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Abstract: The lack of sufficient guarantee about the authenticity of running smart contracts is a major
entry barrier to blockchain networks. By authenticity,we refer to the smart contract ownership or
provenance; this implies perfect matching between a published source-code and the corresponding
running version of a given smart contract. Block verifiers are services that check the provenance
authenticity of the logic contained in blockchain networks. Nevertheless, as a block verifier is an
external verification service, it consumes time to use it; and the derived overhead may not comply
with temporal requirements of time-sensitive domains like cyber-physical systems. Such systems require
that the temporal cost of using external services is assessed prior to the final system deployment. To
the best of our knowledge, there are no previous contributions on the determination of the temporal
cost of the smart-contract provenance verification process. This paper presents the design and
implementation of a middleware that assesses the temporal overhead of accessing the verification
services; the middleware is hosted in the global ledger and runs the verification services over large sets
of smart contracts. Our contribution is validated by providing an implementation on a real blockchain
network, employing actual smart contract verifier logic, and analysing the temporal behavior of the
overall system operations to comply with the time-sensitive requirements of cyber-physical systems.

Keywords: blockchain; provenance; verification; smart contract; cyber-physical systems; middleware;
time-sensitive system; authenticity; security

1. Introduction

The use of blockchain technology as a way to execute distributed transactions and
contracts has been growing steadily, with impressive numbers reported since its burst. The
reason behind its popularity is the support of the execution of a special form of contract
(namely, a smart contract) designed to avoid the presence of trusted third parties. This
yields a decentralized trust mechanism that has increased interest in enabling technologies.

As shown in [1], in the first quarter of 2022, 1.45 million contracts were created only
in the Ethereum blockchain network; with 329 K active addresses in the ecosystem. The
Ethereum network’s revenue was approximately over 1.679 billion dollars (834,874 Ether
currency—ETH); over 728 K ETH were burnt in the first quarter of 2022 (amounting to
1.671 billion, aproximately).

Smart contract (SC) is the term used to designate the contract executed in a blockchain
network. As referred to by [2] in his seminal work (and later elaborated in [3,4]), a smart
contract executes the terms of a contract, as it describes a transaction protocol to execute
those terms. A smart contract is a program designed to run automatically in the blockchain
network without the intervention of a trusted third party, producing a result that has effects
on the global ledger.

Applications that use blockchain technology face a number of security threats that may
result in cyber attacks like the one of DAO [5], which yielded an extraordinary economic
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loss. Another threat is related to the authenticity of running contracts. As smart contracts
are advertised in the network, users can see them, and decide to use them; this implies
undertaking a transaction based on the information claimed by the contract.

A key characteristic of blockchain networks is that it is not possible to ensure that an
advertised smart contract code is the same as the code running on the blockchain unless it
is checked. The reason for this is as follows. Unlike the code of advertised contracts, the
code running on the network is (naturally) not source code, but bytecode; bytecode is not
human-readable.

In order to adhere to the requirement of avoiding the usage of trusted third parties,
blockchain technology supports that users and other developers are able to verify the source
code of a smart contract. Verification is a technique to ensure identity in this respect: the
code running in the blockchain corresponds uniquely to a given advertised smart contract
source-code.

Verification of smart contracts has been undertaken mostly from the point of view
of source code verification employing formal techniques and methods. Other approaches
have also identified this issue in a somehow different way. For example, Ref. [6] focuses
on the cloud as a storage center, in combination with blockchain, and uses physically
uncloneable functions and fingerprint biometrics for secure data transmission. Overall, there
are a number of works on the provenance of data records enabled by blockchain. These
works have targeted the provisioning of a traceable structure to store data that are linked
to a particular producer. Such solutions are mostly engineering developments naturally
supported by the nature and design of blockchain networks. Surprisingly, the provenance
verification of running contracts has seldom received attention by the research community.

