
detection; numerosity balancing; security; soft computing; supervised learning

1. Introduction

The worldwide use of smartphones has grown exponentially over the past decade.
As of November 2023, the estimated number of smartphone users is 5.25 billion, and it
continues to grow [1]. This growth has been accompanied by the popularization of Android,
an open-source operating system (OS) mainly designed for touchscreen mobile devices.
It is the mobile OS with the largest market share, with roughly 70% [2]. In November
2023, the app store Google Play Store had 3.718 million apps available for Android users to
download [3].

The rapid wide-scale expansion of the use of smartphone devices, the increased popu-
larity of the Android OS, and the wide variety and number of Android apps have attracted
the attention of malware developers. Attackers can target a wide range of applications
that deal with a significant number of user-sensitive data. They can also target the user’s
data on the smartphone or may use the device to carry out other attacks. Furthermore,
from the attacker’s perspective, the massive number of users are all targets and potential
victims who can download their malware. Since the Android system has become a popular
and profitable target, malicious attacks against Android mobile devices have increased.
In 2021, 9.5 million malware Android packages were detected, three times more than in
2019 (3.1 million) [4]. Millions of users can download one app (possibly with malicious
software) in a matter of minutes. Thus, the need to detect malicious apps is a major issue.
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Some software and applications focus on security, and app stores have security and
detection mechanisms to mitigate malicious apps. To some extent, these are successful, but
malware keeps growing in sophistication and diffusion, sometimes easily bypassing these
mechanisms. ML approaches have shown to be effective and versatile in various fields,
being a milestone in the tech industry. Thus, in recent years, ML techniques have been
proposed for the malware detection problem in Android applications [4–10].

Paper Contributions

This work focuses on the use of ML techniques for malware detection in Android
applications, and its main contributions are the following:

• Assessing the impact of different data pre-processing techniques using four different
datasets. Data pre-processing is an essential step and, to the best of our knowledge,
this aspect is lacking attention in the literature on this problem.

• Enriching the literature by identifying the most decisive features for malware detection
among the public-domain datasets used and identifying the ML classifiers that provide
the best results.

• Expanding the literature by using real-world Android applications (developed and
existing) to extend test scenarios over the ones made available by the datasets. To
the best of our knowledge, no previous work has developed specific applications for
malware model testing.

In this paper, we extend our previous work [11] with (non-deep) machine learning
techniques, providing the following novel contributions and extensions:

• The use of real-world apps in the assessment of the ML model learned from standard
datasets. We also provide a discussion on the challenges posed by the mapping from
the real-world app to our learned models.

• The use of more datasets, feature selection filters, classifiers, and data pre-processing
techniques, namely, different instance (numerosity) sampling techniques. The combi-
nation of these techniques on an ML pipeline is addressed and evaluated.

• A detailed and deeper discussion of the experimental results on four datasets instead
of two. These four datasets have different characteristics regarding the key aspects of
the data. This leads to the need to analyze the results from each dataset individually.

• For each dataset, we report the top five features that seem to be more decisive regarding
malware classification, yielding some explainability on the classification. We highlight
the features that most contribute to explaining the classification.

The remainder of this paper is organized as follows. Section 2 provides an overview
of Android apps and related work. The proposed approach is described in Section 3. The
experimental evaluation is reported in Section 4. Finally, Section 5 ends the paper with
concluding remarks and directions for future work.

2. Related Work

This section briefly overviews Android malware detection, approaching ML tech-
niques, algorithms, and datasets. It begins with a general Android app overview in
Section 2.1 and malware types and security measures in Section 2.2. Then, it discusses data
acquisition, namely, analysis types, and datasets in Section 2.3 and explores techniques for
data pre-processing and splitting in Section 2.4. ML algorithms and their evaluation metrics
are presented in Sections 2.5 and 2.6, respectively. This section ends by summarizing
previous approaches to malware detection that have been proposed in the literature, in
Sections 2.7 and 2.8.

2.1. Android Applications

Android is an open-source OS based on the Linux kernel, designed mainly for touch-
screen mobile devices. First launched in 2008, it has many versions, with releases every few
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months. To understand how malware can exploit the Android OS, it is essential to know
the key components of an Android app. Figure 1 depicts the elements that compose the
Android package kit (APK) file of an Android app [10].

AndroidManifest.xml

classes.dex

resources.arsc

res

assets

lib

META-INF

APK File

Figure 1. Components of an Android application (app).

Knowledge about the structure of an Android app allows for a better understanding
of some of the critical security aspects. For instance, apps require system permissions to
perform specific functionalities. Malware often exploits these accesses and permissions to
perform attacks [12]. Thus, the AndroidManifest.xml file, with the permissions requested
by the app, is relevant in determining if an app is malicious, as discussed in Section 2.3.

2.2. Malware on Android Applications

Malware takes different forms and approaches, such as remote access trojans, banking
trojans, ransomware, adware, spyware, scareware, and premium text short message service
(SMS). Malware exploits system vulnerabilities, design weaknesses, and security flaws in
many Android applications that threaten end-users and/or lure the user through social
engineering to install apps containing malware [13]. There are well-documented Android
malware families, such as “ExpensiveWal”, “HummingBad”, and “Chamoi”, which can
be embedded or hidden in many apps available in app stores and then downloaded by
millions of users.

There are several security measures to mitigate malware attacks, such as using secure
internet connections, installing anti-malware apps, and the validation of the apps performed
by the app stores. Android also inherits some security measures since the kernel provides
application sandboxing and process isolation [12]. These security measures, to some extent,
successfully mitigate malware attacks. However, sometimes they can be bypassed with a
variety of techniques to hinder the identification and neutralization of malware [9].

2.3. Data Acquisition

This section provides insight into the different types of analysis used to extract features
from Android apps and into some of the datasets for Android malware detection found in
the literature.

2.3.1. Type of Analysis

Three types of approaches can be followed to extract features from Android apps:
static, dynamic, and hybrid. Static analysis is the most popular, followed by the dynamic
and hybrid approaches [10]. In static analysis, the app is analyzed in a non-runtime
environment. Feature extraction is usually carried out by analyzing the code and the
AndroidManifest.xml file [9]. It is generally faster and more straightforward than the other
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analysis types. Dynamic analysis occurs during the app’s regular operation in a monitored,
controlled, or sandbox environment [10] to analyze its behavior. Thus, it is computationally
more demanding than static analysis [12]. Features can be extracted by analyzing network
traffic, system calls, system resources, and other app behaviors [9]. Finally, hybrid analysis
combines the previous two types of analysis [12]. However, as with dynamic analysis,
researchers are discouraged by the time and computational resources it requires and its
complexity, making it the less popular type of analysis.

2.3.2. Datasets

Several standard datasets for malware detection in Android apps are mentioned in
the literature [10]. Unfortunately, frequently these are not easy to obtain. Often, the access
is restricted, involving payment or authorization. In other cases, the sources may not
be trustworthy.

