
Citation: Sideris, A.; Sanida, T.;

Dasygenis, M. A Novel Hardware

Architecture for Enhancing the

Keccak Hash Function in FPGA

Devices. Information 2023, 14, 475.

https://doi.org/10.3390/10.3390/

info14090475

Academic Editors: Nelly Leligou,

Theodore Zahariadis, Panagiotis

Trakadas and Panagiotis A. Karkazis

Received: 3 July 2023

Revised: 17 August 2023

Accepted: 24 August 2023

Published: 28 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Novel Hardware Architecture for Enhancing the Keccak Hash
Function in FPGA Devices
Argyrios Sideris * , Theodora Sanida and Minas Dasygenis

Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece;
thsanida@uowm.gr (T.S.); mdasyg@ieee.org (M.D.)
* Correspondence: asideris@uowm.gr; Tel.: +30-24610-56534

Abstract: Hash functions are an essential mechanism in today’s world of information security. It is
common practice to utilize them for storing and verifying passwords, developing pseudo-random
sequences, and deriving keys for various applications, including military, online commerce, banking,
healthcare management, and the Internet of Things (IoT). Among the cryptographic hash algorithms,
the Keccak hash function (also known as SHA-3) stands out for its excellent hardware performance
and resistance to current cryptanalysis approaches compared to algorithms such as SHA-1 and SHA-2.
However, there is always a need for hardware enhancements to increase the throughput rate and
decrease area consumption. This study specifically focuses on enhancing the throughput rate of
the Keccak hash algorithm by presenting a novel architecture that supplies efficient outcomes. This
novel architecture achieved impressive throughput rates on Field-Programmable Gate Array (FPGA)
devices with the Virtex-5, Virtex-6, and Virtex-7 models. The highest throughput rates obtained were
26.151 Gbps, 33.084 Gbps, and 38.043 Gbps, respectively. Additionally, the research paper includes
a comparative analysis of the proposed approach with recently published methods and shows a
throughput rate above 11.37% Gbps in Virtex-5, 10.49% Gbps in Virtex-6 and 11.47% Gbps in Virtex-7.
This comparison allows for a comprehensive evaluation of the novel architecture’s performance and
effectiveness in relation to existing methodologies.

Keywords: Keccak hash function; hardware acceleration; cryptography circuits; Field-Programmable
Gate Array (FPGA); Secured Hash Algorithm-3 (SHA-3)

1. Introduction

Hash functions play a vital role in the domain of information security, serving as
fundamental tools in various applications. One of their primary purposes is to ensure
information security by providing services like authentication and integrity. In the context
of password storage and verification, hash functions are extensively utilized to transform
passwords into irreversible hashes, protecting the original passwords from unauthorized
access [1,2]. Additionally, these functions find application in generating pseudo-random
sequences, which are essential in cryptography and crucial derivation for various purposes
such as military, online commerce, healthcare management, banking, and the Internet of
Things (IoT) [3–5].

However, it is worth noting that several commonly used hash algorithms, including
SHA-1, Snefru, MD4, MD5, RIPEMD, and HAVAL, have been discovered to be vulnerable
to collision attacks. Collision attacks occur when two distinct inputs produce the same
hash output, compromising the hash function’s security [6–8]. The National Institute
of Standards and Technology (NIST) took proactive measures to address this issue and
enhance information security. They organized a three-round contest to replace the SHA-2
hashing standard, which was considered relatively secure at the time. The contest sought
to identify a new hashing standard that could withstand potential attacks and provide
robust security [9–11].

Information 2023, 14, 475. https://doi.org/10.3390/info14090475 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14090475
https://doi.org/10.3390/info14090475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-6252-426X
https://orcid.org/0000-0002-6849-4241
https://orcid.org/0000-0002-2180-9752
https://doi.org/10.3390/info14090475
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14090475?type=check_update&version=1

Information 2023, 14, 475 2 of 15

The NIST contest eventually concluded with selecting and adopting the Keccak func-
tion as the new hashing standard. Keccak, also known as SHA-3, is designed to resist
collision attacks and other cryptographic vulnerabilities. Its selection as the new standard
signifies the importance of continuously advancing hash functions to meet evolving se-
curity requirements and protect sensitive information in today’s interconnected digital
landscape [12]. By adopting more secure hash algorithms like Keccak, organizations and
individuals can enhance the overall security of their systems and data, reducing the risk
of unauthorized access and malicious activities [13]. The Keccak algorithm is a widely
utilized cryptographic hash function that plays a crucial role in ensuring data privacy and
maintaining the integrity of data exchange in various daily systems. However, there is
an ongoing challenge in enhancing the performance of Keccak’s circuit implementation,
particularly in the context of embedded systems [14,15].

One advantage of implementing Keccak in Field-Programmable Gate Arrays (FP-
GAs) is its superior speed compared to previous SHA algorithms when implemented in
hardware. Keccak is designed to deliver excellent performance across various hardware
platforms. Utilizing FPGAs for Keccak implementation offers the benefits of algorithm
customization and reconfigurability flexibility. FPGAs can be tailored to consume less
power than traditional processors, making them ideal for implementing cryptographic
functions like Keccak. Moreover, FPGAs can significantly enhance the throughput of
Keccak calculations [16,17]. As a result of these advantages, several strategies have been
proposed to implement the Keccak algorithm effectively. These approaches focus on re-
ducing energy consumption, maximizing the utilization of area resources, or enhancing
processing speed [18]. Researchers and developers are actively exploring innovative tech-
niques to optimize the implementation of Keccak in embedded systems, leveraging the
capabilities of FPGAs to achieve improved efficiency, security, and performance [19]. By
addressing the challenges associated with Keccak’s circuit implementation, particularly
in the realm of embedded systems, it becomes possible to unlock the full potential of this
algorithm in ensuring data privacy and maintaining the integrity of data exchange across
various applications. The continuous advancements in FPGA technology and the ongoing
research efforts in algorithm optimization contribute to the evolution and broader adoption
of Keccak in securing sensitive information in daily systems [20,21].

The following is a brief summary of the various contributions that were made in
this article:

• We propose a novel technique optimization strategy for enhancing the efficiency of the
Keccak algorithm. Our approach is based on the concepts of unrolling and pipelining,
which are well-established methods in FPGA devices. The primary objective of this
work is to improve the performance of Keccak in terms of throughput, frequency,
and area utilization (Section 4.3.1).