We contribute an analysis of the life cycle of smart contracts in relation to their authen-
ticity assurance or provenance verification. For this, we list the set of phases undergone by
smart contracts; we identify the set of steps and interactions undertaken by the network to
verify the authenticity of smart contracts; and we explore a selected set of main technology
alternatives that offer verification facilities regarding smart contract provenance authen-
ticity in blockchain networks. To the best of our knowledge, there are no previous works
that focus on the determination of the temporal cost of the provenance verification process.
However, this process is key in critical domains like cyber-physical systems (CPS), where the
system needs a priori certainty about the temporal costs and timeliness of its operations
and main processes. The verification of smart contracts has a cost that may not always
be affordable in all application domains. It must be considered that current verification
platforms tend to be hosted in remote servers, which makes them critical resources. In
order to derive the temporal overhead, we analyse the performance of contract verification
for different types of smart contracts and in different scenarios. The determination of the
temporal cost is performed through the designed middleware that automates the extraction
of the temporal cost of the verification.

The structure of this paper is the following. Section 2 provides the baseline for our
contribution by explaining the verification types, paving the way to understanding the
characteristics of smart contract provenance verification in blockchain technology. Section 3
describes our contribution; initially, we provide a deep dive into the life-cycle of smart
contracts; later, we describe the architecture of the contributed middleware by explaining
its constituent components; lastly in this section, we explain the integration of the middle-
ware architecture to different underlying block-verifier alternatives. Section 4 describes the
implementation of the middleware over an actual blockchain network; the experimental
setting is explained and includes a description of different scenarios; and it employs dif-
ferent smart contract characterisitics to collect representative temporal results. Eventually,
Section 5 presents the conclusions of this work.

2. Background

Since the presence of any defect (e.g., code bugs and vulnerabilities) may yield great
economic losses, it is of paramount importance to ensure that a smart contract is correct
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and functions as expected and intended. Failing to do this is undesirable, as it derives trust
erosion in blockchain technology. For this, verifying each smart contract is a first step in
the right direction.

There are two approaches to target the verification of smart contracts. This section lays
down the different perspectives to the verification of smart contracts; it concludes the particular
type of verification that this paper addresses that is related to provenance verification.

2.1. Verification

Verification [7] is the process of establishing the truth, accuracy, or validity of some-
thing. In computer science and engineering, system verification is the process to check the
correctness of the system itself; it can be applied to its constituent parts, e.g., a component,
an element, a service, a task, a requirement, a property, etc. The process of verification is
essential in critical systems, where a number of different techniques have been developed
to ensure that the expected properties are met and that, overall, the system behavior is the
expected one. Overall, verification techniques are broadly classified into formal, informal,
static, and dynamic.

Formal verification. Formal verification relies on the use of mathematical proofs to check
the correctness of a system. The system is correct if it meets a given specification. Formal
verification employs formal languages that allow the engineer to build a formal or mathemat-
ical model of a system which allows it to be later checked for correctness. This gave rise to
model checking, as known as property checking, which is a method applied to check whether a
system model meets a given specification. This process formulates a problem using some [8]
logic with the goal of checking whether a particular model (namely, structure) satisfies a
particular logical formula.
Informal verification. This techniques relies on subjective reasoning that is typically driven
by humans.
Static verification. Static verification focuses on the analysis of a source code. Unlike a
program or running code, the source code is a static asset. Therefore, static verification
checks the structure of the code for syntactic correction and adherence to the norms and
coding standards for a particular criticality level. Inspection of the code can check for coding
conventions, bad practices exhibiting prohibited coding patterns, calculation of software
metrics, or formal verification to detect, e.g., cycles in function invocations, failures in stop
conditions, etc. Some articular examples of items that are often checked: a variable must
have been defined before being used; or if a function declares to return an integer value, no
other values (e.g., real or boolean values) should be returned.
Dynamic verification. This process is performed during the execution of the program,
i.e., over the running software. Dynamic verification is often called testing. It consists of
actively checking the behavior of the code to find errors caused by some activity or by the
repetitive execution of an activity or a set of activities (i.e., stress test). Testing can be applied
to different scopes. The smallest scope includes a function or entity/class (namely unit
test); larger scopes such as groups of classes and modules; the whole system, which also
comprises integration tests with more than one module; or formal tests to define acceptance
(functional or non-functional—e.g., performance).