Alkahtani and Aldhyani considered the Drebin and CICAndMal2017 datasets in
their study [4], available in [14,15], respectively. The Drebin dataset, first published in
2014, contains 215 features extracted from 15,036 applications, with 9476 benign apps and
5560 malware apps from 179 different malware families. The CICAndMal2017 dataset,
published in 2018, contains 183 features and 29,999 instances extracted from several sources,
such as the Google Play Store. The malware samples can be organized into adware,
ransomware, scareware, and SMS malware, from a total of 42 unique malware families.

The Android Malware (AM) and the Android Malware static feature (AMSF) datasets,
available in [16,17], respectively, are also considered in this paper. The AM dataset was
created by Martín et al. in 2016, in the context of their study [8]. It contains meta information
on Android apps with 183 features and 11,476 instances. The AMSF dataset is organized into
six parts, each with different features: permissions, intents, system commands, application
programming interface (API) calls, API packages, and opcodes. These datasets were
extracted from the same APK. In total, it contains 1062 features and 5019 samples of apps
collected from the Google Play Store, APKPure, and VirusShare.

2.4. Data Pre-Processing and Splitting

This section overviews some data pre-processing and data-splitting techniques.

2.4.1. Data Pre-Processing

Data pre-processing can be generalized and aggregated into four categories [18]: clean-
ing, integration, reduction, and transformation. Data cleaning includes handling missing
values, which can be done with different approaches, such as discarding instances with
missing values or performing missing value imputation. It also addresses reformatting
the data to ensure standard formats and attribute conversions, such as one-hot or label
encoding. Data cleaning includes the identification of outliers and the smoothing of noisy
data. Data integration consists of merging data from multiple sources into a single dataset.
Data reduction techniques aim to derive a reduced representation in terms of volume,
keeping the integrity of the original data. The main strategies for data reduction are
dimensionality reduction, and numerosity reduction, which includes instance sampling.
Dimensionality reduction can be performed by feature selection techniques, such as the
relevance-redundancy feature selection(RRFS) filter approach [19]. RRFS involves discard-
ing the weakly relevant and redundant features while keeping the relevant ones adding
more value to the model. For relevance analysis, different measures can be applied, such as
the unsupervised mean–median (MM) relevance measure given by

MMi = |Xi − median(Xi)|, (1)

with Xi denoting the sample mean of feature Xi. We also consider the supervised Fisher’s
ratio (FR) relevance metric
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FRi =

∣∣∣X(−1)
i − X(1)

i

∣∣∣√
var(Xi)(−1) + var(Xi)(1)

, (2)

where X(−1)
i , X(1)

i , var(Xi)
(−1), and var(Xi)

(1) are the sample means and variances of
feature Xi, for the patterns of each class. The redundancy analysis between two features,
Xi and Xj, is done with the absolute cosine (AC)

ACXi ,Xj = |cos(θXiXj)| =
∣∣∣∣ ⟨Xi, Xj⟩
||Xi|| ||Xj||

∣∣∣∣ = ∑ n
k=1XikXjk√

∑ n
k=1X2

ik ∑ n
k=1X2

jk

, (3)

where ⟨, ⟩ and ||.|| denote the inner product and L2 norm, respectively.
Numerosity reduction includes instance sampling, a method that balances imbal-

anced data. Undersampling consists of removing samples of the majority class, yielding
information loss. To balance data, oversampling, which involves replicating instances
of the minority class, can also be applied, yielding a higher chance of overfitting. Other
techniques, such as the synthetic minority oversampling technique (SMOTE) [20], perform
oversampling by creating synthetic data instead of copying existing instances.

Lastly, data transformation aims to change the data’s value, structure, or format to
shape it into an appropriate form. The most widely used techniques are normalization and
discretization. The first involves scaling attributes to ensure they fit within a specified range.
One of the most popular techniques for this task is min–max normalization. The use of
discretization techniques reduces the number of continuous feature values by partitioning
the feature range into intervals to replace the actual data values. The original feature values
are replaced by integer indexes that represent each discretization interval, achieving a
simplified representation of the data.

2.4.2. Data Splitting

Data are typically split into two or three sets: training, testing, and validation, based
on random or stratified sampling. Cross-validation (CV) [21] is a resampling method that
splits the data into subsets and rotates their use among them. The nested CV strategy
is applied to the training, testing, and validation sets. It consists of an outer loop and
an inner loop. The outer loop deals with the training and testing sets and estimates the
generalization error by averaging test set scores over several dataset splits. The inner loop
deals with the training and validation sets, with all subsets being obtained from the training
set of the outer loop. In the inner loop, the score is approximately maximized by fitting
a model to each training set and then directly maximized by selecting hyperparameters
over the validation set. There are different types of CV, such as stratified K-fold CV and
leave-one-out cross-validation (LOOCV). Stratified K-fold CV splits the data into K folds
of approximately equal size with stratified sampling. LOOCV is the exhaustive holdout
splitting approach, being a particular case of K-fold CV where K is equal to the number
of instances.

2.5. Classifiers

In this section, a brief description of the classifiers used in this research is presented.
Random forests(RF) [22] is an ensemble method that aggregates the output of multiple
decision trees (DT) [23,24] to reach a single result. Support vector machines (SVM) [25]
work by mapping data to a high-dimensional feature space to categorize data points. Even
when the classes are not linearly separable, the data are transformed so that the separator
can be drawn as a hyperplane that best splits the data into two classes [26]. K-nearest
neighbors (KNN) [24,27] classifies a data point by a majority vote of its neighbors, with the
data point being assigned to the class most common among its K nearest neighbors. Naïve
Bayes (NB) classifiers follow a probabilistic approach based on Bayes’ Theorem that relies
on incorporating prior probability distributions to generate posterior probabilities [24,28].
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As an additional technique, we also consider a classic multilayer perceptron(MLP) [29,30]
as a classifier. An MLP has the advantage of learning non-linear models; the ability to
train models in real-time (online learning); handling large numbers of input data; and,
once trained, making quick predictions. However, it is more computationally costly
than other classifiers and may be sensitive to feature scaling. We use the default im-
plementation of MLP from the scikit-learn library, without resorting to deep learning
techniques implementations.

2.6. Evaluation Metrics

This section describes the evaluation metrics used to assess the performance of the ML
models. In this study, we adopt the following terminology: a true positive (TP) means to
classify a malicious app as malicious correctly, a true negative (TN) is to classify a benign
app as benign, a false positive (FP) is to classify a benign app as malicious, and a false
negative (FN) refers to classifying a malicious app as benign. The accuracy (Acc) evaluation
metric conveys the fraction of correct predictions made by the model and is given by

Acc =
TP + TN

TP + TN + FP + FN
. (4)

In very unbalanced scenarios, accuracy can be misleading and other evaluation metrics
are used. The positive predictive value, or precision (Prec), is given by

Prec =
TP

TP + FP
, (5)

whereas the true positive rate (TPR), or sensitivity, also known as recall (Rec), is
computed as

Rec =
TP

TP + FN
. (6)

Finally, the F1-score, given by the harmonic mean of the precision and recall metrics

F1 = 2
Precision × Rec
Precision + Rec

, (7)

is also considered, as well as the area under the curve—receiver operating characteristic
(AUC-ROC) evaluation metric is also considered.

