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Abstract: This study delves into the vital missions of the armed forces, encompassing the defense
of territorial integrity, sovereignty, and support for civil institutions. Commanders grapple with
crucial decisions, where accountability underscores the imperative for reliable field intelligence.
Harnessing artificial intelligence, specifically, the YOLO version five detection algorithm, ensures a
paradigm of efficiency and precision. The presentation of trained models, accompanied by pertinent
hyperparameters and dataset specifics derived from public military insignia videos and photos,
reveals a nuanced evaluation. Results scrutinized through precision, recall, map@0.5, mAP@0.95, and
F1 score metrics, illuminate the supremacy of the model employing Stochastic Gradient Descent at
640 × 640 resolution: 0.966, 0.957, 0.979, 0.830, and 0.961. Conversely, the suboptimal performance of
the model using the Adam optimizer registers metrics of 0.818, 0.762, 0.785, 0.430, and 0.789. These
outcomes underscore the model’s potential for military object detection across diverse terrains, with
future prospects considering the implementation on unmanned arial vehicles to amplify and deploy
the model effectively.

Keywords: artificial intelligence; military decision-making process; image detection; intelligence
preparation of the battlefield; operation planning; intelligence; imagery intelligence; IMINT; machine
learning; deep neural network; You Only Look Once

1. Introduction

The armed forces of any nation are a key factor in ensuring the stability of the nation in
the current unpredictable environment. The primary goals of any nation’s armed forces are
based on this, which include protecting the nation’s independence, protecting the borders,
and maintaining the internal security. These objectives include the following:

• Safeguarding the nation’s territorial sovereignty;
• Contributing to regional security systems;
• Supporting civil institutions in the country and abroad;
• Providing overall security for the nation’s citizens.

While providing security for the nation’s citizens, armed forces have to carry out a
wide spectrum of different missions. Force commanders are responsible—each one in his
given area of operation, respectively, and on all three levels of command—for accurate
and correct mission execution. In order to have the optimal chance of operations success,
commanders have to understand the area of operation and given mission, visualize a
solution to the problem, and describe the steps of the solution’s implementation to his or
her subordinates, meaning to issue orders [1,2]. Commanders often face difficult decisions.
Moreover, the ever-present uncertainty of war, conflict, and peacetime can make the
situation even more challenging. An additional weighting factor are sometimes ethical
issues commanders face at all levels of command, as well as soldiers who carry out orders
in the field [3–6]. The military headquarters consists of different functional areas and
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personnel that participate in a operation planning process known as The Military Decision-
Making Process (MDMP). MDMP is a cyclical planning process that involves a unit’s
commander, headquarter’s personnel, subordinate headquarters, and subordinate units. It
is used to comprehend a mission and its context, evaluate key components of the mission,
create, compare, and evaluate potential courses of action, determine the best course of
action for the given mission, generate an operational order, and monitor the mission’s
execution progress [7]. To make the best decision possible, the commander must have
access to relevant, accurate and objective information about his area of operation (terrain
and meteorological situation), opposition forces, civilian structures, etc. The commander
gets to know such information through the intelligence warfighting function comprising
the headquarter’s intelligence section and subordinate ISTAR (intelligence, surveillance,
target acquisition, and reconnaissance) units [8]. Traditional intelligence collection sources
used for intelligence data gathering are as follows:

• Human intelligence (HUMINT) [9];
• Signals intelligence (SIGINT) [10];
• Imagery intelligence (IMINT) [11–13].

While traditional intelligence collection sources have been of the utmost importance
throughout the history of warfare, it is really important to highlight that modern intelligence
data gathering sources, such as open source intelligence (OSINT) [14,15] and its subcategory,
social media intelligence (SOCMINT) [16], show rapid development in the context of the
rapid expansion of the cyber warfare domain. Moreover, modern intelligence data collection
sources are considerably cheaper to exploit compared to traditional sources.

IMINT, an abbreviation for Imagery Intelligence, is pivotal in contemporary data col-
lection, harnessing information from electro-optical, infrared, RADAR, and LIDAR sensors
across a variety of platforms such as land, sea, air, and space platforms. It is important to
highlight humans using any type of camera can also gather IMINT data [11]. Unmanned
arial vehicles (UAV) stand out for their significant potential in diverse missions within
modern warfare and homeland security systems [17]. After data collection, the informa-
tion is meticulously processed and presented as refined images or videos for end users.
The importance of IMINT is underscored by its detailed categorization, as articulated in
the NATO doctrine, recognizing 19 distinct categories [18]. Analysts, each specialized
in a specific category, process gathered data and create intelligence products. However,
challenges arise when gathered data include multiple categories, demanding considerable
interpretation time. In scenarios requiring swift processing, the integration of Artificial
Intelligence (AI), exemplified by You Only Look Once (YOLO), proves invaluable. This
approach allows AI to efficiently process comprehensive data, with analysts subsequently
verifying the results. The significance of these data collection methods lies in their capability
to provide detailed insights promptly, contributing to timely decision making in dynamic
operational environments.