It is also interesting to note that software verification is different from software valida-
tion. Verification essentially searches for the answer to the question of whether the system is
built correctly; this checks whether the system conforms to its specification. The validation
strives to answer the question whether the system is right; thus, it checks the output system
against its requirements, as these express the needs and desires of whoever paid for it.

2.2. Source-Code Verification

On the one hand, and since smart contracts are programs implemented through the
source code, the traditional path of formal verification techniques has been extended
to cover these autoexecutable programs. These techniques have been applied to verify
particular properties, to detect anomalies like code errors related to reentrancy, or to detect
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potential attacks that exploit vulnerabilities or code bugs. On the other hand, and since
blockchain technology builds complex ecosystems that require extensive tool chains, it is
also possible to target verification focusing on the architectural and performance aspects of
the blockchain network. Such aspects concern the interactions among network participants
like nodes, users, smart contracts, transactions, the glogal ledger, or verifiers, among others.

A prolific community on formal methods existed long before the burst of blockchain.
Therefore, there is a large number of works on formal methods that have been extended in
recent years regarding particular improvements to existing techniques such as Petri Nets,
SMT, etc., and applied to the verification of the source code of smart contracts.

This way, we find verification works like [9], which proposes a technique to verify
the smart contracts running in the Ethereum virtual machine (EVM) at a bytecode level.
Also, abstract interpretation and symbolic model checking has been used in [10] to verify
correctness and fairness in smart contracts. Other techniques such as Coloured Petri Nets
(CPN) have been also employed. For example, Ref. [11] describes a formal verification
method to check smart contracts written in Solidity to verify particular properties of the
contracts; or [12] that applies CPNs to check reentrancy attacks in Solidity smart contracts.
Other techniques for a static analysis through symbolic execution were explored in [13];
here, authors focus on analysing reentrancy through a static analysis tool that employs
symbolic execution with Z3 SMT (Satisfiability Modulo Theory) solvers.

2.3. Smart Contract Verification through Block Verifiers

Verification of smart contracts in blockchain is highly related to ensuring the authenticity
of the published source code. This involves a different, fresher perspective that comple-
ments the traditional one presented above. In this context, the objective is to guarantee that
a given published smart contract source-code corresponds exactly to a particular bytecode
that is running in the network. Often, the needed smart contract verification is provided
in a central remote server through the compilation and decompilation of code (source
and bytecode). These are block verifiers; and should not be confused with block validators.
Block validators are well-known entity types in a blockchain network, as they perform the
validation of the correctness of the block-mining process.

A block verifier is a service that determines whether the source code of an executable
version of a smart contract is exactly the same as a given (other) source code. Such determi-
nation relies on checking the provenance authenticity. In critical domains like cyber-physical
systems, it is key that any used smart contract is authentic. Thus, the provenance of such
any smart contract must be well known and clear to all entities.

There are a number of platforms offering provenance verification services. Among the
most popular alternatives, we find Etherscan [14], Tenderly [15], Sourcify [16], or Polygon-
scan [17], among others. These platforms provide a separate server for the verification task.
This scheme means that the network specializes by task, resulting in a higher efficiency.
Additionally, this approach enables the verification logic to work independently and pro-
vides a service to blockchain developers in order to verify the authenticity of any particular
smart contract.

Block verifiers have seldom been used in the automatic deployment of logic in blockchain
networks. A first approach in this direction is [18], which describes a programmatic structure
to automate the verification process of smart contracts. Nevertheless, there is a broad open
space to design and develop solutions that improve the verification of blocks in public
networks to make them more efficient and time sensitive. The work of [19] has revealed
some interesting results on very recent types of vulnerabilities that affect some smart con-
tract verification services; this threatens to break the verification, resulting in the potential
spreading of malicious smart contracts.

