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Abstract: Skin cancer, particularly melanoma, has been recognized as one of the most lethal forms
of cancer. Detecting and diagnosing skin lesions accurately can be challenging due to the striking
similarities between the various types of skin lesions, such as melanoma and nevi, especially when
examining the color images of the skin. However, early diagnosis plays a crucial role in saving
lives and reducing the burden on medical resources. Consequently, the development of a robust
autonomous system for skin cancer classification becomes imperative. Convolutional neural networks
(CNNs) have been widely employed over the past decade to automate cancer diagnosis. Nonetheless,
the emergence of the Vision Transformer (ViT) has recently gained a considerable level of popularity
in the field and has emerged as a competitive alternative to CNNs. In light of this, the present study
proposed an alternative method based on the off-the-shelf ViT for identifying various skin cancer
diseases. To evaluate its performance, the proposed method was compared with 11 CNN-based
transfer learning methods that have been known to outperform other deep learning techniques
that are currently in use. Furthermore, this study addresses the issue of class imbalance within the
dataset, a common challenge in skin cancer classification. In addressing this concern, the proposed
study leverages the vision transformer and the CNN-based transfer learning models to classify seven
distinct types of skin cancers. Through our investigation, we have found that the employment of
pre-trained vision transformers achieved an impressive accuracy of 92.14%, surpassing CNN-based
transfer learning models across several evaluation metrics for skin cancer diagnosis.

Keywords: skin cancer diagnosis; multi-class; vision transformer; pretrained models; fine tuning;
transfer learning; data augmentation

1. Introduction

One of the most frequent causes of death across the world is cancer. According to the
World Health Organization (WHO), approximately 10 million deaths in 2020 were reported
to be due to different cancer diseases [1]. Cancer is a condition in which abnormal body
cells reproduce uncontrollably and can also spread to other body parts [2]. It is categized
into different types, like lung cancer, breast cancer, which is most common in women, skin
cancer, liver cancer, and many more that are the leading causes of human death. Skin cancer
is the most common and rapidly spreading cancer that can also cause death. Skin is the
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actual physical organ of our body covering different body parts, like the muscles and bones.
If the skin is affected by anything, then it has a severe impact on the entire system. Viruses,
allergies, alcohol usage, infections, physical activity, exposure to ultraviolet (UV) light,
environmental changes, and unusual swellings of the human body are several examples
that underly causes of skin cancer. The diseased spot on the skin is called a lesion area, and
many lesions are split according to their origin.

Skin cancer is divided into basal cell carcinoma and squamous cell carcinoma. They are
referenced as keratinocyte cancers, and their major cause is sun exposure. They frequently
affect the body parts directly hit by the sun, like the face, arms, and hands. Another aspect
of the body is hardly affected by BCC (basal cell carcinoma), but nearby organs or lymph
nodes are easily affected by SCC (squamous cell carcinoma). The other deathly and rare
form of skin cancer is melanoma [3], which develops in the melanocytes. It is treatable
by surgery if it is detected at the initial stage; otherwise, survival will be difficult or even
impossible. Melanoma is a form of cancer that mostly affects white people, often affecting
the trunk in males and the lower limb in women; however, it can also appear in other body
areas. In the United States, 75% of skin cancer deaths were reportedly caused by melanoma,
which constitutes 5% of all skin cancers.

The WHO predicts that skin cancer will be detected in every third cancer patient,
so the first and foremost objective of medical research today is to cure skin cancer. This
particularly important in this context because as per the statistics, more than twelve million
people are reportedly suffering from cancer. The US Skin Cancer Foundation reported that
more Americans are affected by skin cancer each year compared to all other cancers; about
5.4 million skin cancer cases are expected to be diagnosed yearly in the US. Therefore, the
need for clinical screenings is rapidly increasing. Furthermore, histopathologists find it
very difficult to diagnose skin cancer from the epiluminoscopy of skin lesions. Doctors
generally use the biopsy method to diagnose cancer diseases. This method will assess a
different skin sample in the laboratory, which is why this is an excruciating and time-taken
procedure.

