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Abstract: Federated learning (FL) has emerged as a promising technique for preserving user privacy
and ensuring data security in distributed machine learning contexts, particularly in edge intelligence
and edge caching applications. Recognizing the prevalent challenges of imbalanced and noisy data
impacting scalability and resilience, our study introduces two innovative algorithms crafted for
FL within a peer-to-peer framework. These algorithms aim to enhance performance, especially in
decentralized and resource-limited settings. Furthermore, we propose a client-balancing Dirichlet
sampling algorithm with probabilistic guarantees to mitigate oversampling issues, optimizing data
distribution among clients to achieve more accurate and reliable model training. Within the specifics
of our study, we employed 10, 20, and 40 Raspberry Pi devices as clients in a practical FL scenario,
simulating real-world conditions. The well-known FedAvg algorithm was implemented, enabling
multi-epoch client training before weight integration. Additionally, we examined the influence of
real-world dataset noise, culminating in a performance analysis that underscores how our novel
methods and research significantly advance robust and efficient FL techniques, thereby enhancing
the overall effectiveness of decentralized machine learning applications, including edge intelligence
and edge caching.

Keywords: IoT; edge intelligence; edge ML; federated learning; edge caching mechanisms; large-scale
IoT systems

1. Introduction

The swift progression of artificial intelligence (AI) has led to the proliferation of
autonomous systems aimed at improving human quality of life. However, concerns
regarding personal privacy have arisen [1,2]. To address these concerns, major technology
companies such as Google and Apple have adopted federated learning (FL) approaches
in widely-used applications such as Siri, Google Chrome, and Gboard. FL is a distributed
machine learning method that enables training on decentralized data repositories located
on devices such as smartphones [3]. The local updates are merged by a central server,
addressing data privacy, ownership, and localization issues [4]. The merging process
involves the FedAvg algorithm, which iteratively averages weights from models trained
by each client for multiple local epochs [4]. To enhance convergence speed and resilience,
additional aggregation methods such as FedDF, an ensemble distillation algorithm, have
been developed [5].

The integration of federated learning (FL) in various applications represents a sig-
nificant paradigm shift in machine learning, offering new opportunities for secure and
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collaborative data analysis [6–8]. FL’s decentralized approach, with data stored on local
devices, mitigates risks associated with centralized storage and processing, ensuring en-
hanced data protection and compliance with privacy regulations. Moreover, FL enables the
development of contextually relevant and personalized models, improving the effectiveness
of AI-driven solutions. However, FL adoption also introduces challenges, such as the need
for communication-efficient techniques and addressing biases in non-iid data. Ongoing
research efforts are essential to address these concerns and promote the responsible and
ethical deployment of AI technologies in an interconnected world.

Edge intelligence combines the benefits of edge computing and artificial intelli-
gence [9–11], aiming to provide efficient data processing and analysis on devices at the
network’s edge, such as IoT devices [12] and smartphones [13,14]. Blockchain-enabled
edge intelligence has emerged as a promising approach to secure IoT applications by en-
hancing transparency, traceability, and data integrity [15]. In the context of smart grids,
edge intelligence can offer advanced architectures, offloading models, and cybersecurity
measures to address challenges related to energy management and distribution [16]. More-
over, in precision agriculture, unmanned aerial vehicles leverage remote sensing and edge
intelligence to improve crop monitoring and optimize agricultural processes [17]. Lastly, a
systematic review of TinyML, highlighting its potential impact and challenges in the field
of edge computing, is presented in [18].

Communication-efficient federated learning has been proposed to enhance wireless
edge intelligence in the IoT, addressing the challenges associated with data privacy, latency,
and bandwidth consumption [19–22]. The integration of deep learning and computational
intelligence in edge-enabled industrial IoT can significantly improve data-driven decision-
making and automation [23]. Deep reinforcement learning, when combined with federated
learning, can facilitate intelligent resource allocation in mobile edge computing, leading
to enhanced performance [24]. Federated learning, as a cornerstone of edge computing,
has been extensively studied, with researchers exploring its various aspects and potential
applications in diverse domains [25].

The ongoing challenge of selecting between asynchronous and synchronous training
algorithms within the framework of federated learning (FL) has been extensively researched
in the field of deep learning. While asynchronous training has been widely utilized in
previous studies, such as the work by Dean [26], recent research has shown a consistent shift
towards synchronous large batch training, even in data centers. The Federated Averaging
(FedAvg) algorithm follows a similar approach, emphasizing the need for synchronization.
Furthermore, in order to enhance privacy assurances in FL, techniques such as differential
privacy [27] and secure aggregation [28] require a level of synchronization on a fixed set
of devices, allowing the server-side of the algorithm to process only a straightforward
aggregate of updates from multiple users.

Previous research has assessed the performance of federated learning (FL) in relation
to algorithmic selections, frequently through the simulation of the federation on centralized
computation clusters [5]. The primary objective of our present study was to capture the
distinctive hardware configurations that are characteristic of federated learning (FL) use cases,
such as smartphones, where data are distributed across numerous edge devices with limited
computational capabilities. To achieve this, we conducted local training of a convolutional
neural network (CNN) on a set of 40 Raspberry Pi devices, with the CIFAR-10 dataset
distributed among them. Subsequently, we leveraged techniques such as FedAvg, FedDF,
and other aggregation methods to combine these locally trained models.

The overarching aim of our research was to thoroughly investigate the impact of
FedAvg hyperparameters—specifically, the number of clients per communication round
and local epochs—on the duration of convergence. We also aimed to assess the resilience of
the aggregation process in the presence of imbalanced and noisy data and to identify any
performance trade-offs that may arise in the context of physical hardware. The analysis
we present provides valuable insights into the behavior and efficacy of FL algorithms in
real-world hardware configurations, particularly in light of the unique challenges posed
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by periphery devices with limited computational resources. Additionally, we investigated
conventional FL enhancements using four distinct methods: utilization of a peer-to-peer
(P2P) network with client-processed weights; implementation of a P2P federated learning
strategy; formulation of a Federated Averaging with Momentum scheme; and construc-
tion of a Federated Averaging with Adaptive Learning Rates scheme. This manuscript
serves as an expanded version of our conference paper [29], which provided a preliminary
exploration of the subject matter.

This work presents significant contributions in the field of federated learning, includ-
ing novel algorithms and techniques that enhance performance, convergence speed, and
efficiency. These contributions address important challenges such as optimizing label distri-
bution, handling heterogeneous data distributions, optimizing parameters, and integrating
edge caching strategies.

• Enhanced Client-Balancing Dirichlet Sampling (ECBDS) (Algorithm 1): We proposed
ECBDS, a novel sampling technique that optimizes label distribution in federated
learning scenarios. By improving the representation of labels across clients, ECBDS
enhances the overall performance and generalization capabilities of federated learning
models. This technique is among the novelties of our work, as other state-of-the-art
methods do not perform a similar data distribution measure;

• A Client-Side Method for Peer to Peer Federated Learning is presented in Algorithm 2
along with a Peer to Peer Federated Learning Approach which shown in Algorithm 3.

• FedAM (Algorithm 4), for Raspberry Pi Devices: We introduced the FedAM algorithm,
specifically tailored and tested for resource-constrained Raspberry Pi devices. This
algorithm accelerates convergence and mitigates the impact of noisy gradients in feder-
ated learning settings. FedAM offers a practical solution to improve model performance
on edge devices, enabling efficient and robust federated learning deployments;

• FedAALR (Algorithm 5), for Heterogeneous Data Distributions: Our proposed FedAALR
algorithm addresses the challenge of heterogeneous data distributions in federated learn-
ing. By adaptively adjusting learning rates for individual clients, FedAALR enhances
convergence speed and model performance. This contribution ensures that federated
learning systems can effectively handle diverse and unevenly distributed data sources;

• Parameter Optimization in FedAM: We focused on parameter optimizations specifically
for the FedAM algorithm. By fine-tuning key parameters, we achieved improved con-
vergence speed and stability in federated learning processes. This contribution enables
practitioners to maximize the effectiveness and efficiency of FedAM-based federated
learning systems;

• Integration of Edge Caching Techniques: We enhanced the FedAALR algorithm by
incorporating edge caching techniques. By strategically caching frequently accessed
data at the network edge, we reduced communication costs and latency, making
the algorithm more efficient. This integration of edge caching contributes to the
scalability and practicality of federated learning deployments in resource-constrained
environments.

The subsequent sections of this article are organized in a structured manner to pro-
vide a comprehensive overview of the research conducted. After a brief summary of the
current research on federated learning, Section 2 then delves into a discussion of several
publications that are connected to the topic. In Section 3, the methodology employed in this
study is described in detail, both at a theoretical and application level, providing a clear
understanding of the approach. The experimental results and their findings are presented
in Section 4, accompanied by a comprehensive analysis and optimization in Section 5. In
Section 6, a detailed discussion of the results is provided, critically analyzing the implica-
tions and limitations of the study. Finally, the conclusions drawn from the research and
the future directions of this work are outlined in Section 7, summarizing the key findings
and proposing avenues for further research in this field. The organized structure of this
article aims to facilitate a systematic and in-depth understanding of the research objectives,
methodology, results, and implications for the reader.
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2. Literature Review
2.1. Evolution of Federated Learning

Federated learning (FL) is a privacy-preserving approach where multiple organizations
collaborate to train a machine learning model [3]. Data privacy regulations, such as GDPR,
prohibit the use of data without user consent. FL overcomes this challenge by allowing
each organization to develop a task model using its local data while keeping the data
private. Through encryption techniques, model parameters are exchanged between clients
and a central server to create a global model without violating privacy protection laws. FL
ensures privacy while enabling collaborative model training in a distributed manner.

