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Abstract: The prompt and accurate diagnosis of breast lesions, including the distinction between
cancer, non-cancer, and suspicious cancer, plays a crucial role in the prognosis of breast cancer. In
this paper, we introduce a novel method based on feature extraction and reduction for the detection
of breast cancer in mammography images. First, we extract features from multiple pre-trained
convolutional neural network (CNN) models, and then concatenate them. The most informative
features are selected based on their mutual information with the target variable. Subsequently, the
selected features can be classified using a machine learning algorithm. We evaluate our approach
using four different machine learning algorithms: neural network (NN), k-nearest neighbor (kNN),
random forest (RF), and support vector machine (SVM). Our results demonstrate that the NN-based
classifier achieves an impressive accuracy of 92% on the RSNA dataset. This dataset is newly
introduced and includes two views as well as additional features like age, which contributed to the
improved performance. We compare our proposed algorithm with state-of-the-art methods and
demonstrate its superiority, particularly in terms of accuracy and sensitivity. For the MIAS dataset,
we achieve an accuracy as high as 94.5%, and for the DDSM dataset, an accuracy of 96% is attained.
These results highlight the effectiveness of our method in accurately diagnosing breast lesions and
surpassing existing approaches.

Keywords: breast cancer; convolutional neural network (CNN); computer aided diagnosis (CAD);
feature selection; feature classification; mammography images

1. Introduction

Breast cancer (BC) is a widespread form of cancer with millions of new diagnoses and
deaths each year [1]. In 2020 alone, there were 2.3 million new breast cancer diagnoses
and 685,000 deaths [2]. Although mortality rates have declined due to the implementation
of regular mammography screening, early detection, and treatment remain important
for reducing cancer fatalities [3]. Currently, early detection of BC from radiology images
requires the expertise of highly trained radiologists. A looming shortage of radiologists
in several countries will likely worsen this problem [4]. Mammography screening also
leads to a high incidence of false positive results. This can result in unnecessary anxiety,
inconvenient follow-up care, extra imaging tests, and sometimes a need for tissue sampling
(often a needle biopsy) [5,6]. Additionally, machine learning techniques have the potential
to improve the process of evaluating multiple-view radiology images based on graph-based
clustering techniques [7–10]. Deep learning as a subset of machine learning in recent years
has revolutionized the interpretation of diagnostic imaging studies [11]. A convolutional
neural network (CNN) is one of the most significant networks in the deep learning field [12].
Compared to traditional screening techniques, computer-aided diagnosis (CAD) systems
utilizing convolutional neural networks (CNN) offer faster, more reliable, and more robust
screening. CNNs have emerged as a prominent method for pattern recognition in image
analysis [13]. CNN has been extensively used for breast cancer detection in different types
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of breast cancer images such as ultrasound (US), magnetic resonance imaging (MRI), and
X-ray as follows:

US Images: Eroğlu Y [14] proposed a hybrid-based CNN system based on ultrasonog-
raphy images for diagnosing BC by extracting features from Alexnet, MobilenetV2, and
Resnet50 then, after concatenating them, mRMR features selection method was used to
select the best features. This system used machine learning algorithms to support vector
machine (SVM) and k-nearest neighbors (k-NN) as a classifier. As a result, an accuracy
rate of 95.6% was achieved. In [15], an image segmentation method was applied to split
the breast US images into sub-regions, followed by an object recognition method that
employs feature extraction, selection, and classification techniques to automatically detect
the sub-regions related to BC. In [16], a method was suggested to segment BC images
via semantic classification and patch merging. The approach involves cropping a region
of interest, enhancing it using filters and clustering techniques, extracting features, and
performing classification with a neural network and a k-NN classifier.

MRI Images: Zhou J et al. [17] proposed a 3D deep CNN for the detection and
localization of BC in dynamic contrast-enhanced MRI data using a weakly supervised
approach and achieved 83.7% accuracy. In [18], a multi-layer CNN was designed to
classify MRI images as malignant or benign tumors using pixel information and online
data augmentation. The network achieved accuracy as high as 98.33%.

X-ray Images: Authors in [19] used pre-trained CNN models, InceptionV3 and
ResNet50, on the DDSM dataset to differentiate benign and malignant mammogram tumors.
Transfer learning, pre-processing, and data augmentation techniques were used due to
limited data. ResNet50 achieved 85.7%, and InceptionV3 achieved 79.6% accuracy. In [20],
authors used a CNN model that combines features from multiple views of mediolateral
oblique (MLO) and craniocaudal (CC). Multi-scale features and a penalty term were used
and achieved 82.02% accuracy on the DDSM dataset. Ridhi Hela et al. in [21] proposed a
methodology for BC detection using the CBIS-DDSM image dataset. Image pre-processing
was done, followed by feature extraction using multiple CNN models (AlexNet, VGG16,
ResNet, GoogLeNet, and InceptionResNet). The extracted features were evaluated using a
neural network classifier, achieving an accuracy of 88%.