Building upon the information at hand and discerning the data source is achievable
through the diverse resources mentioned earlier. Nonetheless, a pivotal inquiry arises
concerning the identification of a spectrum of military installations. Bearing this in mind,
numerous scholars have undertaken diverse research endeavors in this domain to delve
more deeply into various methodologies for detecting adversary objects. The authors
of [19] investigated the development of a lightweight military target-detection method,
SMCA-α-YOLOv5. The method, which involves replacing the focusing module and re-
designing the network structure, achieves an exceptional result with an average accuracy of
98.4% and a detection speed of 47.6 FPS. It outperforms competing algorithms such as SSD,
and Faster-RCNN, with a significant reduction in parameter cardinality and computational
burden. In their research, [20] used the method of Optimal Gabor Filtering and Deep
Feature Pyramid Network to utilize a military target-detection dataset named MOD VOC,
which was created to meet the PASCAL VOC dataset format standard and includes images
primarily sourced from video footage captured by unmanned arial vehicles (UAVs), ground
cameras, and internet images. In doing so, they used five artificial intelligence algorithms
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(Faster R-CNN, DSOD300, DSSD513, YOLOv2 544, and their filtering method) to compare
the individual performance of the best model for each algorithm. The best results for
MOD VOC in terms of accuracy, recall, and average fps were achieved by their model
in the amount of 88.76%, 78.45%, and 30.35, respectively, while the worst results were
achieved by DSSD513 in the amount of 73.57%, 64.56%, and 42.43. Kong et al. [21] used
a military target dataset showing armed individuals with different weapons to improve
the detection performance of the proposed YOLO-G algorithm. The authors introduced
improvements compared to the YOLOv3 framework, including a lightweight GhostNet for
improved accuracy and speed in detecting military targets. The dataset evaluation showed
a 2.9% improvement in mAP and a 25.9 FPS increase in the detection rate compared to
the original YOLOv3, highlighting the effectiveness of their improved algorithm. Wang
and Han [22] introduces the YOLO-M algorithm for military equipment target recognition,
addressing challenges in small target detection. By incorporating the C3CMix module
and modifying the activation function in YOLOv5, the proposed algorithm maintains
high accuracy while reducing parameters, resulting in a 95.2% average accuracy, an 18.8%
reduction in parameters, and a 14.5% decrease in computation. These improvements make
YOLO-M well-suited for deployment in military equipment target recognition applications.
Du et al. [23] investigated military vehicle object detection based on hierarchical feature
representation and refined localization for the detection of military objects in the desert,
grass, snow, city, and others. The authors applied R-FCNN, SSD, YOLOv3, YOLOv4, Faster
R-CNN, and MVODM, i.e., a novel algorithm created by the author. The models were
trained on three different types of test datasets, i.e., large-scale, small-scale, and all subset
test datasets. The best results were shown by MVODM (novel algorithm) for a large-scale
dataset with evaluation metrics resulting in the amount of 85.6% mAP, while the worst per-
formance was YOLOv3 for a small subset of data in the amount of 54.9% mAP. Nelson and
McDonald [24] developed the Multisensor Towed Array System (MTADS), demonstrating
its effectiveness in detecting buried unexploded ordnance with an outstanding probability
of detection (0.95 or better). The system results highlight its precision in locating ordnance
at self-penetrating depths, providing a cost-effective and accelerated approach to reme-
diation compared to standard techniques. Pham and Polasek [19] address the challenges
of surface object detection in urban environments, utilizing both the infrared and visible
spectra. The paper aims to develop an algorithm for detecting and selecting objects of
interest, particularly civil automobiles resembling military equipment, captured by infrared
and visible cameras in various outdoor conditions. The proposed algorithm involves
determining optimal threshold values for image conversion in changing environmental
conditions and colors, tested on static images, and extended to dynamic object detection,
selection, and tracking through video processing. Additionally, the study emphasizes the
use of threshold adjustment techniques to optimize object detection. The authors of [25] in-
troduce a method inspired by EfficientDet trackers for classifying maritime military targets
in high-resolution optical remote sensing images. The approach involves constructing a
multilayer feature extraction network with attention mechanisms, utilizing ReLU activa-
tion, and employing deep feature fusion networks and prediction networks to accurately
identify various types of military ships. The trained model was tested on six classes of
vessels, achieving the best detection performance in the GW class with precision and recall
values of 0.983 and 0.945, respectively. The lowest detection results were observed in the SS
class, with precision and recall values of 0.974 and 0.822, respectively.

Considering intelligence data collection from IMINT sources, special attention in this
paper is given to collection with unmanned arial systems (UAS) and challenges that emerge
while collecting and analyzing data collected with UAS. Current NATO UAS classification
recognizes three different UAS classes [26]. Those are classes I, II, and III. The main class
feature that these classes are differentiated by is their maximum takeoff weight (MTOW).
Class I includes UAS whose MTOW does not exceed 150 kg. Class II includes UAS whose
MTOW is more than 150 kg, but less than 600 kg. Lastly, class III includes UAS whose
MTOW exceeds 600 kg. A bigger MTOW means the UAS is capable of carrying larger and
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better quality payload and is therefore able to execute missions which are more complex.
Moreover, the mentioned classes are also differentiated by the level of command they
are subordinated to, their operating altitude, their range, and their operating range. It is
important to highlight that the flying crew of classes II and III consist of two crew members.
The first one is a pilot who is responsible for the execution of flying operations of the
unmanned arial vehicle (UAV), while the second member is a payload operator, responsible
for gathering IMINT data. On the other hand, UAS class I systems are operated by only one
operator, who is a pilot and also a payload operator. This means that class I operators are
exposed to a rather high mental workload in terms of multitasking (operating the sensor
and watching all flight parameters at the same time) during the whole mission, which may
last up to 6 h. This high mental workload results in a lot of accumulated fatigue, meaning
that the UAS operator experiences lower concentration in the later stages of a mission.
In order to make UAS class I operators’ work easier, using algorithms with a small detection
time, such as YOLOv5, would be highly beneficial. It would detect objects of interest instead
of the operator and he would only confirm, with a bigger zoom, if that is really the object
of interest or he can move on. Moreover, the operator could concentrate more on flying
parameters and noticing any malfunction. Furthermore, another issue that may emerge is
that unit’s headquarters and all subordinate units do not have enough capacity to analyze
all gathered IMINT data or just do not have enough time to do it. Current practice for IMINT
data analysis is data being analyzed by an IMINT analyst who is narrowly specialized in
one of 19 different IMINT categories according to NATO doctrine. Sometimes IMINT data
may consist of different elements which belong to different categories. This may pose a
problem during complex operations which require a fast flow of information, especially if
a country’s armed forces do not have an IMINT analyst specialized in each class and one
analyst has to analyze a few different classes. YOLOv5 is an ideal solution for this problem
due to its speed, reliability, and accuracy. It is capable of handling various challenges in the
detection, classification and segmentation of objects.

According to the presented literature overview and problem description, the following
questions can be asked:

• Is it possible to create a military dataset by using publicly available data?
• Is it possible to use object detection algorithms such as YOLOv5 for military object

detection?
• How does the proposed method simplify and contribute to improving the quality of

military decision-making?