2.7. Overview of Machine Learning Approaches

This section focuses on the use of some common ML approaches for Android malware
detection found in the literature. Section 2.8 addresses other techniques such as deep
learning (DL).

Alkahtani and Aldhyani [4] applied SVM and KNN to two standard datasets: CICAn-
dMal2017 and Drebin. SVM achieved an 80.71% accuracy with the Drebin dataset. For the
CICAndMal2017 dataset, the authors claim to have achieved 100% accuracy. Regarding
KNN, it achieved 81.57% on the Drebin dataset and 90% on the CICAndMal2017 dataset.
Overall, SVM and KNN successfully detected malware, but SVM was more effective.

Muzaffar et al. [12] identified that many existent studies cite high accuracy rates.
However, many use outdated datasets and inappropriate evaluation metrics that may be
misleading. Kouliaridis and Kambourakis [9] concluded that, among the surveyed works,
static analysis is the predominant approach, while publicly available datasets are often
outdated. ML-based models are the most commonly used, and accuracy is the preferred
evaluation metric. In studies from 2014 to 2021, RF and SVM are the most frequently
employed algorithms. Wu et al. [10] provided insight into the most popular datasets used
in the literature and concluded that the most used ML algorithms for Android malware
detection between 2019 and 2020 were SVM, RF, and KNN.
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Keyvanpour et al. [7] conducted experiments with the Drebin dataset and proposed
embedding effective FS with RF. Other classifiers, such as KNN and NB, were tested, but
RF outperformed other models based on several metrics. FS was shown to improve the
RF classifier, with the authors reporting 99.49% accuracy and AUC of 95.6%, when using
effective FS and RF with 100 trees.

Islam et al. [6] used the CCCS-CIC-AndMal2020 dataset, with 53,439 instances and
141 features. Missing data imputation was applied with the “mean” strategy, and SMOTE
was used to deal with class imbalance. Min–max normalization was applied, and one-hot
encoding was used for feature conversion. Recursive feature elimination (RFE) was used
to perform FS, discarding 60.2% of the features. The reduced set of features lessened the
complexity and improved the accuracy. The authors proposed multi-classification based on
dynamic analysis, with an ensemble ML approach with weighted voting that incorporates
RF, KNN, MLP, DT, SVM, and logistic regression (LR), which showed 95% accuracy.

Alomari et al. [31] proposed a multi-classification approach using the CICMalDroid2020
dataset, with 11,598 instances and 470 features. The z-score normalization, SMOTE and
principal component analysis (PCA), were applied. SMOTE and z-score normalization
improved the results, while PCA was not beneficial. Their approach was based on the light
gradient boosting mode (LightGBM), but the performance of KNN, RF, DT, and NB was
also analyzed. LightGBM presented the best accuracy and F1-score, achieving 95.49% and
95.47%, respectively.

Kouliaridis et al. [32] review the literature on Android malware detection, spanning
the period from 2012 to 2020. On the Drebin, VirusShare, and AndroZoo datasets, the
authors rank the importance of features with the Information Gain metric. They found that
features related to permissions and intents rank higher than others. However, the single
use of permission-related features alone, and the mixture of permission- and intent-related
features, does not yield remarkable results in malware detection. Thus, the authors identify
the need to check supplementary and more weighty features.

In another work by Kouliaridis et al. [33], the authors explore the use of the dimension-
ality reduction techniques PCA and t-SNE (t-distributed stochastic neighbor embedding)
in malware detection. The authors propose a simple ensemble aggregated base model
of similar feature types and a complex ensemble with heterogeneous base models. The
experimental results on the Androzoo dataset show the adequacy of ensembles for mal-
ware detection.

The Androtomist tool for the static and dynamic analysis of applications on the An-
droid platform is proposed by Kouliaridis et al. in [34]. This hybrid approach resorts to
features stemming from static analysis along with dynamic instrumentation. The approach
resorts to machine learning and signature-based detection techniques. Androtomist soft-
ware is made publicly available as open source and can be installed as a web application.
The authors also provide an ensemble approach with an insight on the most influencing
features regarding the classification process. The approach shows promising to excellent
results in terms of the accuracy, F1-score, and AUC-ROC metrics.

Potha et al. [35] find that heterogeneous ensembles can provide malware detection
solutions that are better than individual models. They propose the extrinsic random-
based ensemble (ERBE) method, which uses a given set of repetitions and a subset of
external (malware or benign) instances. The classification features are randomly selected,
and an aggregation function combines the output of all base models for each test case
separately. Using solely static analysis, the ERBE method takes advantage of the availability
of multiple external instances of different sizes and genres. The experimental results with
the AndroZoo dataset show the effectiveness of the proposed method.

Table 1 summarizes some results reported in the existing approaches.
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Table 1. Summary of some results reported in existing approaches.

Study Dataset Classifier Acc (%)

Alkahtani and Aldhyani [4]
Drebin SVM 80.71

KNN 81.57

CICAndMal2017 SVM 100.0
KNN 90.00

Keyvanpour et al. [7] Drebin RF (with 100 DT) 99.49
Islam et al. [6] CCCS-CIC-AndMal2020 Ensemble 95.00

AlOmari et al. [31] CICMalDroid2020 LightGBM 95.49

2.8. Other Approaches and Surveys on the Topic

There are other approaches to detecting malware in Android apps. For example, the
use of deep learning (DL) techniques has provided satisfactory results, as reported in the
works by [4,10,31,36–38], in relation to detecting malware on Android apps.

An ML approach with data from the Canadian Institute for Cybersecurity is reported
by Akhtar and Feng [39], showing that DT, SVM, and convolutional neural networks
(CNNs) performed well, with DT being the best classifier. A hybridization of CNN and ML
techniques is proposed by Hashin in [40].

The work by Djenna et al. [41] addresses the combination of behavior-based deep
learning and heuristic-based approaches for malware detection, comparing them with static
deep learning methods. Online learning has also been proposed by Muzaffar et al. [12].
Shaojie Yang et al. [42] proposed an Android malware detection approach based on con-
trastive learning. A malware detection model for malicious network traffic identification
based on FS and neural networks is reported by Lu et al. [43].

Adebayo and Aziz [44] proposed an improved malware-detection model using the
A-priori algorithm to learn association rules. A malware detection technique based on the
semantic information of behavioral features, with a vectorized representation of the API
calls sequence by a word embedding model, is proposed by Zhang et al. [45].