In the field of BC detection, minimizing false negatives is crucial to ensure accurate
diagnosis and prevent the potential harm caused by missed positive cases. In this paper, we
propose a novel CNN-based approach to enhance the accuracy of BC detection, explicitly
focusing on X-ray image datasets. By addressing the limitations of previous works, our
method aims to significantly reduce false negatives and improve overall detection accuracy.
The development of an advanced and reliable system for BC detection holds great promise
in improving patient outcomes and advancing the field of medical imaging diagnostics.

This paper provides two significant contributions to the existing literature. Firstly,
it extracts a comprehensive set of features from diverse pre-trained CNNs for different
perspectives. Additionally, it incorporates additional features like age to create a feature
vector. Secondly, it employs a methodology to reduce feature vector dimensionality by
eliminating weak features based on their mutual information with the ground truth.

The proposed system uses five base models, namely Alexnet, Resnet50, MobileNetS-
mall, ConvNeXtSmall, and EfficienNet, whose features are concatenated and extracted for
optimal classification with a neural network (NN) model. This approach demonstrated its
capability to enhance the accuracy of BC classification.

The rest of the paper is structured as follows: Section 2 outlines the materials and
models employed in the study, while Section 3 presents the proposed model. Section 4
discusses the results obtained for various datasets. The paper is concluded in Section 5.

2. Materials and Methods
2.1. Datasets

A. The main dataset for this project is the radiological society of north america (RSNA)
dataset from a recent Kaggle competition [22]. The dataset contains 54,713 images in
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dicom format from roughly 11,000 patients. For each patient, there are at least four
images from different laterality and views. For each subject, two different views CC
and MLO, and images from left and right laterality were provided. The images are of
various sizes and formats, including jpeg and jpeg2000, and different types, such as
monochrome-1 and monochrome-2. The dataset provides additional features some
of which can be used for classification purposes: age, implant, BIRADS, and density.
We base our work on this dataset, but since this dataset is new, it has not been used
in any published research yet. Hence, for comparison purposes, we use two other
well-known datasets MIAS and DDSM. This dataset is imbalanced as only 2 percent
of the images are from cancer patients, which makes any classification method
biased. To compensate for this, we use all positive cases and only 2320 images from
negative cases. Figure 1 depicts two sample images from this dataset for cancer and
normal cases.
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Figure 1. These figures show two sample images from the RSNA dataset for (a) a cancerous, and
(b) a normal subject.

B. The mammographic image analysis society (MIAS) [23] dataset is a well-known and
widely used dataset for the development and evaluation of CAD systems for BC
detection. It consists of 322 mammographic images, with each image accompanied
by a corresponding ground truth classification of benign or malignant tumors. The
dataset is particularly valuable for researchers interested in developing machine
learning algorithms for BC detection, as it includes examples of both normal and
abnormal mammograms, as well as a range of breast densities and lesion types.
Figure 2 depicts two sample images from this dataset for cancer and normal cases.

C. The digital database for screening mammography (DDSM) [24] includes 55,890 im-
ages, of which 14% are positive, and the remaining 86% are negative. Images were
tiled into 598 × 598 tiles, which were then resized to 299 × 299. A subset of this
dataset which is for positive cases and is called CBIS-DDSM, has been annotated and
the region of interest has been extracted by experts. In this research, we do not use
the CBIS-DDSM and use the original DDSM dataset as we are classifying the images
from normal subjects and cancer patients. Figure 3 depicts two sample images from
this dataset for cancer and normal cases. Table 1 summarizes these three datasets.



Information 2023, 14, 410 4 of 14Information 2023, 14, x FOR PEER REVIEW 4 of 14 
 

 

  
(a) (b) 

Figure 2. These figures show two sample images from the MIAS dataset for (a) cancerous, and (b) 

normal subjects. 

  
(a) (b) 

Figure 3. These figures show two sample images from the DDSM dataset for (a) cancerous and (b) 

normal subjects. 

Table 1. This table shows the description of three datasets. 

Dataset Number of Images Image Types Image Size 

RSNA 54,713 Variable Variable 

MIAS 322 PGM 1024 × 1024 

DDSM 55,890 JPEG 598 × 598 

2.2. Models  

A. AlexNet [25] is a deep CNN architecture that was introduced in 2012 and achieved a 

breakthrough in computer vision tasks such as image classification. It consists of 

eight layers, including five convolutional layers and three fully connected layers. The 

first convolutional layer uses a large receptive field to capture low-level features such 

Figure 2. These figures show two sample images from the MIAS dataset for (a) cancerous, and
(b) normal subjects.

Information 2023, 14, x FOR PEER REVIEW 4 of 14 
 

 

  
(a) (b) 

Figure 2. These figures show two sample images from the MIAS dataset for (a) cancerous, and (b) 

normal subjects. 

  
(a) (b) 

Figure 3. These figures show two sample images from the DDSM dataset for (a) cancerous and (b) 

normal subjects. 

Table 1. This table shows the description of three datasets. 