The aim of this article is not to showcase the methodology of UAV control, but rather
to demonstrate how a dataset with military applications can be compiled using publicly
available data, which can be utilized for the development of detection software. For this
reason, the paper does not focus on the construction elements of drones or the methodology
of their flight control.

2. Materials and Methods

This subsection describes the method of collecting the dataset, which classes it consists
of, and how many images the total dataset contains. Furthermore, the methodology of
the You Only Look Once fifth generation detection algorithm (YOLOv5) will be presented
together with the associated parameters and the principle of convolution neural network
(CNN) training.

2.1. Materials

The dataset used in this work was obtained through open-source websites. The web-
sites included were as follows: various official countries’ armies’ websites, different coun-
tries’ official army profiles on popular video streaming platforms, open-access gore web-
sites, and news portals. The used dataset represents various military equipment and
weapon systems used in modern combat. These weapon systems have different countries
of origin and were recorded from different angles and in different conditions. Some weapon
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systems were recorded from the air by UAV, while others were recorded from the ground
by humans. Moreover, the dataset has examples of maneuver forces’ vehicles such as tanks,
infantry fighting vehicles, and armored personnel carriers, examples of air force vehicles
such as transport or assault helicopters and transport or assault airplanes, and examples of
engineering vehicles, anti-aircraft vehicles, and artillery vehicles. This research’s focus is
weapon systems only, and therefore people were not included. Furthermore, a large portion
of the collected videos are real combat footage, recorded mostly in the current conflict
between the Russian Federation and Ukraine. Other videos were taken at various military
exercises or expos and posted on the internet. Each video obtained through open source
websites was annotated using the Dark label annotation tool [27]. The dark label tool is
utility software that can label and name the object bounding boxes in videos and photos.
Additionally, it may be used to mosaic image regions, sample moving images, and crop
videos. Handling this software is quite simple. First, the class names are defined in the
darklabel.yml file. After that, the YOLO annotation format is selected, and the process of
labeling images of the desired classes begins. The classes of interest for this research are
as follows:

1. Tank (TANK);
2. Infantry fighting vehicle (IFV);
3. Armored personnel carrier (APC);
4. Engineering vehicle (EV);
5. Assault helicopter (AH);
6. Assault airplane (AAP);
7. Transport airplane (TA);
8. Anti aircraft vehicle (AA);
9. Towed artillery (TART).

It can be seen that the dataset consists of 9 classes, and after labeling all videos (that is,
images that were broken into frames by the Dark label software), the total dataset consists
of 24,178 images. The distribution of data, i.e., the number of annotated images, can be
seen in the histogram shown in Figure 1. The largest group of annotated images is for class
AA, while the smallest group is for class EV. It is obvious that the classes are not uniformly
distributed, which represents a challenge in the precise detection and classification of
individual classes.

Figure 1. Histogram of all used classes in this research.
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The dataset is divided into train/test/validation sets in the ratio of 70/20/10, respec-
tively. As a result, 16,900 images form the training set, 4849 the test set, and 2429 the
validation set.

Each image used in the training of the YOLOv5 detection model carries with it im-
portant information that shapes the neural networks within the model. Each image pixel
has a functional value and contributes to the learning process, creating a deeply connected
network of neural connections. Accordingly, the presentation of these images in the paper
is of essential importance, as it enables the reader to see the specific characteristics and
complexity of the input data that influence the final results of object detection. Several
examples can be seen in Figure 2.

Figure 2. Visual representation of images employed in YOLOv5 algorithm training.

In addition, the image display includes a visual analysis that reveals the complexity of
military nature and additional challenges in training a detection algorithm like YOLOv5.
The pictures clearly show the shades of camouflage used to hide objects from enemy obser-
vation. This characteristic makes training a detection model more challenging, requiring
precision in object recognition even under difficult-to-see conditions. Training an algorithm
to accurately detect military objects despite different forms of camouflage is an important
goal in the development of reliable detection algorithms for military applications. The im-
ages shown, labeled as in Figure 2, provide concrete examples of these challenges and
illustrate the need for sophisticated detection algorithms.

Military Data Curation Process: Unveiling the Significance and Challenges of
Comprehensive Datasets in a Strategic Context

The quality of the dataset is a key prerequisite for successful research in the field
of artificial intelligence, and this especially applies to the development and training of
algorithms. According to generally accepted standards, as much as 70% of the total
effort in the process of training an AI algorithm is devoted to the collection, processing,
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and preparation of data. In order for research to achieve an acceptable level of precision
and reliability, it is essential to have a high-quality dataset.

Figure 3 illustrates the arduous nature of the dataset collection process, comprising a
series of sub-steps that demand considerable time investment. The compilation of a dataset
to a level acceptable for annotation, let alone training AI algorithms, is a painstaking en-
deavor. This visual representation underscores the pivotal role of a well-curated dataset
in the development of artificial intelligence. It highlights that research based on vaguely
defined or low-quality data may yield unrealistic results and draw incorrect conclusions.
Various methods, including surveys, camera recordings across different devices, and even
oral transmission of information, can be employed in data collection. Diverse collection
conditions, encompassing factors such as the environment, weather conditions, and con-
text, can exert a substantial impact on research outcomes. Hence, it becomes crucial to
meticulously account for these factors when curating a dataset.

Figure 3. Flowchart utilized in this research for military data collection protocol.

As depicted in Figure 3, the data acquisition process comprises two pivotal phases.
The initial phase entails a comprehensive exploration of available videos and diverse
image repositories accessible on the internet. The primary objective of this stage was to
meticulously curate a set of high-caliber computer data that would undergo subsequent
processing. The quest for data traversed various platforms, including YouTube, Google
Images, Wikimedia Commons, and others.