There are a number of works on the specific analysis of tools tailored to detect the main
faults of smart contracts, like [20]. Testing applied to the smart contract source-code for fault
detection has also been undertaken in a number of works like [21]. However, most works
concentrate on analysing some specific tools and performing pure simulations; however,
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they do not use any actual blockchain network nor any real smart contract deployments.
As a result, and to the best of our knowledge, existing works do not focus on particular
blockchain platforms’ execution to measure the performance of the verification process in
relation to the lifecycle of smart contracts.

On the side of the provenance verification, the work of [22] presents a provenance
tracking system; this system leverages the static and dynamic analysis to detect and mitigate
well known security issues specifically for Ethereum smart contracts.However, the vast
majority of works either target the development of provenace frameworks over blockchain
technology, like [23,24]; or focus on a transaction provenance, like [25]. Our work lies on
a different level, as we focus on making the process of provenance verification usable for
time-sensitive contexts by determining the execution cost of such a process.

3. Approach

The determination of the temporal cost of performing a verification over the authen-
ticity of smart contracts is enabled by a middleware. The proposed middleware has been
designed and architected as a modular framework with the needed pieces to perform
automated verification tests and collect the temporal behavior of the interaction with any
underlying block verification service.

This section describes our contribution in a self-contained manner. For this, the life
cycle of a smart contract is first analyzed. Then, the different broad types of verification
techniques related to smart contracts and block verifiers are described. Third, the set of
most widely used block verification services is described. The middleware components are
described afterwards, explaining the involved components one by one.

3.1. Life-Cycle Analysis

Blockchain networks rely on two fundamental ideas. On the one hand, their main
purpose is automating the execution of an agreement without the participation of any
intermediary. On the other hand, all involved participants must have immediate certainty
on the outcome. To implement these ideas, blockchain technology utilizes the fundamental
concept of a smart contract that is a program stored in the blockchain network itself. These
programs execute when predefined conditions are satisfied. The terms of the agreement
are also stored in the global distributed ledger. Since the global ledger is immutable, the
applied modifications cannot be changed.

The life cycle of a smart contract determines the feasibility of the two fundamen-
tal ideas expressed above. The analysis of the life cycle of smart contracts is expressed
in Figure 1, comprising the main phases from their programming to their deployment to
the network. Also, the subsequent provenance verification process is shown.

The interaction of users with the distributed ledger can happen at any time, as users
can request the execution of smart contracts hosted in the network. It is important to note
that the execution is also a key part of the life cycle of these autoexecutable programs.
Overall, the life cycle of a smart contract is broadly explained in what follows:

• Contract programming. This is the initial phase in which the contract is coded in some
high-level programming language, e.g., Solidity.

• Executable/bytecode generation. The source code of a smart contract cannot run per se;
so, an executable version of it needs to be created in order to be run by the nodes. For
this reason, once the source code of a smart contract is fully programmed, it is compiled.
Compilation generates a bytecode equivalent that is the executable version of the source
code. The bytecode is the actual code that will eventually run in the blockchain network
nodes. The bytecode is not human-readable; whereas the source code is.

• Deployment. The bytecode version of the smart contract must, then, be deployed to
the distributed ledger. The deployment of a smart contract always results in the
assignment of a particular address to it, which makes it uniquely identifiable. The
address of a deployed smart contract plays a central role in the blockchain platform,
as it is mandatory to refer to the corresponding smart contract that is running in
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the network. Smart contract deployment involves the execution of a transaction. It
is important to note that there are differences between a transaction involving asset
exchange and a transaction to deploy a contract; the latter does not require one to
specify a recipient. Smart contracts are also stored in the blockchain; then, deploying
a smart contract involves storing it in the global ledger and assigning it a unique
address. Deployment involves transaction fees that are usually higher than other
transaction types.

• Execution. Smart contracts execute when the predefined conditions expressed in their
code hold. The execution of a smart contract may involve changing the state of the
global ledger, as new transactions may be initiated and additional blocks can be
generated to store transaction records.

• Verification. This phase is optional; it is explained in what follows.