The DexRay technique, which converts the bytecode of the app DEX files into grayscale
“vector” images and feeds them to a 1-dimensional CNN model, was proposed by [46].
Over 158k apps, DEXRAY achieves a high detection rate regarding the F1-score metric. The
Hybroid malware detection framework performs a hybrid (static and dynamic) approach
and was proposed by Kabakus [47].

The Androtomist tool proposed in [34] is available at https://androtomist.com (ac-
cessed on 29 December 2023) and https://github.com/billkoul/AndrotomistLite (accessed
on 29 December 2023).

Malware detection is a hot topic of research with many survey and review papers.
For recent surveys, please see the works by Aboaoja et al. [48], Agrawal and Trivedi [49],
Almomani et al. [50], Deldar and Abadi [51], Faruki et al. [52], Gyamfi et al. [53], Kou-
liaridis et al. [9], Liu et al. [54], Meijin et al. [55], Muzaffar et al. [12], Naseeret al. [56],
Odusami et al. [57], Razgallah et al. [58], Souri et al. [59], Qiu et al. [60], Vasani et al. [61],
Wang et al. [62], and Wu et al. [10], as well as the many references therein.

3. Proposed Approach

In this section, we detail our proposed approach. In Section 3.1, we formulate our
ML approach, presenting it step by step and explaining our key choices. Afterwards, in
Section 3.2, the component of our approach using real-world applications is described.

3.1. Machine Learning Module

The Android malware detection task is formulated as a binary classification problem,
with a benign app considered a negative sample and a malicious app as a positive one.
Figure 2 depicts the first segment of the proposed approach, showing that we use binary
classification datasets for which we apply different data pre-processing techniques.

https://androtomist.com
https://github.com/billkoul/AndrotomistLite
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Dataset

Data pre-processing

Machine Learning module

Most relevant
features

...

Figure 2. Partial block diagram of the proposed approach: the data pre-processing stage, which is
composed of handling missing values, numerosity balancing, and feature selection. The vertical
arrow points to the continuation of the ML pipeline, and the right-hand side arrow highlights that
our approach identifies the most relevant features for the feature extraction module.

We start by getting data from Android apps with a dataset, such as Drebin or CICAn-
dMal2017. Next, data pre-processing techniques, namely, techniques to handle missing
values, for numerosity balancing and feature selection [63,64], are applied to properly
prepare the data and to assess their impact on the model’s performance. Additionally, a set
of the most relevant features will be obtained with a feature selection technique. Figure 3
describes the following steps of our proposed approach, after properly preparing the data.

ML classifier

Evaluation metrics

Dataset

Prediction

MaliciousBenign

Input data

Analysis

Data pre-processing

Data splitting

Testing set Training set

Machine Learning module

Model

Final model

Optimised
model

Most relevant
features

Validation set

Figure 3. Partial block diagram of the proposed approach: data splitting for training and testing
of the model with standard evaluation metrics. We also provide a validation set to perform hy-
perparameter tuning. The right-hand side arrow with input data refers to the use of data from
real-world applications.

After the data pre-processing stage, three data subsets are obtained from the data
splitting action: the training, testing, and validation sets. The training set is used to
train/learn the model that, given input data, can make a prediction, in this case, to classify
an app as benign or malicious. The testing set enables the analysis of the model through
standard evaluation metrics. Based on the values reported by the evaluation metrics, the
techniques used in the data pre-processing and data splitting phases can be changed or
improved, thus leveraging the model’s performance. The standard metrics also allow
comparisons with the existing studies, as reported in Section 2.6.

Figure 4 depicts how the use of the validation set improves the model by evaluating
it via the CV procedure and allowing for the tuning of the hyperparameters of the ML
algorithms. This diagram also depicts the complete ML module, developed in the Python
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programming language, that is responsible for building, improving, and evaluating the
model that will classify Android apps as benign or malicious.

ML classifier

Evaluation metrics

Dataset

Prediction

Evaluate

MaliciousBenign

Input data

Analysis

Data pre-processing

Data splitting

Testing set Training set Validation set
Hyperparameter

tuning

Machine Learning module

Model

Final model

Optimised
model

Most relevant
features

Figure 4. Full block diagram of the ML module, aggregating all the stages referenced in
Figures 2 and 3 as well as the hyperparameter tunning stage.

3.2. Complete Approach—Full Block Diagram

A diagram completely representing our proposed approach is depicted in Figure 5. It
incorporates the ML module from Figure 4, as well as the feature extraction module and
Android applications, which are described next.

ML classifier

Evaluation metrics

Dataset

Prediction

Evaluate

MaliciousBenign

Input data

Analysis

Data pre-processing

Data splitting

Testing set Training set Validation set
Hyperparameter

tuning

Machine Learning module

Android
applications

Feature extraction
module

Model

Final model

APK file

???

Most relevant features

Optimised
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Figure 5. Full block diagram of the proposed approach with the ML module and the Android
applications and feature extraction modules.

The feature extraction module follows a static analysis approach. It was developed in
Python, and in Androguard, a tool and Python library to interact with Android files, which
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enables the extraction of the features from the Android app files. Thus, this module extracts
static features from an Android app’s APK file. The features sought for extraction were
related to: permissions, classes, methods, intents, activities, services, receivers, providers,
software, and hardware. These groups of features were preferred since they are often found
in the analyzed datasets to be the most relevant features obtained via FS and are frequently
mentioned in the literature in the context of static analysis.

The mapping between the extracted features and the features deemed more indicative
of the presence of malware in Android apps provides the input data to the model, which
can then classify/predict the Android application as benign or malicious. Here, a significant
challenge emerged since the names of the features throughout the datasets are not standard-
ized. For example, when extracting the names of the permissions required by the app, the
feature android.permission.SEND_SMS is obtained. However, this feature in the Drebin
dataset corresponds to SEND_SMS and in the AMSF dataset to androidpermissionSEND_SMS.
This is an example of how the mapping between the dataset features and the features ex-
tracted from the APK file can be challenging. To improve the feature extraction module
on this issue, an approach based on string similarity was adopted. With this, although the
feature extraction module was not able to identify/map correctly all features, its mapping
is improved.

Basic Android applications, shown on the bottom right hand side of Figure 5, were
developed in the Kotlin programming language to allow for an assessment of the developed
prototype of the proposed approach with real-world apps. The specifically developed apps
were the following:

• ‘App1’, which tries to, unknowingly to the user, send an SMS message when the user
clicks on the button in the app. Requests permissions regarding SMS and other features
included in the top ten most relevant features in the Drebin and AMSF datasets.

• ‘App2’, which does not request/use any unnecessary features; thus, it is a benign app.
• ‘App3’, which requests permissions present among the most relevant features selected

in the Drebin and AM datasets, although it does not require any of them for any
functionality.

The expected labelling (ground-truth) for these apps is malicious, benign, and benign,
respectively. Figure 6 depicts screen-shots of these apps.

Figure 6. Developed Android applications: ‘App1’ (two images on the left hand-side), ‘App2’,
and ‘App3’.