Prior to commencing the analytical phase, meticulous consideration was devoted
to adapting and scrutinizing all designated video formats. This involved the critical
assessment of video quality, addressing challenges related to perspective constraints, ac-
counting for temporal variables, and discerning potential manipulations and edits within
the material. Subsequent to the successful compilation of a substantial dataset, comprising
101 videos averaging 180 s in length, each video comprising 60 frames per second (FPS)
for a cumulative total of 1,090,800 images, a judicious analysis and evaluation process
ensued. Each image underwent scrutiny as a prospective candidate for annotation, neces-
sitating precise labeling and identification of pertinent information to ensure a nuanced
and pertinent analysis in subsequent research endeavors. Following the implementation
of solutions to potential challenges, a comprehensive review process was undertaken to
assess all acquired frames. The primary objective was to ascertain the presence of objects
exhibiting military characteristics, thereby enhancing the overall quality of the dataset and
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refining the definition of the target class of military objects. Should a specific frame fail
to meet the pre-established criteria, signifying a departure from the defined conditions, it
was systematically rejected from further consideration. This meticulous curation process
ensured that only frames aligning with the specified criteria were retained, contributing to
the precision and reliability of subsequent analyses and findings within the research context.
Following the successful resolution of potential challenges, a meticulous examination of all
acquired frames was initiated, with the objective of discerning objects exhibiting military
characteristics. The primary objective of this procedure was to enhance the quality of the
dataset and provide a more accurate delineation of the presence of the targeted class of
military objects. Instances where the specified conditions were not met, where a particular
frame failed to meet the predefined criteria, prompted its systematic exclusion. This sys-
tematic curation process was undertaken to uphold the consistency and high quality of the
data utilized in the course of the research.

Upon the successful extraction and meticulous curation of images, the subsequent step
involved annotating the images to facilitate the training of the YOLOv5 detection algorithm.
In this phase, dual considerations were paramount. Firstly, the military perspective was
taken into account, encompassing elements deemed significant from the standpoint of
a soldier, lieutenant, and the like. Simultaneously, the YOLOv5 algorithm was loaded
and subjected to rigorous testing to evaluate its performance under real-world conditions.
A more intricate exposition of the data collection process, along with illustrative examples,
is presented in Figures 4–9.

Figure 4. Example dataset featuring a military object target class AH in plain sight.

Figure 5. Example of an APC class in dense forest terrain.
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Figure 6. TART class blending into battle focus, obscured by smoke and local terrain.

Figure 7. Example of an APC class in an urban setting blending with local buildings.

Figure 8. Example of AA class merging with the surroundings.
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Figure 9. Example of a tank convoy moving towards a destination.

From military operations planners’ and military commanders’ standpoint, the signifi-
cance of this dataset lies in the variety of military equipment classes included. An algorithm
trained with this particular dataset can help military commanders and military headquar-
ters to have better situational awareness about opposition forces’ structure and operational
capabilities, especially in intense battle rhythm operations, when quick information flow is
essential. From a machine learning standpoint, the significance of this dataset lies in its
pivotal role in enhancing the robustness and generalization of algorithms. The incorpora-
tion of luminance contrast diversifies the learning experience, enabling the algorithm to
adeptly discern varying levels of luminance and thus bolstering its resilience to changes in
lighting conditions. Furthermore, the dataset richness in colors and textures contributes to
the capacity of the algorithm to generalize across diverse object types and backgrounds,
as exemplified in Figures 7 and 8. In terms of preventing overfitting, the dataset inclusion
of different perspectives is instrumental in averting model specialization to particular
positions or viewing angles. Moreover, the incorporation of varied recording conditions,
such as distinct cameras and weather scenarios, serves as a safeguard against overfitting to
a specific dataset, as demonstrated in Figures 5 and 7. The dataset emphasis on increasing
variation is evident through its incorporation of geographical and environmental diversity.
This inclusion exposes the algorithm to different locations and environments, fostering an
ability to adapt to various conditions, such as multiple entry with similar properties as
shown on Figure 9. Notably, the dataset captures scenarios where autonomous humans
(AH) are situated outdoors, or within dense vegetation such as tall trees, or the elevated
roofs of buildings. The dataset further contributes to the model’s versatility in solving
various problems. The introduction of different object sizes and distances enables the
model to develop proficiency in accurately detecting objects within diverse contexts. This
is illustrated, for instance, in Figure 4, where AHs exhibit scaling, with one AH appearing
smaller in relation to the other. Additionally, the dataset encompasses variations in object
positions within images, facilitating the model’s ability to recognize objects across different
parts of an image. Lastly, the inclusion of diverse time periods in the dataset, encompassing
night, day, snow, dust, smoke, and more, augments the model’s performance on real-world
data as in Figure 6. This is particularly relevant in the context of autonomous vehicles,
where variations in driving conditions, including night, day, rain, and snow, contribute to
preparing the model for a spectrum of real road situations.

As perceived from the perspective of ML engineers and AI algorithms, the presented
dataset furnishes exemplary instances under diverse conditions. This dataset serves as
a comprehensive evaluation ground, testing the algorithm’s performance capabilities in
varied scenarios. Additionally, it caters to the specific needs of military operators, providing
valuable insights tailored to their operational requirements.
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The description of the dataset is finished with this part, and the detection algorithm
used to solve the given problem is presented in the next subsection.

2.2. Methodology

YOLOv5 is an ideal solution for this problem due to its speed, reliability, and accuracy.
It is capable of handling various challenges in the detection, classification, and segmentation
of objects [28,29]. This single-stage object detector consists of a backbone, neck, and dense
prediction (head) as shown in Figure 10. The algorithm accelerates the process by analyzing
the data and the analyst only needs to verify the results.

Figure 10. Single-stage (YOLO) detector architecture.