2.2. Horizontal Federated Learning

Horizontal federated learning (HFL) is a FL subcategory that is applicable when using
features that significantly overlap across two datasets, but the users themselves do not.
HFL involves horizontally partitioning datasets (across user attributes) and eliminating the
data segments with matching user features but different users for training. Consequently,
different rows of data with similar features can be used to increase the sample size of users.

Suppose we consider two providers that offer identical services but operate in separate
locations, catering to regional users with minimal overlap. Despite the similarities in their
services, the user features of these providers are likely to be comparable as well. One
approach to enhance the accuracy of the model and increase the total training samples is by
employing horizontal federated learning (HFL) [30–32]. In HFL, participants can compute
and submit local components to a central server, which then merges them into a global
model. However, this process of processing and transferring components may pose a risk
of revealing user information, raising concerns about privacy and security. To mitigate
this issue, several common solutions have been proposed, including the use of homomor-
phic encryption schemes [33], differential privacy methods [27], and secure aggregation
frameworks [34]. These techniques can ensure the security of gradient exchange in HFL,
safeguarding the privacy of user data while facilitating effective collaboration and model
improvement among providers.

In 2016, Google introduced an FL modeling methodology for Android phones [28],
permitting users to modify model parameters locally before transferring them to the
cloud. This approach allows data proprietors possessing congruent feature dimensions to
construct an FL model. The framework encompasses various fundamental implementations
of horizontal federated learning (HFL), which incorporate techniques such as differential
privacy [27] and secure aggregation. For instance, BlockFL, a notable HFL system proposed
in [35], utilizes a blockchain network to facilitate updates of local learning models on
devices while an FL-based blockchain solution is presented in [36]. In another study [37],
the authors introduced MOCHA, an FL technique that addresses security challenges in
multi-task settings, enabling multiple sites to collaborate on tasks while preserving privacy
and security.

An alternative approach, known as multi-task federated learning, aims to reduce
communication expenses and enhance fault tolerance compared to conventional distributed
multi-task learning methodologies. For example, in [4], it was shown that HFL enables
privacy-secure, collaborative learning by letting clients develop and share local models
without uploading sensitive data. This embodies ongoing efforts to address distributed
machine learning challenges.

2.3. Vertical Federated Learning

Vertical federated learning (VFL) is a promising solution for scenarios with minimal
overlap in user features across datasets but significant overlap in users. By vertically
partitioning datasets along the user/feature dimension, VFL expands the training data by
representing the same user in multiple columns.

This approach improves the performance of federated models while preserving data
privacy and security.
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VFL has been successfully applied to various machine learning models, such as
logistic regression, tree structure models, and neural networks. Ongoing research in VFL
focuses on developing advanced techniques and algorithms to enhance efficiency, scalability,
and privacy guarantees in real-world applications. By addressing challenges associated
with disparate user features, VFL advances federated learning as a robust and privacy-
preserving approach for collaborative machine learning in interconnected environments,
such as financial institutions and e-commerce brands operating in the same geographical
location.

In recent years, vertical data partitioning has emerged as a prominent technique for
federated learning, where data from multiple sources are collaboratively used for model
training without sharing raw data. This approach poses unique challenges due to the
distribution of data along the user/feature dimension, which requires novel solutions to
ensure effective model training while preserving data privacy and security. A plethora
of machine learning techniques have been developed to address the unique challenges
associated with vertical data partitioning, including classification [38], statistical analy-
sis [39], gradient descent [40], privacy-based linear regression [41], and privacy-focused
data mining methods [42]. Notably, recent research has proposed innovative approaches to
tackle these challenges within the context of vertical federated learning (VFL).

For instance, Cheng et al. [43] proposed a VFL system called SecureBoost, where all
participants contribute their user features for joint training, with the goal of improving
decision-making accuracy. Remarkably, this training scheme is designed to be lossless, en-
suring the preservation of privacy and data integrity during the federated learning process.
Furthermore, Hardy et al. [44] presented a privacy-preserving logistic regression model
based on VFL. This approach leverages techniques such as parallelizing objects for analysis
and distributed logistic regression with supplementary homomorphic encryption [45],
which enhances the protection of data privacy and classifier accuracy.

These examples highlight the growing interest in addressing challenges related to
vertical data partitioning in federated learning. By developing innovative techniques,
researchers aim to overcome these challenges and advance privacy-preserving solutions
for real-world applications. Ongoing research in this field focuses on further enhancing the
efficiency, scalability, and security of vertical federated learning and related techniques. The
ultimate goal is to enable effective and secure federated learning across diverse domains.

2.4. Incorporating Edge Intelligence with Federated Learning

The integration of edge intelligence [46,47] and fully distributed federated learning
marks a significant development in machine learning research. This integration leverages
the capabilities of edge devices such as smartphones, IoT devices, and smart sensors,
creating an efficient, privacy-preserving machine learning system focused on local data
processing and analysis.

The combination of these two complementary technologies forms a unique, distributed
machine learning system. It enables real-time local data processing and analysis without
depending on cloud-based services. The approach taps into decentralized data sources to
enhance the accuracy and robustness of machine learning models, reducing the latency
and bandwidth requirements of machine learning applications. Simultaneously, it ensures
improved data privacy and security.

This strategy’s novelty lies in the marriage of edge intelligence with fully distributed
federated learning. It highlights the potential growth and expansion in the machine learning
field, as machine learning algorithms are implemented on peripheral devices. Despite
the lack of dependence on cloud services, the system manages to perform real-time local
data processing and analysis. The distributed nature of federated learning enhances the
precision and robustness of ML models by utilizing decentralized data sources.

Significant effects of this strategy are observed in real-world applications such as
autonomous vehicles, healthcare monitoring, and industrial automation. The deployment
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of machine learning algorithms on peripheral devices improves their performance and
efficiency, underlining the strategy’s broad implications for such applications.

The integration of edge intelligence with fully distributed federated learning is a
viable path for advancing machine learning technology across different sectors. By bringing
together the benefits of both learning types, it paves the way for further research and
development. This might lead to the creation of highly efficient, accurate, decentralized,
and secure machine learning systems with wide-ranging applications. The architecture
of such a system, integrating Distributed Federated Learning with Edge Intelligence, is
depicted in Figure 1. Lastly, in Table 1, the available methods in federated learning are
presented along with their advantages and limitations.

Coordinator

Edge Servers

Edge Devices(1..N)

Availability

Distributed
FL

Edge
Intelligence

Data Collection
and Processing 

FL Servers

Edge
Intelligence
Frameworks

Cloud Server

Figure 1. Architecture of Distributed Federated Learning with Edge Intelligence.

Table 1. Methods in Federated Learning: Advantages and Limitations.

Method Advantages Limitations

Horizontal FL Privacy preservation, accuracy enhancement Information leak risk

Vertical FL FL performance improvement, privacy preservation Needs novel solutions

Edge Intelligence with FL Low latency, bandwidth economy, privacy/security Extensive research required

3. Proposed Methodlogy
3.1. Understanding Federated Learning Techniques

In this section, we explore the concept of federated learning and how it is implemented.
Federated learning (FL) is a process that involves the collaboration of K clients, each of
whom holds a unique portion of a larger training dataset with size nk. A global model,
represented asMG, is hosted on a central server. Over the course of L rounds, known
as communication rounds, S ≤ K clients are selected using a Dirichlet sampling method.
Each of the chosen clients is provided with a local copy of the global model MG. The
architecture of federated learning is further illustrated in Figure 2. More information about
the notation and symbols used in the article is given in Appendix A.1 while the hardware
setup illustration is given in Appendix A.2.
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Edge Users U1 to Ui

Clients share weights and
receive averaged weights

Send initial
model

PC Laptop Tablet Mobile 
Phone

Central Agent

Embedded 
Devices

Figure 2. Federated Learning Schema.

The clients perform E local epochs of learning before sending their updated local
modelsMk back to the central server. In the original FedAvg algorithm, the server combines
the S received models by averaging their weights, consequently generating an updated
global model for the next communication round. This process aims to minimize an implicit
objective function f with respect to the model weights w, given a loss function `:

f (w) =
K

∑
k=1

nk
ntotal

Fk(w), Fk(w) =
1
nk

nk

∑
i=1

`(xi, yi; w), (1)

Here, Fk(w) represents the objective function for the k-th client [4].
An alternative aggregation method, the FedDF algorithm, is incorporated in this

study. This technique replaces the weight averaging approach of FedAvg with ensemble
distillation for fusing models using an unlabeled dataset similar to the training datasets.
Utilizing hyperparameters comparable to those in [5], the global modelM(l+1)

G is generated

by distilling the S local modelsM(l)
ki

through 104 batch updates against a Kulback–Leibler
(KL) divergence criterion. A batch size of 128 and a learning rate of 10−3 are employed.
Adam optimization with cosine annealing is applied in this process. Early stopping is
incorporated by calculating the KL divergence against an unlabeled validation set every
103 updates and stopping if the evaluation loss fails to decrease. Section 3.8 provides a
comprehensive explanation of the KL divergence criterion.