Macroscopic images generally attained with a digital camera or video are typically
analyzed computationally. It is challenging to examine skin lesions if the clinical pictures
display the existence of objects, including skin lines, shadows, and hair, in the images and
have a poor image resolution. With the help of Al, the morbidity and death burden rate
associated with the disease can quickly reduce due to the early diagnosis of diseases. It uses
a different technique like machine learning (ML), which contains different algorithms and
models that learn from training data. It tries to predict that the output on testing data/new
samples to perform the desired tasks is difficult for the human brain. Several types of
computer-based systems have been introduced to detect skin cancer. Traditional computer
vision algorithms are mostly used as a classifier to diagnose cancer and extract different
features from the images. Deep neural networks (DNN), convolutional neural networks
(CNN), long short-term memory (LSTM), and recurrent neural networks (RNN) are the
most widely used deep-learning models in the healthcare industry.

Traditional ML models need to extract efficient features from the skin images, and
skin images are classified on behalf of these valuable features [4]. Due to the feature-length
restrictions, ML models are used for skin cancers rather than as a generalized model for
different types of diseases [5]. Deep learning (DL) has recently been used for skin cancer
classification without an in-depth knowledge of DL and feature extraction. Compared
to the ML models, DL models perform well for large-scale datasets [6]. Compared to a
dermatologist for cancer identification, ML-based systems are now being designed [7,8],
but improved techniques are still required for effective healthcare systems. During the
design of the DL model, dataset balancing and many images need to be considered for the
practical training and evaluation of the model. Furthermore, DL requires additional training
time and costs when the dataset consists of high-resolution images [9]. Kumar et al. [10]
proposed a method for evaluating skin infections with a combination of computer vision
and a ML approach, from which computer vision was used for feature extraction, and ML
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was used for disease evaluation, respectively. The accuracy of the proposed model was 95%.
Region-based CNNs have been used for detecting infection with three technologies (region
proposal, vector transformation, and classification) in the study published by the authors
of [11]. For the classification of skin cancer and other related diseases, the GoogleNet
V3 CNN has been used by researchers. They have considered datasets consisting of
dermatoscopic images and clinical images of skin cancers and have been able to achieve an
accuracy of 72.1 ± 0.9. Skin lesion classifications and 7-Points checklist techniques have
also been used for skin disease diagnosis [12].

The feature extraction method effectively reduces the learning time and improves the
performance of the ML and DL models [13]. For the binary classification of clinical images,
a CNN-based approach was employed in 2018 [14]. The transfer learning (TL) approach
has also been used for the prediction of skin cancer and to achieve the highest accuracy [15].
A novel CNN-based model named SkNet encompassing 19 layers was proposed to classify
four types of skin cancer [16]. For skin cancer detection another CNN-based VGG-16 model
has also been used for its effective detection performance [17].

In order to recognize and classify skin cancer, early skin cancer is classified by extract-
ing picture attributes, such shape, texture, geometry, and other manually-created methods.
CNNs have become the popular method for identifying medical images. CNNs have been
successfully used in the categorization of skin cancer due to their remarkable accuracy,
demonstrating their value in this field. Although it is possible to extract characteristics for
many small objects in an image when using a CNN with a deep architecture, it may be
difficult to precisely identify the actually crucial regions. To mitigate this problem, we have
employed the vision transformer (ViT) model in this study. The input image is divided into
blocks during the general training process for this model, and each block is treated as a
separate entity. Self-attention modules are used by the ViT model to understand how these
embedded patches are related to one another. The ViT model has recently demonstrated an
outstanding performance in the typical classification tasks. The self-attention mechanism
of the transformer increases the significance of the important features while reducing the
impact of the features that cause noise. Motivated by this perspective, the current study
proposed a skin cancer classification network based on the ViT. The findings revealed that
the proposed network delivers satisfactory outcomes in skin cancer classification. Further-
more, this study investigated the utilization of CNN-based approaches and fine-tuned
them to demonstrate the robustness of the ViT model. This research contributes to the field
in the following ways:

