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Abstract: To improve the randomness of the Chebyshev chaotic sequences by coupling the Logistic
map and the Chebyshev map, a new one-dimensional Logistic–Chebyshev chaotic map (LCCM) is
first presented in this paper. Several tests, including the bifurcation diagram, Lyapunov exponents,
and information entropy, are employed to analyze the dynamics of the LCCM. The proposed LCCM
has better ergodicity and unpredictability than the traditional Chebyshev map. Next, a new image
encryption algorithm based on the LCCM and multi-level manipulation is proposed. The LCCM is
used to control the pixel permutation, bit-level shuffling, and subsequent pixel diffusion based on
the modulo and XOR operation. Extensive experiments, including histogram analysis, information
entropy, adjacent pixel correlation, and key sensitivity, show that the image encryption algorithm has
high security and can effectively resist malicious attacks.

Keywords: chaotic encryption; image encryption; Chebyshev map; multi-level permutation

1. Introduction

Chaos is the stochastic behavior of nonlinear systems. Chaotic sequences generated
via chaotic systems have the characteristics of noise-like, complex structures and extreme
sensitivity to initial conditions. Now, chaotic maps are widely used in the design of image
encryption systems. In 1998, Friedrich proposed a chaotic image encryption scheme [1],
which consists of two stages: confusion and diffusion. The two processes can hide ef-
fectively high redundancy and strong correlation of digital images. Logistic maps and
Chebyshev maps are typical 1D nonlinear dynamic systems. These two chaotic maps are
simple but possess good nonlinear dynamic characteristics and are widely used in chaotic
image encryption algorithms. Sabery and Yaghoobi proposed a new chaotic image encryp-
tion method based on Logistic maps [2]. The encryption scheme produces encrypted images
by changing both the image pixels and gray-level values. Zhu and Li proposed an improved
Logistic encryption algorithm [3]. In the algorithm, nine chaotic sequences produced via the
Logistic map are used to confuse and diffuse image pixels. To reduce the time consumption
of image encryption, Hazarika and Saikia [4] proposed a selective encryption method using
a Logistic map, where the encryption/decryption process is implemented in spatial or DCT
domains. Hua et al. [5] proposed a new 2D Sine–Logistic modulation map (2D-SLMM)
using the Logistic and Sine maps and further developed a new image encryption algorithm
by exploiting a new chaotic magic transform (CMT) and the 2D-SLMM compound chaotic
map. Hua and Zhou proposed a 2D Logistic-adjusted-Sine map (2D-LASM) and designed
a new image encryption scheme using 2D-LASM [6]. Wei and Jiang proposed a fast image
encryption method using parallel compressive sensing (PCS), a Logistic–Tent system (LTS),
and DNA sequencing [7]. A mechanism of adding random values to plain images is de-
signed to further enhance encryption security. In 2022, Kumar et al. [8] presented an image
encryption technique using Logistic and Tent maps. Compared to the Logistic map, the
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Chebyshev map has a larger parameter space and is often employed to mix the plaintext
image information [9]. Huang [10] presented a chaotic image encryption algorithm that
uses the nonlinear Chebyshev map to generate the key stream. The multiple permutations
of pixels are used to decrease the strong correlation between the adjacent pixels in the
original plain image. But image encryption schemes based on the Chebyshev map have
low sensitivity to the changes in plain images [11]. To overcome this defect, Qi et al. [12]
constructed a new two-dimensional Henon–Chebyshev map (2D-HCM) by compounding
the Henon map [13] and Chebyshev map. The new chaotic system has better chaotic be-
haviors, a wider chaotic range, and finer ergodicity. The 2D-HCM is further used to design
a chaotic image encryption method. To enlarge the key space of Logistic maps, Dai and
Wang proposed a chaotic encryption algorithm suitable for medical images by combining
Logistic maps and Chebyshev maps [14]. Liu et al. proposed a 2D chaotic map, called the
Logistic-Adjusted-Chebyshev map (2D-LACM) [15], which enlarges the range of chaotic
control parameters. Wang and Du proposed two compound chaotic systems [16]. They
are Logistic–Chebyshev map (1DLCM) and Logistic–Chebyshev dynamic coupled map
lattices (LCDCML). These two systems are used to design a pixel-level and bit-level image
encryption algorithm. Experimental simulation shows the feasibility and effectiveness
of the encryption scheme. Basha et al. [17] proposed a bit-level color image encryption
algorithm using a Logistic–Sine–Tent–Chebyshev (LSTC) map, and the LSTC map, cyclic
shifts, and the XOR operation are exploited in the image diffusion. Extensive experiments
show its good resistance to statistical attacks and differential attacks.

