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Abstract: Titanium alloys have found widespread use in aviation, automotive, and marine appli-
cations, which makes their implementation in mass production more challenging. Conventional
methods of removing these alloy materials are unsuitable because of the high wear rate of cutting
and slower rate of processing. The complexities of these materials have prompted the creation of
cutting-edge machining methods. Wire Electrical Discharge Machining (WEDM) is a technique that
has the potential to be useful for the removal of materials that are harder and electrically conductive.
In order to create intricate designs, this method is frequently employed. The input factors, including
pulse duration (on/off) and peak current, were taken into account during the experimental design
process. The rate of material removal, surface roughness, dimensional deviation, and GD&T errors
were opted for as performance indicators. The approach proposed by Taguchi was selected for
the investigation of the process factors, and an Analysis of Variance was selected to find out the
relative momentousness of each factor. From the analysis it is perceived that the applied current is
the predominant factor that influences the chosen output characteristics. The aspiration of this article
is to evolve a decision-making model based on a hybrid learning method which can be adopted to
predict the selected output measures that affect the WEDM process. According to the findings, the
value of the ANFIS-GRG, which was predicted to be 0.7777, was in fact closer to that value than
any other value. The proposed model has the ability to help make a variety of different production
processes more efficient. The analysis showed that the model’s functionality was enhanced, which
helps producers make well-informed decisions.

Keywords: Ti-6Al-4V (grade 5); WEDM; Taguchi approach; response analysis; GRA method; artificial
intelligence tools; predictive models; ANFIS; ANN; comparison; performance analysis

1. Introduction

Titanium alloys are widely utilized because of their high-quality characteristics includ-
ing corrosion resistance and high strength. These materials have unique properties that
make them challenging to machine, which is exclusively performed with the assistance
of orthodox approaches. Titanium is a popular choice for the fabrication of many types
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of highly precise parts adopted in automobile and aerospace usages. These components
include connecting rods and turbine parts [1–5]. Extreme hardness and strength make
titanium components difficult to machine. Further, they are unfit for use in some contexts
because of their poor thermal conductivity. For optimal performance, it is necessary to
adapt the machining procedure to the material’s unique characteristics. The process of
WEDM is one example of these approaches [6,7].

In the manufacturing sector, WEDM is utilized widely to manufacture intricately
formed parts [8,9]. In the first stage, the electrode wire is moved so that it is in close
contact to the material, and the space between them is filled with the dielectric medium.
Regardless of the hardness of the materials being removed, erosive action can be helpful in
the workplace in terms of material removal. The complete outline of the WEDM method is
depicted in Figure 1 [10].

Figure 1. Process flow schematic of WEDM [10,11].

Modern machining techniques, such as WEDM, are increasingly used for producing
complex geometries for things like turbine blades and fuel injectors. This method is more
efficient, precise, and effective than the alternatives [12,13] when it comes to removing
difficult and electrically conductive materials. When working with electrically conductive
work material, the notion of WEDM is frequently used to create complex geometries that
would be impossible to produce using traditional machining procedures. Erosion from
electrical sparks causes material to be removed due to the discharge of energy [14,15].

Previous studies used datasets for analysis and investigation and hypothesis testing
with p-values to evaluate outcomes and evidence against null hypotheses. Design of
Experiments (DoE) allowed systematic experimentation to optimize processes, enhance
product quality, and understand variable interactions [16–21]. The concept of grey theory
has been introduced and used in several engineering problems to deal with uncertainty and
missing information in a process. This idea has been established as a productive approach
for dealing with intricate matters in numerous types of machining [22–24]. While the GRA
approach has many benefits, it is not always possible to conduct a thorough analysis of
the output variables. Academics have found that by using the Grey fuzzy method in the
WEDM procedure, they can improve its efficacy and precision [25–29].

The decision-making abilities of many instruments can be bolstered by the application
of grey theory. Furthermore, this research has the potential to pave the way for the
creation of smart platforms that can display performance characteristics graphically [30].
Manufacturers have benefited greatly from the usage of Artificial Neural Networks (ANNs)
in the development of predictive models in order to foresee optimal performance [31,32].
The adoption of a wide range of network procedures has allowed for the evolution of
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effective efficient models that can forecast the expected performance metrics across a wide
range of machining processes. The results of these models have been compared and
analyzed, demonstrating the efficacy of their predictive abilities [33–38]. The advantages
of both the fuzzy and neural approaches are combined in ANFIS, making it a powerful
method for imagining the desired performance measures in a wide range of engineering
applications [39–41].