• To address the issue of class imbalance, an effective data augmentation technique was
implemented to artificially increase the dataset samples;

• The proposed fine-tuned ViT model outperformed the state-of-the-art models for
multi-class skin cancer classification;

• In this study, we have also fine-tuned the CNN-based pretrained models, including
ResNet50, ResNet101, ResNet152, ResNet50V2, ResNet101V2, ResNet152V2, DenseNet121,
DenseNet169, DenseNet201, VGG16, and VGG19, respectively;

• The extensive experiments were performed using the data augmentation technique to
propose an effective model;

• The system for classifying multi-class skin lesions has evolved, offering professionals
and patients accurate diagnostic information.

2. Materials and Methods

Within this section, we have introduced the methodologies that were adopted and
proposed to achieve an effective classification of skin cancer.

2.1. Dataset

For our experiment, we utilized a dataset sourced from Kaggle [18], as shown in
Figure 1. However, it is important to note that the dataset we used was imbalanced, which
can lead to the presentation of challenges, such as overfitting or underfitting. To ensure an
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optimal model performance, it is therefore necessary to address the issue of data imbalances,
particularly during the training phase.
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Figure 1. Skin cancer sample images obtained from the HAM10000 dataset.

2.2. Data Augmentation

Data augmentation is a technique that is used to increase the size of a dataset by
applying alterations to the original data. It is particularly valuable in deep learning-
based models, where having an extensive training dataset is crucial for achieving an
effective performance. While data augmentation can be applied across various fields, it
is widely used for computer vision problems. In this study, we focused on rotation as an
augmentation technique, specifically applying the maximum left and right rotations of
up to 8 degrees. By incorporating augmentation, we aimed to diversify the dataset and
prevent the introduction of bias in the model caused by class imbalance.

The augmentation process involved two main categories: position and color augmenta-
tion. For position augmentation, we utilized sub-techniques such as scaling, cropping, affine
transformation, padding, flipping, translation, and rotation. As for color augmentation, we
considered techniques like the hue, brightness, saturation, and contrast adjustments. The
augmented samples are displayed in Figure 2.
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To create a balanced training dataset, we randomly selected and augmented images
from the original dataset, ultimately resulting in exactly 980 samples per class just for
training. These augmented images were then combined with the original data, resulting in
a total of 980 images per class for training (total training samples: 980 × 7). For validation,
we used 140 separate images, and for testing, a separate set of 140 images were considered
for this study.

Overall, these techniques, namely data augmentation and random under-sampling,
were utilized to address the data imbalance issue and ensure more effective results in our
model.

The pre-trained models (e.g., ResNet50, VGG16, and VGG19) were trained and evalu-
ated on this augmented dataset, allowing us to effectively address the class imbalance and
enhance the overall performance of the skin cancer classification task.
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2.3. Effective CNN-Based Pretrained Model (Fine Tuning of Resent50)

To ensure effective generalization, we employed minimal preprocessing steps for the
proposed model. The dataset images were standardized to a fixed size of 224 × 224 pixels.
Different neural network architectures serve different purposes. For instance, RNNs excel
in natural language processing and speech recognition, while CNNs are highly effective in
analyzing the visual inputs and processing images.

However, increasing the depth of these networks introduces challenges. Deep net-
works can be difficult to train due to the vanishing gradient problem, where gradients
diminish as they propagate backwards through the layers. To address this issue, a residual
neural network (ResNet) was introduced, which employs skip connections. By skipping
several layers, the values do not descend to the lowest point, thereby mitigating the vanish-
ing gradient problem. Skip connections involve adding the input to the output of a specific
layer [19].

ResNet50, a deep convolutional network comprising 50 layers, was specifically de-
signed for image classification tasks. It was introduced by Kaiming He et al. [20]. ResNet50
consists of two types of blocks: identity blocks and convolutional blocks. Identity blocks
are utilized when the input and output dimensions remain the same, while convolutional
blocks are used when the input and output dimensions differ. In cases where these di-
mensions do not match, a convolutional block can be added to the shortcut path to ensure
equality between the input and output dimensions.