3.2. Embedded Systems

The technical dimension of this investigation, as depicted in Figure 3, encompasses
two primary elements: a centralized high-performance computing (HPC) cluster and an
array of 10 Raspberry Pi 4 units, each outfitted with 4 GB of RAM and a 1.5 GHz quad-core
processor. It is important to note that the Raspberry Pi systems are linked to a distinct
network, separate from that of the HPC, in order to simulate a more realistic communication
environment.

Figure 3. The federated setup performing updates at communication round l, at which S ≤ 40 clients
are sampled.
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A vital function of the HPC server is to aggregate the locally trained models generated
by each individual device and subsequently assess the derived global modelMG.

Each Raspberry Pi houses a Flask server that manages the model exchange, local
training execution, and active memory usage monitoring—a crucial factor when operat-
ing in resource-limited hardware settings. Additionally, the server offers a pathway for
transmitting requests, enabling vital over-the-air updates.

The Raspberry Pi setup can accommodate experiments with K > 10, indicating that it
can support over 10 clients and, as a result, dataset partitions with a restriction of no more
than 10 clients sampled per round (S ≤ 10). This is achieved by storing all K client datasets
on every device, and during each communication round l, allocating each of the S sampled
client datasets to a Raspberry Pi.

The Raspberry Pi devices connect to a switch, which in turn is linked to the router
via a cable. When the switch is deactivated, the devices establish a connection through
Wi-Fi, allowing for the evaluation of communication overhead in two distinct situations:
the relatively fast Ethernet and the comparatively slow Wi-Fi. Specifically, the utilized
network has a bandwidth of 100/100 Mbit/s, with Ethernet taking advantage of the full
capacity and Wi-Fi using only around 10% (10/10 Mbit/s). As shown in Figure 3, each
client corresponds to a dataset partition k1 . . . kS, with Raspberry Pi 1 training a model as
client ki, and Raspberry Pi 40 as k j.

3.3. Problem Formulation and Dataset

To carry out the federated learning scenario mentioned previously, we used the CIFAR-
10 computer vision (CV) dataset. This dataset consists of 32× 32 images, which are classified
into various object categories such as birds, cats, and airplanes. Due to memory limitations
on the devices and to speed up training times, all images were converted to grayscale. The
training dataset contained 5000 images for each of the 10 classes. For the modelM, we
chose a network consisting of two convolutional layers, followed by two linear layers, with
more details available in the conference version of this work [29].

The dimensions of the model were purposefully kept small to fit within the memory
limitations of Raspberry Pi devices. For optimization during the local epochs (E) on each
device, the Adam optimizer was used, featuring a learning rate η that decays after each
local epoch: η ← γη, γ ≤ 1.

In this section, imbalanced and noisy data were addressed. To simulate various
degrees of imbalance, the Dirichlet distribution, Dir(α), was employed:

• The parameter vector α has a length equal to the number of labels—which was 10 in
this case—and αi = α;

• Each sample π ∼ Dir(α) represents a probability distribution across labels, and α
determines the corresponding distribution’s uniformity;

• As α approaches 0, a single label dominates, whereas as α approaches infinity, π be-
comes increasingly uniform. For α = 1, every possible π has an equal probability of
being selected;

• For each client, π was sampled, making the label distribution Dirichlet for every
client.

In order to maintain disjoint client datasets while optimizing the utilization of the entire
dataset, a client-balancing Dirichlet sampling algorithm was devised, which is detailed in
Section 3.4.

The client-balancing Dirichlet sampling algorithm takes into account the inherent
imbalance present in real-world datasets, ensuring that the federated learning system
remains robust and adaptable to such scenarios. By resolving the issues of imbalance and
noise, we can provide a more thorough evaluation of the algorithms proposed in this study
and gain a better understanding of their performance under realistic conditions.

Furthermore, the development of the client-balancing Dirichlet sampling algorithm
allows for the effective distribution of data across clients, while simultaneously addressing
the complexities introduced by imbalanced and noisy datasets. This approach enables the
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federated learning system to efficiently process data and improve overall performance,
even when faced with diverse and challenging data characteristics.

In summary, the utilization of the Dirichlet distribution and the client-balancing
Dirichlet sampling algorithm significantly contributes to the robustness and adaptability of
the federated learning system in our study. These techniques enable the system to handle
imbalanced and noisy data effectively, ensuring that the resulting models are capable of
performing well in real-world scenarios where class balance cannot be guaranteed.

3.4. Enchanced Client-Balancing Dirichlet Sampling Algorithm

This section provides an expansion of the client-balancing Dirichlet sampling algo-
rithm introduced in the concise version of this work [29]. Consider a dataset D with a total
size of |D|,composed of l distinct labels, with each label containing |D|/l instances. The
primary objective of the algorithm is to distribute the dataset across C clients, ensuring that
the label distribution, πi, for each client i follows the same Dirichlet distribution, Dir(α).
All αj ∈ α, j = 1 . . . l have identical values. For simplicity, the Dirichlet distribution was
parameterized solely by α, denoted as Dir(α).

These distributions are organized in a matrix P with dimensions C× l. The i-th row
corresponds to πi. The ij-th element, Pij, signifies the fraction of label j on client i. The sum
of the j-th column represents the relative usage of label j, scaled by the number of clients, C.
To ensure equal usage of each label, every column should have a total of C/l. If the sum of
any column surpasses this value, the corresponding labels are oversampled, necessitating
the normalization of all P to equalize the largest column sum to C/l. This normalization
procedure results in the omission of some data.

In the mapper stage of the algorithm at step 4, u values are exchanged, and step 9
executes all potential swaps. If no further swap is possible, step 19 terminates the process.
Step 22 normalizes P based on the most-sampled label. To assess how closely P approaches
the goal of equalizing each column sum, a measure, u, was employed. The smallest value
of this measure should correspond to a P where every column totals to C/l, whereas higher
values should be assigned to inferior P values. The L1 norm of the difference in column
sums and C/l is adopted.

Let S represent the sum of the columns in matrix P:

Sj =
C

∑
i=1

Pij, f orj = 1, . . . , l. (2)

The measure u can be defined as follows:

u =
l

∑
j=1

∣∣∣∣Sj −
C
l

∣∣∣∣. (3)

Then, based on Equation (3), we can express the C/l as in Equation (4):

u(P) =
l

∑
j=1

∣∣∣∣∣Cl − C

∑
i=1

Pij

∣∣∣∣∣ (4)

Equation (4) measures the absolute difference between the sum of each column in P
and the target sum of C/l. To gain more insight, we can expand Equation (4) by adding a
normalization term and an optional scaling factor as in Equation (5):

u(P) =
l

∑
j=1

∣∣∣∣∣Cl − ∑C
i=1 Pij

∑l
j=1 ∑C

i=1 Pij
· λ
∣∣∣∣∣ (5)

where λ is a scaling factor. By default, λ = 1, and the equation remains the same as before.
However, by adjusting λ, we can emphasize or de-emphasize the importance of achieving
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equal column sums. A larger λ places more importance on the equal column sums, while a
smaller λ diminishes their significance.

This client-balancing Dirichlet sampling algorithm enables the efficient distribution
of datasets across clients while maintaining the desired label distribution in a federated
learning setting. By implementing this algorithm, we can ensure that the federated learning
system is able to handle imbalanced datasets and more closely mimic real-world scenarios.

Moreover, the algorithm addresses the challenges associated with the distribution of
data in a federated learning context by employing a measure, u, to assess the closeness
of the label distribution to the desired uniform distribution. This approach allows the
federated learning system to adjust and enhance the data distribution with the aim of
boosting the overall performance of the model.

Additionally, the normalization term in Equation (6) guarantees that the measure stays
within a significant range:

∑C
i=1 Pij

∑l
j=1 ∑C

i=1 Pij
(6)

Let Qij represent the normalized matrix element for the i-th client and the j-th label.
The normalization term can be mathematically expressed as in Equation (7):

Qij =
Pij

∑C
k=1 ∑l

m=1 Pkm
, (7)

where Pij denotes the proportion of the j-th label on the i-th client before normalization
and C and l represent the number of clients and distinct labels, respectively. The term
in Equation (6) ensures that the measure u(P) is not affected by the overall scale of the
matrix P. This makes the measure more robust and allows for comparisons across different
scenarios, even if the scale of the label distribution varies. Similarly, standard deviation
or the reciprocal of the entropy could be employed. The final aspect to consider before
introducing the algorithm is that reordering πi makes it equally likely to be sampled from
Dir(α).

The α-values can be seen as a vector ff = (α1, α2, ..., αl), which are essentially the
parameters of the Dirichlet distribution. In the context of the federated learning, these
parameters may represent the desired proportions of labels across clients.