We opted to use YOLOv5 for the detection of military objects within a dataset we
independently gathered. Our decision to utilize YOLOv5 over newer methods stemmed
from the intention to showcase our capability to detect military objects within a publicly
available dataset. YOLOv5 was chosen as it represents a stable and proven methodology
for object detection tasks. Given its established track record and reliability, employing
YOLOv5 allowed us to demonstrate our proficiency in identifying military objects reliably
and accurately. While newer methodologies might offer enhancements or improvements,
opting for YOLOv5 allowed us to focus on demonstrating our proficiency within a well-
established and widely recognized framework. It ensured that our results could be easily
reproducible and comparable against existing benchmarks in the field of object detection,
reinforcing the reliability and stability of our approach. The YOLOv5 detection algorithm
excels in achieving an optimal balance between speed and accuracy, featuring a refined
architecture suitable for implementation on resource-constrained microcontrollers [30].
From the compact YOLOv5 nano model to larger variants, these models exhibit memory
weights conducive to diverse applications, including military contexts. Comparative eval-
uations against DETR and EfficientDet underscore YOLOv5’s superiority, particularly in
challenges like crop circle detection, where it outperforms with a recall of 0.98, surpassing
DETR and EfficientDet 0.68 and 0.85, respectively, alongside precision values of 0.77 and
0.91 [30–32]. In scenarios involving overlapping object detection in kitchens, YOLOv5
excels by producing accurate frames and demonstrates superior performance compared
to Faster R-CNN [33]. The study reveals YOLOv5’s accuracy of 0.8912 (89.12%) outshin-
ing that of Faster R-CNNs of 0.8392 (83.92%), underscoring its effectiveness in handling
complex scenarios. Beyond object detection, YOLOv5 exhibits computational efficiency,
outpacing sophisticated methods like RetinaNet, as observed in Liu et al. [34–36]. Despite
not universally achieving optimal results, the model performance nuances are vital con-
siderations in addressing computational complexities during training. The versatility of
YOLOv5 extends across domains, including the analysis of secondary waste treatment
processes, applications in autonomous vehicles, and weed growth detection. Particularly
noteworthy is its exceptional interference reduction and efficiency in weed growth detec-
tion, positioning YOLOv5 as an optimal choice for military applications, as emphasized by
Almalky et al. [37]. Owing to foundational principles and analogous use cases, YOLOv5,
characterized by its intricate, comprehensive, precise, and rapid attributes, undergoes
scrutiny for the detection of military objects.



Information 2024, 15, 11 12 of 23

The input of the algorithm contains the images from which the dataset is composed:
in this case, any image from a possible 24,178 in total. The backbone is a pre-trained
network whose role is the extraction of features from images. Then, using the backbone,
the spatial resolution of the image is reduced, and the resolution of the features (channel)
is increased [38]. The role of the neck is a pyramid of features, that is, to extract feature
pyramids. The neck [39] has a generalization value which helps the model to generalize
different objects with multiple sizes and scales. At the end of the single-stage detection
algorithm, there is a head that is used to perform the final actions in which anchor boxes
are applied to feature maps and the output results of the algorithm are rendered as object
classes, bounding boxes, and object scores, i.e., the percentage of certainty that it is that
object. YOLOv5 has developed five models of different sizes: nano, small, medium, large,
and extra large models. As far as model operations are concerned, there is no difference,
that is, the principle of operation is the same for all, but the difference occurs in terms of
layers and parameters (later on, in the inference speed and memory size of the model) [28].
As previously defined, the single-stage detector, including YOLOv5, consists of three
components: the first is the backbone, which in this case is CSP-Darknet53, the neck,
i.e., SPP and PANet in the case of YOLOv5, and the head, which is identical to the previous
generation of the YOLO algorithm (YOLOv4 [40]). The listed components are shown in
Figure 11.

Figure 11. The YOLOv5 network architecture.

YOLOv5 is an update of previous versions of the YOLO detection algorithm. In the
fifth version, CSP-Darknet53 is used, which is actually CNN Darknet53 [38], which was
used in YOLO version 3 (YOLOv3) [41], but the authors of YOLOv5 improved the algorithm
by implementing the CSP network strategy. YOLO is a deep neural network (DNN) that
utilizes residual and dense blocks to ensure the flow of data into the deepest layers of
the neural network (NN) and prevents the problem of vanishing gradient. The problem
of vanishing gradients in machine learning is encountered when using gradient-based
learning techniques and backpropagation to train artificial neural networks. This is because
each neural network weight is adjusted in accordance with the partial derivative of the
error function with respect to the current weight in each training iteration [42]. The CSPNet
approach employed by YOLOv5 has the benefit of reducing the number of parameters and
computations, or FLOPS, and increasing the speed of inference. This is an important factor
to achieve real-time object detection. The method divides the feature map of the base layer
into two sections and then links them through the cross-stage hierarchy, which helps to
address the issue of redundant gradients.
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The neck in YOLOv5 brings two big changes. The first variant is Spatial Pyramid Pool-
ing (SPP), while the second is the Path Aggregation Network (PANet) which is integrated
using BottleNeckCSP in its architecture which is described below.

• PANet is a feature pyramid network that was used in the predecessor of the YOLOv5
version (in the fourth generation) to improve information flow and contribute to pixel
localization. In the YOlOv5 version, the network has been improved by integrating
the CSPNet strategy.

• SPP bulk is intended for the accumulation of information received from the input and
returns an output of a fixed length. This increases the influence of the receptive field
and separates the most important and relevant features without reducing the speed of
the network.

The YOLOv5 head is configured identically as in the cases of the detection algorithms
YOLOv3 [41] and YOLOv4 [40]. It consists of three convolutional layers that find and
predict the location of the bounding box, the confidence coefficient, and the object class.

YOLOv5 Configuration

Table 1 displays the hyperparameters that were altered during the training of the
YOLOv5 algorithm. Each resulting model was trained over 500 epochs, using different
image resolutions and optimizers. Starting with a resolution of 512 × 512 pixels, three
models were trained, differing in the optimizer used—Adam, AdamW, and the SGD
optimizer. After these three models were trained, the training process became more
complex, increasing the image resolution from 512 × 512 to 640 × 640. Likewise, these
models were also trained with the aforementioned optimizers. Finally, the highest image
resolution in this study was 1024 × 1024 pixels, with all three optimizers used for training
for 500 epochs. The common element of all obtained models is the Patience parameter,
which limits unnecessarily prolonged training. In other words, if the results do not improve
significantly after 100 epochs, the training is stopped and the last obtained epoch is taken
as the final training result.