• We propose a new format for the Round Constant (RC) generator, aiming to improve its
performance in terms of throughput and efficiency while also decreasing the hardware
resources required. The new format introduces a more straightforward structure for
the RC generator, in which the number of necessary XOR operations is reduced to only
seven. The decreased computation leads to faster execution times, thereby improving
the overall throughput of the algorithm (Section 4.3.2).

• To ensure the accuracy and reliability of our proposed method, we conducted a
thorough validation process using established examples provided by the NIST. This
validation step is crucial in ensuring that our proposed strategy maintains the neces-
sary cryptographic properties and adheres to the specifications outlined by NIST for
the Keccak algorithm (Section 5.1).

• Finally, we conducted an extensive evaluation and analysis of our proposed archi-
tecture, comparing it to other similar methods described in the published litera-
ture. The evaluation focused on key performance metrics, including area utilization
(in terms of slices), throughput (in Gbps), frequency (in MHz), and efficiency (in
Mbps/slice). By leveraging these evaluations and comparisons, we can confidently

Information 2023, 14, 475 3 of 15

assert the superiority of our design in terms of performance, efficiency, and area
utilization (Section 5.3).

The remainder of the study is organized as follows: In the next Section 2, we present
the related studies in the literature. In Section 3, we shortly present the Keccak outline.
Section 4 describes our new suggested hardware optimization strategy of the Keccak
algorithm on FPGA. In Section 5, we demonstrate the experimental outcomes of our work
and the comparisons with other suitable works. In Section 6, we discuss our optimization
strategy. Finally, Section 7 summarizes our study’s findings and future work.

2. Related Work

The cryptography community has conducted extensive investigations to optimize
architectures and approaches for implementing the Keccak algorithm on FPGA devices. The
primary goal of these architectures is to enhance the FPGA’s throughput while reducing its
area requirements [19,22]. However, despite these efforts, a critical need remains to improve
further performance measurements associated with throughput and area decrease [23–25].
This section will examine other similar works and discuss their findings in detail.

The study [26] proposed a new technique for implementing the Keccak design with an
output size of 512 bits. The authors performed an evaluation of the suggested design of the
Virtex-5. In this implementation, for an output size of 512 bits, the Virtex-5 FPGA required
1680 slices and operated at a clock frequency of 387 MHz. This specific design achieved
a throughput of 8.06 Gbps. Furthermore, the efficiency of this design was measured
and found to be 4.91 Mbps/Slice. In [27], the authors suggested a new approach for
implementing the Keccak method with an output size of 512 bits. The authors evaluated the
performance of the presented design on the Virtex-7 FPGA device. In this implementation,
for an output size of 512 bits, the Virtex-7 FPGA needed 1454 slices and operated at a clock
frequency of 374.035 MHz. This configuration achieved a throughput of 7.979 Gbps and an
efficiency of 5.49 Mbps/Slice.

Rao et al. [28] proposed a new method for Keccak implementation in Virtex-5 and
Virtex-6 FPGA. Their emphasis was primarily on output sizes of 256 and 512 bits. For the
Virtex-5 architecture, when implementing Keccak with an output size of 256 bits, the design
utilized 1291 slices and operated at a clock frequency of 377.86 MHz. This configuration
achieved a throughput of 17.132 Gbps. On the other hand, when targeting an output size
of 512 bits, the Virtex-5 architecture employed 1409 slices and attained a throughput of
10.19 Gbps. In the case of the Virtex-6 architecture, the proposed Keccak implementation
with an output size of 256 bits required 1028 slices and operated at a clock frequency
of 424.44 MHz. This resulted in a higher throughput of 19.241 Gbps than the Virtex-5
implementation. The Virtex-6 implementation with an output size of 512 bits utilized
1227 slices and achieved a throughput of 8.22 Gbps.

In [29], the authors suggested a new design for implementing Keccak architecture
with an output size of 512. This design offers a trade-off between the maximum frequency
and the area implementation, allowing flexibility in optimizing performance and resource
utilization. The authors evaluated the performance of the proposed design on different
FPGA devices, specifically focusing on Virtex-5, Virtex-6, and Virtex-7. For an output size
of 512, the Virtex-5 architecture required 1388 slices and operated at a clock frequency
of 287.39 MHz. This configuration achieved a throughput of 11.50 Gbps. Moving to the
Virtex-6 architecture, the proposed design required 1167 slices and operated at a higher
clock frequency of 394.01 MHz. This increased clock frequency improved throughput
of 15.76 Gbps. Finally, when considering the Virtex-7 architecture, the design utilized
1418 slices and operated at a clock frequency of 414.54 MHz. This configuration achieved
the highest throughput among the evaluated architecture, reaching 16.58 Gbps.

The authors of [30] introduced a design approach for implementing the Keccak design
with an output size of 512 bits. The authors performed an evaluation of the suggested design
of the Virtex-5 and Virtex-6 FPGA. In this design, the Virtex-6 FPGA required 2296 slices
and operated at a clock frequency of 391 MHz. This specific design achieved a throughput

Information 2023, 14, 475 4 of 15

of 9.38 Gbps. Furthermore, the efficiency of this design was measured and found to be
8.17 Mbps/Slice. In [31], the authors suggested a new approach for implementing the
Keccak method with an output size of 512 bits. The authors evaluated the performance of
the presented design on the Virtex-5 FPGA device. In this implementation, for an output
size of 512 bits, the Virtex-5 FPGA needed 2326 slices and operated at a clock frequency
of 306 MHz. This design earned a throughput score of 5.56 Gbps and an efficiency score
of 2.40 Mbps/Slice. The study [32] presented a new design for implementing the Keccak
design with an output size of 512 bits. In this implementation, the Virtex-5 FPGA required
1163 slices and operated at a clock frequency of 273 MHz. This design earned a throughput
score of 7.80 Gbps. Also, the efficiency score of this design reached 6.06 Mbps/Slice.

Table 1 includes the Keccak algorithm with recently published methods. Most previ-
ous works on the Keccak algorithm have primarily focused on utilizing the classic 64-bit
RC generator. However, this work aims to improve upon these existing approaches by
introducing an optimized RC generator that significantly reduces its size. The primary
objective of this study is to compare the performance metrics, specifically the efficiency
and the throughput, with the enhanced RC generator integrated into the Keccak algorithm.
By reducing the size of the RC generator, the proposed optimization technique aims to
achieve superior performance results compared to previous investigations. The findings
of this study demonstrate that the proposed optimization technique surpasses the perfor-
mance measures achieved by previous approaches. The results of this study suggest that
the optimized RC generator can serve as a promising strategy for FPGA boards.

