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Abstract: Image captioning is a challenging task, which generates a sentence for a given image.
The earlier captioning methods mainly decode the visual features to generate caption sentences
for the image. However, the visual features lack the context semantic information which is vital
for generating an accurate caption sentence. To address this problem, this paper first proposes the
Attention-Aware (AA) mechanism which can filter out erroneous or irrelevant context semantic
information. And then, AA is utilized to constitute a Context Semantic Auxiliary Network (CSAN),
which can capture the effective context semantic information to regenerate or polish the image caption.
Moreover, AA can capture the visual feature information needed to generate a caption. Experimental
results show that our proposed CSAN outperforms the compared image captioning methods on MS
COCO “Karpathy” offline test split and the official online testing server.

Keywords: deep learning; attention mechanism; image captioning

1. Introduction

Image captioning is a challenging task in the field of artificial intelligence, as it involves
generating coherent and natural language sentences that describe an input image. This
task serves as a bridge between computer vision and natural language processing, and has
gained considerable attention in recent years.

The majority of existing image captioning methods follow the encoder–decoder frame-
work [1–14], where the encoder first employs a convolutional neural network (CNN) to
extract visual features of an input image and the decoder mainly utilizes a recurrent neural
network (RNN) to generate a descriptive sentence for the given image. Later, attention
mechanisms [15] were introduced in the encoder and decoder, which were firstly applied
in machine translation, and achieved great improvements in image captioning. With
the advance of Transformer, many transformer-based architecture models [16–18] were
proposed and great improvements made in image captioning. For example, DLCT [16]
explores the intrinsic properties of region and grid features for image captioning. However,
these captioning methods [19–22] predict the current word depending on the previously
generated words, which results in a lack of context semantic information in the model, as
illustrated in Figure 1.

In recent years, several works have used contextual semantic information to generate
image captions. RD (Rumination decoding) [23] draws on the practice of people modifying
and polishing articles after writing, and proposes a second polishing of image description
sentences. It first uses the basic decoder to generate a rough descriptive sentence, and then
corrects and polishes the generated description sentence. CAAG (Context-Aware Auxiliary
Guidance) [24] divides the decoding process into two stages. In the first stage, a module,
called the basic decoder, is used to generate a rough description sentence. Conditioned on
the sentences generated in the previous stage, the second stage uses a decoder to regenerate
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more accurate sentences. Experimental results of CAAG show that it significantly improves
the performance of image description models.

Although RD and CAAG effectively leverage contextual semantic information, which
proves useful for certain tasks such as visual segmentation [25], there are still limitations
associated with them. Specifically, RD and CAAG initially generate complete sentences that
may contain unavoidable errors or irrelevant information. In subsequent image captioning
processes, the language model with attention mechanism regenerates the caption sentences.
During this regeneration, the attention mechanism assigns weights to both the erroneous
and irrelevant information, thereby constraining the quality of the secondary generated
descriptive sentences.

To address this issue mentioned above, we propose Attention-Aware (AA), which
extends the conventional attention mechanism [15] by adding a gated nonlinear unit.
Specifically, AA can generate an “information vector” with a linear transformation and a
nonlinear activation, which is similar to GTU (Gated Tanh Unit) [26], and also generate a
gate vector with a linear transformation and another nonlinear activation. Based on AA,
we propose a Context Semantic Auxiliary Network (CSAN), which mainly combines the
proposed AA mechanism with LSTMs to generate the description sentence of the input
image. Specifically, like CAAG, we first use the captioning model (called the base network)
to generate a complete descriptive sentence serving as context semantic information. And
then, CSAN uses the AA mechanism to filter out erroneous or irrelevant context information.
Moreover, CSAN also selectively and effectively decodes visual features for regenerating
the image caption. Figure 1 shows the comparison between the traditional method and our
proposed method.

To evaluate our proposed method, we performed comprehensive experiments us-
ing the publicly available image caption dataset MS COCO. Furthermore, to assess the
adaptability of our approach, we applied it to extend three well-known image caption-
ing methods, namely BUTD [27], RDN [28], and AoA-Net [29]. The experimental results
demonstrate significant improvements achieved by our proposed method across vari-
ous metrics.