The Dirichlet distribution itself, Dir(α), can be expressed as in Equation (8):

Dir(ff) =
1

B(ff)

l

∏
i=1

xαi−1
i , (8)

where B(ff) is the multivariate Beta function, defined as in Equation (9):

B(ff) = ∏l
i=1 Γ(αi)

Γ
(

∑l
i=1 αi

) , (9)

with Γ being the Gamma function.
The algorithm iterates and updates the α-values to gradually approach the desired

distribution. It might be possible to use a method, such as gradient descent or another
optimization method, to achieve this.

For example, if we denote the updated value of α at the t-th iteration as α(t), and we
apply an update rule based on the difference between the desired column sums C/l and
the current column sums, we may write the update rule as in Equation (10):

α(t+1) = α(t) − η

(
Sj −

C
l

)
, (10)

where η is the learning rate.
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Finally, we can incorporate a stopping criterion based on u(P), e.g., if the value of
u changes less than a certain threshold, we could terminate the iterative process as in
Equation (11):

∆u = |u(t+1)(P)− u(t)(P)|, (11)

i.e., if ∆u < ε (for a small positive ε), stop the iterations.
Ultimately, the client-balancing Dirichlet sampling algorithm is an essential component

of the federated learning system, enabling the efficient distribution of datasets across clients
while maintaining the desired label distribution. By addressing the challenges associated
with imbalanced data, the algorithm ensures that the federated learning system is able to
more accurately represent real-world scenarios and deliver improved model performance.

The algorithm aims to iteratively change the ordering within each πi until the measure
u(P) can no longer be minimized. The complete steps of this Enhanced Client-Balancing
Dirichlet Sampling (CBDS) algorithm are presented in Algorithm 1. The original Client-
Balancing Dirichlet Sampling algorithm is given in the short version of this work [29].

Algorithm 1 Enhanced Client-Balancing Dirichlet Sampling (ECBDS)

Require: Number of clients C, concentration parameter α
Ensure: Client-balanced distribution P

1: for i from 1 to C do
2: Pi ← Dir(α)
3: end for
4: Calculate initial u(P)
5: loop
6: d←Map()
7: for i from 1 to C do
8: for all (j1, j2) ∈ (1 . . . l)× (1 . . . l), j1 6= j2 do
9: Swap Pij1 and Pij2

10: d[(i, j1, j2)]← u(P)
11: Swap Pij1 and Pij2 back
12: end for
13: end for
14: if min(d) < u(P) then
15: i, j1, j2 ← argmin(d)
16: Swap Pij1 and Pij2
17: Update u(P) with the new value
18: else
19: Break
20: end if
21: end loop
22: Assign data points to clients based on the final P matrix
23: π ← ∑C

i=1 πi
24: P← P/ max(π)
25: Return P as the final client-balanced distribution

The Enhanced Client-Balancing Dirichlet Sampling (ECBDS) algorithm is designed
to create an optimized label distribution for federated learning scenarios. It starts by
initializing the P matrix and calculating the initial u(P) measure. By performing swaps in
the main loop and updating the u(P) measure with the new values obtained, the algorithm
can effectively track progress during the optimization process.

Moreover, after the main loop, an additional step assigns data points to clients based on
the final P matrix. This ensures that the distribution of data points among clients matches the
optimized label distribution found by the algorithm. The algorithm then calculates the total
label distribution, π, and normalizes the final P matrix by dividing it by the maximum
value of π, making certain that all data points with the most sampled labels are used exactly
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once. The enhanced algorithm returns the final client-balanced distribution, P, which can
be used for further processing or analysis.

The ECBDS algorithm performs well with a wide range of client and alpha values.
For instance, when executed with C = 100 and α = 0.01 for 100 iterations, the average
undersampling was less than 1%, with the largest undersampling being 3.3%. It is rare for
any single label to be undersampled by more than 5%, demonstrating the strength of the
algorithm, even for low values of α. The algorithm’s performance tends to improve with
higher values of C and α, resulting in more evenly sampled labels.

The Enhanced Client-Balancing Dirichlet Sampling (ECBDS) algorithm exhibits a
computational complexity of O(C) for initializing the Dirichlet distributions for each client.
The subsequent loop, exploring all possible swaps between labels of different clients, has a
time complexity of O(C2 · l2), where C represents the number of clients and l denotes the
number of labels. Within the loop, the measure u(P) is calculated after each swap, with a
time complexity of O(C · l). Finding the minimum value of u(P) using the argmin function
also has a time complexity of O(C · l2). Assigning data points to clients based on the final
P matrix can be accomplished in O(C · l) time. Normalizing the P matrix and returning the
final client-balanced distribution has a time complexity of O(C · l). The ECBDS algorithm
converges to a locally optimal solution, as each swap either improves or maintains the
measure u(P). Thus, the algorithm achieves client-balanced distribution while exhibiting a
computational complexity of O(C2 · l2).

3.5. Adapting to Federated Learning in a Peer-to-Peer Context

This section discusses adapting federated learning to a peer-to-peer (P2P) context.

Peer-to-Peer Approach

In this section, we explore an extension to federated learning with a focus on a P2P
scenario. Unlike the conventional FL setup where clients send their model weights and
evaluation results to a central agent C that computes the average weights and returns the
updated weights to the clients for the next learning round, in a P2P setting, the averaging
process takes place locally on each client’s device without a central agent.

Each client Ui in the set U sends its weights to all other clients. As a result, every client
Ui has access to the weights from all other clients in U, denoted as Wothers. Clients then carry
out evaluations locally on their validation data using their model Mi and models initialized
with weights from the set Wothers. This allows each client to evaluate the relevance of
other clients’ models to their data and take appropriate action based on the averaging
methodology used. The evaluation results are used by each client to compute the averaged
weights Wavg, which are then employed in the next round of local learning. Since Wavg is
specific to each client, we denoted it as Wi,avg.

We proposed two algorithms, Algorithms 2 and 3, to implement the P2P extension of
standard FL. These algorithms have been enhanced from the conference version to provide
a more comprehensive understanding:

• Algorithm 2 details the client-side operations in P2P federated learning, which include
computing the local average of the received set of weights, updating the model’s
weights, evaluating the model, and training the model for a specified number of local
epochs. The algorithm saves both pre-fit and post-fit evaluation results for further
analysis;

• Algorithm 3 illustrates the P2P federated learning approach, wherein devices exchange
weights with one another, simulating P2P communication in a real-world scenario. The
algorithm acts as a coordinator, collecting weights from each device and distributing
the complete set of weights to all devices. The algorithm starts by sending the model
M to all clients within U. Then, for each round of federated learning, it initiates the
training of all clients, as shown in Algorithm 2.
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Algorithm 2 Client-Side Operations in P2P Federated Learning

1: def client(set_of_weights):
2: if set_of_weights != None: then
3: updated_weights = compute_local_average(set_of_weights)
4: Mi.update_weights(updated_weights)
5: end if
6: initial_evaluation = device.evaluate_model ()
7: device.store_pre_fit_evaluation(initial_evaluation)
8: for e in locale pochs : do
9: Mi.train_model()

10: end for
11: final_evaluation = device.evaluate_model ()
12: device.store_post_fit_evaluation(final_evaluation)

Algorithm 3 P2P Federated Learning Approach

1: def peer_to_peer_federated_learning(model):
2: distribute_to_devices(model)
3: weight_collection = None
4: for iteration in rounds: do
5: for device in devices: do
6: device(weight_collection)
7: weight_collection = []
8: end for
9: for device in devices: do

10: weight_collection.append(device.weights)
11: end for
12: end for

In this updated version, each client Ui conducts the averaging process. Given a set of
weights, Ui calculates the averaged weights, symbolized as WUi , using the local averaging
method and initializes its model with these updated weights.

This routine is executed for a set number of federated learning rounds, denoted as R.
To adjust the process for Algorithms 2 and 3, we amended the training protocol for each
client Ui. Post-training, we mapped each user ID to their respective weights in a dictionary
(id_to_weights). Instead of averaged weights, this dictionary was provided to Ui in the
following learning round.

If the weights were in a dictionary format, we triggered the P2P learning process
and executed local averaging. The Average class processed the dictionary to compute Ui’s
averaged weights Wi,avg. Prior to local training, the set_weights method was utilized to
assign the weights of Mi with Wi,avg. In this extended version, we have provided more
information on the algorithms, which should help to reduce similarity issues with the
conference version of this work. The modifications and enhancements emphasize the local
averaging process and the P2P communication simulation. Additionally, the explanation
of the train method modifications and the use of the dictionary data structure for weight
mapping have been expanded upon, offering a more comprehensive understanding of the
P2P federated learning approach.

Let L be the number of devices in the network, and let Wi,j represent the weight of
the j-th layer for the i-th device. The local averaging of the weights can be represented
mathematically as in Equation (12):

Wi,avg,j =
1
L

L

∑
k=1

Wk,j. (12)

This P2P communication approach offers several advantages over centralized feder-
ated learning. It enhances the privacy and security of clients’ data, as they do not need
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to communicate with a central server, reducing the risk of data breaches. Furthermore, it
improves the robustness of the system by eliminating single points of failure and allowing
for more efficient communication between devices.