To deploy a smart contract in a network, it is not necessary that the smart contract is
a verified one. For this, and for the sake of clarity, Figure 1 describes the path from smart
contract programming to its deployment in the network (that is shown in the upper half
part of the figure); and the verification process as a somehow separate path that is illustrated
in the bottom half of the figure.

Figure 1. Life cycle of a smart contract and its verification process.

Verifying a given source code of a smart contract means that it should be true, such that
the source code is exactly the same as the original bytecode that is running in the network.

Let us imagine that a developer wants to verify that source code A′ is indeed the
source code of a particular smart contract that is running in the network, namely A. If the
result of the verification process is positive, this means that A′ is the source code that
originated A; so, they are the same contract (we say that A is an authentic logic or smart
contract). Typically, A′ is advertised in some platform’s web with its corresponding data,
and this includes its address. Using this address, the verification platform is able to retrieve
the data of the running smart contract that will allow the verifier to decompile it, obtaining
its original source code. This original source code will be checked against A′. If both match,
then the verification is successful and the contract obtains a seal that reflects it. From that
moment on, and given the nature of the blockchain technology, users can rely on the fact
that this is a verified contract.
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3.2. Verification Types

There are two broad types of provenance verification for smart contracts: basic and
perfect (also named full) verification. Smart contract verification [26] is the mechanism
that ensures that the bytecode stored in the blockchain corresponds to a given high-level
language source code. Verifying a smart contract involves compiling the source code and
checking whether it matches the stored bytecode. If both match, this means that the involved
source code did produce the bytecode stored in the blockchain. The verification requires
some precise information to be entered, like compilation information (i.e., the version of
the compiler and that of the used optimizer), which is needed to exactly replicate the
compilation process.

Most platforms perform a simple verification, and this yields also to a visible verifica-
tion seal (usually a green checkmark) on the advertised contract. However, it is important
to consider that, in the compilation process, some parts of the source code do not affect the
result. Examples of such parts are variable names and comments. As a result, once two
contracts with different variable names and/or comments are compiled, they may produce
the same bytecode. This means that only the actual code developer can tell whether the
code is exactly what was originally typed in. This leaves room for potential attackers to
introduce missleading variable names and comments; and they will still be able to verify
the contract to the same bytecode.

To avoid this, an improved verification mechanism, namely full or perfect verification,
can be used. Full verification uses smart contract metadata to check the full integrity of the
source code. The approach is simple. Metadata allows the contract to store an IPFS [27] link.
This link contains a JSON file that includes interesting properties about the contract (e.g.,
compiler version, source names, etc.). Among those properties, there may be the hash of
the original file containing the initial source code. Using such information, the verification
logic can check whether such stored hash matches the hash obtained from the source code
under analysis. If this is the case, it is guaranteed that the latter is identical to the source
code from which the stored hash was obtained.

3.3. Component Design

The design of the middleware is described in this section. Its structure relates
fully to the overall goal of performing an exhaustive evaluation of the temporal cost
of block verification services. A modular design is set up for the middleware so that it
can be adjusted to using particular block verifiers that support the easy replacement of
neighbouring technology.

Figure 2 shows the general view of the middleware, and provides the overall scenario,
including the actors that intervene in this context. The design of the middleware follows
the principles of modularity and separation of concerns. A total of four components make
up the middleware core, each component having a well-defined role and purpose. In the
following, the components are described:

• Generator. Determining the temporal cost of the verification requires one to acquire a
sufficient number of time samples that can be statistically representative. Each time
sample corresponds to a particular smart contract verification occurrence. As block
verifiers are able to distinguish whether successive smart contracts are the same, it is
important to achieve an automatic generation of correct and unique smart contracts
that will be identified as being unique. For this reason, the Executor component gen-
erates the unique smart contracts that are compiled and deployed to the blockchain.
As shown in Figure 1, a smart contract can only be verified by a block verification
service if it has been compiled and deployed. After being deployed, the blockchain
infrastructure assigns a unique address to the running smart contract. Now, it can
undergo a verification.