ℎ0 ℎ1 ℎ2 ℎ3 ℎ𝑛

A man playing ……

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4

A man riding a

ℎ5 ℎ6

horse in

ℎ7

a field

Traditional methods

CSAN

Figure 1. Traditional method and our proposed method. The red font refers to the prediction from
the previous predicted words and the green font refers to the prediction contextual information.

To sum up, the main contributions of our proposed method are listed as follows:
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• We propose an Attention-Aware (AA) mechanism, which can effectively filter out
erroneous or irrelevant information.

• A Context Semantic Auxiliary Network (CSAN) is constituted via AA, which can
effectively capture the context semantic information from the complete descriptive
sentence, and results in great improvement.

2. Related Works
2.1. Image Captioning

Earlier image captioning methods are mainly template-based [30–32] with fixed tem-
plates with slots, which use the detected objects, predicted attributes prediction, and
recognized scene to fill in the slots. Inspired by neural machine translation [33], recent
image captioning methods mostly follow the encoder–decoder framework [9,27–29]. Specif-
ically, the encoder utilizes CNN to extract visual features of an input image, and the decoder
uses a language generation model to generate a complete description sentence of the image.
For instance, ref. [1] first proposed the encoder–decoder framework in image caption-
ing, using a CNN to extract image features and an RNN to generate caption sentences
by decoding the extracted image features. With the significant development of attention
mechanism, ref. [14] used an attention mechanism to attend the spatial area for caption-
ing and made a significant improvement in image captioning. VAR (Visual Abductive
Reasoning) [34] explored abductive reasoning to capture the context from visual premise
information for generating an image description. Several works have mined the context
semantic information to generate the caption sentence. RD [23] first explored the contextual
information to generate a descriptive sentence for a given image. CAAG [24] learned the
global information to guide generation of the image caption and greatly enhanced the
performance of the caption model.

2.2. Attention Mechanism

The attention mechanism [15] was initially applied to machine translation and achieved
great improvements. It first calculates a dependency value for each candidate feature vector
and then uses the softmax function to normalize the calculated dependency values to
weights, finally applying these weights to the candidates to generate a weighted average
vector. Based on this, other attention mechanisms have been proposed, for instance, adap-
tive attention [35], multi-level attention [36], self-attention and multi-head attention [37].
Adaptive attention with a sentinel learns whether to capture the image information or
the sentinel for word prediction. Self-attention captures the relationship among the re-
gion features of a given image, which greatly improves the quality of the image caption.
Multi-head attention extends self-attention via multi-head, which remarkably enhances the
performance of the machine translation. Unlike these, our proposed AA mechanism ex-
tends the traditional attention via a gate mechanism for filtering out undesired information
for image captioning.

3. Methods

This section provides a detailed introduction to our proposed image captioning
method called CSAN, depicted in Figure 2. The method consists of three key steps. Firstly,
it utilizes a convolutional neural network (CNN) to extract visual features from the input
image. These features capture important visual information. Secondly, a base network,
referred to as the image captioning model, is employed to generate a complete caption
sentence for the input image. The base network leverages the visual features obtained from
the CNN to generate descriptive sentences. Lastly, CSAN generates a new caption sentence
for the same input image, conditioned on the previously generated descriptive sentence
using the base network. This conditional generation process enables CSAN to produce
refined and improved caption sentences.
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Figure 2. The overall workflow of our proposed method. Firstly, CNN is employed to extract the
visual features of the input image. Secondly, the base network generates a caption sentence based
on the visual features. Finally, CSAN regenerates the sentence with context from the base network
and visual features, where CVAA and CSAA use the AA process for visual and context semantic
information, respectively.

3.1. Visual Feature Extraction

Similar to many captioning methods, CSAN employs the pre-trained Faster R-CNN [38]
model to detect objects within the image. Subsequently, it utilizes a pre-trained convolu-
tional neural network model, specifically ResNet101 [39], to extract the visual features from
the image. The visual feature extraction process is illustrated below:

V = CNN(I), (1)
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where V = {v1, v2, v3, · · · , vN} is the visual feature sequence and N is the number of the
detected objects in the input image.

3.2. Base Network

To provide contextual semantic information for CSAN to regenerate the caption
sentence, this section uses the classic image captioning model BUTD [27] as the base
network. It is mainly composed of Visual Attention LSTM (VALSTM), language LSTM
(LLSTM), and a top-to-bottom visual attention module (Visual Attention) shown in Figure 2.