To enhance the randomness and ergodicity of compound Chebyshev maps, an im-
proved Logistic–Chebyshev hybrid chaotic system is developed by using the output of
the Logistic sequence as the input of the Chebyshev map. Then, a new bit-level image
encryption algorithm is proposed based on the improved chaotic map. The rest of the
paper is organized as follows: Section 2 introduces the improved Logistic–Chebyshev
chaotic map. Section 3 expounds on our proposed image encryption method based on the
improved chaotic system. Experiments and results are presented in Section 4. Finally, a
brief conclusion is drawn in Section 5.

2. Improved Logistic–Chebyshev Map

Although Logistic and Chebyshev chaotic maps have wide applications in image
encryption, they also have some defects, such as blank windows and small parameter space.
To overcome these defects, this section presents the new compound Logistic–Chebyshev
chaotic map by coupling Logistic and Chebyshev chaotic maps (LCCM).

2.1. Classic Chaotic Maps
2.1.1. Logistic Map

The Logistic map is a quadratic polynomial map, which is one of the typical maps
representing complex nonlinear behavior. The mathematical expression is written as
follows:

xn+1 = 1− µx2
n, µ ∈ (0, 2], xn ∈ (−1, 1) (1)

where µ is the bifurcation parameter, and only when 1.401155 ≤ µ ≤ 2, the Logistic
map falls into the chaotic state. The bifurcation diagram of the Logistic map is shown in
Figure 1a.
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Figure 1. Bifurcation diagrams. (a) Logistic, (b) Chebyshev, and (c) LCCM.
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2.1.2. Chebyshev Map

The Chebyshev map is one of the 1D chaotic maps with good nonlinear dynamic
characteristics. The map is in a chaotic state when the control parameter is ω ∈ [2, ∞). It
can be defined as follows, where Figure 1b is the bifurcation diagram of the Chebyshev
chaotic map:

xn+1 = cos(ω · arccosxn), xn ∈ [−1, 1] (2)

2.2. Proposed LCCM Chaotic System

To enhance the randomness and enlarge the parameter space of chaotic systems, we
design a compound chaotic system by combining Logistic and Chebyshev chaotic maps
(LCCM). The detailed process of building the chaotic system is as follows:

First, to improve the randomness of the Chebyshev chaotic map, we compound the
Logistic map and the Chebyshev map by using the output of the Logistic map as the input
of the Chebyshev map, as shown below:

xn+1 = cos(µ · arccos(1− 2x2
n)) (3)

Second, considering that the Chebyshev map is not in a chaotic state when the control
parameter ω ∈ [0, 2), we change the parameter µ to (µ + 2) to skip the blank window.
Thus, the compound LCCM map can be rewritten as:

xn+1 = cos((µ + 2) · arccos(1− 2x2
n)) (4)

where xn ∈ [−1, 1], and the new LCCM chaotic system stays in the chaotic state when
µ ∈ [0, ∞).

2.3. Chaotic Behaviors

The bifurcation diagram depicts the process of a series of sudden changes in the state
of a nonlinear system when it changes with the control parameters. Figure 1 shows the
bifurcation diagrams of Logistic, Chebyshev, and LCCM.

For the traditional Logistic map, as shown in Figure 1a, the iterative values are
distributed throughout the entire range with (−1, 1) only when 1.401155 ≤ µ ≤ 2. When
µ < 1.401155, the distribution of iterative results is concentrated, and the stable window
range is less than (−1, 1).