By incorporating ResNet50 into our research, we aimed to leverage its architecture
and skip connections to enhance the performance of our proposed model for skin cancer
classification. In this study, the dropout was primarily applied to the hidden and input
layers of the neural network, rather than the output layer. This is because during testing,
all neurons and connections in the network must be available for accurate predictions
and inference. Therefore, the dropout was not applied to the output layer to ensure the
availability of the complete network’s structure during testing [21]. Further, by utilizing
average pooling in our research, we aimed to downsize the feature maps effectively while
retaining meaningful information for subsequent layers in the neural network. This allows
us to extract the relevant features and facilitate the classification of skin cancer with an
improved accuracy and efficiency.

Overfitting is a prevalent challenge encountered in machine learning, where a model
performs well on the training data but exhibits unstable predictions on the test data.
To address this issue, regularization techniques were employed. One such technique is
batch normalization, which plays a vital role in accelerating the training process of the
convolutional neural networks and enhancing their stability [22].

Typically, a batch of input data is collected and utilized to train a neural network [22].
By incorporating batch normalization into the training process, we can normalize the acti-
vations within each batch, thereby reducing the internal covariate shift. This normalization
aids in stabilizing the learning process, allowing the model to generalize better and make
more consistent predictions across different datasets.

The activation function is a crucial component in neural networks, determining the
activation level of each neuron. It involves calculating the weighted sum of each neuron’s
input, adding the bias term, and passing the resulting value through the activation function.
By introducing non-linearity, the activation function enables neural networks to solve
complex problems, as without it, the network would perform linear regression [22].

The activation function operates within specific output ranges, typically limiting
values between 1 and −1, or 0 and 1, respectively. There are two main categories of
activation functions: linear/identity activation function and non-linear activation functions.
Non-linear activation functions further include various types, such as sigmoid/logistic,
SoftMax, Tanh hyperbolic tangent, Leaky ReLU, and ReLU (rectified linear unit) [23,24].

The activation function adds non-linearity to neural networks, allowing them to handle
complex tasks effectively. It determines which neurons are active and categorizes the
activation functions into linear and non-linear types, each with their specific characteristics
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and use cases. Adam [25] is an extension of the SGD (stochastic gradient descent: aims to
find the minimum of a given loss function by iteratively adjusting the model’s parameters)
which is used to recurrently update the network weights based on the training data. This
optimizer combines two methodologies—the adaptive gradient algorithm and root mean
square propagation—to help sparse gradients on noisy problems. We have considered
Adam in this study, as it is better, fast, has low memory requirements compared to other
optimization algorithms and has only a few tuning parameters.

Hyperparameter Tuning

Hyperparameters are essential parameters that need to be defined prior to training a
model. They play a critical role in determining the behavior and performance of the model.
Examples of hyperparameters include the dropout rate, activation function, hidden layer
neurons, number of epochs, and batch size [22].

In our study, we empirically determined the values for these hyperparameters, ensur-
ing they are optimized for the specific task at hand. The specific values chosen for each
hyperparameter can be found in Table 1, providing transparency and reproducibility in
our experimental setup. By carefully selecting and fine-tuning these hyperparameters, we
aimed to maximize the performance and effectiveness of our model in classifying skin
cancer.

Table 1. Network Hyperparameter Tuning.

Parameter Values

Hidden neurons 1024, 512, 256, 128, 64, 7

Epochs 20

Dropout 0.3

Activation function ReLU, SoftMax

Loss-Function Categorical

Optimizer Adam

Learning rate 0.001

Batch size 32

Early stopping Yes

Patience 3

2.4. Transfer Learning and Network Architecture Modifications of the CNN-Based
Pretrained Models

Transfer learning is an effective concept that utilizes knowledge acquired from tasks
to solve related tasks through fine-tuning. There are several approaches that can be to
perform fine-tuning. One approach is to fine-tune some or all of the parameters of the last
layer of the pre-trained model [26].