After extracting the visual features V = {v1, v2, v3, · · · , vN}, the base network first
uses VALSTM to get its current state vector serving as a query vector for top-down attention.
Then, under the action of top-down attention and query vector, LLSTM with a softmax
layer generates image caption sentence to provide contextual semantic information for the
subsequent regeneration. The specific process description is shown as follow:

h1
t = VALSTM(v̄, h2

t−1, xt−1, h1
t−1), (2)

where h1
t is the output of the first layer LSTM (VALSTM) at t time step, v̄ is calculated via

mean pooling v̄ = 1
N

N
∑

i=1
vi, and xt−1 is the output of the previous step.

h2
t = LLSTM(h1

t , v̂t, h2
t−1), (3)

p(yt|y<t−1) = so f tmax(Wbph2
t + bbp), (4)

where h2
t is the output of the second layer LSTM (VALSTM) at t time step, v̂ is the weighted

vector, calculated as follows:

v̂t =
N

∑
i=1

αitvi, (5)

mit = Wmvtanh(Wmhh1
t + Wmvvi + bm), (6)

αt = so f tmax(mt), (7)

where Wmv and Wmh are learnable parameters, and bm is a learnable bias parameter.

3.3. Context Semantic Aware Network

The generated sentence from the base network, while providing contextual semantic
information for caption regeneration, may contain unavoidable errors or irrelevant informa-
tion. These shortcomings directly impact the quality of subsequent caption regeneration. To
address this challenge, we propose the Context Semantic Auxiliary Network (CSAN) as a
solution. In contrast to CAAG, CSAN effectively filters out errors or irrelevant information
from the contextual semantic data, enabling the generation of improved image captions.
Additionally, CSAN adaptively utilizes visual features to further enhance the quality of the
generated captions. By incorporating these strategies, CSAN aims to generate high-quality
captions that are more accurate and contextually relevant.

3.3.1. Attention-Aware Module

AA module employs a GTU to extend the traditional attention mechanism, which
can filter out the erroneous or irrelevant information. Figure 3 illustrate the traditional
attention mechanism shown in Figure 3a and the proposed AA module shown in Figure 3b.
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Given a hidden state vector ht and a vector sequence V, AA first computes a weighted
average vector, which is calculated as follows:

αti = align(ht, vi), (8)

align(ht, vi) =
exp(s(ht, vi))

N
∑

i=1
(s(ht, vi))

, (9)

s(ht, vi) = Vstanh(Ws[ht; vi] + bs), (10)

ct =
N

∑
i=1

αtivi, (11)

where align(·) is a correlation score function, Vs, Ws is the learnable weight parameter, bs is
the learnable bias parameter, and ct is the global vector derived from vector sequence V
and ht.

Subsequently, the vector combined with ht computes a gate vector cg via a linear
transformation and gate mechanism. Meanwhile, this vector is transformed as another
vector cv via another linear and nonlinear transformation tanh(·). Finally, AA operates on
cg and cv to get ĉt. These operations are formulated as follows:

cg = Gate(Wg[ht; ct] + bg), (12)

cv = Vvtanh(Wv[ht; ct] + bv), (13)

ĉt = cg � cv, (14)

where Gate(·) is the Sigmoid function, Wg is the learnable weight parameter, bg is the
learnable bias parameter, Vv, Wv are the learnable weight parameters, bv is the learnable
bias parameter, and � refers to element-wise multiplication.

3.3.2. Context Semantic Aware Network

To leverage contextual semantic information from the base network effectively and
mitigate the issue of deviation in image captioning resulting from relying solely on semantic
information, we introduce the Context Semantic Auxiliary Network (CSAN) based on the
Attention-Aware mechanism described earlier. This network is designed to effectively uti-
lize both contextual semantic information and visual features in generating accurate image
descriptions. By incorporating both sources of information, CSAN aims to strike a balance
and ensure that the generated captions are not solely reliant on semantic information, thus
improving the overall quality and relevance of the image descriptions.