Table 1. YOLOv5 hyperpatameter configuration.

Hyperparameters

No Image Size (in Pixels) Epochs Optimizer Patience

1

1024

500

Adam

100

2 AdamW

3 SGD

4

640

Adam

5 AdamW

6 SGD

7

512

Adam

8 AdamW

9 SGD

The Adam optimizer is one of the most common choices for computer vision tasks [43].
The optimizer is designed to be suitable for non-stationary tasks and problems with a lot of
influence of noise or sparse gradients [44]. Using the Adam optimizer, the weight values
are updated according to the following mathematical expressions [44]:

wt = wt−1 − η
m̂t√

v̂t + ϵ
(1)
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where m̂t is defined as
m̂t =

mt

1 − βt
1

, (2)

where v̂t is defined as
v̂t =

vt

1 − βt
2

, (3)

mt can be defined as the current average of the gradients and can be described as

mt = β1mt−1 + (1 − β1)G, (4)

Finally, vt can be defined as average of squared gradients with following equation:

vt = β2vt−1 + (1 − β2)G2 (5)

with G mathematically described as

G = ∇wC(wt) (6)

Equations (1)–(6) contain the following:

• η represents step size or learning rate.
• ϵ is a correction parameter, i.e., a number of the order of 10−8 and smaller that prevents

the possibility of diverging results.
• β1 and β2 are forgetting parameters; the running average is updated more quickly

when either one is lower (and hence the faster previous gradients are forgotten).
• C(wt) is a cost function.

By separating the weight from the gradient update, AdamW is a method-based stochas-
tic optimizer that controls a common implementation of weight decay. The regularization
parameter L2 in the Adam optimizer is usually implemented using Equation (7) where ωt
is the rate of the weight decay in time t [45]:

gt = ∇ f (θt) + wtθt (7)

while the difference between Adam and AdamW is the adjustment of the weight decay
parameter in the gradient update [45]:

θt+1,i = θt,i − η

(
1√

v̂t + ϵ
· m̂t + wt,iθt,i

)
, ∀t (8)

SGD [46] is one of the simplest optimizers for adjusting weight values and is mathe-
matically described as

wt+1 = wt − α · gt, (9)

where the following applies:

• w is the previous value of the weight, i.e., parameter;
• g modifies the gradient of the model;
• t is a time step;
• α is a global learning rate for the given optimizer.

In SGD, the optimizer predicts, based on a mini-batch, the direction of the steepest fall
and moves in that direction. Due to the limited step size, SGD can easily become stranded
in peaks or local minima. The gradient descent optimization technique can be improved by
adding momentum, which allows the search to gain momentum in a certain direction in
the search space, avoid noisy gradient oscillations, and move across flat areas of the search
space. The momentum parameter can be expressed as

vt+1 = β · vt + gt. (10)
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By adding the momentum parameter from Equation (10), the ultimate mathematical
form of the SGD optimizer is formed:

wt+1 = wt − α · vt+1. (11)

β represents the weightage that is going to assign to the past values of the gradients and its
value is lower than 1, i.e., SGD accelerates in the directions of constant descent, and this
acceleration makes it possible to avoid the plateau and makes the model less sensitive (in
local minima areas).

Each of the models obtained in this investigation was trained on a small NN YOLO
v5 at the intersection over union (IoU) threshold in the amount of 0.6. IoU represents the
ratio of the intersection area (overlap marked with green) and the union of the training
(predicted and marked with yellow) bounding box and the ground truth bounding box
shown in Figure 12a. In a real environment, due to multiple factors, the algorithm cannot
always 100% predict the boundary box. So, for example, the overlap in Figure 12b is not
100% but rather lower, while the area of the union is complete, that is, 100%. Thus, in the
example of Figure 12b, if the intersection area is 0.6, i.e., 60%, and the union area is 1,
i.e., 100%, then the IoU value is 0.6.

(a) (b)

Figure 12. Graphical and realistic representation of training (predicted) bounding box and ground
truth bounding box together with a graphical representation of IoU. (a) Graphic representation of
the IoU. (b) Presentation of training (predicted) bounding box and ground truth bounding box.

3. Results

In this section, the results obtained by the YOLOv5 detection algorithm are presented.
Each model is presented with the appropriate parameters, evaluation metrics are also
defined, which evaluate the performance of each of the obtained models. In the end, there
is a discussion about the performance of the model, which model performed better and
which performed worse, and what could potentially be the cause of it.

Obtained Results of the Trained Models

The results obtained from this research are presented in Table 2 below. Precision, recall,
map@0.5, mAP@0.95, and F1 score are shown for each model. After a short presentation of
the results, the confusion matrix for the best model for each resolution will be described.

Table 2 shows the results obtained in this research. It is of great importance to first ex-
plain the difference between the two evaluation metrics mAP, i.e., mAP@0.5, and mAP@0.95.
The main difference between mAP at a value of 0.5 (mAP@0.5) and 0.95 (mAP@0.95) lies in
the detection precision requirements:

• mAP@0.5 represents the average detection accuracy when using a threshold of 0.5
for successful object recognition. This means that an object is considered correctly
detected if it overlaps with the reference object (ground truth) by at least 50%.
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• mAP@0.95 represents the average detection accuracy when using a high threshold of
0.95 for successful object recognition. This means that an object is considered correctly
detected only if it overlaps the reference object by 95% or more.

Basically, mAP@0.95 represents a stricter criterion than mAP@0.5, requiring greater
precision in object detection. This implies that mAP@0.95 will be lower because achieving
a high degree of overlap of 95% with reference objects is a challenge. Therefore, there is a
significant discrepancy in the values between these two measurement metrics.

Table 2. The training outcomes achieved through machine learning techniques.