With the help of available literature, the authors have identified that a few of the
most momentous factors persuading the mechanical and quality behavior of a part are the
geometrical dimension and tolerancing (GD&T) of a surface during the manufacturing
process. An investigation into the significance of the machining process characteristics and
their values requires a great deal of attention. Despite the promising future of the ANN-
ANFIS approach, not enough research has been conducted on its potential use in optimizing
process variables. This article will attempt to provide a summary of the multiple aspects of
the WEDM process, such as the rate of material removal (MRR), surface roughness (SR),
dimensional deviation (DD), and GD&T errors. These are all abbreviated as MRR, SR, DD,
and GD&T, respectively. The experimental data are then used to build a hybrid learning
model that can predict the performance metrics.

2. Materials and Methods

The experimental runs were performed with the aid of a WEDM setup (Concord
Make-DK-7732, Concord United Products Pvt. Ltd., Banglore, India). In this demonstration,
de-ionized was water used as the dielectric fluid alongside a reusable molybdenum wire.
Titanium alloy (Ti-6Al-4V) was chosen as the work material. The unique properties of this
material make it perfect for a wider range of uses, predominantly those that need resistance
to corrosive environments, such as marine components, aircraft parts, aerospace parts, and
medical implants. The work specimen was fixed on the inner side of the machining zone
with the help of clamps, as shown in Figure 2.

Figure 2. Experimental setup.

Wire EDM has a steady and reliable cutting speed of about 18–20 inch/h when
utilizing standard 0.010 wire. The WEDM machine has approximate cutting speeds in
excess of 40 inches per hour when employing large-diameter coated wires. In this present
investigation, the authors used 0.18 mm wire. The necessary size (10 × 10 mm) square can
be cut in approximately 15 min. The feed rate ranges from 2.5 mm/min to 5 mm/min.

Taguchi’s DoE approach suggests an L27 Orthogonal Array (OA) for analyzing the
effectiveness of independently chosen factors in accordance with the chosen process factors
and levels. During the WEDM process, major output parameters like MRR, SR, DD, and
GD&T errors are adopted to evaluate the performance of independent factors like pulse
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duration (Ton–s and Toff—s) and applied current. In order to determine the best conditions
for the WEDM of Ti-6Al-4V, this study examines the many variables used in the WEDM
process. Table 1 depicts the factors with the opted ranges and levels.

Table 1. Factors and levels.

Symbols Variables
Levels

1 2 3

A Current (A) 5 10 15
Ton Pon (µs) 30 60 90
Toff Poff (µs) 3 6 9

The MRR during WEDM was ascertained by the weight loss approach. A Mitutoyo
SJ 410 was used to evaluate the roughness of the surface, and a CMM (Helmel Make) was
engaged to evaluate variations in dimension, shape, and orientation tolerance errors. The
experimental runs were devised and conducted as per L27 OA, and the collected data are
currently being used for further investigation.

2.1. Development of Anticipated Neural Network Tools

Recent technological advances in engineering have made AI an essential tool for
creating innovative methods and models. The precision of the controls is a major factor
that scientists should think about when trying to optimize processes. Models using ANNs
have been developed and studied by researchers to investigate a wide range of engineering
issues. The convenience of making such a model is one of its primary benefits. The layers
of a network model consist of three inputs and one output. Figure 3 depicts the evolved
model’s structure.

Figure 3. Structure of ANN model.

A well-trained performance characteristic is necessary for accurately predicting the
outcomes of the process. This article describes a method for using the LM algorithm to
establish a foundation for future “FFBP” model training. Training makes use of both the
learning function and experimental practice. Figure 4 illustrates the regression value for
the model that was generated using the input data.
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Figure 4. Regression values of ANN model.

2.2. Evolution of Proposed ANFIS Tools

The aspiration of this investigational study is to evolve a prophetic tool (ANFIS) with
the aid of a toolbox for predicting the Multi-Performance Index (MPI) based on three inputs
and one output.

The ANFIS framework is produced by the “gaussmf” membership function, which
develops rules automatically based on the data provided. The model has progressed with
the aid of experimental data. This technique considers several features of a model and offers
the essential inputs to efficiently evolve it. Figures 5 and 6 depict the ANFIS architecture
and rule viewer, correspondingly.