For Chebyshev maps, as shown in Figure 1b, the distribution of the generated se-
quences is relatively concentrated when the control parameter µ < 2.

Compared with the above two maps, the proposed LCCM map has a larger parameter
space and is uniformly distributed for any µ ∈ [0, ∞). Moreover, it contains no blank
windows. Its bifurcation diagram is illustrated in Figure 1c.

The Lyapunov Exponent (LE) represents the average exponential divergence rate of
adjacent trajectories in the phase space, which is an important numerical feature char-
acterizing the stability of dynamic systems. The chaotic maps with positive Lyapunov
exponent values for all control parameter values are chaotic, and a larger LE means better
chaotic behaviors. Figure 2 shows the comparison among the different chaotic maps for the
parameter LE.

According to Figure 2a, the LE values of the 1D Logistic map are positive in a narrow
range of the control parameter, and the Chebyshev map, as shown in Figure 2b, has more
positive LE values than the Logistic map. As to the proposed LCCM map, it has positive
LE values for all µ ∈ [0, ∞). Thus, the outputs of the LCCM are more unpredictable.
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2.4. Randomness Test

In this subsection, we employ the NIST SP 800-22 tests to evaluate the randomness
performances of the LCCM. In the random tests, each test produces a p-value which is a
real number in [0, 1]. If the p-value is greater than a predefined significance level a = 0.01,
we can say that the random sequence can pass the test successfully. All test results are listed
in Table 1. From Table 1, the random sequences produced via the LCCM pass all NIST SP
800-22 tests and have satisfactory statistical properties. Thus, the LCCM map is suitable for
image encryption algorithms.

Table 1. Test results of NIST for the LCCM.

Test Name p-Value Results

Frequency test 0.6245 pass
Block Frequency test 0.7148 pass
Cusum-Forward test 0.8653 pass
Cusum-Reverse test 0.3261 pass

Runs test 0.3984 pass
Long Runs test of Ones 0.7215 pass
Binary Matrix Rank Test 0.6279 pass

Spectral DFT test 0.5462 pass
Non-overlapping test Templates 0.7906 pass

Overlapping test Templates 0.9270 pass
Maurer’s Universal test 0.3844 pass

Approximate Entropy test 0.8568 pass
Random Excursions test 03227 pass

Lempel Ziv complexity test 0.6403 pass
Linear complexity test 0.3042 pass

Random Excursions Variant test 0.5318 pass
Serial test 0.8471 pass

3. Image Encryption Based on Improved Logistic–Chebyshev Map

To enhance the security of encryption algorithms, this paper proposes an image
encryption algorithm based on an improved Logistic–Chebyshev chaotic map (as shown in
Figure 3). It consists of three phases, viz. the key generation phase, multi-level permutation
phase, and image diffusion phase.
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3.1. Key Stream Generation

First, we generate three key streams K1, K2, and K3 for multi-level permutation and
image diffusion. Given the secret keys u0 and x0, the plaintext image P with the size of
M× N, the key stream generation process is described as follows.

Step 1: Compute the hash code K of 32 bytes (it will be used as the key in the decryption
phase) from the image matrix P with the SHA256 function, where K = {k(0), k(1), k(2), . . . ,
k(31)}, and k(i) is an integer in the interval [0, 255], where i = 0, 1, 2, . . . , 31.
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Step 2: Get the image features according to the hash code K. The procedure is described
in Equation (5) below:{

ui = k(5(i− 1))⊗ k(5(i− 1) + 1)⊗ . . .⊗ k(5(i− 1) + 4)⊗ k(15)
xi =

k(5(i−1)+16)⊗k(5(i−1)+17)⊗...⊗k(5(i−1)+20)⊗k(31)
256

, i = 1, 2, 3 (5)

Step 3: Generate the initial values and the control parameters for the LCCM map
shown in Equation (4) by combining the secret keys and the feature values ui and xi. It can
be written as follows: {

µ̃i = mod(ui + u0, 256)
x̃i = mod(xi + x0, 1)

, i = 1, 2, 3 (6)

Step 4: Given the different initial values and parameters µ̃i, x̃i, and i = 1, 2, 3, we can
generate three chaotic sequences y1, y2, and y3 of length M× N by iterating the proposed
LCCM map for n0 + M× N times. To obtain a good chaotic effect, the first n0 values are
discarded.