4. Experimental Evaluation

We now report the experimental evaluation process, conducted using Python and the
ML library ‘scikit-learn’. We have considered the classifiers mentioned in Section 2.5 and
the evaluation metrics described in Section 2.6.

This section is organized as follows. Section 4.1 performs dataset analysis. Baseline
experimental results are presented in Section 4.2. Section 4.3 reports experimental results
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after applying some data pre-processing techniques. Section 4.4 presents the outcomes of
applying FS. Section 4.5 displays the results obtained via CV and by performing hyperpa-
rameter tuning. Section 4.6 compares some of the obtained experimental results with those
from existing studies. In Section 4.7, real-world Android applications are used to assess the
prototype of the proposed approach. Finally, Section 4.8 provides an overall assessment of
the experimental evaluation and a comparison with existing approaches.

4.1. Dataset Analysis

The datasets used were Drebin [14], CICAndMal2017 [15], Android Malware (AM) [16],
and Android Malware static feature (AMSF) [17]. Since the proposed approach is based on
static analysis, only static features are considered. Thus, dynamic features were removed
if a dataset contained both types. The Drebin and AM datasets only have static features.
However, the CICAndMal2017 dataset contained 110 static features and 73 dynamic fea-
tures from a total of 183. The removal process was facilitated by the authors of the dataset,
who properly identified the static and dynamic features. The AMSF dataset also presents
static and dynamic features. Given that it was decomposed into six datasets, each one
affiliated with a different group of features, only the ones containing static features were
merged into the single dataset that was then used. Subsequently, the dimensionality of
each used dataset is depicted in Table 2.

Table 2. Summary of the datasets considered in the experimental evaluation.

Dataset Instances (n) Features (d) Available in

Drebin 15,036 215 [14]
CICAndMal2017 29,999 110 [15]

AM 11,476 182 [16]
AMSF 5019 966 [17]

The class distribution in the datasets was analyzed to evaluate if there were cases of
strong imbalance. Table 3 depicts the number of instances (n) per class for each dataset.

Table 3. Class distribution for each dataset.

Dataset Benign, n Malicious, n Total, n

Drebin 9476 (63.02%) 5560 (36.98%) 15,036
CICAndMal2017 9999 (33.33%) 20,000 (66.67%) 29,999

AM 8058 (70.22%) 3418 (29.78%) 11,476
AMSF 2508 (49.97%) 2511 (50.03%) 5019

Both the Drebin and CICAndMal2017 datasets present a ratio of approximately one-
third between class labels. Thus, both datasets are not perfectly balanced but cannot be
considered as imbalanced. The AM dataset is the most unbalanced among the chosen
datasets, with the malicious class labels being less than half of the benign ones. The AMSF
dataset is almost perfectly balanced. Regarding the data types of the features, Table 4
presents the number of features (d) of a categorical and non-categorical nature in each
dataset. These datasets have many binary features.

Table 4. Categorical and non-categorical features (d) in each dataset.

Dataset Categorical d Non-Categorical d Total d

Drebin 1 214 215
CICAndMal2017 5 105 110

AM 12 170 182
AMSF 0 966 966
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Concerning the number of missing values, Table 5 exhibits the number of occurrences
found in each dataset.

Table 5. Number of missing values in each dataset.

Dataset Number of Missing Values

Drebin 0
CICAndMal2017 204

AM 19,888
AMSF 0

The Drebin and AMSF datasets have no missing values. The CICAndMal2017 dataset
has 204 missing values, and the AM dataset contains 19,888 missing values. The AM
dataset, among the used datasets, requires more data pre-processing tasks since it is the
most unbalanced and contains the largest number of categorical features. Additionally,
it possesses a high number of missing values. The Drebin and AMSF datasets require
fewer data pre-processing tasks since they contain no missing values and their features are
essentially numerical.

4.2. Experimental Results—Baseline

To perform the first experiments, two significant issues were addressed: categorical
features and missing values, since some classifiers cannot deal with them. As a first
approach, all categorical features were converted to numerical ones via label encoding. The
missing values were dealt with by removing the instances that contained them unless all
instances of a feature were missing; in that case, the feature was removed. On the first
experiments, no validation set was obtained and no hyperparameter tuning was performed.
Training and testing sets were obtained via a random stratified sampling with a 70–30 ratio
for training and testing, respectively. Figures 7–9 summarize the results obtained for each
dataset and classifier regarding the accuracy, F1-score, and AUC-ROC metrics, respectively.

Figure 7. Accuracy (%) obtained with each classifier (RF, SVM, KNN, NB, and MLP) for each dataset.
The average accuracy per classifier is 92.78%, 83.48%, 82.40%, 80.55%, and 86.24%, respectively.
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Figure 8. F1-score (%) obtained with each classifier (RF, SVM, KNN, NB, and MLP) for each dataset.
The average F1-score per classifier is 92.51%, 70.72%, 76.83%, 79.10%, and 77.42%, respectively.

Figure 9. AUC-ROC (%) obtained with each classifier (RF, SVM, KNN, NB, and MLP) for each dataset.
The average AUC-ROC per classifier is 91.06%, 74.07%, 77.20%, 77.44%, and 79.95%, respectively.

With the Drebin dataset, the best accuracy results were obtained by the MLP and RF
classifiers, closely followed by SVM. Overall, all classifiers presented good results on this
dataset, with the worst result being NB, with 92.66% accuracy, nevertheless a good result.
The CICAndMal2017 dataset had the worst results, with the best one being 79.14% accuracy
with the RF classifier and the worst 62.01% accuracy with the KNN classifier. With the AM
dataset, the RF classifier obtained the best result, with the other classifiers showing less
satisfactory results, with the lowest being 64.91% accuracy, with the NB classifier. For the
AMSF dataset, 99.33% accuracy was obtained with the RF classifier, and the worst accuracy
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was 96.81% with the SVM classifier. For the F1-score and the AUC-ROC metrics, the
RF classifier attains the best results, which coincides with the findings in the literature.
In the following experiments, we will address the most popular ML classifiers for this
problem, which are the RF and SVM classifiers. The good results of the MLP classifier will
be further explored in future work.

4.3. Experimental Results—Data Pre-Processing Stage

In this section, the results regarding different data pre-processing techniques are
presented and compared with the baseline values. We address the handling of missing
values, normalization, and numerosity balancing techniques.

4.3.1. Handling Missing Values

Initially, removing instances containing missing values was the method applied to
deal with missing values, which yield data loss. Experiments with different methods to
deal with missing values were performed to better understand their impact. We have
considered the following approaches:

• Removing instances with missing values.
• Removing features with missing values.
• Missing value imputation with the mean of the explicit remaining feature values.

Since the Drebin and AMSF datasets had no missing values, only the CICAndMal2017
and AM datasets were considered in these experiments. Figure 10 depicts the accuracies
obtained with different methods to deal with missing values on the AM dataset.