Figure 5. Structure of developed ANFIS model.
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Figure 6. Rule viewer.

3. Results and Discussion

Through the use of ANOVA and the Taguchi-based grey method, this article elucidates
the impact of a number of factors that have a momentous impact on the output of the
WEDM process [11]. AI tools were developed for prediction and the performance of the
models they use was analyzed in order to visualize the necessary performance factor.

3.1. Determining the Optimal Variables for MRR

There is widespread agreement among experts that larger sizes provide greater poten-
tial for achieving an augmented MRR. A graph displaying the information obtained from
the responses may be found in Figure 7. The graph makes it clear that there is a greater
possibility for the removal of material when it is subjected to maximum amounts of applied
current, denoted as “Ton” and “Toff.”

Figure 7. Response graph for MRR.
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As a consequence of a larger energy pulse that was made feasible by a gradually
intensifying current, an intensification in the MRR may be possible. As a direct result of
this, the “Ton” can progressively increase, which ultimately results in an increased heat flux.
This happens as a consequence of the plasma channel’s ability to expand, which makes it
possible for the heat to reach the machining region.

The approach developed by Taguchi was advocated for use in determining which
combinations of process variables were the most likely to result in an enhanced MRR.
According to the findings, it would appear that the best settings to use in order to achieve
the fastest rate of material removal are A3B3C3, with all of the parameters having their
maximum values set. According to the findings, the applied current is the aspect that
carries the most weight when it comes to determining the MRR.

3.2. Determining the Optimal Conditions for Surface Roughness (SR)

The chosen criterion, the SR, is considered to fall inside the minimum better criteria of
WEDM. The response plot indicates that an intensification in the supplied current, as well
as “Ton” and “Toff”, can result in a rise in the SR. In addition, it has been discovered that
raising the current might result in a decrease in the temperature of the surface. Figure 8
provides a visual depiction of the response plot.

Figure 8. Response graph for SR.

Both the discharge produced by the machining operation and the molten metal present
in the area have the potential to have an effect on the temperature of the surface. As a direct
consequence of this, craters may appear, elevating the overall SR. The depth of these craters
is another factor that may influence the total quality of the completed product. The energy
that is exhibited during the explosions that occur throughout the machining process can
have an effect on the temperature of the surface. It is also possible that the roughness will
become worse when the energy pulse becomes higher.

It has been established that the combination of machining variables denoted by A1B1C1
is the optimal choice, with all of the parameters having their maximum values reduced
to their minimums in order to achieve the smoothest surface possible. Research was
conducted to determine how the applied current affects the surface temperature as well as
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the machining parameters. It is generally agreed that the current is the single most essential
variable that has an extensive part in determining the SR.

3.3. Determining the Optimal Factors for Dimensional Deviation

Within the framework of WEDM, the minimization criterion is applied is the dimen-
sional deviation. The data of the dimensional deviation when plotted against higher and
lower currents are shown. Secondary sparks have the potential to cause damage to the
machined parts, as seen in Figure 9, if the debris is not carefully cleaned.

Figure 9. Plot for dimensional deviation.

The length of the pulse raises the total amount of energy that is released, which can
lead to the development of significant craters. It is also possible for debris to become
wedged between the electrode and the specimen, which would result in a loss of dimension
precision in the end part. It has been determined that the combination of materials that
produces the best results in terms of dimensional consistency and accuracy is A3B1C1,
which stands for current at the highest level and pulse duration at the lowest level. This
combination was found to be ideal. The applied current is the one that plays the most
significant role among all of the other process variables that are accountable for the total
deviation from the target dimensions.

3.4. Determining the Optimal Factors for GD&T Errors

There has been a recent rise in the importance of squareness and orientation error
tolerances as key performance criteria for modern manufacturing processes. Tolerance
errors in shape and orientation caused by WEDM processing of titanium alloys are depicted
in Figures 10 and 11. The graphic presents a representation of the decline in the frequency of
these errors. When there are increased values of the duration of the pulse and the current at
which it is performed, there is a possibility that the holes produced will be inaccurate. This
makes the process of eliminating materials go more quickly, which is another advantage of
using it.
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Figure 10. Plot for squareness error.

Figure 11. Plot for perpendicularity error.