In this work, an integrated feature extractor was utilized to perform effective feature
extraction using the pre-trained model. This approach leverages the transfer learning
concept, allowing a model trained for a specific problem to be utilized for a different
problem by fine-tuning the model. For instance, the last convolutional layer of ResNet50
was mapped with the dense layers (1024, 512, 256, 128, 64, and 7). Batch normalization
and a dropout rate of 0.3 were applied after each dense layer. The hidden layers utilized
the ReLU activation function, while the last layer consisted of 7 neurons with the SoftMax
activation function.

The layers of ResNet50 were frozen, and the weights from the ImageNet dataset were
employed in this study. The same configuration was applied to all pre-trained model
architectures to maintain consistency.
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Overall, both fine-tuning and feature extraction techniques were implemented in this
study, with an integrated feature extractor used for effective feature extraction. The specific
configurations and approaches described above were applied consistently across all the
pre-trained model architectures utilized in our research.

2.5. Vision Transformer (ViT) Pretrained Model

ViT, a deep neural network [27], was designed for image recognition tasks by pro-
cessing input images through a series of learned transformations. In contrast with the
traditional CNNs, ViT employs a self-attention mechanism to focus on the relevant parts of
the input image, resulting in high accuracy across the various image recognition tasks.

In this study, the input images were divided into 16 × 16 patches after resizing the
images to 224 × 224 pixels. The 16 × 16 patches refer to the process of dividing an input
image into smaller fixed-size patches, where each patch was 16 pixels wide and 16 pixels
tall. The model was trained on ImageNet-21k, a large-scale image classification dataset
with over 14 million images divided into 21,841 categories. This model is composed of
12 transformer layers, each with 768 hidden units and 85.8 million trainable parameters.
For the parameter values and configurations of the ViT model, see Table 2.

Table 2. Vision transformer (ViT) configurations.

Parameter Values

Encoder and pooling layers dimensionality 768

Transformer encoder hidden layers 12

Feed-forward layer dimensionality 3072

Hidden layer activation Gelu

Hidden layer dropout 0.1

Image size 224 × 224

Channels 3

Patches 16 × 16

Balanced True

Figure 3 presents the abstract-level diagram illustrating the proposed methodology.
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3. Results and Discussion

This section provides a comprehensive discussion on the evaluation measures, experi-
mental details, and the results obtained through the proposed methodology.

3.1. Evaluation Metrics

Evaluation metrics play a crucial role in assessing the performance of the machine
learning and deep learning models. These metrics hold significant importance in the realm
of machine learning, deep learning, and statistical research. In this study, we have focused
on several key evaluation metrics to gauge the effectiveness of our proposed model:

• Accuracy: measures the overall correctness of the model’s predictions. It calculates the
ratio of correctly classified samples to the total number of samples. Accuracy alone is
not always sufficient for evaluation, especially when dealing with imbalanced datasets
or when different types of errors have varying consequences;

Accuracy = TP + TN/
TP + FP + TN + FN (1)

• Precision: quantifies the model’s ability to correctly identify the positive samples
among the predicted positives. It calculates the ratio of true positives to the sum
of true positives and false positives. Precision focuses on the reliability of positive
predictions;

P = TP/
TP + FP (2)

• Recall: also known as sensitivity or the true positive rate, recall measures the model’s
ability to correctly identify the positive samples among all actual positives. It calculates
the ratio of true positives to the sum of true positives and false negatives. Recall focuses
on the completeness of positive predictions;

R = TP/
TP + FN (3)

• F1 Score: the harmonic mean of precision and recall. It provides a single metric that
balances both precision and recall, making it useful for when there is an uneven class
distribution or an equal emphasis on both types of errors. The F1 score ranges from 0
to 1, with 1 being the best performance.

F1 = (2 × P × R)
/
(P + R) (4)

Accuracy in terms of multi-class classification is calculated as the ratio of correct
predictions (true positives and true negatives) to the total number of predictions, regardless
of the class. In comparison, precision, recall, and F1 are considered in the form of weighted
averages for multi-class classification. Weighted averaging gives each class a weight based
on its proportion in the dataset. To obtain weighted metrics, the precision, recall, and
F1 score for each class are multiplied by their corresponding weights, and the results are
then totaled and divided by the total weight. This method accounts for the dataset’s class
imbalance.