Optimizer Precision Recall mAP@0.5 mAP@0.95 F1 Score

512 × 512 resolution

Adam 0.831 0.837 0.806 0.484 0.834

AdamW 0.337 0.870 0.349 0.245 0.485

SGD 0.964 0.949 0.976 0.801 0.956

640 × 640 resolution

Adam 0.818 0.762 0.785 0.430 0.789

AdamW 0.927 0.807 0.875 0.678 0.863

SGD 0.966 0.957 0.979 0.830 0.961

1024 × 1024 resolution

Adam 0.818 0.762 0.785 0.430 0.789

AdamW 0.919 0.720 0.806 0.620 0.808

SGD 0.964 0.968 0.973 0.826 0.966

Looking at mAP@0.95, it is observed that the SGD optimizer with a resolution
of 640 × 640 achieved the best results among all the models, reaching a value of 0.83.
With mAP@0.95, mAP@0.5 for the same model is 0.979. On the other hand, the YOLOv5
model with AdamW optimizer achieved the lowest results, with mAP@0.95 of 0.34 and
mAP@0.5 of 0.245. When it comes to precision and recall criteria, the SGD optimizer stands
out again, achieving the best results compared to other models obtained at a resolution
of 640 × 640. In this case, the achieved precision of 0.966 represents the highest result
achieved with regard to this metric. Regarding the recall, the SGD optimizer also achieves
the best results, but at a different resolution, namely 1024 × 1024. The F1 score reaches its
maximum value in the case of the SGD optimizer at a resolution of 1024 × 1024, which is
equivalent to 0.966.

On the other hand, the AdamW optimizer achieves the lowest F1 score at a resolution
of 512 × 512, which is 0.485. Of course, in addition to the mentioned metrics, it is important
to carefully study the confusion matrix, also known as the responsibility matrix, which
was carried out. In this context, the best model for each individual resolution or the best
optimizer for each image resolution was carefully filtered. The selection of the best model
is based on the evaluation measure mAP@0.95.

According to the representation in Figure 13, it can be observed that the individual
value of each element of the responsibility matrix exceeds the 0.9 threshold, which empha-
sizes the high degree of responsibility of the model predictions. In particular, the smallest
coefficient of responsibility can be noted for the TA class, with an amount of the coefficient
of responsibility of 0.91. This indicates the precision of detection for all classes, and es-
pecially for the problematic TA class, where the model showed an exceptional degree of
accuracy. In the context of incorrect class prediction, we note that all coefficients are located
on the main diagonal of the liability matrix. This feature indicates that the model did
not produce an incorrect classification during the evaluation, as all detected objects were
correctly classified. The absence of values outside the main diagonal further confirms the
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absence of any irregularities or incorrect class predictions. These insights emphasize the
exceptional precision of the model in object detection and confirm the reliability of the
algorithm, especially in the identification of the TA class.

Figure 13. The responsibility matrix for SGD optimizer and 512 × 512 resolution.

In contrast to the previously analyzed case, upon careful observation of Figure 14,
subtle but relevant differences are visible in the results. These differences are manifested
in the dynamics of object detection performance between the two experimental contexts.
Specifically, there are variations in the responsibility coefficients for different classes. Some
of the classes experienced an increase in performance, which is evident in the case of the
EV class, while at the same time a decrease in performance was recorded for the TA and
AAP classes, which is manifested by a decrease in the coefficients of responsibility for
these classes.

Furthermore, a deeper analysis of these variations indicates the importance of a
detailed investigation of the causes of these changes. Possible factors that contributed to
the growth of responsibility coefficients for certain classes include model optimization,
improved data representation, or fine-tuning of hyperparameters. On the other hand,
a drop in performance for certain classes may arise from challenges in detecting those
specific objects, possibly due to variability in their characteristics or scene context.

These findings highlight the importance of continuous monitoring and evaluation
of model performance, which includes analyzing detected objects against real objects.
Understanding these nuances is crucial for the iterative development and improvement of
object detection algorithms, and opens up opportunities for further optimization in order
to achieve reliable and precise detection in different application contexts.

Finally, the SGD optimizer is evaluated in Figure 15 with a resolution of 1024 × 1024.
The results of mAP@0.95 showed that the coefficients of responsibility had significant
values for all detected objects, implying that the model predictions were highly reliable
in this context. Similarly to the two previous cases, no irregularities in class predictions
were observed. This characteristic of the model further confirms its capability to accurately
detect objects at high resolution. The absence of incorrect predictions or misclassified
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objects demonstrates the high accuracy and dependability of the model in this particular
resolution setting.

Figure 14. The responsibility matrix for SGD optimizer and 640 × 640 resolution.

Figure 15. The responsibility matrix for SGD optimizer and 1024 × 1024 resolution.
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After a thorough examination of the confusion matrix, which provides insight into the
accuracy of the detection of enemy objects, the focus shifts to the key factor of the system’s
efficiency: the speed of interference. This speed, which is the rate at which the algorithm
identifies objects in scenes, is of great importance in military operations, particularly when
it comes to UAVs. In such dynamic settings, the speed of enemy detection can be a deciding
factor in making real-time operational decisions. YOLOv5 is an algorithm that is both
precise and fast. The speed of the algorithm was tested on a laptop and a desktop computer,
the specifications of which are listed in Table 3.

Table 3. Technical specifications of the laptop computer.

Operating System Windows 11 Pro

CPU 11th Gen Intel Core i7–1195G7 @2.9 GHz

GPU Intel Iris Xe Graphics

RAM 32 GB 3200 MHz DDR4

The specifications of the desktop computer on which the model was trained are shown
in Table 4.

Table 4. Technical specifications of the desktop computer.

Operating System Windows 11 Pro

CPU Ryzen 7 5800X 8 Cores up to 4.7 GHZ

GPU Nvidia GeForce RTX 3070 8 GB

RAM 32 GB 3000 MH DDR4

The results of the detection time are presented in Table 5. An integrated GPU yielded
an interference value of 168.5 ms, while a conventional GPU produced a value of 24 ms.
These findings are shown in the table.

Table 5. Average interference time for 640 × 640 resolution using best model from this study.