Figure 10. Accuracy (%) obtained, with the RF and SVM classifiers, for the AM dataset after applying
different methods to deal with missing values.

The accuracy results obtained with the different methods to deal with missing values
do not differ significantly. The same was verified with the remaining evaluation metrics.
With both RF and SVM, removing instances containing missing values provided the best
results in terms of accuracy. The corresponding results for the CICAndMal2017 dataset also
did not vary substantially.

The results obtained by removing instances or features (containing missing values)
do not differ significantly from the ones where the missing values are imputed with the
estimated value based on the feature information. This is an indicator that the CICAnd-
Mal2017 and AM datasets possess irrelevant data, maybe even harmful, for the training of
the model. Thus, it is adequate to perform dimensionality reduction by using, for example,
FS techniques. This is further explored in Section 4.4.
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In the following experiments, missing value imputation with the mean strategy was
the approach chosen since it does not yield data loss, being a straightforward approach
that keeps the data distribution.

4.3.2. Normalization

The conversion of categorical to numerical features via label encoding can introduce
large differences in the scales of features, mainly when applied to categorical features with
many distinct values. Additionally, algorithms that rely on distance calculations, such as
SVM, tend to be sensitive to feature scales. Normalizing features can improve the model
performance and result in faster convergence since normalized features are often more
interpretable by algorithms. Thus, min–max normalization was applied to accommodate
values between zero and one while maintaining the original data distribution. Table 6
reports the experimental results for accuracy (Acc), F1 score, and AUC-ROC with and
without min–max normalization, for the RF and SVM classifiers for the datasets with the
largest numbers of categorical features—the CICAndMal2017 and AM datasets.

Table 6. Accuracy (Acc), F1 score and AUC-ROC with min–max normalization, using the RF and
SVM classifiers on the CICAndMal2017 and AM datasets.

Classifier Dataset Normalization Acc (%) F1 Score (%) AUC-ROC (%)

RF CICAndMal2017 None 79.81 84.82 77.40
Min–max 79.62 84.72 77.06

RF AM None 93.28 88.02 90.28
Min–max 93.28 88.05 90.33

SVM CICAndMal2017 None 66.13 78.96 51.51
Min–max 70.81 79.71 63.22

SVM AM None 70.23 0.00 50.00
Min–max 90.88 82.77 85.89

Overall, the results with the RF classifier do not differ significantly, most likely because
the RF algorithm does not rely on distance calculations and, thus, is generally more robust
to large differences in the scales of features. The SVM classifier results greatly improve on
the CICAndMal2017 and AM datasets. Namely, these results highlight how the accuracy
metric can be misleading in some cases. Without min–max normalization, the SVM classifier
achieved 66.13% accuracy on the CICAndMal2017 dataset. However, the AUC-ROC
metric was 51.51%, suggesting a result close to a random classifier. With the min–max
normalization, the AUC-ROC improved from 51.51% to 63.22%, and the accuracy improved
from 66.13% to 70.81%.

These results were even more meaningful on the AM dataset, with the accuracy im-
proving by approximately 20%, with normalization; the AUC-ROC value was previously
50% (a random classifier), and it reached 85.89% after min–max normalization. The Pre-
cision, Recall, and F1 score metrics were 0.0%, with zero true positives. After min–max
normalization, these indicators improved to 94.60%, 73.56%, and 82.77%, respectively.

4.3.3. Numerosity Balancing

To further improve the model, numerosity balancing techniques were applied to deal
with data imbalance, namely, random undersampling, random oversampling, and the
synthetic minority over-sampling technique (SMOTE) [20]. Table 7 reports the results, in
terms of accuracy (Acc) and Recall (Rec), for the RF and SVM classifiers with the different
numerosity balancing approaches for the AM dataset, the most imbalanced among all of
the datasets.
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Table 7. Accuracy (Acc) and Recall (Rec) values for the RF and SVM classifiers with the different
numerosity balancing approaches for the AM dataset.

Classifier Numerosity Balancing Acc (%) Rec (%)

RF

None 93.28 83.02
Random undersampling 91.36 86.44
Random oversampling 96.28 96.07

SMOTE 94.06 91.39

SVM

None 70.81 86.00
Random undersampling 89.18 82.44
Random oversampling 89.47 82.75

SMOTE 88.81 81.42

The results with the AM dataset improved significantly, with both RF and SVM
classifiers, namely, with the use of random oversampling. Moreover, on the AM dataset
the SVM classifier improved in terms of both accuracy and AUC-ROC, from 70.81% and
63.22%, respectively, to 89.47%. With the CICAndMal2017 dataset, the results also improved,
especially with random oversampling and the RF classifier. On both Drebin and AMSF
datasets, the results did not vary significantly.

Overall, random oversampling provided the best results, closely followed by SMOTE
and random undersampling. The latter yields information loss, resulting in fewer training
instances. SMOTE and random oversampling often provided the best results, not differing
significantly between them. Random oversampling is more straightforward than SMOTE
but can lead to overfitting; however, SMOTE is less prone to overfitting. Since the minority
class is moderately imbalanced in the chosen datasets, random oversampling is effective.
Thus, this was the chosen approach to numerosity balancing.

4.4. Experimental Results—Feature Selection

This section reports the experimental results obtained in the FS experiments, namely,
with the RRFS algorithm by Ferreira and Figueiredo [19]. Different relevance measures
were tested, namely, the supervised relevance measure FR and the unsupervised relevance
measure MM. The redundancy measure used was the AC, with an allowed maximum
similarity (Ms) between consecutive pairs of features of 0.3. Table 8 reports the accuracy
(Acc) values for the SVM classifier on each dataset in the following settings: baseline
(without FS), using RRFS with MM relevance, and using RRFS with the FR metric.

Table 8. Accuracy (Acc) obtained with the SVM classifier for each dataset, by not applying RRFS
(original baseline) and by applying it with MM and FR relevance metrics.

Dataset RRFS Acc (%)

Drebin
None 98.50
MM 94.71
FR 96.66

CICAndMal2017
None 71.69
MM 60.04
FR 68.52

AM
None 89.47
MM 86.99
FR 84.55

AMSF
None 99.53
MM 99.87
FR 98.41

Overall, the results worsen slightly after applying RRFS, and the same applies to the
RF classifier. However, these slight drops in accuracy in some of the results are arguably
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compensated for by the reduction in the number of features. The original number of
features versus the number of features after applying the RRFS approach with different
relevance measures for each dataset are presented in Figure 11.

Figure 11. Number of features for each dataset, by not applying RRFS (original baseline) nnd by
applying it with MM and FR relevance metrics.

Regardless of the relevance metric, the RRFS approach significantly reduced the
number of features in each dataset. The supervised relevance measure FR led to a more
considerable reduction in dimensionality than the unsupervised relevance measure MM.
The number of reduced features combined with the evaluation metrics results indicate that
the FR relevance measure presents overall better results. Thus, the use of the class label
improves on the results for this task.