• Executor. This component manages the verification request triggers. After each smart
contract is produced by the Generator, the Executor collects the verification parameters
to be sent to the block verifiers. From the set of possible parameters, the bytecode
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address, the corresponding source code, and the original compiler options are ob-
tained. The address corresponds to the unique reference of a given smart contract and
points to the physical location of the running bytecode in the global ledger.

• Adaptor. This component acts as a bridge between the inherent middleware logic
and the particular underlying block verifier that might want to be used. As different
verification techniques are possible and a number of block verifiers are available,
this component makes the middleware independent from the particular underlying
block verifier. To change the verification service, only this component is affected and
requires minimal updates to switch from, e.g., Polygonscan to Tenderly.

• Collector. The temporal data are gathered by this component, which includes the
invocation instants and the response data from the verification as well as its asso-
ciated timing. The component manages an internal storage for the collection of the
obtained data.

Figure 2. Middleware design.

3.4. Integration with Platform Alternatives through the Adaptor

The Adaptor component provides a hook to external verification actors. This is impor-
tant given that in the current panorama of blockchain technologies, SC verification is often
offered as a web service [28,29] that can be integrated in a system as an external actor. In
this section, we describe the different alternatives that can be chosen for integration. The
replacement of one verification service by another requires minor modifications that are
confined to a particular part of the Adapter component.

Let us consider that, once a smart contract developer verifies it in a verification
platform, a special seal (i.e., a verified mark) is obtained for that contract, and its information
is stored in the verification platform. For this reason, anyone in the Internet can check
whether a given smart contract has been verified in a particular verification platform.

Different solutions are present in the Internet that somehow compete to provide better
verification logic and increase the number of verified smart contracts that they host. Among
the different smart contract verification providers, this paper focuses on the mainstream
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ones given the size of their user community and usability of the available tools. The most
popular services come from Etherscan [14], Sourcify [16], and Tenderly [15].

Etherscan. Etherscan [14] is among the most famous companies in the domain of blockchain
technologies. It consists of a block explorer for the main network of Ethereum and also for
its test networks, including analytic facilities.

Etherscan is a block explorer for different blockchain networks like Ethereum, Arbitrum,
or Polygon, among others. It allows users to check the information of particular blocks, which
makes it an optimal location for integrating contract verification. Effectively, it includes the
facilities to verify smart contracts. As a result, anyone on the Internet can access this platform
to search for particular smart contracts to check whether they have been verified.

This is typically conducted in different ways: from the Etherscan web itself, from an
external tool set (e.g., Hardhat [30]), or from a cloud IDE (e.g., Remix [31]).

Nevertheless, it provides a basic verification, not full verification. As a result, some
variable name and comment modification attacks are still possible (as explained before).
However, its popularity and simplicity attracts most of the blockchain users.

Polygonscan. Polygon [17] is a two-layer blockchain (also called sidechain) built on an
Ethereum core. It incorporates a number of strategies for speeding up transactions and
achieving lower fees. This makes it a parallel alternative to the Ethereum mainnet. Poly-
gonscan is the block explorer that supports the interaction of users to access all transactions
performed on the Polygon blockchain network.

Sourcify. Sourcify.eth [16] is also among the very top smart contract verification providers.
On top of its verification process, it also offers a testing playground to test the verification
process; and a block explorer to allow users to check whether a smart contract is already
verified or not.

It is important to note a difference: a smart contract programmer is responsible for
sharing the metadata file through IPFS. Once this is done, Sourcify engine checks that the
file does exist somewhere and that it is reachable; if this check is successful, the verification
process starts.

Tenderly. Tenderly [15] platform provides basic verification. An added value of Tenderly
is that the visibility of the verified contracts can be configured. This means that the contract
manager is able to restrict the visibility of the verificated source code to specific users.
Controlling the visibility of the source code is a desirable characteristic in domains and
systems that need to preserve the privacy over their source code, still providing some level
of trustworthiness of that same code to the selected authorized third parties.