Table 1. Outline in the recent publications for the Keccak algorithm.

Study Output Size RC Generator FPGA

[26] 512 64 Virtex-5

[27] 512 64 Virtex-7

[28] 512 64 Virtex-5 and Virtex-6

[29] 512 64 Virtex-5, Virtex-6, and Virtex-7

[30] 512 64 Virtex-5, and Virtex-6

[31] 512 64 Virtex-5

[32] 512 64 Virtex-5

3. Keccak Outline

In the context of the NIST hash function competition [33], the SHA-3 family of crypto-
graphic hash functions was developed. It was developed as an alternative to the SHA-2
family, which is commonly used, to provide enhanced security together with enhanced
performance features. The Keccak family has a total of four different hash functions, which
are referred to as Keccak-224, Keccak-256, Keccak-384, and Keccak-512, respectively. These
functions are all supported by the same fundamental framework, which is referred to as the
sponge construction [34]. The sponge construction is a flexible framework that enables the
production of hash values of varying lengths. It is ideal for a wide variety of applications
because of these features. The key concept behind the sponge construction is the use of
a state represented as a two-dimensional array of bits. The state is divided into bitrate
(r) and capacity (c). The input message is processed in blocks of size r, and the internal
state is updated accordingly. The capacity serves as a buffer to introduce non-linearity and
enhance the security properties of the algorithm.

As shown in Figure 1, the Keccak hash functions operate in two main phases: the
absorbing and squeezing phases. The input message is absorbed into the state using the
sponge construction in the absorbing phase. This phase prepares the input data by applying
the f function, which incorporates bitwise operations, modular addition, and rotation
operations to introduce diffusion and confusion. In the squeezing phase, the desired hash
output is obtained by repeatedly squeezing blocks of data from the state.

Information 2023, 14, 475 5 of 15

Figure 1. Sponge construction of the Keccak algorithm.

The permutation function f consists of a round function applied iteratively to the state
array. Each round applies a series of bitwise operations, such as bitwise rotations, XOR,
AND, and NOT, to modify the state array nonlinearly and highly complexly. The round
function incorporates a set of constant values called RC, which introduce additional entropy
into the computation.

During each round of the permutation function, the first of the steps the state array
goes through is called “theta” using Equation (1). The theta step aims to introduce diffusion
and increase the mixing of the bits within the state array. In the theta step, each bit of
the state array is XORed with a linear combination of its neighbouring bits. This XOR
operation helps to distribute information and propagate changes across the state array.
By incorporating this linear combination, the theta step ensures that small changes in
one part of the state array can significantly impact other parts, increasing diffusion and
complexity. The specific linear combination used in the theta step may vary depending on
the cryptographic algorithm or permutation function. It is designed to achieve a balanced
distribution of bits and prevent the concentration of information in specific regions of the
state array. Applying the theta step iteratively in each round of the permutation function
increases the diffusion and mixing of bits throughout the state array. This helps to ensure
that the output of the permutation function exhibits a high degree of randomness and
complexity, making it difficult for an attacker to extract meaningful information or identify
any patterns within the encrypted data.

Theta (θ) step:

C[x] = A[x, 0] XOR A[x, 1]XORA[x, 2] XOR A[x, 3] XOR A[x, 4],
x = 0...4
D[x] = C[x− 1] XOR ROTATE (C[x + 1], 1),
x = 0...4
A[x, y] = A[x, y] XOR D[x],
x = 0...4

(1)

Information 2023, 14, 475 6 of 15

After the theta step in the permutation function, the state array undergoes another step
called “rho” using Equation (2). The rho step involves performing a series of predefined
circular bit rotations on specific positions within the state array. This step enhances the
diffusion of bits and ensures that each bit interacts with a wide range of other bits. In the
rho step, specific positions in the state array are selected, and a fixed number of positions
rotates the bits within those positions. The circular rotation means that the bits rotated out
of one end of the position reappear at the other end, creating the circular shifting effect. The
rho step introduces further complexity and randomness into the state array by applying
these circular bit rotations. Additionally, it helps to spread the influence of each bit across
different positions and ensures that each bit interacts with a larger number of other bits in
subsequent rounds.

Rho (ρ) step:

A[x, y] = ROTATE
(

A′[x, y], r[x, y]
)
, [x, y] ≤ 4 (2)

After the rho step in the permutation function, the state array proceeds to undergo
the “pi” step using Equation (3). The pi step is responsible for rearranging the bits within
each lane of the state array, introducing a form of permutation that contributes to a high
degree of confusion and diffusion. In the pi step, the positions of the bits within each lane
are rearranged according to a predefined permutation pattern. This permutation pattern
determines the new positions of the bits within their respective lanes. By shuffling the bits
this way, the pi step ensures that each bit interacts with a different set of neighbouring
bits in subsequent rounds. The rearrangement of bits within each lane provides significant
confusion as it disrupts any potential patterns or relationships between the bits.

Pi (π) step:
B[y, 2x + 3y] = A[x, y], [x, y] ≤ 4 (3)

In each round of the permutation function, the “chi” operation follows the pi step using
Equation (4). The chi step introduces nonlinearity and plays a crucial role in amplifying
the effects of small changes in the input, resulting in significant changes throughout the
state array. Each bit in the state array is combined with two other bits during the chi step
to produce a new bit value. The specific combination is performed using bitwise logical
operations, XOR (exclusive OR), AND (logical AND), and NOT (logical NOT). The purpose
of the chi step is to introduce nonlinearity into the permutation function. Combining each
bit with two others ensures that even small changes in one bit will have a cascading effect
on multiple bits in subsequent rounds. This amplification of changes enhances the diffusion
and spreading of information within the state array.

Chi (χ) step:

A[x, y] = B[x, y] XOR (NOT B[x + 1, y]) AND (B[x + 2, y]), [x, y] = 0...4 (4)

Finally, the “iota” step using Equation (5) is a simple XOR operation that introduces
additional randomness into the state array. It involves XORing a specific bit position in each
lane of the state array with a constant value derived from the round index. The constant
values used in the iota step are known as RC and are unique to each round of the Keccak
hash function. By incorporating the iota step in the permutation function, Keccak ensures
that each round of the hash function introduces additional complexity and randomness,
enhancing the algorithm’s overall security and cryptographic strength.

lota (ι) step:
A[0, 0] = A[0, 0] XOR RC[i] (5)

4. New Hardware Optimization Strategy

Our proposed architecture combines the benefits of unrolling and pipelining to achieve
significant performance improvements in terms of throughput and efficiency. By leveraging
the capabilities of unrolling and the enhanced frequency achieved through pipelining, we

Information 2023, 14, 475 7 of 15

can optimize the Keccak algorithm for increased throughput, higher operating frequency,
and efficient area utilization. Figure 2 illustrates the system architecture of the proposed
optimization strategy.