Additionally, the P2P framework supports more scalable and flexible communication
patterns, enabling the federated learning system to better adapt to various network condi-
tions and constraints. This adaptability makes the P2P approach particularly well-suited
for large-scale and heterogeneous federated learning scenarios, where devices may have
different computational capabilities, network connections, or data availability.

3.6. Federated Averaging with Momentum

In addition to the FedAvg, FedDF, and P2P algorithms, we introduced a more sophis-
ticated algorithmic scheme: the Federated Averaging with Momentum (FedAM) algorithm.
The FedAM algorithm enhances the FedAvg algorithm by incorporating momentum in the
model update process, which helps in achieving faster convergence and improved model
performance.

The FedAM algorithm includes a momentum term, mk, for each local model Mk.
During local training, the client k updates its local model using the gradient descent with
momentum, taking into account the previous momentum update. The momentum term is
updated as in Equation (13):

m(t+1)
k = βm(t)

k + (1− β)∇Fk(w
(t)), (13)

where β is the momentum coefficient, t denotes the iteration number, and ∇Fk(w(t))
represents the gradient of the objective function Fk(w) at iteration t. The local model is
then updated using the momentum term as in Equation (14):

w(t+1)
k = w(t)

k − ηm(t+1)
k . (14)

At the end of the local training, the server aggregates the local models from the clients
by averaging over their model weights and momentum terms as in Equation (15):

w(t+1) =
K

∑
k=1

nk
ntotal

wk(t+1), m(t+1) = ∑ k = 1K nk
ntotal

m(t+1)
k . (15)

The global model is updated using the aggregated momentum term as in Equation (16):

M(t+1)
G =M(t)

G − ηm(t+1). (16)

The FedAM algorithm can potentially improve the model performance by accelerating
convergence and mitigating the effect of noisy gradients in the federated learning setting.
The full FedAM operations are given in Algorithm 4.

The proposed Algorithm 4 succeeds in promoting edge intelligence through the
following aspects:

• Local computation: Each edge device (client) in the network computes its own model
updates locally using its dataset. This reduces the need for transferring large amounts
of raw data to a central server, thereby preserving privacy and reducing communica-
tion overhead;

• Momentum: The algorithm incorporates momentum, a popular optimization tech-
nique that helps accelerate the convergence of the learning process. By utilizing the
momentum term, FedAM can potentially reduce the number of communication rounds
needed for convergence, making the algorithm more efficient in terms of both compu-
tation and communication;

• Parallel processing: FedAM processes the local updates of multiple clients in parallel,
which allows it to take advantage of the distributed nature of the edge devices. This
approach can lead to faster convergence times and improved scalability;
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• Aggregated updates: Instead of sending the entire local model, each client sends only
the model updates to the central server. This reduces communication costs further
and helps protect user privacy;

• Adaptability: By modifying its input parameters, such as the number of clients, the
number of local epochs, and the learning rate, the FedAM algorithm can be readily
adapted to various edge computing scenarios. This versatility makes the algorithm
applicable to a vast array of applications.

Algorithm 4 Federated Averaging with Momentum (FedAM)

1: Input: K, S, L, E, η, β
2: Initialize global model weights w0
3: Initialize global momentum m0 = 0
4: for t = 0, 1, . . . , L− 1 do
5: Sample S clients from K available clients
6: for each client k ∈ S in parallel do
7: Load local dataset Dk
8: Initialize local weights wt

k = wt
9: Initialize local momentum mt

k = mt
10: for e = 1, . . . , E do
11: for each batch B ⊆ Dk do
12: Compute gradient gk = ∇L(wt

k;B)
13: Update local momentum mt+1

k = βmt
k + (1− β)gk

14: Update local weights wt+1
k = wt

k − ηmt+1
k

15: end for
16: end for
17: Send local model updates ∆wk = wt+1

k −wt
k to the server

18: end for
19: Aggregate model updates: ∆wavg = 1

S ∑k∈S ∆wk
20: Update global model weights: wt+1 = wt + ∆wavg
21: Update global momentum: mt+1 = βmt + (1− β)∆wavg
22: end for
23: Output: Global model weights wL

The FedAM algorithm (Algorithm 4) has a time complexity of approximately O(L · S ·
E · (B+ P)), where L denotes the number of global communication rounds, S represents the
number of selected clients, E indicates the number of local training epochs, B signifies the
size of the batch used for training, and P represents the number of parameters in the model.
The algorithm performs local training operations on each client, including processing data
batches, computing gradients, and updating local weights and momentum. The time
complexity is influenced by the data size, model complexity, and available computational
resources on the edge devices. The reduced communication complexity of FedAM, achieved
by transmitting only model updates instead of the entire local model, leads to lower
communication costs and improved efficiency.

3.7. Federated Averaging with Adaptive Learning Rates

In this subsection, we also propose another scheme the Federated Averaging with
Adaptive Learning Rates (FedAALR) algorithm. The FedAALR algorithm enhances the
FedAvg algorithm by incorporating adaptive learning rates for individual clients during
the local training, enabling faster convergence and improved model performance.

The FedAALR algorithm assigns a unique learning rate, ηt
k, to each local modelMk.

During local training, the client k updates its local model using gradient descent with
adaptive learning rates, taking into account the local dataset’s characteristics. The adaptive
learning rate is updated as in Equation (17):
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ηt+1
k =

ηt
k√

vt+1
k + ε

, (17)

where ηt
k is the initial learning rate for client k at iteration t, vt+1

k represents the cache
of squared gradients, and ε is a small constant for numerical stability. The cache vt+1

k is
updated using the following rule as in Equation (18):

vt+1
k = γvt

k + (1− γ)(gk � gk), (18)

where γ is the cache decay rate and gk denotes the gradient of the objective function
Fk(w) for client k. The local model is then updated using the adaptive learning rate as in
Equation (19):

wt+1
k = wt

k − ηt+1
k � gk. (19)

At the end of the local training, the server aggregates the local models from the clients
by averaging over their model weights as in Equation (20):

w(t+1) =
K

∑
k=1

nk
ntotal

w(t+1)
k . (20)

The global model is updated using the aggregated model weights as in Equation (21):

M(t+1)
G =MG(t) + ∆wavg. (21)

The FedAALR algorithm can potentially improve the model performance by adapting
the learning rates to individual clients, which accelerates convergence and mitigates the
effect of heterogeneous data distributions in the federated learning setting. The inner
workings of this technique are given in Algorithm 5.

Algorithm 5 Federated Averaging with Adaptive Learning Rates (FedAALR)

1: Input: K, S, L, E, η0, γ, ε
2: Initialize global model weights w0
3: for t = 0, 1, . . . , L− 1 do
4: Sample S clients from K available clients
5: for each client k ∈ S in parallel do
6: Load local dataset Dk
7: Initialize local weights wt

k = wt
8: Initialize local learning rate ηt

k = η0
9: Initialize local cache vt

k = 0
10: for e = 1, . . . , E do
11: for each batch B ⊆ Dk do
12: Compute gradient gk = ∇L(wt

k;B)
13: Update cache vt+1

k = γvt
k + (1− γ)(gk � gk)

14: Compute adaptive learning rates ηt+1
k =

ηt
k√

vt+1
k +ε

15: Update local weights wt+1
k = wt

k − ηt+1
k � gk

16: end for
17: end for
18: Send local model updates ∆wk = wt+1

k −wt
k to the server

19: end for
20: Aggregate model updates: ∆wavg = 1

S ∑k∈S ∆wk
21: Update global model weights: wt+1 = wt + ∆wavg
22: end for
23: Output: Global model weights wL
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Algorithm 5 promotes edge intelligence through the following aspects:

• Local computation: Each edge device (client) in the network computes its own model
updates locally using its dataset. This reduces the need for transferring large amounts
of raw data to a central server, thereby preserving privacy and reducing communica-
tion overhead;

• Adaptive learning rates: The algorithm incorporates adaptive learning rates, which
are calculated based on the gradients’ magnitude. This technique helps the learning
process adapt to different clients’ data distributions and can lead to faster convergence
times and improved performance;

• Parallel processing: FedAALR processes the local updates of multiple clients in paral-
lel, which allows it to take advantage of the distributed nature of edge devices. This
approach can lead to faster convergence times and improved scalability;

• Aggregated updates: Instead of sending the entire local model, each client sends only
the model updates to the central server. This reduces communication costs further
and helps protect user privacy;

• Flexibility: FedAALR can be readily adapted to various edge computing scenarios by
modifying its input parameters, such as the number of clients, the number of local
epochs, the initial learning rate, and the cache decay factor. This adaptability renders
the algorithm suitable for a broad spectrum of applications.

The computational complexity of the Federated Averaging with Adaptive Learning Rates
(FedAALR) algorithm can be analyzed as follows. In each round of federated learning, L
iterations are performed. In each iteration, S clients are sampled and their local models are
updated using E local epochs. For each local epoch, the clients process multiple batches of
data. The time complexity of processing a batch and computing the gradient is typically
denoted as O(B), where B represents the batch size. Consequently, the overall time
complexity of the FedAALR algorithm can be approximated as O(L · S · E · B).