The proposed CSAN consists of two attention-aware modules and two layers of LSTM,
as shown in Figure 2. Specifically, the network embeds two attention-aware modules, the
Contextual Semantic Attention-Aware module (CSAA) and the Visual Attention-Aware
module (CVAA), which are AA module applied in context semantic information and vi-
sual features, in parallel between the Context LSTM (CLSTM) and the Generation LSTM
(GLSTM). First, the CLSTM module in the network provides query vectors for the two
global attention modules. Then, this module selects effective contextual semantic infor-
mation and visual information based on the query vectors. Finally, the GLSTM generates
image descriptions based on the adaptively selected contextual semantic information and
visual information.
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Attention
Attention

Concate

Linear Linear

Gate

Mul

Linear Linear

tanh

(a) (b)

Figure 3. Attention and Attention-Aware (AA); (a) is the conventional attention mechanism; (b) is
the AA module which can filter out irrelevant or incorrect information.

First, under the condition of h2
T , the output of CLSTM is h3

t , which is calculated as
follows:

h3
t = CLSTM(h2

T , h4
t−1, h3

t−1). (15)

Then, the output h3
t of CLSTM is used as the query vector in CSAA and CVAA. CSAA is

used to filter out erroneous or irrelevant context semantic information, while CVAA is used
to select the input visual features. h2

T is the last state vector of CLSTM generated during
the image captioning throughout the base network.

Next, CSAA and CVAA learn the semantic information ŝt and visual information ṽt
based on the state h3

t at time t, respectively, which is calculated as follows:

ŝt = CSAA(S, h3
t ), (16)

ṽt = CVAA(V, h3
t ), (17)

where S is the word vector sequence generated by the base network, V is the visual feature
sequence, and h3

t is the state vector of GLSTM at the current time t.
Subsequently, the context semantic vector ŝt and visual information ṽt are adaptively

selected based on the current state, as shown in Figure 4, which is calculated as follows:

gt = zt � ŝt + (1− zt)� ṽt, (18)
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where zt is formulated as follows:

zt = sigmoid(Linear(ŝt, h3
t )), (19)

where sigmoid(·) is an activation function.
Finally, the prediction is generated by GLSTM with softmax, which is formulated as

follows:

h4
t = CLSTM(gt, h4

t−1, h3
t ), (20)

y2
t = so f tmax(h4

t ), (21)

where y2
t is the last prediction of CSAN at time t.

1-

Tanh

Figure 4. Adaptive selection of context semantic information and visual information.

3.4. Training

Both the base network and CSAN are trained using minimum cross-entropy loss,
described as follows:

LB(θB) =
T−1

∑
t=0

log(pb(yt|y<t−1), (22)

LG(θG) =
L−1

∑
l=0

log(pb(yl |y<l−1). (23)

During the training phase, the parameters of the base network and CSAN are updated
simultaneously to maximize the objective function as follows:

L(θB, θG) = LB(θB) + LG(θG). (24)

4. Experiments
4.1. Dataset

To evaluate the effectiveness of our proposed model, extensive experiments were
conducted on the dataset MS COCO [40]. This popular dataset contains 123,287 images
annotated with five sentences for each, including 82,783 images for training and 40,504
images for validating. The offline “Karpathy” split was used for comparisons, including
5000 images for training, 5000 for validating, and the rest for training. All sentences were
converted to lower case and the words that occurred less than five times were dropped.
Five different metrics were used for the evaluation of our model, including BLEU-N [41],
METEOR [42], ROUGE-L [43], CIDEr [44], and SPICE [45].
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4.2. Experiment Settings

In this paper, the dropout rate was set to 0.5, the batch size for training was 16, and
the number of iterations for training was 60. During training, the model used the Adam
optimization algorithm to update the network parameters, with an initial learning rate of
10−5; the momentum and decay were set to 0.8 and 0.999, respectively. During validation
and testing, the beam search algorithm was used to improve the effectiveness of generating
the image caption. In this paper, the beam size was set to 3.

4.3. Quantitative Analysis

Table 1 provides the evaluation results of CSAN when extended to BUTD, RDN, and
AoA-Net, along with comparisons to other benchmark methods. In line with CAAG [24],
BUTD was selected as the baseline model, and both models were trained using cross-
entropy loss.