Figure 2. The proposed architecture overview approach.

4.1. Padding Process

The cryptographic hash function is designed to process messages of arbitrary size.
However, the internal permutation function within the hash function requires a fixed size,
denoted as “r”, of data to be processed at a time. This misalignment between the variable-
sized input message and the fixed-size internal permutation necessitates the use of padding.
The padding technique is applied to the initial message to generate a padded message that
aligns with the required block size. A padded message of size w × r, where w is an integer,
is created by concatenating a set of bits to the initial message. The specific bits added
during padding depend on the chosen padding scheme. The block size “r” choice depends
on the desired size of the resulting digest. Different variants of the Keccak hash function,
such as Keccak-224, Keccak-256, Keccak-384, and Keccak-512, have different block sizes
and output sizes. Table 2 supplies an overview of the values of “r” and “c” for these Keccak
variants, where “c” represents the capacity. In addition to providing compatibility between
the input message and the internal permutation, the padding phase also strengthens the
security of Keccak against length extension-based attacks. Length extension attacks exploit
vulnerabilities in hash functions that allow an attacker to append further data to an existing
hash value without knowing the authentic input.

Table 2. The output lengths of the Keccak and the parameters (r,c).

Desired
Output

Block Size
“r”

Capacity
“c”

Keccak− 224 1152 448
Keccak− 256 1088 512
Keccak− 384 832 768
Keccak− 512 576 1024

Information 2023, 14, 475 8 of 15

4.2. Mapping Process

The mapping process in the preprocessing phase of the Keccak algorithm aims to
generate input data in three dimensions. This is achieved by utilizing the following
Equation (6):

State[x, y, z] = [((Padded data r XOR r)||c)]∗[(z + 64∗(5∗y + x))] (6)

The equation maps the coordinates (x, y, z) to a linear index within the state to generate
the input data in three dimensions. The state has a size of 5 × 5 × 64, with x and y ranging
from 0 to 4 and z ranging from 0 to 63. By substituting the values of x, y, and z into
the equation, the resulting State (x, y, z) value can be calculated. This process allows for
generating the desired input data for the subsequent stages of the Keccak algorithm.

4.3. Keccak Process
4.3.1. Optimization Strategy

In our proposed optimization, as shown in Figure 3, we have implemented a two-
stage sub-pipelining approach within the f-permutation block of the Keccak hash function.
Additionally, we have unrolled the overall hash function by a factor of 2 and inserted
two pipelines between the rounds. The two-stages sub-pipelining specifically divides the
computation between the “theta” step and the remaining four steps (“rho”, “pi”, “chi”,
and “iota”) of the f-permutation block. This division allows for more efficient process-
ing and reduces the critical path, ultimately aiming to achieve a higher clock frequency.
In the first half of the computation, which includes the “theta” step, the longest delay
comprises five XOR operations. On the other hand, the second half, covering the “pi” to
“iota” steps, incurs the most extended delay of two XOR operations, one AND operation,
and one additional XOR operation. By implementing this sub-pipelining approach and
optimizing the critical path, we can significantly reduce the overall delay and improve
the clock frequency at which the hash function can operate. This enhancement leads to a
more efficient and high-performance implementation of the Keccak hash function in our
proposed architecture.

Figure 3. The proposed optimization with unrolling and pipelining techniques.

Information 2023, 14, 475 9 of 15

4.3.2. 7-Bit RC Generator

In this work, we have improved the RC generator in the Keccak algorithm by signifi-
cantly reducing its size. Previously, the RC generator stored 24 pre-calculated constants,
each with a certain length, as shown in Table 3. However, we reduce the size, which is
much smaller.

Table 3. The standard 64-bit RC values.

RC0 0000000000000001 RC1 0000000000008082 RC2 800000000000808A

RC3 8000000080008000 RC4 000000000000808B RC5 0000000080000001

RC6 8000000080008081 RC7 8000000000008009 RC8 000000000000008A

RC9 0000000000000088 RC10 0000000080008009 RC11 000000008000000A

RC12 000000008000808B RC13 800000000000008B RC14 8000000000008089

RC15 8000000000008003 RC16 8000000000008002 RC17 8000000000000080

RC18 000000000000800A RC19 800000008000000A RC20 8000000080008081

RC21 8000000000008080 RC22 0000000080000001 RC23 8000000080008008

The size reduction is achieved by storing only the non-zero bits in each RC value,
as shown in Equation (7). According to the Keccak specification, as shown in Equation (8),
each RC value has a maximum of seven non-zero bits.

A′[x, y, z] = A[x, y, z] XOR RC
[
ig
]

(7)

RC
[
ig
]
[0][0]

[
2h − 1

]
= gc

[
h + 7ig

]
for all 0 ≤ g ≤ n (8)

These Equations (7) and (8) highlight how the RC generator size is decreased through
the retention of non-zero bits within the RC values. So, we have taken advantage of this
observation and simplified the round constant values accordingly. The simplified seven-bit
RC values are presented in Table 4.

Table 4. The simplified seven-bit RC values.

RC0 1000000 RC1 0101100 RC2 0111101

RC3 0000111 RC4 1111100 RC5 1000010

RC6 1001111 RC7 1010101 RC8 0111000

RC9 0011000 RC10 1010110 RC11 0110010

RC12 1111110 RC13 1111001 RC14 1011101

RC15 1100101 RC16 0100101 RC17 0001001

RC18 0110100 RC19 0110011 RC20 1001111

RC21 0001101 RC22 1000010 RC23 0010101

This reduction in the size of the RC simplifies the computation in the “iota” step of the
Keccak algorithm. Previously, the “iota” step required 64 logical XOR operations. However,
with the simplified RC, the number of XOR operations needed in the “iota” step is reduced
to only seven. Specifically, the bitwise XOR operation is now performed on bit positions 0,
1, 3, 7, 15, 31, and 63 of the state array A[0, 0] as shown in Table 5, according to Equation (8).
These positions correspond to the non-zero bits in the simplified RC values.

Table 6 illustrates an instance of the simplified values used for RC [7]. By optimizing
the RC generator and simplifying the “iota” step, we achieve a more efficient computation
process in the Keccak algorithm. This improvement contributes to reducing computational
overhead and enhancing the overall performance of the hash function.