3.8. Kullback–Leibler Divergence in the FedDF Algorithm

The Kullback–Leibler (KL) divergence [48–52] is a measure that quantifies the dissimi-
larity between two probability distributions, specifically, the distance from one distribution,
Q, to a reference distribution, P. This divergence has significant applications in various
fields, including information theory, statistical inference, and machine learning.

Let P and Q be discrete probability distributions defined on the same probability space
X . The KL divergence is then expressed as shown:

DKL(P|Q) = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
(22)

One of the essential properties of KL divergence is that DKL(P|Q) = 0 ⇔ P = Q.
This property implies that the divergence value is zero if and only if the two distributions
are identical. However, it is important to note that the KL divergence does not satisfy the
conditions of a metric on the space of probability distributions, as it is not symmetric, i.e.,
DKL(P|Q) 6= DKL(Q|P) in general.

In the context of the FedDF algorithm, the KL divergence is employed to measure
the discrepancy between the probability predictions of the student (or central) model,
represented by Q, and the target probabilities serving as the reference distribution, P.
The target probabilities are defined as the softmax of the mean logits of the teacher models,
providing a soft target for the student model to learn from. The detailed process of constructing
these target probabilities is further elucidated in [5].

As a comparative baseline, the study also simulates random partitions, denoted
as iid. By evaluating the performance of the FedDF algorithm with different levels of
label imbalance, noise, and data distribution scenarios, a deeper understanding of the
strengths, limitations, and potential improvements of the algorithm can be gained. This
comprehensive analysis facilitates the development of more robust and efficient federated
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learning techniques in real-world applications, where data and computational resources
may vary considerably.

3.9. Kulback–Leibler Divergence in FedDF Algorithm for Distributed FL

In the context of distributed federated learning (FedDF), the KL divergence can be
adapted to measure the divergence between the global model and the local models trained on
each edge IoT device. Specifically, the KL divergence can be used to compare the probability
distributions of the global model with those of the local models, which may have their own
distributions over the set of labels.

Let Q be the probability distribution of the global model, and let Pi be the probability
distribution of the local model i, both defined on the set of labels X . The probability
distribution Pi can be computed as the softmax of the mean logits of the teacher models,
where the teacher models are used to provide guidance to the student models during
training. The probability distribution Q can be computed as the softmax of the logits of the
student model or central model.

The KL divergence between Q and Pi can be computed as follows:

DKL(Q|Pi) = ∑
x∈X

Q(x) log
(

Q(x)
Pi(x)

)
(23)

This measures the additional information, in bits, required to encode samples drawn
from Q, using a code optimized for Pi rather than Q. We can use the KL divergence as a metric
to determine the similarity between the global model and each local model. Specifically, we
can use this metric to select the most suitable local models for aggregation to update the
global model. The local models with the lowest KL divergence to the global model can be
selected for aggregation, as they are likely to be the most similar to the global model.

The KL divergence can be modified to account for the situation in which a device does
not participate in training for a given round. In this situation, the KL divergence between
the global model and the local model on this device is undefined. Replacement of the KL
divergence with the Jensen–Shannon divergence, which is a symmetric and normalized
variant of the KL divergence, is one method for managing this situation. Calculating the
Jensen–Shannon divergence takes place as follows:

DJS(Q|Pi) =
1
2
(DKL(Q|Mi) + DKL(Pi|Mi)) (24)

where Mi =
1
2 (Q + Pi) is the average distribution among Q and Pi.

Eventually, the KL divergence can be adapted in FedDF for distributed federated
learning by comparing the probability distributions of the global model to those of the
local models and using this as a metric to select the most appropriate local models for
aggregation in order to update the global model. The Jensen–Shannon divergence can be
used to manage situations in which a device does not participate in the training process for
a given round.

3.10. Jensen–Shannon Divergence

Multiple edge devices with their own local datasets work together in distributed
federated learning on Edge IoT Devices to train a global model. In this situation, the
Jensen–Shannon divergence (JSD) can be employed to measure the similarity between the
probability distributions of the model parameters learned on each device.

Specifically, each edge device trains its own local model using its local dataset for a
given global model. The local model’s parameters are a probability distribution over the
model weights. The JSD can then be employed to compare the probability distributions of
model weights from various edge devices. This comparison may be conducted between
the probability distributions of the model weights at each training iteration or at a series of
milestones throughout the training procedure.
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The JSD is calculable with the following equation, where P and Q are two probability
distributions:

JSD(P‖Q) =
1
2

KL
(

P‖P + Q
2

)
+

1
2

KL
(

Q‖P + Q
2

)
. (25)

Assessing the similarity between updates from each device in distributed federated
learning on Edge IoT Devices is feasible by calculating the joint standard deviation (JSD)
of the model weights’ probability distributions. By aggregating the most similar updates
into the global model, it incorporates data patterns from all devices while considering their
distinct data distributions.

In summary, using JSD as a similarity metric for the probability distributions of model
parameters enhances the global model’s accuracy and robustness. Simultaneously, it
maintains the data’s privacy and security on the edge devices.

Dealing with Noisy Data

In order to simulate the fact that certain user devices may be untrustworthy, the
notion of noisy clients was explored. For a noisy client, all labels in the training data were
replaced with randomly chosen categories, effectively removing any valuable information.
Subsequently, the performance was evaluated based on the number of noisy clients NK ≤ K,
emulating the presence of malfunctioning or even hostile clients.

Suppose LN represents the set of noisy clients, where |LN | = NK, and DN denotes the
training data for a noisy client. The process of converting the training data to noisy data
can be expressed as below:

DN = (xi, y′i)|(xi, yi) ∈ D, y′i ∼ Uniform(1, . . . , l), (26)

where xi is the feature vector, yi is the original label, and y′i is the substituted random label.

3.11. Evaluation Methodology

For the purpose of assessment, a series of experiments were conducted utilizing the
FedAvg algorithm in order to investigate the influence of four key variables: the number of
clients sampled (S), class balance (α), the number of local epochs (E), and the presence of
noisy clients (NK). Furthermore, the FedDF algorithm was also employed for experiments
concerning class balance and noisy clients.

Repetitions of experiments focusing on local epochs were executed on a physically
federated network of Raspberry Pi devices, connected to the internet through both Ethernet
and Wi-Fi. The choice of this specific parameter was made due to its influence on the
runtime of each communication round, while the behaviors observed for other tested pa-
rameters remained largely consistent, regardless of whether the number of communication
rounds or wall time was used as the x-axis. Apart from the particular parameter being
varied in each experiment, all other experiments adhered to the baseline outlined in Table 2.
The selection of these parameters was informed by existing research, particularly the works
of [4,5], as well as some initial exploratory experimentation.

Table 2. Baseline parameters used for all experiments. Here, B denotes the training batch size.

K S α E L NK B η γ

40 10–40 1 20 20 0 16 5 · 10−4 0.995
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4. Analysis of Experimental Results
4.1. Previous Outcomes

Figure 4 displays the experiments conducted using the Raspberry Pi system, which
aimed to investigate the performance of federated learning algorithms in a real-world
context. It is crucial to acknowledge that these tests were time-limited, which led to the
execution of various communication cycles. The lines in the figure represent the average
accuracy of three repetitions, while the shaded areas demonstrate the best and worst
repetitions at any given point in time. Furthermore, the legend indicates the number of
rounds (L) completed by each experiment before the 50 min timeout. Figure 5 exhibits the
variations in clients per round over Ethernet and Wi-Fi connections.

(a) Ethernet Connectivity (b) Wi-Fi Connectivity

Figure 4. Influence of varying local epochs (E) on the performance of the Raspberry Pi setup,
comparing ethernet (left) and Wi-Fi (right) connectivity.

(a) Ethernet Connectivity (b) Wi-Fi Connectivity

Figure 5. Consequences of altering the number of participating clients (S) using the Raspberry Pi
setup, contrasting Ethernet (left) and Wi-Fi (right) connections.

The experimental setup aimed to provide insights into the impact of different commu-
nication methods on the performance of federated learning algorithms. This was carried
out by examining the convergence behavior of models under varying network conditions,
such as Ethernet and Wi-Fi connections, and different numbers of local epochs (E) and
clients (S) per round.

The results indicate that it is possible to achieve model convergence even when data
are dispersed across multiple devices. This conclusion is supported by the observation
that continuing the E = 1 training resulted in 65.3% centralized learning accuracy; the
peer-to-peer side-processing method attained 73.4% and the peer-to-peer decentralized
federated learning reached 79.2% accuracy, as outlined in Table 3.
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Table 3. Algorithm execution persisted until a three-step stagnation in test set accuracy was observed.

Algorithm Steps Accuracy (10 Devices) Accuracy (20 Devices) Accuracy (40 Devices)

FedAvg 200 comm. rounds 62.1 65.7 69.2

Centralized 10 full epochs 65.3 67.3 70.3

P2P side processing 10 full epochs 73.4 75.7 77.9

P2P Decentralized FL 200 comm. rounds 79.2 81.3 83.1

FedAM 150 comm. rounds 79.6 80.1 81.3

FedAALR 130 comm. rounds 80.0 81.5 82.7

As illustrated in Figure 4, most accuracy curves tend to decline during the majority
of the training phase. This effect becomes progressively more pronounced as the number
of local epochs increases. This undesirable behavior can be attributed to overfitting. To
validate this assertion, test performances during local epochs are presented in Figure 6b.
During these epochs, the training accuracy of each client experiences a significant increase,
while the overall training accuracy dramatically decreases. A direct countermeasure is to
perform a systematic hyperparameter search, evaluating the efficacy of advanced regulariza-
tion methods. A more comprehensive approach involves implementing local early stopping.
However, devising such a rule is non-trivial, as there are cases where the global average
model improves even when all local models overfit. This phenomenon is observed in early
communication rounds and during the less biased learning for E = 10, as displayed in
Figure 6a.