Step 5: To eliminate the local monotonicity of the sequences, a sequence monotony
suppression model is developed to enhance their randomness. After doing this, three key
streams K1, K2, and K3 of length M× N are produced, as shown below:

K1 = mod(round(y1 × 1015), M× N) (7)

K2 = mod(round(y2 × 1015), 8) (8)

K3 = mod(round(y3 × 1015), 256) (9)

3.2. Multi-Level Permutation

The image permutation phase includes pixel permutation based on the Hilbert curve,
permutation using the LCCM map, and a bit-shift operator based on the chaotic map. Given
the plaintext image P of size M× N, key streams K1, K2, and K3, the detailed procedure of
the multi-level permutation is explained below.

Step 1: Pixel permutation based on the Hilbert curve. Divide the image matrix P of
size M× N into four sub-blocks’ size of M

2 ×
N
2 , then perform image scrambling based on

the Hilbert curve on each image block. Repeat this process for each image block until each
block is a pixel block of size 2 × 2 and the scrambled image PH of size M× N is obtained.

Step 2: Pixel permutation using the LCCM map. Convert the scrambled image PH into
a one-dimensional sequence PH1 of length M× N. Use the key stream K1 produced via
Equation (7) to scramble the sequence PH1 and generate the scrambled sequence P1. The
scrambling operation is shown in Equation (10) below:

P1 = PH1(K1) (10)

Step 3: Bit-level circular shift operation. Each element in the sequence K2 generated
via Equation (8) is an integer between 0 and 7, and each element in the sequence P1 is an
integer between 0 and 255, that is, an 8-bit binary number. We can use the chaotic sequence
K2 to permutate each element of the sequence P1. First, transform each element P1(i) into
its binary form, and then perform a left shift K2(i) bits on it, and finally convert it into a
decimal, which is recorded as Pc(i), as shown below:

Pc(i) = CBshi f t(P1(i), K2(i)), i = 0, 1, . . . , M× N − 1 (11)

where the function CBshi f t(x, y) performs a circular left shift on the binary representation
of x by y bits.
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3.3. Image Diffusion

The scrambled image only changes the pixel position. To fully confuse the gray values
of the image, a chaotic sequence generated via Equation (9) is used to diffuse the scrambled
image. Finally, the ciphertext image E is obtained. The diffusion process is shown in
Equation (12) below: {

E(0) = Pc(0)⊗ Pc(MN − 1)⊗ K3(0), i = 0
E(i) = Pc(i)⊗ E(i− 1)⊗ K3(i), i 6= 0

(12)

3.4. Image Decryption

Image decryption is the reverse process of image encryption, and the same key streams
are used for both encryption and decryption processes. Given ciphertext image E of size
M × N, key streams K1, K2, and K3, the decryption process is described as the follow-
ing steps.

Step 1: Use the same key to generate key streams K1, K2, and K3 using Equations (7)–(9).
Step 2: Perform the XOR operation on the ciphertext image E to recover the diffused

image into its original value, and then obtain image D., as shown below:{
D(0) = E(0)⊗ Pc(MN − 1)⊗ K3(0), i = 0
D(i) = E(i)⊗ E(i− 1)⊗ K3(i), i 6= 0

(13)

Step 3: The plaintext image P will be recovered without distortion by performing
inverse processes of pixel cyclic shift, chaotic scrambling, and Hilbert scrambling on image
D, respectively.