Information 2023, 14, 475 10 of 15

Table 5. The positions with non-zero bits.

g 0 1 2 3 4 5 6

[z] 0 1 3 7 15 31 63

Table 6. Instance of the simplified values used for RC [7].

Hexadecimal Binary Positions with Value 1

8009 1000000000001001 15th = 1, 7th = 0, 3rd = 1, 1st = 0, 0th = 1

0000 0000000000000000 31st = 0

0000 0000000000000000 -

8000 1000000010001000 63th = 1

4.4. Truncating Process

The truncating process in the Keccak algorithm serves as the inverse operation to
the mapping phase. It aims to generate a 1600-bit binary word (string) from a state
represented as a three-dimensional array with dimensions 5 × 5 × 64 bits. Once the
1600-bit binary word is generated, it undergoes a segmentation process to produce a
digest output of the desired size. The digest output size can vary depending on the
specific requirements or security level for applying the Keccak algorithm. The truncation
process involves converting the three-dimensional state array into a linear sequence of
bits. The 5 × 5 × 64 bits are concatenated together, resulting in a 1600-bit binary word.
Subsequently, the generated 1600-bit binary word is segmented or divided into smaller
portions to produce the desired digest output. The segmentation process typically involves
extracting a contiguous sequence of bits from the binary word, which matches the desired
output size. By truncating the 1600-bit binary word and extracting the appropriate segment,
the Keccak algorithm produces the final digest output, which results from applying the
cryptographic hash function on the input data. The digest output can be of varying sizes,
such as 224 bits, 256 bits, 384 bits, or 512 bits, depending on the specific variant of Keccak
being used and the desired level of security.

5. Experimental Outcomes

In our study, we employed the Virtex-5, Virtex-6, and Virtex-7 FPGA boards to com-
prehensively compare the suggested strategy with other existing studies, ensuring a fair
assessment. To implement the methods, we utilized the Xilinx ISE tool for the Virtex-5
and Virtex-6 designs, while the Virtex-7 design was implemented using Xilinx Vivado.
The information provided in Tables 7 and 8 corresponds to the results obtained after the
post-implementation stage in the FPGA design process. We want to emphasize that the
post-implementation stage is critical, as it considers the complete design and provides the
most accurate representation of the resources used by the design on the FPGA chip.

5.1. Verification Tests

We performed simulations and verification tests to validate our techniques’ function-
ality. In particular, we utilized valid examples provided by the NIST [35] to verify the full
functioning of our implementation. This validation process ensures that the implemented
techniques are functioning as intended by correctly producing the desired outcomes, and it
verifies whether the outcomes match the expected results, ensuring that the methods
produce reliable and precise outputs.

5.2. Performance Metrics and Outcomes of Our Architecture

The FPGA implementation results were extensively examined to evaluate various
standard performance metrics to guarantee a fair and meaningful comparison employed
in the existing literature [19], including achievable frequency (maximum), area utilization,

Information 2023, 14, 475 11 of 15

throughput, and efficiency. Throughput [36] is a crucial measure in message hashing, as it
determines the rate at which messages can be processed. Higher throughput indicates
the ability to handle a greater number of messages within a given time frame, which is
desirable for applications that require fast and efficient hashing.

ThroughputFpga =
Bitrate size “r”

Total clock cycles
× Frequency maximum clock (9)

The achievable frequency [37] represents the maximum clock frequency the FPGA
design can operate reliably. It indicates the speed at which the system can process incoming
data and execute the hashing operations. A higher achievable frequency signifies improved
processing capabilities and faster overall performance.

In the context of FPGA implementation, efficiency [38] assesses the ratio of useful
work performed to the amount of resources utilized. It provides insights into the overall
effectiveness of the design and its ability to achieve the desired objectives with minimal
wastage or redundancy. Higher efficiency values signify optimized utilization of FPGA
resources and improved performance.

E f f iciencyFpga =
ThroughputFpga

AreaFpga
(10)

Area [39,40] utilization refers to the amount of FPGA resources consumed by the
design. Lower area utilization implies more efficient utilization of FPGA resources and
potentially lower manufacturing costs. These metrics are presented in Table 7, allowing for
a clear comparison and analysis of the results.

Table 7. The FPGA implementation results.

FPGA Block Size “r” Virtex-5 Virtex-6 Virtex-7

Frequency (MHz) 272.41 344.62 396.28

Area (slices) 1186 1348 1452

Throughput (Gbps)

1152 26.151 33.084 38.043

1088 24.699 31.246 35.929

832 18.887 23.894 27.475

576 13.076 16.542 19.021

Efficiency (Mbps/slices)

1152 22.05 24.54 26.20

1088 20.83 23.18 24.74

832 15.93 17.73 18.92

576 11.03 12.27 13.10

As shown in Table 7, the Virtex-7 FPGA board exhibits the highest area utilization
among the three boards, with 1452 slices. The Virtex-6 board follows it with 1348 slices,
and the Virtex-5 board with 1186 slices. Secondly, regarding frequency, the Virtex-7 FPGA
board achieves the highest value of 396.28 MHz, indicating its ability to operate at a faster
clock speed. The Virtex-6 board follows closely behind 344.62 MHz, while the Virtex-5
board has the lowest frequency at 272.41 MHz. Lastly, the Virtex-7 board consistently
exhibits the highest throughput and efficiency across all ’r’ values, followed by Virtex-6
and Virtex-5.

5.3. Comparative Analysis with Other Equivalent Models

Table 8 displays the comparison with other equivalent models for a 512-bit output
length, focusing on the frequency (MHz), area (Slices), throughput (Gbps), and efficiency
(Mbps/slice) for the Keccak algorithm. All the reported outcomes are based on single-block

Information 2023, 14, 475 12 of 15

messages. The proposed design utilizing Virtex-5 FPGA achieves a slice count of 1186,
which is lower than the slice counts of the Virtex-5 designs presented in the works [26,28–31].
Although the operating frequency of the proposed Virtex-5 design is 272.41 MHz, which
is lower than the highest frequency mentioned in [26] (387 MHz), it manages to achieve a
higher throughput of 13.076 Gbps compared to the other Virtex-5 designs. Additionally,
the proposed Virtex-5 design demonstrates higher efficiency with a rate of 11.03 Mbps/slice,
outperforming the efficiencies of the other Virtex-5 designs.

Table 8. Outcomes and comparisons for the SHA-3 algorithm of 512 output length.