Errors in orientation and form tolerance can manifest themselves if debris is allowed
to accumulate between the specimen and the electrode. According to the findings of the
research, the ideal conditions for machining titanium alloys are A3B1C1 (a greater current
with a lower pulse on/off). Taguchi performed a thorough review in order to cut down on
the errors. Figures 10 and 11 illustrate this procedure that was used.
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3.5. ANOVA for Preferred Output Measures

The ANOVA is a method that may statistically explore the process variables of a
dataset with a level of confidence of 95%. An ANOVA was carried out on the numerous
factors that were utilized in the machining of the Ti6Al4V. The current appears to be the
element that has the greatest impact on the outcome of the WEDM process [13], as indicated
by the data in Table 2.

Table 2. ANOVA for WEDM of Ti6Al4V.

ANOVA for MRR (g/min)

Source DF SS (Seq) SS (Adj) MS (Adj) F p

A 2 0.002149 0.0021488 0.001074 1080.81 0
Ton 2 0.000451 0.0004508 0.000225 226.74 0
Toff 2 2.27 × 10−5 0.0000227 1.13 × 10−5 11.41 0

Error 20 1.99 × 10−5 0.0000199 0.000001
Total 26 0.002642

ANOVA for SR (microns)

A 2 0.148763 0.148763 0.074382 1257.15 0
Ton 2 0.008919 0.008919 0.004459 75.37 0
Toff 2 0.002007 0.002007 0.001004 16.96 0

Error 20 0.001183 0.001183 0.000059
Total 26 0.160872

ANOVA for Dimensional Deviation (mm)

A 2 1.95065 1.95065 0.97533 79,116.47 0
Ton 2 0.34025 0.34025 0.17012 13,800.09 0
Toff 2 0.03783 0.03783 0.01892 1534.4 0

Error 20 0.00025 0.00025 0.00001
Total 26 2.32898

ANOVA for form Error (mm)

A 2 1.14342 1.14342 0.57171 325.36 0
Ton 2 0.08424 0.08424 0.04212 23.97 0
Toff 2 0.02011 0.02011 0.01006 5.72 0.011

Error 20 0.03514 0.03514 0.00176
Total 26 1.28291

ANOVA for Orientation Error (mm)

A 2 1.00558 1.00558 0.50279 247.38 0
Ton 2 0.1409 0.1409 0.07045 34.66 0
Toff 2 0.01409 0.01409 0.00705 3.47 0.051

Error 20 0.04065 0.04065 0.00203
Total 26 1.20122

3.6. Interpretations on Evolution of ANFIS Models

Figure 12 portrays the influence of independent factors on the ANFIS-GRG considered
in this investigational analysis. The illustrations show that combining maximum levels of
current with lower levels of “Toff” produces better multi-performance measures during the
WEDM of the titanium alloy (Grade 5).

Figure 13 shows that the ANFIS-GRG also increases with amplifying levels of “Ton”
and current. As shown in Figure 14, pulse off at lower levels and pulse on at higher levels
also results in improved performance when it comes to multi-aspect machining.
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Figure 12. Surface plot for ANFIS-GRG on (a) current vs. pulse off, (b) current vs. pulse on, (c) pulse
off vs. pulse on.

Figure 13. Efficiency of models developed.
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Figure 14. Comparison plot for estimated and foretold GRG.

3.7. Investigation on the Performance of Evolved Artificial Models

Insight into the capabilities of the evolved models is provided through examination of
the output metrics. The outcomes of the analysis are presented as follows.

The following Equations (1)–(9) can be used to calculate the severity of various types
of errors. The data attained are shown in Table 3.

MAE =
∑n

i=1|Ei − Pi|
n

(1)

MSE =
∑ n

i=1(Ei − Pi)
2

n
(2)

RMSE =

√
∑ n

i=1(Ei − Pi)
2

n
(3)

MARE =
∑n

i=1

∣∣∣ (Ei−Pi)
Ei

∣∣∣
n

(4)

MSRE =
∑n

i=1

∣∣∣ (Ei−Pi)
Ei

∣∣∣
n

(5)

RMSRE =

√√√√∑ n
i=1

(
Ei−Pi

Ei

)2

n
(6)

MAPE =
∑n

i=1

∣∣∣ (Ei−Pi)
Ei

∣∣∣
n

× 100 (7)

MSPE =
∑ n

i=1

(
Ei−Pi

Ei
× 100

)2

n
(8)
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RMSPE =

√√√√∑ n
i=1

(
Ei−Pi

Ei
× 100

)2

n
(9)

Table 3. Performance analysis of predictive models.