4. Implementation and Results
4.1. Experimental Settings

The cost of the verification of smart contracts in the lifecycle of a blockchain system is
analyzed and presented in this section. A set of smart contracts programmed in Solidity are
used in this analysis. The corresponding source code is designed to manage and record the
actions over particular assets controlled by specified transaction terms. The source code
reflects the logic to monitor the roles of potential users requesting access to resources, and
how their access is granted.

As smart contract deployment is conducted in the Polygon network, the verification of
smart contracts is conducted with the Polygonscan verifier, that is, the verifier component
in this network. The development team of Polygonscan and Etherscan is mostly the same.

First, the smart contract source-code is compiled (see code below), generating a
bytecode that will, then, be deployed on the Polygon network.

1 // SPDX -License -Identifier: MIT
2 pragma solidity \^0.8.0;
3
4 import ‘‘./IContrA.sol’’;
5 contract TermsC1 {
6 IContrA public CB1;
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7
8 uint256 nonce = 71;
9 constructor(address CB1address) {

10 CB1 = IContrB(CB1address);
11 }
12
13 function chekterm(address enttAddress) public view returns (bool) {
14 IContrB.item memory enttyInf = CB1.getData(enttAddress);
15
16 if(keccak256(abi.encodePacked(enttyInf.prop)) == keccak256(abi.encodePacked(’

Value ’))) {
17 return true;
18 }
19
20 return false;
21 }
22 }

The presented code shows a smart contract that codes in Solidity the policy applied to
manage the access to a given resource. The function chekterm retrieves information from
other contracts, precisely from ContrB. Then, data are stored in variable enttyInf, and are
used to validate whether the specified condition is fulfilled. In this case, and for the sake of
simplicity, a single condition is observed that checks whether a given entity that requests
access has the proper value (Value) for a specified property prop.

The verification-related tools of current blockchain platforms provide developers
with different options for system verification. For the case under study, Polygonscan, the
verification process of a smart contract is separated into a number of steps, as explained in
what follows.

To verify a smart contract, it must have been previously deployed to the blockchain
network, and a corresponding address must have been assigned to it as its unique identifier.

Once deployed, a smart contract can be verified. In most platfoms, there are several
options to verify a smart contract that is similar or equal to those of Polygon.

For many developers, a common option is to utilize the web interface of the platform [17]
to launch the verification process of a smart contract. Using the Polygonscan block explorer,
it is possible to obtain the smart contract block in the global ledger through its address. The
verification process will need data like the compiler version, optimization, and (naturally)
the source code, including constructor parameters, if any. It may also be necessary to specify
the libraries used or other miscellaneous settings. Once all data are provided, the verification
process starts. Overall, this can be quite a slow process, given that data are entered manually.

A time-saving (and more automated) option is to utilize a especialized tool, such as Hard-
hat [30] framework, which allows developers to make direct use of the verification platform. This
tool supports the creation of a configuration file in the etherscan.apiKey.polygonMumbai
object and in JSON. Once specified, to initiate the verification process as an online one,
command verify + SC address [+ constructor parameters] is run, performing di-
rect invocations to the verification framework through HTTP. To avoid misuse and/or
attacks, Polygonscan provides APIkeys to registered users.

Once a smart contract has been verified, it is published with a green check in the
Polygonscan platform. This way, its source code is visible to any interested user.

This is the approach followed in our experimental setting as it is the fastest option;
consequently, it is likely to be used on deployments requiring a shorter verification time.

4.2. Results

A number of experiments were designed and run to obtain the performance of the
verification under different conditions. The objective of the obtained measurements is
to analyse the temporal cost of this process for different scenarios that are realistic and
meaningful. Different smart contracts of varying sizes have been employed in the tests to
obtain representative results. It should be observed that deploying the same smart contract
on the network leads to caching. This effect must be avoided, as it alters the experiment
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conditions and yields to unrealistic low temporal costs. To control the effect of caching,
the programmed source-code is instrumented accordingly, to contemplate two different
scenarios: cached and non-cached verification.

It should be noted that deploying smart contracts is a costly transaction type. Actually,
deployment has an associated gas fee; thus, it is not currency-efficient. In summary,
verification tries are bounded by this characteristic.