Design FPGA Area
(Slices)

Frequency
(MHz)

Throughput
(Gbps)

“r” = 576

Efficiency
(Mbps/Slices)

“r” = 576

[26] Virtex-5 1680 387 8.06 4.91

[27] Virtex-7 1454 374.035 7.979 5.49

[28]
Virtex-5 1409 377.86 8.22 5.83

Virtex-6 1227 424.44 10.19 8.30

[29]

Virtex-5 1388 287.39 11.50 8.48

Virtex-6 1167 394.01 15.76 13.83

Virtex-7 1418 414.54 16.58 11.97

[30]
Virtex-5 2652 352 8.44 6.37

Virtex-6 2296 391 9.38 8.17

[31] Virtex-5 2326 306 5.56 2.40

[32] Virtex-5 1163 273 7.80 6.06

Proposed

Virtex-5 1186 272.41 13.076 11.03

Virtex-6 1348 344.62 16.542 12.27

Virtex-7 1452 396.28 19.021 13.10

The proposed design using Virtex-6 FPGA exhibits a higher slice count of 1348 com-
pared to the Virtex-6 designs [28–30]. Although the proposed Virtex-6 design operates at
a frequency of 344.62 MHz, which is lower than the highest frequency reported in [28]
(424.44 MHz), it achieves a higher throughput of 16.542 Gbps when compared to the other
Virtex-6 designs. Similarly, the proposed Virtex-6 design showcases improved efficiency
with a value of 12.27 Mbps/slice, surpassing the efficiencies of the other Virtex-6 designs.

Furthermore, the proposed design utilizing Virtex-7 FPGA presents a slice count of
1452, comparable to that of the Virtex-7 designs mentioned in the works [27,29]. The oper-
ating frequency of the proposed Virtex-7 design is 396.28 MHz, surpassing the frequencies
reported in the other works, which range from 374.035 MHz to 414.54 MHz. Moreover,
the proposed Virtex-7 design achieves a higher throughput of 19.021 Gbps than the other
Virtex-7 designs. Additionally, the efficiency of the proposed Virtex-7 design stands at
13.10 Mbps/slice, which is higher than the efficiencies of the other Virtex-7 designs. The
above analysis makes it abundantly clear that the design that has been proposed demon-
strates superior performance in terms of both throughput and efficiency when compared to
the other designs that have been discussed in the relevant publications.

6. Discussion of Our Optimization Strategy

Cryptographic algorithms and hardware implementations have witnessed significant
advancements in recent years. However, despite these advancements, certain challenges
and gaps remain. One prominent issue is the ever-increasing demand for enhanced effi-
ciency in cryptographic systems. Traditional cryptographic algorithms need help keeping
up with modern adversaries’ growing computational power. Additionally, the need for

Information 2023, 14, 475 13 of 15

faster and more resource-efficient implementations in constrained environments, such as
IoT devices and embedded systems, presents a unique set of challenges. Existing hash
functions, while effective, often struggle to strike the right balance between performance
and resource utilization. This creates a research gap where there is room for innovative
solutions that address these challenges comprehensively.

The motivation behind our research stems from the abovementioned gap and the need
for novel approaches that can bridge the divide between resource utilization and efficiency.
The Keccak hash function holds promise due to its strong security properties for efficient
hardware implementation. Keccak’s sponge construction offers the flexibility to adapt the
hash function to varying security requirements without compromising performance. FPGA
technology presents an opportunity to leverage hardware acceleration to achieve efficient
and customizable cryptographic implementations. However, resource constraints can make
optimizing cryptographic algorithms for these devices challenging.

Our proposed approach is centred on harnessing the strengths of the Keccak algorithm
and FPGA technology to address the challenges posed by the research gap. By exploring
the potential of FPGA acceleration for Keccak-based cryptographic operations, we aim
to provide a solution that enhances efficient cryptographic implementations. Our work
contributes to the body of knowledge by demonstrating the feasibility and advantages of
FPGA-based Keccak implementations. We emphasize the potential of FPGA technology
in achieving a harmonious synergy between cryptographic strength and computational
efficiency. Our findings open avenues for further research into optimizing and refining
FPGA-based cryptographic systems with extensions to other cryptographic algorithms
and applications.

7. Conclusions and Future Work

Hash functions play an essential part in the field of information security, serving
various purposes in today’s digital world. The significance of hash functions extends to
various domains, including military, online commerce, banking, healthcare management,
and the Internet of Things (IoT). Among the various hash algorithms available, the Keccak
algorithm stands out for its significantly higher level of security. The Keccak algorithm pro-
vides a suitable combination of performance, acceleration, and safety, making it a preferred
choice for many cryptographic applications in today’s information security landscape.

The emphasis of this article is on studying the optimal performance of throughput
and efficiency criteria for the Keccak algorithm across various output lengths (224, 256,
384, and 512 bits) on the Virtex-5, Virtex-6, and Virtex-7 FPGA boards. By conducting a
comprehensive analysis, we compare our approach to similar plans and demonstrate that
our proposed strategy achieves the highest performance in terms of the standard evaluation
measures of throughput and efficiency. The highest throughput rates for a 512-bit output
length were above 11.37% Gbps in Virtex-5, 10.49% Gbps in Virtex-6 and 11.47% Gbps
in Virtex-7 compared with other recently equivalent models. In future work, we intend
to reduce the crucial path further and enhance overall performance and performance
measures per lap.

Author Contributions: Methodology, A.S.; investigation, A.S.; conceptualization, A.S.; resources,
A.S.; software, A.S.; formal analysis, A.S.; project administration, A.S.; visualization, A.S. and
T.S.; validation, A.S. and T.S.; writing—original draft preparation, A.S. and T.S.; writing—review
and editing, A.S. supervision, M.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2023, 14, 475 14 of 15

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
FPGAs Field-Programmable Gate Arrays
NIST National Institute of Standards and Technology
RC Round Constant
SHA Secure Hash Algorithm
VHDL Very High Speed Integrated Circuit HDL

References
1. Reddy, N.M.; Ramesh, G.; Kasturi, S.B.; Sharmila, D.; Gopichand, G.; Robinson, L.T. Secure data storage and retrieval system

using hybridization of orthogonal knowledge swarm optimization and oblique cryptography algorithm in cloud. Appl. Nanosci.
2023, 13, 2449–2461. [CrossRef]

2. Adeniyi, E.A.; Falola, P.B.; Maashi, M.S.; Aljebreen, M.; Bharany, S. Secure sensitive data sharing using RSA and ElGamal
cryptographic algorithms with hash functions. Information 2022, 13, 442. [CrossRef]