System Average Interference Time [ms]

Laptop computer 168.5

Desktop computer 24

While conducting military operations, the ability to quickly detect the enemy is of
the utmost importance. YOLOv5 offers a rapid response to any changes that may occur
in the field. This could significantly enhance operational capabilities, allowing better
understanding of the environment and making it possible to make informed decisions in
real time. The significance of employing the YOLOv5 algorithm for military object detection
is underscored by the insights provided in Table 6. The weight of the obtained YOLOv5
model, ranging from 13 to 14 megabytes, is notably compact, presenting opportunities for
deployment on resource-constrained devices, such as Raspberry Pi [47–49] . However, it
is crucial to note that for efficient data processing and inference, a moderately powerful
graphics unit, particularly one containing a GPU, is still mandatory.
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Table 6. YOLOv5 weights of obtained models.

Optimizer Resolution [Height × Width] Size [MB]

Adam 512 × 512 13.6

Adam 640 × 640 13.7

Adam 1024 × 1024 13.8

AdamW 512 × 512 13.6

AdamW 640 × 640 13.7

AdamW 1024 × 1024 13.8

SGD 512 × 512 13.6

SGD 640 × 640 13.7

SGD 1024 × 1024 13.8

4. Discussion

An examination of the mAP@0.95 results revealed an outstanding performance of
the SGD optimizer at a resolution of 640 × 640, with a remarkable mAP@0.95 score of
0.83. In comparison, the YOLOv5 model with the AdamW optimizer had the poorest
performance, attaining only 0.34 for mAP@0.95 and 0.245 for mAP@0.5. The SGD optimizer
was particularly impressive with its high precision (0.966) and responsiveness values,
with the best result achieved at a resolution of 1024 × 1024. The F1 score also registered
the highest value of the SGD optimizer at a resolution of 1024 × 1024 (0.966). On the other
hand, the AdamW optimizer achieved the lowest F1 score at a resolution of 512 × 512
(0.485). Analysis of the confusion matrix (responsibility matrix) further confirmed the
high accuracy in object detection, particularly for the critical TA class. There were no
misclassifications, which further attests to the high precision and dependability of the
model. The detection results were optimal in both cases, whether using a laptop or a
desktop computer. Although the laptop does not have an advanced graphics system, it
still achieved surprisingly good results. However, using a desktop computer, there was a
considerable decrease in detection time, often even several times, which is clearly visible in
Table 5.

The results obtained and a more thorough analysis demonstrate the need for ongoing
monitoring and assessment of model performance, as well as further research into the
reasons for the variations in the results. Comprehending these nuances is essential for
improving object detection algorithms and achieving high detection accuracy in different
application contexts. Despite the average results obtained through mAP, recall, precision,
and other metrics, a more comprehensive understanding of the evaluation state is obtained
from the analysis of confusion matrices. These matrices provide detailed information on the
distribution of predictions between classes and show the connection between actual and
predicted values. For example, although the average mAP@0.95 results indicated different
optimizer performance and resolutions, the confusion matrices revealed certain classes
that may have had an effect on these results. It is possible that the detection precision of a
critical class, such as TA, had a major influence on the average metrics. Specifically, high
accuracy in the detection of these key classes can lead to better overall results.

The time frame of interference is critical for the operability of a system used in military
operations and reconnaissance. Generally, disturbances in electronic or signal communica-
tions should remain within a few tens of milliseconds. This is essential for the success of
scouting activities and for the safety of the personnel involved. Quick decisions must be
made during reconnaissance missions, and any delay or prolonged interruption in commu-
nication or data collection could be detrimental. The data collected must be quickly and
accurately analyzed to provide timely information for strategic planning and implementa-
tion. Meeting the technical parameters is necessary for efficient processing and utilization
of the information, but the final evaluation of the efficiency and effectiveness of the system
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is performed by experienced personnel in the defense forces. These professionals have
the expertise and knowledge of the context in which the system is used, making their
assessment essential for the system’s functionality and suitability for military operations.

5. Conclusions

This research presents a detailed analysis of the training of different YOLOv5 models
using different optimizers and image resolutions. Research results emphasize that it is
not always possible to achieve optimal performance by increasing the image resolution
during training. Different image resolutions and optimizers have shown different effects
on model performance, and standard evaluation metrics do not always provide the most
accurate insight into actual model performance. Evaluation metrics such as mAP, recall,
and precision are useful, but not always the most faithful representation of the model,
especially in the context of object detection in military applications. Therefore, it is advisable
to consider more aspects and methods of evaluation in order to get a more complete picture
of the performance of the model. During the testing, limited detection of objects was
observed, which is not satisfactory for military purposes. However, the analysis of the
response values (recall) indicates the possibility of further research into the application of
computer vision on aircrafts to detect objects on the ground.

In conclusion, it is of utmost importance to address the hypothetical questions posed
at the outset of this work, namely:

• That it is possible through thorough research and study of multiple image materials
to develop a sufficiently high-quality dataset that will be used to train an artificial
intelligence model, or in this case, a detection algorithm;

• That it is possible to detect, classify, and localize objects such as flying objects, mobile
objects, etc., of military purpose by applying well-developed models such as YOLOv5;

• The completed methodology manifests qualitative results, with the application of
which commanders of the armed forces can make decisions of considerable responsi-
bility, eliminating occurrences of undesirable consequences. At the same time, taking
into account resources of lower performance on equipment that does not require high
performance, decision-making is approached with optimal efficiency.

For future research, it is suggested to analyze the effect of image resolution on the
model’s evaluation values. Additionally, it is essential to balance the entire dataset to create
better quality models that would be more suitable for military purposes. Implementing
the model on a spacecraft and testing its performance in real-world conditions is of great
importance for furthering research in this field. Furthermore, researching new techniques
and algorithms that would enable more accurate detection of objects on the ground could
be critical to improving military applications of computer vision. Moreover, including
humans (soldiers or civilians) into one or more classes would be highly beneficial because
of their importance in modern combat. Finally, it is of utmost importance to implement the
model and assess its performance in real-world scenarios. The evaluation can be conducted
using videos obtained by commercial UAVs equipped with high-resolution payloads, such
as 4K UHD 2160p. However, optimal evaluation would involve the use of a military-grade
payload due to its relevance in real-world applications.
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