Error
Model

ANFIS ANN

MAE 0.004426 0.005056

MSE 0.00003 0.000138

RMSE 0.005461 0.011737

MARE 0.007856 0.009623

MSRE 0.000098 0.000496

RMSRE 0.00989 0.022261

MAPE 0.785648 0.962349

MSPE 0.978174 4.955395

RMSPE 0.989027 2.226072

Efficiency of models

Correlational Coefficient Value 0.99875 0.99486

NSE 0.99750 0.98846

3.8. Efficiency of Developed Predictive Models
The ability of the hybrid learning was also inspected by subsequent Equations (10) and (11).

The data attained from the assessment are depicted in Table 3.

Correlation coefficient : R =
n×

(
∑ n

i=1Ei Pi
)
−
((

∑ n
i=1Ei

)
×
(
∑ n

i=1Pi
))√(

n×∑ n
i=1Ei

2 −
(
∑ n

i=1Ei
)2
)
×
√(

n×∑ n
i=1Pi

2 −
(
∑ n

i=1Pi
)2
) (10)

Nash Sutcliffe efficiency coefficient : NSE = 1− ∑n
i=1(Ei − Pi)

2

∑n
i=1(Ei −

−
E)2

(11)

Here, the values from the experimentation “Ei” and values gained from prediction
values “Pi” are composed for the entire “n” set of observations. The evaluation of the
performance of the ANFIS structure revealed that it has minimal errors, which supports
the evolution of the model and is disclosed in Figure 13.

The data illustrate that the model is proficient for accurately envisaging the variables
that are important for the prediction of the WEDM of a Ti6Al4V. They also show that the
model has the necessary competencies to perform this task.

3.9. Comparative Analysis on Actual and Foretold GRG

The purpose of this investigation was to come up with an appropriate model for
calculating the GRG by utilizing the ANFIS and ANN methodologies. A study of com-
parison was carried out to establish the values that were forecasted by the two different
models [21,24]. The ANFIS model was successful in providing an accurate prediction
of the various output factors. In addition to this, the relationship between the projected
scale values and the calculated scale values was demonstrated [4]. The findings of the
investigation showed that the projected outcomes had a high degree of correspondence
with the actual results.

4. Conclusions

The aim of this present explorative analysis was to create a prophecy structure that
could foresee the GRG of a titanium alloy with the assistance of WEDM. The model was
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further refined using various tools, such as ANFIS and ANN. The interpretations gathered
from this exploration are as follows:

• The WEDM process was engaged to accomplish the performance attributes with the
assistance of Taguchi L27 OA.

• The performance parameters of a material were selected according to the approach of
the Taguchi method. An investigation was then performed to ascertain the various
input variables that impact the output of a Ti6Al4V. It was revealed that the effect of
current on the performance is the most critical factor.

• The output parameters were analyzed using the ANOVA method, and the main
influence was the electric current that was used in the WEDM approach. The outcomes
of the exploration unveiled that the different methods used in the investigation have
closer connection with the Taguchi approach.

• The input factor values were exploited to input the model that was engaged in the
evolution of hybrid learning models. The ANFIS-GRG and ANN-GRG were created
from the evolved predictive structures. The findings of the analysis unveiled that the
ANFIS structure is proficient for precisely predicting the performance measures of
the alloy.

• The ANFIS proposed structure was also found to enhance the accurateness of the
forecast by reducing the vagueness in the results.

• The performance index was then analyzed by the grey theory. The outcomes desig-
nated that the prophesied value of the ANFIS-GRG was at 0.7777. The recommended
model can assist in improving the proficiency of various manufacturing processes.

• The anticipated accurateness of the ANFIS model and efficiency were established by
the competent results of the analysis. The NSE and correlation coefficient values also
evidenced the efficacy of the ANFIS model.

• The summary of this study specified that the projected structure can be adopted
for various uses in manufacturing. It can be predominantly beneficial for attaining
multi-performance in various manufacturing processes.

• Similar work could be extended to other contemporary machining processes such
as EDM, abrasive jet machining, etc. The suggested approach could be used for
online quality control techniques in machining. Various random search techniques
such as Tabu Search, the Memetic Algorithm, Simulated Annealing, and Ant Colony
Optimization could be attempted as training algorithms for hybrid intelligent decision-
making tools.
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