3. Almalki, J.; Al Shehri, W.; Mehmood, R.; Alsaif, K.; Alshahrani, S.M.; Jannah, N.; Khan, N.A. Enabling Blockchain with IoMT
Devices for Healthcare. Information 2022, 13, 448. [CrossRef]

4. Kore, A.; Patil, S. Cross layered cryptography based secure routing for IoT-enabled smart healthcare system. Wirel. Netw. 2022,
28, 287–301. [CrossRef]

5. Khari, M.; Garg, A.K.; Gandomi, A.H.; Gupta, R.; Patan, R.; Balusamy, B. Securing data in Internet of Things (IoT) using cryptography
and steganography techniques. IEEE Trans. Syst. Man. Cybern. Syst. 2019, 50, 73–80. [CrossRef]

6. Sadeghi-Nasab, A.; Rafe, V. A comprehensive review of the security flaws of hashing algorithms. J. Comput. Virol. Hacking Tech.
2022, 19, 287–302. [CrossRef]

7. Mishra, N.; Islam, S.H.; Zeadally, S. A comprehensive review on collision-resistant hash functions on lattices. J. Inf. Secur. Appl.
2021, 58, 102782. [CrossRef]

8. Sravani, M.M.; Durai, S.A. Attacks on cryptosystems implemented via VLSI: A review. J. Inf. Secur. Appl. 2021, 60, 102861.
[CrossRef]

9. Nita, S.L.; Mihailescu, M.I. Hash Functions. In Cryptography and Cryptanalysis in Java: Creating and Programming Advanced
Algorithms with Java SE 17 LTS and Jakarta EE 10; Springer: Berlin/Heidelberg, Germany, 2022; pp. 101–112. [CrossRef]

10. Sideris, A.; Sanida, T.; Dasygenis, M. Hardware acceleration of SHA-256 algorithm using NIOS-II processor. In Proceedings
of the 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece,
13–15 May 2019; pp. 1–4. [CrossRef]

11. Nakamura, K.; Hori, K.; Hirose, S. Algebraic Fault Analysis of SHA-256 Compression Function and Its Application. Information
2021, 12, 433. [CrossRef]

12. Alagic, G.; Apon, D.; Cooper, D.; Dang, Q.; Dang, T.; Kelsey, J.; Lichtinger, J.; Miller, C.; Moody, D.; Peralta, R.; et al. Status
Report on the Third Round of the Nist Post-Quantum Cryptography Standardization Process; US Department of Commerce, NIST:
Gaithersburg, MD, USA, 2022. [CrossRef]

13. Kim, Y.B.; Youn, T.Y.; Seo, S.C. Chaining optimization methodology: A new sha-3 implementation on low-end microcontrollers.
Sustainability 2021, 13, 4324. [CrossRef]

14. Braeken, A. Highly efficient symmetric key based authentication and key agreement protocol using Keccak. Sensors 2020, 20, 2160.
[CrossRef]

15. Vandervelden, T.; De Smet, R.; Steenhaut, K.; Braeken, A. SHA 3 and Keccak variants computation speeds on constrained devices.
Future Gener. Comput. Syst. 2022, 128, 28–35. [CrossRef]

16. Sideris, A.; Sanida, T.; Dasygenis, M. High throughput implementation of the keccak hash function using the nios-ii processor.
Technologies 2020, 8, 15. [CrossRef]

17. Sideris, A.; Sanida, T.; Chatzisavvas, A.; Dossis, M.; Dasygenis, M. High Throughput of Image Processing with Keccak Algorithm
using Microprocessor on FPGA. In Proceedings of the 2022 7th South-East Europe Design Automation, Computer Engineering,
Computer Networks and Social Media Conference (SEEDA-CECNSM), Ioannina, Greece, 23–25 September 2022; pp. 1–4.
[CrossRef]

18. Caba, J.; Díaz, M.; Barba, J.; Guerra, R.; Escolar, S.; López, S. Low-power hyperspectral anomaly detector implementation in
cost-optimized FPGA devices. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2379–2393. [CrossRef]

19. Al-Odat, Z.A.; Ali, M.; Abbas, A.; Khan, S.U. Secure hash algorithms and the corresponding FPGA optimization techniques.
ACM Comput. Surv. (CSUR) 2020, 53, 1–36. [CrossRef]

20. Sideris, A.; Sanida, T.; Dasygenis, M. High throughput pipelined implementation of the SHA-3 cryptoprocessor. In Proceedings
of the 2020 32nd International Conference on Microelectronics (ICM), Aqaba, Jordan, 14–17 December 2020; pp. 1–4. [CrossRef]

21. Assad, F.; Elotmani, F.; Fettach, M.; Tragha, A. An optimal hardware implementation of the KECCAK hash function on virtex-5
FPGA. In Proceedings of the 2019 International Conference on Systems of Collaboration Big Data, Internet of Things & Security
(SysCoBIoTS), Casablanca, Morocco, 12–13 December 2019; pp. 1–5. [CrossRef]

http://doi.org/10.1007/s13204-021-02174-y
http://dx.doi.org/10.3390/info13100442
http://dx.doi.org/10.3390/info13100448
http://dx.doi.org/10.1007/s11276-021-02850-5
http://dx.doi.org/10.1109/TSMC.2019.2903785
http://dx.doi.org/10.1007/s11416-022-00447-w
http://dx.doi.org/10.1016/j.jisa.2021.102782
http://dx.doi.org/10.1016/j.jisa.2021.102861
http://dx.doi.org/10.1007/978-1-4842-8105-5_8
http://dx.doi.org/10.1109/MOCAST.2019.8741638
http://dx.doi.org/10.3390/info12100433
http://dx.doi.org/10.6028/NIST.IR.8413
http://dx.doi.org/10.3390/su13084324
http://dx.doi.org/10.3390/s20082160
http://dx.doi.org/10.1016/j.future.2021.09.042
http://dx.doi.org/10.3390/technologies8010015
http://dx.doi.org/10.1109/SEEDA-CECNSM57760.2022.9932909
http://dx.doi.org/10.1109/JSTARS.2022.3157740
http://dx.doi.org/10.1145/3311724
http://dx.doi.org/10.1109/ICM50269.2020.9331803
http://dx.doi.org/10.1109/SysCoBIoTS48768.2019.9028020

Information 2023, 14, 475 15 of 15

22. Bensalem, H.; Blaquière, Y.; Savaria, Y. An efficient OpenCL-Based implementation of a SHA-3 co-processor on an FPGA-centric
platform. IEEE Trans. Circuits Syst. II Express Briefs 2022, 70, 1144–1148. [CrossRef]