The experiments have been carried out exhaustively; and, for each scenario (cached
and non-cached), ten different samples were obtained for each smart contract size. The
sizes of the deployed smart contracts are shown in Table 1.

Table 1. Smart contract details.

Name Lines of Code Bytecode Size

UserAM 37 4583 Bytes

ContextHandler 24 2019 Bytes

Policy1 17 1916 Bytes

4.2.1. Cached Scenario

When a smart contract is sent for verification to a platform, the platform tends to
cache it. This is a common behavior of servers on the Internet and an optimization for web
interactions that involve resource requests over request-response protocols. The verification
platform keeps copies of recently verified smart contracts. As a result, an already verified
smart contract need not be uploaded again to the platform. This has a number of benefits,
e.g., responsiveness and lower interaction times.

The temporal behavior in the cached scenario is ilustated in Figure 3. Here, it is shown
that the temporal cost for the above smart contracts varies slightly, in median values,
comparing all three smart contract sizes. The overall median values fall down to 1.57 s for
all cases. This filters out the possible variations that may be done to the instant platform
load. Variations show that the verification time for the medium-size smart contract are
higher than for the big- and small-size smart contracts. However, this increase lies in the
range of 100 ms, as it reaches 1.8 s in the 75th percentile; whereas the verification time of
the big- and small-size smart contracts lies in the order of 1.6 s.

Figure 3. Performance in cached scenarios. Successive verification requests of the same SC do not
result in new code uploads.

4.2.2. Non-Cached Scenario

This set of experiments focuses on situations where it is needed to constantly verify
new contracts. This represents scenarios in which the server does not (or cannot) use the
cache. Additionally, since our goal is to obtain actual costs of the verification process, we
have also designed a non-cached scenario by proper (though minimal) modification of the
smart contract source code.
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As a result, in these experiments, each verification request is made over a different
bytecode. This is instrumented in the code with a proper update of a nonce value. Such a
minimal modification results in a bytecode that is different from the already deployed ones.
Then, the platform must undertake a new verification process from scratch.

As illustrated in Figure 4, the non-cached scenario naturally yields higher verification
times. It can be observed that the verification time decreases with the size of the smart
contract source code. Nevertheless, a similar median value around 6.7 s is obtained for all
smart contract sizes, which shows the stability of the verification platform. Additionally, the
verification times of the small-size smart contract exhibits a lot less variability than the rest.

Figure 4. Performance in non-cached scenarios. Successive verification requests of same SC resulting
in different bytecode that yield new source-code uploads.

5. Conclusions

There is an increasing need for smart contract verification in blockchain networks to
provide a trusted environment to potential users. Particularly, the provenance verification
can ensure the authenticity of the logic hosted in the network. However, this comes at a cost
that cannot be neglected in some application domains like time-sensitive systems. Such
systems have to perform an a priori analysis of the potential overhead of the provenance
verification process. Once the temporal behavior of this process is determined, the obtained
temporal results can be considered into their design equation to prepare for corrective or
mitagation actions, if needed.

In this paper, we analyzed the life-cycle of smart contracts, paying the most attention to
the verification phase and associated interactions undertaken by the network to verify smart
contract authenticity. We presented a modular middleware that employs the separation of
concerns to automate the process of determination of the temporal cost of verification for
particular platforms and block verifiers. Taking the resulting values into consideration, the
development process can determine whether the extracted temporal values are affordable
and suitable for the target system.

We have validated our contribution by implementing the middleware on an actual
blockchain network.The performed experiments employed two different underlying block
verifiers that prove the modularity of the middleware design. The employed block verifiers
are instrumented to operate with and without caching. Experiments showed that the
interaction with the verification services yields stable times. The obtained median values
are kept stable, independently from the employed smart-contract size. Delays in the most
unfavorable scenarios are in the range of 6.7 s, which greatly pays off for operating with
assurance about the authenticity of the employed smart contract. The automation of the
provenance verification and the good temporal results were obtained in real blockchain
networks, offering advice on the extrapolation of this verification type to an online execution
in complex systems.
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