3.2. Results and Discussion

The main purpose of this study was to classify skin cancer disease into seven classes. In
this study, the model was trained with normal and augmented images. Data augmentation
was used in this study to increase the training samples. The model was validated with
140 images, 20 of each class, and was tested with 140 images. The weights transfer technique
used the weights of ResNet50 that were retrieved from the ImageNet dataset. The network
layers were frozen and tuned with 1024, 512, 256, 128, 64, and 7 neurons of the dense layers,
respectively. For the model’s generalization, batch normalization and a dropout of 0.3 was
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also used in this architecture. It is observable from Figure 4 in that a maximum validation
accuracy of 77% and a training accuracy of 86% was achieved with the fine tune ResNet50,
respectively.
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We have implemented all the variations of ResNet in this study. The model was also
evaluated with test data consisting of 140 images, and we have achieved a test accuracy of
75%. The skin cancer classification problem is a very challenging problem due to the nature
of the dataset. The images of the different categories seem the same, raising numerous
challenges for the classification model. Although numerous studies have been published
in skin cancer classification, the robustness of the proposed model was still deemed to be
more accurate. As of now, most of the work has been performed on detecting skin cancer
(binary classification).

Sufi A. [28] proposed a study for the classification of melanoma and non-melanoma
images and obtained an 83% accuracy. In the study of Hosny K [29], he also proposed
the transfer learning approach of the AlexNet model for classifying skin cancer into three
classes. The proposed AlexNet model classifies the skin cancer images into melanoma,
common nevus, and atypical nevus classes with ~97% accuracy. Dorj U [30] also pro-
posed a study classifying skin cancers into four classes with a 95% accuracy score. The
authors of [30] used the ISIC dataset for the skin cancer classification with only two classes:
melanoma and non-melanoma.

From the analysis of different studies in the literature available on this field, it can
be learned that the comparative analysis of skin cancer classification studies is also a
challenging task. The dataset varies from study to study, which does not give a fair
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comparison. Moreover, the number of classes across the published works varies very
frequently. Comparing studies with different datasets and the number of classes will not
provide an accurate comparative analysis.

In the study of Budhiman A [31], binary classification was performed on the ISIC
dataset and a 0.83 accuracy score was obtained accompanied with a very low positive
score (0.46). At the same time, the transfer learning-based ResNet50 fine-tuned model
demonstrated a 75% accuracy on the seven types of skin cancer classes in our study. As
the increase of values in the target variable increased, the accuracy of the trained model
decreased. But the number of classes also increased many times in the proposed study
and still obtained a reasonable accuracy score. Hence, the proposed ResNet50 fine-tuned
model is a sound addition for classifying the seven types of skin cancers with respect to the
CNN-based pretrained model. The performance of all 11 CNN-based pretrained models
with same configurations can be seen in Figure 4.

The learning graphs depicting the validation and training processes are essential for
gaining insights into the performances of deep learning models during training. These
graphs enable us to monitor and analyze the model’s behavior, detect potential overfitting
issues, make necessary adjustments to the model’s architecture and hyperparameters, and
ultimately enhance the reliability and accuracy of the deep learning models. For a visual
representation of the learning graphs, please refer to Table 3, which showcases the learning
graphs for the top three pretrained models (ResNet50, ResNet101, and ResNet152).

Table 3. Learning graphs of the top three CNN-based pretrained models.

ResNet50 ResNet152 ResNet101
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The performance of ResNet50 is superior in terms of its validation accuracy compared
to the other conventional pre-trained models. Resnet50 uses a series of convolutional
layers to extract features from images before classifying them using fully connected layers,
while ViT processes images using a self-attention mechanism. The image is divided into
patches, and each patch is given a set of transformer blocks to be applied to it. Due to
the transformer blocks and self-attention, the ViT model is more powerful in classifying
images. We have considered the balanced dataset with a test ratio of 0.2 for the ViT model
and achieved an accuracy of 92.14%, as well as 92.61, 92.14, and 92.17 scores of precision,
recall, and F1, respectively.