23. Ruiz-Rosero, J.; Ramirez-Gonzalez, G.; Khanna, R. Field programmable gate array applications—A scientometric review.
Computation 2019, 7, 63. [CrossRef]

24. Mitra, J.; Nayak, T.K. An FPGA-based phase measurement system. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017,
26, 133–142. [CrossRef]

25. Ferraz, O.; Subramaniyan, S.; Chinthala, R.; Andrade, J.; Cavallaro, J.R.; Nandy, S.K.; Silva, V.; Zhang, X.; Purnaprajna, M.; Falcao,
G. A survey on high-throughput non-binary LDPC decoders: ASIC, FPGA, and GPU architectures. IEEE Commun. Surv. Tutor.
2021, 24, 524–556. [CrossRef]

26. Mestiri, H.; Barraj, I. High-Speed Hardware Architecture Based on Error Detection for KECCAK. Micromachines 2023, 14, 1129.
[CrossRef] [PubMed]

27. Van Hieu, D.; Khai, L.D. A Fast Keccak Hardware Design for High Performance Hashing System. In Proceedings of the 2021 15th
International Conference on Advanced Computing and Applications (ACOMP), Ho Chi Minh City, Vietnam, 24–26 September
2021; pp. 162–168. [CrossRef]

28. Rao, M.; Newe, T.; Grout, I.; Mathur, A. High speed implementation of a SHA-3 core on Virtex-5 and Virtex-6 FPGAs. J. Circuits
Syst. Comput. 2016, 25, 1650069. [CrossRef]

29. Kahri, F.; Mestiri, H.; Bouallegue, B.; Machhout, M. High speed FPGA implementation of cryptographic KECCAK hash function
crypto-processor. J. Circuits Syst. Comput. 2016, 25, 1650026. [CrossRef]

30. Ioannou, L.; Michail, H.E.; Voyiatzis, A.G. High performance pipelined FPGA implementation of the SHA-3 hash algorithm. In
Proceedings of the 2015 4th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 14–18 June 2015;
pp. 68–71. [CrossRef]

31. Provelengios, G.; Kitsos, P.; Sklavos, N.; Koulamas, C. FPGA-based design approaches of keccak hash function. In Proceedings of
the 2012 15th Euromicro Conference on Digital System Design, Cesme, Turkey, 5–8 September 2012; pp. 648–653. [CrossRef]

32. Sundal, M.; Chaves, R. Efficient FPGA implementation of the SHA-3 hash function. In Proceedings of the 2017 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Bochum, Germany, 3–5 July 2017; pp. 86–91. [CrossRef]

33. Bertoni, G.; Daemen, J.; Peeters, M.; Van Assche, G. Keccak. In Proceedings of the Advances in Cryptology—EUROCRYPT
2013: 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
26–30 May 2013; pp. 313–314. [CrossRef]

34. Homsirikamol, E.; Morawiecki, P.; Rogawski, M.; Srebrny, M. Security margin evaluation of SHA-3 contest finalists through
SAT-based attacks. In Proceedings of the Computer Information Systems and Industrial Management: 11th IFIP TC 8 International
Conference, CISIM 2012, Venice, Italy, 26–28 September 2012; pp. 56–67. [CrossRef]

35. Computer Security Division, I.T.L. Example Values—Cryptographic Standards and Guidelines: CSRC. 2016. Available online:
https://nist.gov/itl/csd (accessed on 4 April 2023).

36. Della Sala, R.; Bellizia, D.; Scotti, G. High-Throughput FPGA-Compatible TRNG Architecture Exploiting Multistimuli Metastable
Cells. IEEE Trans. Circuits Syst. Regul. I Pap. 2022, 69, 4886–4897. [CrossRef]

37. Wang, J.; Zhang, T.; Zhang, B.; Jeremy-Gillbanks; Zhao, X. An Innovative FPGA Implementations of the Secure frequency hopping
communication system based on the improved ZUC algorithm. IEEE Access 2022, 10, 54634–54648. [CrossRef]

38. Pham, H.L.; Tran, T.H.; Le, V.T.D.; Nakashima, Y. A high-efficiency fpga-based multimode sha-2 accelerator. IEEE Access 2022,
10, 11830–11845. [CrossRef]

39. Aljaedi, A.; Jamal, S.S.; Rashid, M.; Alharbi, A.R.; Alotaibi, M.; Alanazi, D.J. Area-Efficient Realization of Binary Elliptic Curve
Point Multiplication Processor for Cryptographic Applications. Appl. Sci. 2023, 13, 7018. [CrossRef]

40. Kieu-Do-Nguyen, B.; Pham-Quoc, C.; Tran, N.T.; Pham, C.K.; Hoang, T.T. Low-Cost Area-Efficient FPGA-Based Multi-Functional
ECDSA/EdDSA. Cryptography 2022, 6, 25. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCSII.2022.3223179
http://dx.doi.org/10.3390/computation7040063
http://dx.doi.org/10.1109/TVLSI.2017.2758807
http://dx.doi.org/10.1109/COMST.2021.3126127
http://dx.doi.org/10.3390/mi14061129
http://www.ncbi.nlm.nih.gov/pubmed/37374714
http://dx.doi.org/10.1109/ACOMP53746.2021.00029
http://dx.doi.org/10.1142/S0218126616500699
http://dx.doi.org/10.1142/S0218126616500262
http://dx.doi.org/10.1109/MECO.2015.7181868
http://dx.doi.org/10.1109/DSD.2012.63
http://dx.doi.org/10.1109/ISVLSI.2017.24
http://dx.doi.org/10.1007/978-3-642-38348-9_19
http://dx.doi.org/10.1007/978-3-642-33260-9_4
https://nist.gov/itl/csd
http://dx.doi.org/10.1109/TCSI.2022.3199218
http://dx.doi.org/10.1109/ACCESS.2022.3176609
http://dx.doi.org/10.1109/ACCESS.2022.3146148
http://dx.doi.org/10.3390/app13127018
http://dx.doi.org/10.3390/cryptography6020025

	Introduction
	Related Work
	Keccak Outline
	New Hardware Optimization Strategy
	Padding Process
	Mapping Process
	Keccak Process
	Optimization Strategy
	7-Bit RC Generator

	Truncating Process

	Experimental Outcomes
	Verification Tests
	Performance Metrics and Outcomes of Our Architecture
	Comparative Analysis with Other Equivalent Models

	Discussion of Our Optimization Strategy
	Conclusions and Future Work
	References