With the FR measure, a subset of the most relevant features is obtained. The RRFS
approach continues by removing redundant features from this subset to obtain the best
feature subset [19], consisting of the most relevant and non-redundant features.

The redundancy measure applied was the AC. The Ms value can define the maximum
allowed similarity between pairs of features. Different values of Ms were tested (0.2, 0.3,
and 0.4) to balance better the number of reduced features while maintaining good results
in the evaluation metrics. The results obtained with different Ms were similar. However, a
pattern could be seen where, typically, Ms = 0.4 would provide the best results, closely
followed by Ms = 0.3 and then Ms = 0.2. The higher the Ms value, the less strict the
selection is regarding redundancy between features; thus, more features are kept. Based on
the results, to better accommodate both reducing features and maintaining good results,
Ms = 0.3 seems to be the best choice.

Overall, the results with the SVM classifier seem to vary more with the use of FS than
the results obtained with the RF classifier, with the latter being more robust to irrelevant
features. The results with the SVM classifier suffered more influence of FS, with a tendency
to get slightly worse. This could be because of the removal of too many features, which may
oversimplify the model (underfitting), or the dimensionality reduction was too aggressive,
leading to SVM struggling to find a reasonable decision boundary. However, the slightly
worse results in terms of evaluation metrics are the cost of being able to reduce the dataset’s
dimensionality, with a reduction of 56% for the Drebin dataset, 76% for the CICAndMal2017
dataset, 92% for the AM dataset and 87% for the AMSF dataset.

Besides dimensionality reduction, RRFS enables the identification of the most relevant
features for malware detection in Android apps, which is a key factor for the proposed
approach. To better understand if the most relevant features follow a pattern or are the
same among the different datasets, the five most decisive features are enumerated next.
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For the Drebin dataset, RRFS (FR) selects:

1. transact
2. SEND_SMS
3. Ljava.lang.Class.getCanonicalName
4. android.telephony.SmsManager
5. Ljava.lang.Class.getField

For the CICAndMal2017 dataset, RRFS (FR) selects:

1. Category
2. Price
3. Network communication : view network state (S)
4. Your location : access extra location provider commands (S)
5. System tools : set wallpaper (S)

For the AM dataset, RRFS (FR) selects:

1. com.android.launcher.permission.UNINSTALL_SHORTCUT
2. android.permission.VIBRATE
3. android.permission.ACCESS_FINE_LOCATION
4. name
5. android.permission.BLUETOOTH_ADMIN
6. android.permission.WAKE_LOCK

For the AMSF dataset, RRFS (FR) selects:

1. androidpermissionSEND_SMS
2. android.telephony.SmsManager.sendTextMessage
3. float-to-int
4. android.telephony.SmsManager
5. android.support.v4.widget

The most relevant features in the Drebin and AMSF datasets are permissions and
classes or methods. Permissions are the most relevant features in the AM dataset. In
the CICAndMAl2017 dataset, the most relevant features are permissions and meta in-
formation. Summarizing, across the different datasets, we have that some of the most
relevant features for Android malware detection are android.permission.SEND_SMS and
android.telephony.SmsManager. Overall, we found that the most indicative features regard-
ing the presence of malware in Android apps are permissions and typically SMS-related.

4.5. Experimental Results—CV and Hyperparameter Tuning

This section reports the experimental results obtained after performing the hyperpa-
rameter tuning of the RF and SVM classifiers and the use of CV. Initially, a random stratified
split was applied to the datasets with a 70–30 ratio for training and testing, respectively,
with no validation set considered and no hyperparameter tuning performed.

To perform the hyperparameter tuning of the RF and SVM classifiers, the function
GridSearchCV [65] of the scikit-learn library was applied. This function performs an
exhaustive search over specified parameter values for an estimator. The parameters of the
estimator are optimized by CV. The training set is provided to the function, which splits it
into training and validation sets. By default, the CV splitting strategy is stratified five-fold
CV. This function also enables the specification of the hyperparameters to be optimized
and their range of values.

The parameters we deemed more relevant and, thus, the parameters set during hyper-
parameter tuning were as follows. For the RF classifier, we considered:

• the number of trees in the range [100, 1000] with steps of 100.
• the maximum tree depth with the values 3, 5, 7, and None. The latter means the nodes

are expanded until all leaves are pure or until all leaves contain less than the minimum
number of samples required to split an internal node.

• the split quality measure as Gini, Entropy, or Log Loss.
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For the SVM classifier, we considered:

• the regularization parameter (C) in the range [1, 20] with steps of 1.
• the kernel type to be used in the algorithm: the radial basis function (RBF) kernel, the

polynomial kernel, the linear kernel, and the Sigmoid kernel.
• the kernel coefficient (gamma) for the previous kernel types (except the linear kernel).

Overall, the results improved across all evaluation metrics. However, this improve-
ment did not surpass 2%, thus only slightly improving the performance.

To also perform CV with the training and testing sets, an outer loop for CV was added.
In this case, we have a nested CV considering the CV performed in the GridSearchCV
function with the training and validation sets. For the outer loop, 10-fold CV and LOOCV
were applied. Here, the training time for the ML models frequently led to a “training time
bottleneck” due to the limited computational resources, the number of iterations, and the
number of hyperparameter combinations being tested. This was an even more significant
issue with LOOCV, where the number of iterations matches the number of instances of
the dataset used. As an attempt to sidestep this issue, the number of hyperparameter
combinations in the GridSearchCV function was reduced by considering the values more
often chosen in the optimization for each of the used datasets. However, some results
still could not be obtained, namely, with LOOCV, which is much slower than 10-fold CV.
Although it takes longer, its results are more stable and reliable than 10-fold CV since it
uses more training samples and iterations. With 10-fold CV, some results were obtained,
namely, in the form of the mean and standard deviation measures for each evaluation
metric. Overall, the results were satisfying, with the mean values not differing substantially
from those obtained after performing hyperparameter tuning, and the standard deviation
obtained throughout the different evaluation metrics was low, indicating that the results
are clustered around the mean, thus being more stable and reliable.

4.6. Comparative Analysis of Results—Discussion

In this section, some of the experimental results are compared to those from the
literature, namely, the ones in Table 1. However, this comparison is not straightforward;
often, the results are not directly comparable due to the use of different ML classifiers,
datasets (that might not be available), and data pre-processing techniques that often are
not fully described in the existing studies, with the source code also not being available for
analysis. Thus, only comparisons deemed reasonable according to these aspects were made.

Since two of the datasets herein used, the Drebin and CICAndMal2017 datasets, are
also used by Alkahtani and Aldhyani [4], the results obtained are briefly compared with
theirs. These authors performed a random split, with 70% for training and 30% for testing.
Regarding data pre-processing, only min–max normalization is mentioned. Aside from
this, no other pre-processing methods or tuning of hyperparameters are mentioned. Thus,
the methodology with which the results were obtained differs from ours. Since the authors
did not use the RF classifier, we will compare only the SVM accuracy results. Table 9
summarizes these results.