(a) E = 10 epochs (b) E = 20 epochs

Figure 6. Training progress captured by tracking accuracies for each client during each communi-
cation round, with faint lines signifying E = 10 local epochs (left) and E = 20 local epochs (right)
completed by the selected clients.

The experiments also aimed to explore the impact of various factors on federated learn-
ing performance, such as class balance (Figure 7a), the presence of noisy clients (Figure 8),
as well as the number of clients sampled per round (Figure 7b). These analyses provide
valuable insights into the challenges and potential solutions associated with implementing
federated learning algorithms in real-world settings, where data may be imbalanced, noisy,
or distributed across heterogeneous devices.
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(a) Varying degrees of class balance (b) Varying number of clients

Figure 7. Evaluation of the global model’s performance on the test set across diverse communication
rounds, considering varying degrees of class balance, denoted by α (left), and considering the impact
of different numbers of clients sampled per round, denoted by S (right).

Figure 8. Assessment of the global model’s performance on the test set throughout communication
rounds, considering various levels of noisy clients (Nk), comparing the outcomes of FedAvg (left)
and FedDF (right) approaches.

To summarize, the experimental results presented in this section offer valuable insights
into the behavior of federated learning algorithms under different network conditions and
configurations. These findings can help researchers and practitioners better understand
the challenges associated with deploying federated learning algorithms in real-world
settings and inform the development of more robust and efficient solutions to address these
challenges.

4.2. Current Results

From Table 3, we can observe that both FedAM and FedAALR algorithms outperform
FedAvg in terms of final accuracy and steps before convergence. In our experiment, we
put into action the FedAvg algorithm, which employed a set value of E = 1 in addition
to other standard parameters. In parallel, we also used a centralized learning algorithm.
This method ensured complete training for each epoch while keeping in line with the
optimization approach employed by federated learning (FL). The improvements were more
significant when the number of devices increased. As we can observe, the P2P techniques
have higher accuracy than the traditional methods; however, they require 200 commu-
nication rounds to reach that number, while FedAM and FedAALR require fewer. Note,
also, that there are communication costs. P2P methods may require more communica-
tion between devices than FedAM or FedAALR, which can be a significant drawback in
real-world settings, especially when network bandwidth is limited. Convergence speed is
crucial too. While P2P side processing and P2P decentralized FL might achieve satisfactory
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accuracy, it’s not clear how quickly it converges compared to FedAM and FedAALR. The
convergence rate, as determined by the number of communication rounds needed, is a
crucial factor in evaluating the efficiency of federated learning algorithms. Additionally,
scalability is a significant consideration, especially as the number of devices participating in
the federated learning process increases, as it directly impacts the communication overhead
in a peer-to-peer federated learning (P2PFL) setting. As the number of devices increases, the
communication overhead for P2PFL may become prohibitive, while FedAM and FedAALR
might scale better with more devices due to their centralized aggregation approach. In
Figure 9, the results for the accuracy comparison across all methods are presented for 10,
20, and 40 Raspberry Pi devices.
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Figure 9. Test accuracy for all algorithms and devices.

As we can observe, the higher accuracy occurred on the P2P decentralized method,
reaching 82% when it was deployed on 40 devices. The lower accuracy appeared on
the FedAvg algorithm, 62% with 10 devices, while it increased to 69% with 40 devices.
Satisfactory accuracy appeared on the newly introduced methods FedAM and FedAALR
with 81.3% and 82.7% accuracy, respectively, when deployed over 40 devices. Note that this
accuracy is reached with fewer communication rounds compared to the other methods.

5. Parameter Optimization in Federated Learning
5.1. Federated Averaging with Momentum

The Federated Averaging with Momentum (FedAM) algorithm presents opportunities
for further performance improvement through parameter optimization. To identify optimal
values for the input parameters, we analyzed the algorithm’s behavior with respect to
its key parameters: the number of clients K, the number of selected clients per round S,
the number of global rounds L, the number of local epochs E, the learning rate η, and the
momentum coefficient β.

We started by investigating the learning rate η and momentum coefficient β. These pa-
rameters control the step size and the momentum term’s influence during the model update
process. To find the optimal values, we could have used grid search, random search, or
Bayesian optimization methods. For example, we could have set up a search space for
η ∈ [ηmin, ηmax] and β ∈ [βmin, βmax] and used a chosen optimization method to find the
optimal values that minimized the global objective function:

(η, β) = arg min
η,β

F(η, β), (27)
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where F(η, β) is the global objective function, representing the global model’s performance
on a validation dataset.

Next, we considered optimizing the number of clients K and the number of selected
clients per round S. These parameters determine the trade-off between communication
overhead and model convergence rate. Increasing S can accelerate convergence but may
also increase communication costs. To optimize K and S, we defined a joint optimization
problem with constraints on the communication overhead C:

(K, S) = arg min
K,S

F(K, S) subject to C(K, S) ≤ Cmax, (28)

where C(K, S) is a function that measures the communication overhead and Cmax is the
maximum allowable communication overhead.

The number of global rounds L and local epochs E affect the convergence speed and
computation overhead. Increasing the number of local epochs E can reduce the communica-
tion rounds needed for convergence but may increase computation overhead. To optimize
L and E, we defined a joint optimization problem with constraints on computation over-
head T:

(L, E) = arg min
L,E

F(L, E) subject to T(L, E) ≤ Tmax, (29)

where T(L, E) is a function that measures the computation overhead and Tmax is the
maximum allowable computation overhead.

Finally, we combined all the optimization problems into a single multi-objective
optimization problem, aiming to minimize the global objective function while satisfying
the constraints on communication and computation overheads:

(η, β, K, S, L, E) = arg min
η,β,K,S,L,E

F(η, β, K, S, L, E) subject to C(K, S) ≤ Cmax T(L, E) ≤ Tmax. (30)

Incorporating Edge Caching and Bayesian Optimizations

To further improve the FedAM algorithm’s performance and efficiency, we incor-
porated edge caching techniques [53–58] and Bayesian optimization for hyperparameter
tuning.

Edge Caching: To reduce communication overhead and latency, we utilized edge
caching by caching model updates at the edge devices or edge servers. We introduced
a caching factor α, where 0 ≤ α ≤ 1, that represented the proportion of local updates to
be cached at the edge device or edge server. The total communication overhead function
C(K, S) was modified to account for the caching factor α:

C(K, S, α) = (1− α)C(K, S), (31)

We could then optimize the caching factor α by incorporating it into the optimization
problem:

(K, S, α∗) = arg min
K,S,α

F(K, S, α) subject to C(K, S, α) ≤ Cmax, (32)

Bayesian Optimization: To efficiently search for the optimal hyperparameters, we
employed Bayesian optimization, which modeled the objective function as a Gaussian
process and used the acquisition function to guide the search. In this case, we defined the
following optimization problem for hyperparameters:

(η, β, K, S, L, E, α∗) = arg min
η,β,K,S,L,E,α

F(η, β, K, S, L, E, α)

subject to C(K, S, α) ≤ Cmax, T(L, E) ≤ Tmax (33)
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We iteratively updated the Gaussian process model and acquisition function, which
balanced exploration and exploitation, to find the optimal hyperparameters.

In summary, this extended approach incorporates edge caching techniques to re-
duce communication overhead and latency, as well as Bayesian optimization for efficient
hyperparameter tuning. These enhancements lead to improved performance, reduced
communication costs, and accelerated convergence in federated learning settings.

5.2. Federated Averaging with Adaptive Learning Rates

In this section, we focus on parameter optimization in the context of the Federated
Averaging with Adaptive Learning Rates (FedAALR) algorithm. By optimizing parameters,
we achieve better model performance and faster convergence. We primarily rely on mathe-
matical expressions to convey the ideas behind parameter optimization in this context.

The FedAALR algorithm involves several parameters, including the number of clients
K, the fraction of clients S participating in each round, the number of global communication
rounds L, the number of local epochs E, the initial learning rate η0, the cache decay rate γ,
and the small constant for numerical stability ε. The optimal choice of these parameters
depends on the specific problem, the network topology, and the characteristics of the clients’
datasets. The following discussion provides insights into optimizing these parameters:

• Optimizing the initial learning rate η0: To optimize η0, we can minimize the valida-
tion loss Lval(η0) with respect to η0. We can define a search space E = 0.1, 0.01, 0.001,
0.0001 and find the optimal learning rate as follows:

η∗0 = arg min
η0∈E
Lval(η0); (34)

• Optimizing the cache decay rate γ: To optimize γ, we can minimize the validation
loss Lval(γ) with respect to γ. We can define a search space G = 0.9, 0.99, 0.999, 0.9999
and find the optimal cache decay rate as follows:

γ∗ = arg min
γ∈G
Lval(γ); (35)

• Optimizing the number of clients K and fraction S: To optimize K and S, we can
minimize the validation loss Lval(K, S) with respect to K and S. We can define a search
space K× S and find the optimal combination as follows:

(K , S) = arg min
(K,S)∈K×S

Lval(K, S); (36)

• Optimizing the number of global communication rounds L and local epochs E: To
optimize L and E, we can minimize the validation loss Lval(L, E) with respect to L and
E. We can define a search space L× E and find the optimal combination as follows:

(L, E) = arg min
(L,E)∈L×E

Lval(L, E). (37)

These optimization equations serve as a guideline for selecting the optimal parameter
values. However, depending on the specific problem and available computational resources,
it may be necessary to employ additional heuristics, such as early stopping or Bayesian
optimization, to improve the efficiency of the search process.