From Table 1, it can be observed that BUTD directly utilized context semantic informa-
tion through the CCAG extension. The performance of BUTD was significantly improved,
confirming the importance of context semantic information in image captioning. Similarly,
the CSAN extension of BUTD utilized the proposed Attention-Aware mechanism to employ
context semantic information and achieved a large performance boost. In addition, this
section also extends CSAN to RDN and AoA-Net. The performance of the extensions was
also greatly improved. For example, in BLEU-4, the three extended models improved by
2.4%, 2.0%, and 0.5%, respectively, while, in CIDEr, they improved by 16.5%, 14.2%, and
3.7%. Compared with similar extension models such as CAAG, CSAN achieved better
results by effectively utilizing context semantic information through the Attention-Aware
mechanism and adapting to visual features to generate an image caption. By utilizing con-
text semantic information, the proposed method optimized and polished the first generated
image caption, significantly improving the model’s performance. Therefore, it can be con-
cluded that the proposed method utilizing the Attention-Aware mechanism can effectively
learn context semantic information, which provides essential semantic information for
generating an accurate image caption. Furthermore, by adaptively utilizing visual features,
the proposed method can effectively enhance the performance of the image description
model, generating high-quality sentences. From Table 1, the performance of BUTD, RDN,
and AoA-Net increased sequentially, and their performance after CSAN expansion was also
sequentially improved. Therefore, it can be seen that higher-quality description sentences
can provide more effective semantic information.

To further evaluate the performance of CSAN, we conducted experiments on the
Flickr30k dataset. The experimental results of CSAN on this dataset are presented in
Table 2. In this section, CSAN is extended to two baseline models: Adaptive and BUTD.
The table showcases the test results of CSAN on the Flickr30k dataset, comparing them
with other reported image captioning methods on the same dataset.

The results demonstrate that extending CSAN significantly improves the performance
of the baseline models. Specifically, the METEOR score improves by 1.9% and 1.3% for the
Adaptive and BUTD models, respectively. Similarly, the B-4 evaluation metric improves by
1.2% and 2.3% for the two models, respectively. When CSAN is applied to the BUTD model,
it effectively leverages the contextual semantic information provided by BUTD, resulting in
superior performance across all evaluation metrics compared to the comparison methods.
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Table 1. A performance comparison between CSAN and the comparison methods on the dataset
MS-COCO “Karpathy” test split.

Metric B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr SPICE

BUTD [27] 79.0 60.4 47.8 36.3 27.0 56.4 113.5 20.3
AoA-Net [29] 80.2 - - 39.1 29.2 58.8 129.8 22.3
GCN-LSTM [12] 77.4 - - 37.1 28.1 57.2 117.1 21.4
RDN [28] 77.5 61.8 47.9 36.8 27.2 56.8 115.3 20.5
SAC [46] 77.2 - - 36.8 28.0 57.1 116.3 21.2
Attin + RD [23] - - - 36.8 28.1 57.5 116.5 21.2
BUTD + CAAG [24] - - - 38.4 28.6 58.6 128.8 22.1
Multi-gate [17] 78.4 62.8 48.9 37.5 28.2 57.8 117.5 21.6
ASIA [47] 78.5 62.2 48.5 37.8 27.7 - 116.7 -
CA-VNP [48] - - - 38.6 28.3 58.5 125.0 22.1
AAT [49] 78.6 - - 38.2 29.2 58.3 126.3 21.6

BUTD + CSAN 79.1 63.0 49.5 38.7 28.8 59.1 130.0 22.2
RDN + CSAN 79.5 63.2 49.8 38.8 29.0 59.7 129.5 22.3
AoA-Net + CSAN 80.3 64.5 52.5 39.6 29.4 60.0 133.5 22.6

Table 2. A performance comparison between CSAN and the comparison methods on the dataset
Flickr30k.

Metric B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr SPICE

Soft-Attn [14] 66.7 43.4 28.8 19.1 18.5 - - -
Adaptive [35] 67.7 49.4 35.4 25.1 20.4 - 53.1 -
BUTD [27] 76.4 - - 27.3 21.7 56.6 - -
DAIC [50] 64.5 46.4 33.5 24.3 20.4 46.7 61.6 -
ARL [51] 69.8 51.7 37.8 27.7 21.5 48.5 57.4 -
cLSTM-RA [52] 70.5 52.5 37.6 27.1 21.9 49.4 57.7 -
Trans-KG [53] 78.4 - - 26.8 21.7 - 56.6 -
LGVIA [54] 75.4 57.6 39.0 28.2 25.4 53.7 58.0 -

Adaptive + CSAN 71.6 54.3 39.1 26.3 22.3 51.5 60.2 17.6
BUTD + CSAN 77.3 59.2 44.3 29.6 23.0 59.8 68.7 20.7

Furthermore, Table 2 highlights that utilizing contextual semantic information in
image captioning confers a significant advantage over generating captions solely based on
visual features. This indicates that the context semantic information learned through the
Attention-Aware mechanism can effectively enhance the quality of the generated sentences.