Table 9. Comparison of the experimental results, in terms of Accuracy (%), obtained by Alkahtani
and Aldhyani [4] with the SVM classifier with the ones obtained with the proposed approach using
the same classifier.

Dataset Alkahtani and Aldhyani Proposed

Drebin 80.71 97.47
CICAndMal2017 100.00 73.22

The proposed approach presented better accuracy on the Drebin dataset, achieving
97.47% accuracy compared to the 80.71% reported by Alkahtani and Aldhyani [4]. However,
regarding the CICAndMal2017 dataset, the proposed approach only achieved 73.22%
compared to the accuracy of 100% claimed by the authors. This disparity in the obtained
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results between the two studies using the same datasets lies in the different approaches
in the pre-processing applied, further emphasizing its importance since it significantly
impacts the obtained results.

Regarding the most relevant features for malware detection in Android applications,
Keyvanpour et al. [7] applied FS with effective and high-weight FS and reported the
most relevant features on the Drebin dataset. Two features deemed more relevant to
classify malware were SEND_SMS and android.telephony.SmsManager. These coincide
with the most relevant features to classify malware obtained with the RRFS (with FR
and Ms = 0.3) approach on the Drebin dataset where SEND_SMS ranked second and
android.telephony.SmsManager ranked fourth, and on the AMSF dataset where they
ranked first and fourth, respectively.

4.7. Experimental Results—Real-World Applications

In this section, the real-world application component of our proposed approach
described in Section 3.2 and depicted in Figure 5 is assessed with real-world apps.

First, we check on the malware detection results with our three developed apps,
referenced in Section 3.2 and depicted in Figure 6. The expected classifications for apps
‘App1’, ‘App2’, and ‘App3’, were malicious, benign, and benign, respectively. We train our
ML model using each dataset and then we evaluate each app with that model. We assessed
the predictions obtained with each model, and the results were as follows:

• ‘App1’ was classified as malicious, with the Drebin, CICAndMal2017, and AMSF
datasets.

• ‘App2’ and ‘App3’ were classified as benign, with the Drebin, AM, and AMSF datasets.

To further test the developed approach, APK found online were used. As benign
samples, APK of known apps were obtained from APKPure. The benign samples used
were the APK files ‘WhatsAppMessenger’ and ‘Amazon Shopping’, and in both cases, they
were correctly classified as benign when using the Drebin and AM datasets. Examples of
malicious APK were obtained from the website [66] that presents a collection of Android
malware samples. Three APK were used:

• an SMS stealer, which was classified by the ML model as benign, in most cases, thus
not corresponding to the expected prediction;

• a ransomware disguised as a simple screen locker app, such that the ML model
classified it as benign when learned with the Drebin and AM datasets and correctly as
malicious with the CICAndMal2017 and AMSF datasets;

• an app that makes unwanted calls and has some obfuscation techniques, which the
proposed approach correctly identified as malware with half of the datasets.

The proposed approach could not correctly identify malware in all cases, which was
expected. The issue of feature mapping should be taken into account as it negatively
influences the performance, often not identifying the features or misidentifying them.
Additionally, some of the malware samples tested used obfuscation techniques, which are
known to be a weakness of static analysis. Furthermore, the datasets used also greatly
impact the obtained prediction.

4.8. Discussion of the Experimental Results

This section discusses and performs an overall assessment of the experimental results,
with remarks on the techniques that achieved the best results across the different datasets.

The datasets that provided the best results starting at the baseline experiments were
the ones requiring less data pre-processing, Drebin, and AMSF. Meanwhile, the datasets
containing more missing values and categorical features, CICAndMal2017 and AM, pro-
vided worse results. AM is also the most unbalanced dataset out of the used datasets,
yielding some extra learning challenges. Whether the dataset contained a large number
of missing values, as was the case of the AM dataset, or none, as with Drebin and AMSF,
the use of different techniques to handle missing values did not provide any noticeable
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result changes. Normalization was shown to greatly improve the results with the SVM
classifier when there were significant differences in the scale of features, which is the case
with datasets having many categorical features converted to numerical ones.

Often, the choices made in data pre-processing provided a better result for one dataset
but a worse outcome for another. Thus, we found no ideal solution for all datasets. However,
overall, the use of numerosity balancing techniques was shown to improve the results
across all the datasets. Meanwhile, RRFS provided a significant reduction in the number of
features at the cost of a slight metric decrease. Using RRFS, we were able to identify the
top relevant features for classification, for each dataset. These features are mostly related
to permissions and communications. The improvement of the FS stage is an aspect to
improve on in future work. The extensive hyperparameter tuning stage provided very
slight improvements (about 2%) on the key evaluation metrics.

5. Conclusions and Future Work

Malware in Android applications affects millions of users worldwide and is constantly
evolving. Thus, its detection is a current and relevant problem. In the past few years,
ML approaches have been proposed to mitigate malware in mobile applications. In this
study, a prototype that resorts to ML techniques to detect malware in Android applications
was developed. This task was formulated as a binary classification problem, and public
domain datasets (Drebin, CICAndMal2017, AM, and AMSF) were used. Experiments were
performed with RF, SVM, KNN, NB, and MLP classifiers, showing that the RF and SVM
classifiers are the most suited for this problem.

Data pre-processing techniques were also explored to improve the results. Emphasis
was given to FS by applying the RRFS approach to obtain the most relevant and non-
redundant subset of features. Although RRFS provided slightly worse results regarding the
evaluation metrics, these were arguably compensated for by the dimensionality reduction
achieved in each of the used datasets. A reduction of 56% was achieved for the Drebin
dataset, 76% for the CICAndMal2017 dataset, 92% for the AM dataset, and 87% for the
AMSF dataset. Aside from the dimensionality reduction, RRFS selected the most relevant
subset of features to identify the presence of malware. Overall, permissions have a prevalent
presence among the most relevant features for Android malware detection.

A nested CV was used to evaluate the trained model better and to tune the ML
algorithms hyperparameters, improving the final ML model. As for evaluation metrics,
accuracy was used, but, since it can be misleading, other metrics were also applied.

The prototype of the proposed approach was assessed using real-world applications.
Overall, the results were negatively impacted by the non-standardization of the dataset’s
feature names, which prevented accurate mapping between the extracted features and the
most relevant subset of features.

The proposed approach can identify the most decisive features to classify an app
as malware and greatly reduce the data dimensionality while achieving good results in
identifying malware in Android applications across the various evaluation metrics.

In future work, more up-to-date datasets should be made available and used, and DL
approaches and others should be further explored. Furthermore, the proposed approach
could be extended to hybrid analysis and/or addressing this problem with a multiclass
approach instead of a binary one. Lastly, the feature names across the datasets should have
a more uniform designation and be aligned with the names of the features extracted from
APK files.
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