4. Experimental Results

In the experiment, standard grayscale images with the size of 256 × 256 are selected
for experimental testing. The proposed algorithm is implemented in MATLAB R2018a. All
experiments are done on one single core of an Intel Core (TM) i7-12700H with 2.30 GHz
and 16 GB of memory. Figure 4 lists the four test images (couple, Goldhill, lighthouse,
and peppers), the ciphertext images after one round of encryption, and the corresponding
deciphertext images. The original plaintext image information cannot be seen at all from the
ciphertext images in the center column Figure 4, indicating that the encryption algorithm
has a good encryption effect. One can see that users with the correct encryption key can
completely restore the original images from the ciphertext images in the right column of
Figure 4.
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4.1. Histogram Analysis

Image histogram reflects the statistical characteristics of grayscale images. The com-
parison of image histograms before and after encryption is shown in Figure 5. From
Figure 5, it can be seen that the histogram before encryption has great fluctuation, while
the histograms after encryption are more uniformly distributed. It is hard to obtain any
meaningful content of the original image from the encrypted image. This indicates that this
encryption algorithm can resist statistical attacks well.
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4.2. Correlation Analysis

The correlation between the adjacent pixels is an important indicator for the evaluation
of image encryption. The correlation coefficient between two adjacent pixels of an image is
calculated in horizontal, vertical, and diagonal directions.

Take the ‘couple’ image as an example; Figure 6 illustrates the distributions of the
correlation of a plaintext image and ciphertext image in the three directions. The results
of the correlation coefficients of the original images and encrypted images are shown in
Table 2. It can be seen that from Table 2, the values of the plaintext images nearer to 1 mean
a high adjacent pixel correlation, while that of the ciphertext images nearer to 0 indicates a
low correlation. So, the proposed scheme shows good resistance against attacks.
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Figure 6. The correlation distribution in the (a) horizontal direction, (b) vertical direction, and
(c) diagonal direction of the original couple image; in the (d) horizontal direction, (e) vertical direction,
and (f) diagonal direction of the ciphered image of couple.

Table 2. Correlation coefficient of plaintext and ciphertext images.

Images

Correlation of Plaintext Image Correlation of Ciphertext image

Horizontal
Correlation

Vertical
Correlation

Diagonal
Correlation

Horizontal
Correlation

Vertical
Correlation

Diagonal
Correlation

couple 0.9263 0.8766 0.8359 0.0086 0.0032 0.0042
Goldhill 0.9646 0.9531 0.9245 0.0026 0.0070 0.0009

lighthouse 0.8970 0.9298 0.8435 0.0010 0.0000 0.0029
peppers 0.9508 0.9574 0.9212 0.0020 0.0021 0.0002

The comparison results of the correlation coefficients with the other four encryption
algorithms are listed in Table 3. From Table 3, one can see that the proposed algorithm has
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the lowest correlation on average. The new encryption scheme can reduce the correlation
of the adjacent pixels effectively.

Table 3. Comparisons of correlation coefficients of the peppers image under different image encryp-
tion algorithms.

Pepper Horizontal
0.9508

Vertical
0.9574

Diagonal
0.9212 Average

Ref. [9] 0.0103 0.0121 0.0310 0.0178
Ref. [13] 0.0023 0.0016 0.0046 0.0028
Ref. [7] 0.0082 0.0027 0.0035 0.0048

Ref. [17] 0.0123 0.0052 0.0014 0.0063
Our scheme 0.0020 0.0021 0.0002 0.0014

4.3. Information Entropy

Information entropy is an important statistical metric that reflects the randomness
of information. The more evenly distributed the grayscale values of an image are, the
greater the information entropy. The ciphertext images generated via good encryption
will have an entropy value very close to 8. Table 4 shows the information entropy of the
proposed algorithm and the four comparable algorithms. The average entropy value of
the test images of our scheme arrives at 7.9975. It is larger than that of the comparable
algorithms. So, our encryption algorithm is robust against entropy attacks.

Table 4. Information entropy of different algorithms.