When there are imbalanced classes or when the cost of misclassifying one class is
significantly higher than the cost of misclassifying another class, a confusion matrix can
aid in assessing the performance of a classification model. A confusion matrix can derive
the accuracy, precision, recall, and F1 score metrics. The comparison confusion matrix of
ResNet50 and the ViT model is displayed in Table 4.
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Table 4. Confusion matrix of ResNet50 vs the vision transformer model.

Model Confusion Matrix

ResNet50 confusion matrix
(82% accuracy)
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The class-wise precision, recall, and F1 score were also used to validate the proposed
model, as shown in Table 5. The support column denotes the class sample counts e.g.,
the AKIEC class has 23 samples for testing while the BCC class has 26 samples for testing
purposes. The sum of the support column is equal to 140 as we have tested the model for
140 samples.

Table 5. ViT performance as class wise.

Class name Precision Recall F1 Support

AKIEC 1.0000 0.9565 0.9778 23

BCC 0.9615 0.9615 0.9615 26

BKL 0.8824 0.7500 0.8108 20

DF 1.0000 1.0000 1.0000 19

MEL 0.8824 0.8824 0.8824 17

NV 0.7500 0.9375 0.8333 16

VASC 0.9474 0.9474 0.9474 19



Information 2023, 14, 415 12 of 14

The proposed method outperforms state-of-the-art methods, according to a compari-
son of the proposed model’s performance, as shown in Table 6.

Table 6. Comparison of the proposed study with the state-of-the-art studies.

Authors and Year Classes Method Evaluation Metric Results

(Ali et al., 2021)
[32] 2 Custom CNN-Based Model named

DCNN Proposed Accuracy Train 93.16%
Test 91.93%

(Bassel et al., 2022)
[14] 2 Stacking-CV (Proposed) + Xception

Features Accuracy Test 90.9%

(Jain et al., 2021)
[33] 7 Xception Net Transfer

Learning-Based Model Accuracy Test 90.48%

(Ali et al., 2021)
[34] 7

Efficient-Nets B0-B7 Transfer
Learning-Based Models

(Top Accuracy achieved with
Efficient-Net B4)

Accuracy
Precision

Recall
F1

87.91%
88%
88%
87%

(Huang et al., 2023)
[35] 3 YoloV5 (RGB Images, HSI Images)

Accuracy
Precision

Recall
F1

Specificity

RGB HS1
79.2% 78.7%
88.8% 80%
75.8% 72.6%
81.8% 76.1%
79.8% 78.6%

Proposed 7 Vision Transformers (RGB Images)

Accuracy
Precision

Recall
F1

92.14%
92.61%
92.14%
92.17%

4. Conclusions

Skin cancer classification is a challenging task due to the diverse appearances of
different categories. In this study, we explored the effectiveness of the vision transformer
(ViT) approach and pretrained CNN models for multi-class skin cancer classification. By
utilizing fine-tuning, transfer learning, and data augmentation techniques, we achieved
impressive results. The ViT model outperformed the CNN-based transfer learning models
with an accuracy of 92.14%, a precision of 92.61%, a recall of 92.14% and an F1 score
of 92.17%, respectively. However, further improvements are needed in preprocessing
techniques for deep learning models. Overall, our study highlights the potential of the ViT
approach and pretrained CNN models for reliable skin cancer classification.
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Abbreviations
AKIEC|AK Actinic Keratoses
BCC Basal cell carcinoma
BKL Benign keratosis-like lesions
DF Dermatofibroma
MEL Melanoma
NV Melanocytic nevi
TP True positive
FP False positive
TN True negative
FN False negative
ViT Vision tranformer
MAX Maximum
MIN Minumum
AVG Average
HSI Hyperspectral imaging
RGB Red, green, and blue (color images)
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