In addition, we also conducted a comparison of CSAN with the other benchmark
methods on the official online test set of MS COCO. The results of this comparison are
presented in Table 3. The comparison clearly demonstrates that our proposed captioning
method, which incorporates context semantic information, outperforms the other image
captioning methods. This further validates the effectiveness of the Attention-Aware mecha-
nism in improving the performance of the image captioning model by effectively mining
and utilizing contextual semantic information.

4.4. Ablation Analysis

We extensively explored different structures and settings of our method to gain insights
into how and why it works. To this end, this section set up the CSAN as follows:

• CSAA and CVAA were removed from CSAN, leaving only two layers of LSTM, which
was referred to as the base network.

• CSAA was added to the base network (base + CSAA) to verify the necessity of learning
contextual semantic information by CSAA in improving the image captioning model.

• Based on the second step, CVAA was added to the base network (base + CSAA +
CVAA) to verify the impact of visual feature information under the condition of
context semantic information.
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Table 3. Comparison of the results of CSAN and the comparative method on the MS-COCO official
server.

c5

Model B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr SPICE

Adaptive [35] 74.8 58.4 44.4 33.6 26.4 55.0 104.2 19.7
ReviewNet [55] 72.0 55.0 41.4 31.3 25.6 53.3 96.5 18.5
BUTD [27] 80.2 64.1 49.1 36.9 27.6 57.1 117.9 21.5
RF-Net [56] 80.4 64.9 50.1 38.0 28.2 58.2 122.9 -
RDN [28] 80.2 - - 37.3 28.1 57.4 121.2 -
AoA-Net [29] 81.0 65.8 51.5 39.6 29.3 58.9 126.9 21.7
HTC [57] 80.2 64.8 51.0 38.5 28.6 58.4 124.2 -
GAT [58] 81.1 66.1 51.8 39.8 29.1 59.1 127.8 -
CA-VPN [48] 81.6 64.3 50.8 37.9 27.4 57.6 120.9 -

Ours 80.7 66.0 52.6 41.0 30.9 61.2 130.4 22.7

c40

Model B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr SPICE

Adaptive [35] 92.0 84.5 74.4 63.7 35.9 70.5 105.9 67.3
ReviewNet [55] 90.0 81.2 70.5 59.7 34.7 68.6 96.9 64.9
BUTD [27] 95.2 88.8 79.4 68.5 36.7 72.4 120.5 71.5
RF-Net [56] 95.0 89.3 80.1 69.2 37.2 73.1 125.1 -
RDN [28] 95.3 - - 69.5 37.8 73.3 125.2 -
AoA-Net [29] 95.2 89.6 81.3 70.9 38.6 74.9 129.6 72.6
HTC [57] 95.1 89.0 81.2 70.4 38.4 73.6 128.9 -
GAT [58] 95.1 89.7 81.5 71.4 38.4 74.7 130.8 -
CA-VPN [48] 95.6 87.8 80.3 69.5 37.3 73.7 124.5 -

Ours 95.1 89.3 82.7 73.0 40.7 76.5 134.5 73.4

According to the data analysis of the three different settings on various evaluation met-
rics in Table 4, we can seen that, after CSAA was added to the base network, performance
of the model significantly improved on all metrics in Table 4. Specifically, context semantic
information that CSAN learned led to improvements by 5.2%, 2.8%, 2.4%, 5.9%, 9.6%, and
1.3% in B-1, B-4, METEOR, ROUGE-L, CIDEr, and SPICE, respectively. These results indi-
cate that CSAA can learn valuable context semantic information from image descriptions
and significantly improve the performance of CSAN. In addition, unlike CCAG [24], CSAN
also adaptively selects and applies visual features based on context semantic information
and the current state, which alleviate the bad influence due to the absence of visual features.
Table 4 shows that, conditioned on context semantic information, the effective selection
and utilization of visual features through CVAA can also further improve the performance
of CSAN.

Table 4. Comparison of performance under different settings in CSAN.