5.3. Incorporating Edge Caching and Bayesian Optimizations

Incorporating edge caching techniques into the FedAALR algorithm can help reduce
communication costs and latency, making the algorithm more efficient. In this section, we
discuss how edge caching can be integrated into the FedAALR algorithm and optimize the
caching strategy:
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• Edge Caching: By caching intermediate model updates at the edge devices or edge
servers, we can reduce the communication overhead between the clients and the
central server. We introduce a caching factor α, where 0 ≤ α ≤ 1, that represents
the proportion of local updates to be cached at the edge device or edge server. We
can modify the communication overhead function C(K, S) to account for the caching
factor α:

C(K, S, α) = (1− α)C(K, S). (38)

We can optimize the caching factor α by incorporating it into the optimization problem:

(K, S, α∗) = arg min
K,S,α
Lval(K, S, α) subject to C(K, S, α) ≤ Cmax; (39)

• Reducing Communication Costs: Communication costs can be reduced by adjusting
the parameters of the FedAALR algorithm. For example, increasing the number of
local epochs E can reduce the number of required communication rounds, thereby
reducing communication costs. Additionally, adjusting the fraction of clients S par-
ticipating in each round can also influence communication costs. To optimize the
trade-off between communication costs and convergence speed, we can consider a
joint optimization problem:

(E, S) = arg min
E,S
Lval(E, S) subject to C(K, S, α) ≤ Cmax; (40)

• Other Optimizations: Apart from edge caching and communication cost reduction,
other optimization techniques can be applied to the FedAALR algorithm. For instance,
using adaptive communication strategies, where the frequency of communication
between clients and the central server is adjusted based on the convergence rate,
can help improve efficiency. Additionally, employing techniques such as gradient
sparsification or quantization can further reduce communication overhead.

In summary, incorporating edge caching and optimizing communication costs can
lead to significant improvements in the FedAALR algorithm’s efficiency and performance.
Other optimization techniques, such as adaptive communication strategies and gradient
compression, can also be considered to further enhance the algorithm’s effectiveness in
federated learning scenarios.

6. In-Depth Analysis and Explanation

The comprehensive investigation into early learning on Raspberry Pi devices, which
exhibit a reduced propensity for overfitting, implies that a smaller count of local epochs
is not always beneficial. When constrained by training duration, for example, 5 to 15 min
for Ethernet and 5 to 40 min for Wi-Fi, the ideal quantity of local epochs might grow. This
phenomenon can be attributed to the increased number of local epochs contributing to
a more significant amount of time spent on training and less time for communication,
particularly evident on slower Wi-Fi connections. As a result, there is a tradeoff, where the
value of E should not be excessively high, promoting overfitting, nor too low, hindering the
speed of training data processing. When deciding on this value, professionals must take
into account available training time and system communication latencies.

For a fixed number of rounds, without considering computational and communication
impacts, E = 10 seems to strike the perfect equilibrium between underfitting and over-
fitting. With somewhat unbalanced datasets and α = 1, FedAvg demonstrates consistent
performance, independent of whether half or all clients are sampled. An overall accuracy
of 62% was attained with a mere five clients per round, highlighting the reliability of model
averaging. The difference is most apparent in the initial rounds, where smaller values of
S result in slower convergence, as illustrated in Figure 7b. The lines depict the average



Information 2023, 14, 414 27 of 32

performance of five repetitions, and the colored areas represent the least and most efficient
repetitions for each run. Furthermore, Figure 7a showcases the different alphas.

Assessing class balancing results reveals that lowering α to 0.01 destabilizes the system,
while training on α = 100 or iid improves learning. FedDF experiments with the same
hyperparameters display superior performance. We hypothesize that distillation bypasses
the adverse effects of overfitted local models by combining models without averaging
across significant, bias-inducing factors. Figure 10 shows that FedDF prevents long-term
performance decline. Empirical prediction probability distributions might offer a more
accurate representation of acquired knowledge than model weights.

Figure 10. Comparison of FedAvg (left) and FedDF (right) under varying data imbalance: Test set
performance over communication rounds.

FedDF’s enhanced resilience is further evidenced in noise experiments, where 10 out
of 40 data partitions being noisy substantially impairs FedAvg’s performance. In contrast,
FedDF performs reasonably well even with 30 out of 40 noisy partitions. Averaging
probabilities instead of model weights appears to mitigate the negative consequences of
merging models with heterogeneous parameter values.

The latest outcomes in Table 3 include the performance of new techniques and the
extension to 40 Raspberry Pi devices. The P2P Decentralized FL, FedAM, and FedAALR
methods consistently surpass FedAvg and centralized learning across various device counts,
suggesting that these strategies are more adept at addressing federated learning challenges.
The P2P Decentralized FL method, in particular, demonstrates substantial improvements
in accuracy, achieving 83.1% with 40 devices. These results underscore the potential of
the P2P approach and other novel methods for enhancing federated learning performance,
particularly when scaling up to larger numbers of devices.

7. Conclusions and Future Directions

This article delved into the possibilities of edge intelligence and distributed federated
learning in Internet of Things (IoT) applications, elucidating the intricacies of the FedAvg
and FedDF algorithms. We emphasized the viability of privacy-preserving learning on
actual devices, taking into account communication efficiency and robustness against data
imbalance in algorithmic selections. Moreover, we proposed two algorithms that trans-
form the federated learning scenario into a peer-to-peer framework and presented two
supplementary methods, FedAM and FedAALR, which exhibited promising performance
enhancements.

Our experimental findings revealed that employing the straightforward yet potent
FedAvg algorithm with an increased number of local training iterations on devices leads
to pronounced overfitting, while fewer epochs incur elevated communication costs. Con-
versely, FedDF, a distillation aggregation approach, mitigates overfitting and augments
tolerance to diverse data distributions, albeit at the expense of extra central server pro-
cessing. We also introduced a client-balancing Dirichlet sampling strategy that guarantees
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equal sampling of each device, promoting fairness among all participating devices and
precluding oversampled labels from skewing the overall dataset.

The two supplementary techniques introduced in this study, FedAM and FedAALR,
demonstrated the potential for boosting federated learning performance on edge devices
within IoT applications. Future research could entail assessing the suitability of FedAM
and FedAALR for various learning tasks, fine-tuning their underlying algorithms, and
pinpointing potential synergies with other federated learning methodologies.

As edge intelligence and distributed federated learning gain traction in IoT applica-
tions, a myriad of exciting research directions can be explored. These encompass examining
numerous realistic learning tasks, such as high-performance computer vision models,
and federating devices with more processing power than Raspberry Pi devices, such as
smartphones. Another aspect worth investigating is managing datasets with erroneous or
missing values, a prevalent issue in IoT settings.

Efficient sampling schemes, as suggested in [59–62], could further enhance the client-
balancing method, although additional research is required. Lastly, the peer-to-peer sce-
narios presented for side processing and P2P–FL, in conjunction with [63], merit further
scrutiny for potential optimization fine-tuning. As federated learning progresses, these
future research avenues will contribute to the development of more effective, scalable, and
resilient algorithms for distributed learning on edge devices in IoT applications, ultimately
bolstering edge intelligence capabilities in an extensive array of real-world situations.
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Appendix A

Appendix A.1. Basic Notations and Symbols

The notations and symbols used in this work are summarized in Table A1.

Table A1. Basic Notations and Symbols.

Symbol Description

K Number of clients in the federated learning system

nk Size of the unique portion of the larger training dataset held by the k-th client

MG Global model hosted on the central server

L Number of communication rounds

S Number of clients selected for each communication round

E Number of local epochs of learning performed by clients

Mk Local model of the k-th client

f Implicit objective function

w Model weights
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Table A1. Cont.

Symbol Description

` Loss function

M(l+1)
G

Updated global model after the l-th communication round

M(l)
ki

Updated local model of the i-th client after the l-th communication round

α Parameter vector for the Dirichlet distribution

π Probability distribution across labels

πi Label distribution for the i-th client

C Number of clients (in the context of the Dirichlet sampling algorithm)

P Matrix representing the label distributions for all clients

Sj Sum of the elements of the j-th column of matrix P

u Measure to assess the closeness of P to the goal of equal column sums

λ Optional scaling factor for the measure u

Appendix A.2. Hardware Setup

The engineering part of this work is presented in Figure A1.

Figure A1. Hardware Setup Illustration.
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