Images Plaintext
Image

Ciphertext
Image Ref. [9] Ref. [13] Ref. [7]

couple 7.1662 7.9971 7.9982 7.9918 7.9962
Goldhill 7.4452 7.9976 7.9973 7.9925 7.9839

lighthouse 7.4557 7.9973 7.9926 7.9964 7.9952
peppers 7.5897 7.9979 7.9946 7.9376 7.9913
Average 7.4142 7.9975 7.9957 7.9796 7.9917

4.4. Differential Attack Analysis

The number of pixel change rates (NPCR) and the unified average change intensity
(UACI) are widely used to measure the resistance of encryption schemes against differential
attacks.

In the experiment, five pixels are randomly selected, and their grayscale values change
by one. The corresponding NPCR and UACI were calculated. The average values are
shown in Table 5. It can be seen that the NCPR and UACI values of the proposed scheme
are close to the ideal value of 0.996 and 0.334, respectively. So, it can meet the security
requirements of the encryption algorithm.

Table 5. NPCR and UACI values of the different images.

Images Couple Goldhill Lighthouse Peppers

NPCR (%) 99.6262 99.5956 99.6185 99.6155
UCAI (%) 33.4716 33.4873 33.4851 33.4718

Table 6 compares the average NPCR and UACI of the ciphertext image generated via
our algorithm with other algorithms. From Table 6, it can be seen that the new encryption
scheme has a greater value of NPCR and UACI than some previous encryption algorithms,
indicating that the proposed algorithm can effectively resist differential attacks.
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Table 6. Average NPCR and UACI of various image encryption schemes.

Algorithms Proposed Ref. [9] Ref. [13] Ref. [7] Ref. [17]

NPCR (%) 99.6262 99.6243 99.5993 99.5846 99.56
UCAI (%) 33.4716 14.6022 33.4600 33.4510 33.4578

4.5. Resistance against Chosen Plaintext

Due to the use of the original image hash value in the key generation process, the
chaotic encryption system will depend on different original plain images. In this way,
different images generate different encryption keys because of their different hash values.
Thus, this algorithm has high sensitivity to initial values, that is, different initial values
correspond to different keys and encryption results. Suppose that the key stream group
(K1, K2, and K3) generated from each plain image in Figure 4 is recorded as KG1. A tiny
modified plain image P′ is obtained by changing only one bit of the image P, and the key
stream associated with the image P′ is denoted as KG2. Here, the difference between the
two key streams KG1 and KG2 is evaluated in terms of the NPCR and UACI, as listed in
Table 7. It can be seen that the key streams generated for two slightly different images are
completely distinct and are dependent on the plain images. This means that the proposed
scheme can resist chosen plaintext attacks.

Table 7. The difference between the two key streams KG1 and KG2.

Image
Differences in Key Streams

NPCR (%) UACI (%)

couple 99.2372 33.0617
Goldhill 99.2693 33.1732

lighthouse 99.2514 33.0115
peppers 99.1656 33.0248

5. Conclusions

In this paper, a new chaotic map, called LCCM, is designed based on the Logistic map
and the Chebyshev map. First, the Chebyshev map is dynamically modulated using the
output of the Logistic map, and then the parameter space of the Chebyshev map is enlarged
by expanding its control parameter. The chaotic performance of the LCCM is analyzed
using a bifurcation diagram, Lyapunov exponents, and so on. The analysis results show
that the proposed LCCM map has excellent ergodicity and unpredictability. Moreover, a
new image encryption algorithm is presented using the LCCM and multi-level permutation.
The LCCM is employed to produce key streams to be used in image scrambling and image
diffusion phases. Extensive experiments and security performance analyses including
histogram analysis, information entropy analysis, and correlation analysis evaluate the
scheme’s statistical attack resistance. High values of NPCR and NCAI indicate that it is
robust against differential attacks. As a result, our encryption method has excellent security
and can be used in secure image communication.

Hyperchaotic systems have more excellent dynamical behavior and are preferable for
use in chaotic data encryption systems. The LCCM has a smaller parameter space compared
to hyperchaotic systems. For future work, compound high-dimension hyperchaotic systems
based on Chebyshev will be studied to enlarge the parameter space of chaotic systems and
improve their randomness.
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