Settings/Metrics B-1 B-4 METEOR ROUGE-L CIDEr SPICE

base 73.2 35.6 26.0 52.8 118.8 20.8
base + CSAA 78.4 38.4 28.4 58.7 128.4 22.1

base + CSAA + CVAA 79.1 38.7 28.8 59.1 130.0 22.2

4.5. Qualitative Analysis

Figure 5 shows some examples with images and captions generated by BUTD, CAAG,
and CSAN, and conducts in-depth qualitative analysis.
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Baseline: one person and a horse are on the ground.  

CAAG: a person is riding a horse on the ground.  

Ours: one person is riding a horse on the grass land.  

Baseline: a boy is standing on the skateboard.  

CAAG: a boy is standing on the skateboard.  

Ours: A boy is playing skateboard sliding down the slope.  

Baseline: a man is on the  land with  a big  kite.  

CAAG: a man is looking a kite in the sky.   

Ours: a man is flying a kite on the grass land.  

Baseline: several person and boats in the water.  

CAAG: several people are sitting in the small boats.   

Ours: a few people are sitting on small boat in the flooded  
          streed next to a road lamp.  

Baseline: some bananas are on the table with with.  

CAAG: there are some bananas for sale on the gound with with .   

Ours: there are some bananas for sale at the fruit stall.  

Baseline: a man is standing in the land and a man holds  
                a camera.  

CAAG: a tennis player is filmed by a man holding a camera.   

Ours: a tennis player holding a racquet is filmed by a man 
           holding a camera..  

Baseline: there are several people standing on the water holding a  rod.  

CAAG: several people are standing in the lake holding oars.   

Ours: several people are rowing in the lake with oars in their hands 
.  

Baseline: a group of people are standing before a wagon .  

CAAG: a group of people are standing before a truck for food.   

Ours: a group of people ard standing before a yellow 
           pie wagon for food.  

(1) (2)

(3)

(8)

(5)

(7)

(6)

(4)

Figure 5. Visualization example of CSAN.

In the first image, the baseline method generated a correct caption sentence by listing
the contents of the image. However, it failed to capture the relationship between the
“person” and the “horse”, specifically the action of “riding”. In contrast, both CCAG
and CSAN, which leverage context semantic information, accurately generated the term
“riding”. This clearly demonstrates the effectiveness of context semantic information
in generating accurate and contextually relevant caption sentences. By considering the
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contextual relationships and semantic information, CCAG and CSAN are able to produce
captions that capture not just the objects in the image but also their relationships and
actions, resulting in more comprehensive and accurate descriptions.

From the second to the sixth images, it can be seen that the image caption sentences
generated by CSAN are more accurate and diverse than the two comparison methods. For
example, in the second image, both the baseline method and CCAG generated grammati-
cally correct caption sentences, but failed to accurately describe the image content. CSAA
filtered out the erroneous information “standing”, and generated a more accurate and
diverse image caption based on context semantic information and visual information. In
the third image, CCAG described the relationship “looking” between “man” and “kite”
that the baseline method failed to give, but the relationship information was not accurate
enough. CSAA filtered out inaccurate information and generated a more precise relation-
ship “flying”. In the fourth image, the baseline model could not use context semantic to
obtain the information for “food”, CAAG generated “truck” erroneously, and CSAN accu-
rately solved the problems of both methods. In the fifth and sixth images, CSAN alleviated
the adverse effects of erroneous information in context semantics in image captions, thus
generating higher quality image description sentences.

In the seventh and eighth images, the caption sentences generated by CSAN accurately
described the contents of the images, outperforming the two comparison methods. Specifi-
cally, neither the baseline method nor CAAG could predict the presence of the “racquet”
in the seventh image and the “lamp” in the eighth image. However, CSAN successfully
captured and accurately described these objects. This analysis highlights the superior
performance of our proposed CSAN, which benefits from the comprehensive utilization of
context semantic information, enabling more accurate and contextually relevant caption
generation.

5. Conclusions

In this paper, we proposed the Attention-Aware (AA) module, extending the conven-
tional attention mechanism, to filter out incorrect or irrelevant information. Furthermore,
we proposed the Context Semantic Auxiliary Network (CSAN) for image captioning by
applying AA to the decoder. Extensive comparative experiments and ablation analysis on
the popular dataset MS COCO were conducted. The results demonstrated the superiority
and general applicability of our proposed AA mechanism and CSAN.
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