Dataset Number of Images Image Types Image Size 

RSNA 54,713 Variable Variable 

MIAS 322 PGM 1024 × 1024 

DDSM 55,890 JPEG 598 × 598 

2.2. Models  

A. AlexNet [25] is a deep CNN architecture that was introduced in 2012 and achieved a 

breakthrough in computer vision tasks such as image classification. It consists of 

eight layers, including five convolutional layers and three fully connected layers. The 

first convolutional layer uses a large receptive field to capture low-level features such 

Figure 3. These figures show two sample images from the DDSM dataset for (a) cancerous and
(b) normal subjects.

Table 1. This table shows the description of three datasets.

Dataset Number of Images Image Types Image Size

RSNA 54,713 Variable Variable
MIAS 322 PGM 1024 × 1024
DDSM 55,890 JPEG 598 × 598

2.2. Models

A. AlexNet [25] is a deep CNN architecture that was introduced in 2012 and achieved
a breakthrough in computer vision tasks such as image classification. It consists of
eight layers, including five convolutional layers and three fully connected layers.



Information 2023, 14, 410 5 of 14

The first convolutional layer uses a large receptive field to capture low-level features
such as edges and textures, while subsequent layers use smaller receptive fields
to capture increasingly complex and abstract features. AlexNet was the first deep
network to successfully use the rectified linear unit (ReLU) activation functions,
which have since become a standard activation function in deep learning. It also
used dropout regularization to prevent overfitting during training. AlexNet’s success
on the ImageNet dataset, which contains over one million images, demonstrated the
potential of deep neural networks for image recognition tasks and paved the way for
further advances in the field of computer vision.

B. ResNet50 [26] is a deep CNN architecture that uses residual connections to enable
learning from very deep architectures without suffering from the vanishing gradient
problem. It consists of 50 layers, including convolutional layers, batch normalization
layers, ReLU activation functions, and fully connected layers. ResNet50 also uses a
skip connection that bypasses several layers in the network, allowing it to effectively
learns both low-level and high-level features.

C. EfficientNet [27] is a family of deep CNN architectures that were introduced in 2019
and have achieved state-of-the-art performance on a range of computer vision tasks.
EfficientNet uses a compound scaling method to simultaneously optimize the depth,
width, and resolution of the network, allowing it to achieve high accuracy while
maintaining computational efficiency. EfficientNet consists of a backbone network
that extracts features from input images and a head network that performs the
final classification. The backbone network uses a combination of mobile inverted
bottleneck convolutional layers and squeeze-and-excitation (SE) blocks to capture
both spatial and channel-wise correlations in the input. The head network uses a
combination of global average pooling and fully connected layers to perform the
final classification.

D. MobileNet [28] is a deep learning architecture suitable for efficient and accurate
analysis of medical images, specifically in the context of BC diagnosis. With its
emphasis on computational efficiency, MobileNet can effectively extract features
from mammography images, enabling the detection of subtle patterns or abnormal-
ities associated with breast cancer. By utilizing depthwise separable convolutions,
MobileNet optimizes memory consumption and computational load, making it ideal
for resource-constrained environments. The integration of the ReLU6 activation
function further enhances efficiency and compatibility with medical imaging devices.
Overall, MobileNet offers a valuable solution for BC analysis, providing accurate
results while operating efficiently on limited computational resources.

E. ConvNeXt [29] is an architecture that enhances the representational capacity of CNNs
by leveraging parallel branches to capture diverse and complementary features,
leading to improved performance on challenging visual recognition tasks. It has
demonstrated excellent performance on various computer vision tasks, including
image classification, object detection, and semantic segmentation. Its ability to
capture complex relationships between features has made it a popular choice for
tasks requiring a high-level understanding of visual data.

3. Proposed Method

In this paper, we propose a method based on the extraction and concatenation of
features obtained from various CNN models. The extracted features are then reduced such
that only good features are selected and then used for the classification of normal and
cancerous images. Figure 4 illustrates the block diagram of the proposed system. As one
can see, the images from different datasets are first preprocessed, and then features are
extracted through different CNN models. The extracted features are reduced and then
classified into two: cancer and no cancer. The details for each block are as follows:

A. Preprocessing: In this research, the images obtained from various datasets exhibit
variations in sizes and resolutions.
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1. Normalization: The RSNA dataset consists of images in various formats, in-
cluding 12 and 16 bits per pixel. Additionally, it has two different photometric
interpretations known as MONOCHROME1 and MONOCHROME2. The
former represents grayscale images with ascending pixel values from bright
to dark, while the latter represents grayscale images with ascending pixel
values from dark to bright. To ensure consistency within the RSNA dataset,
we convert all MONOCHROME1 images to MONOCHROME2. In order to
standardize the pixel values across the RSNA dataset, intensity normalization
is performed. This involves scaling the pixel values to the range of 0 to 255,
which is equivalent to 8 bits per pixel. By applying this normalization process,
the pixel values across the dataset become more consistent and comparable.
On the other hand, the DDSM and MIAS datasets already have pixel values
within the range of 0 to 255, eliminating the need for additional normaliza-
tion. Therefore, the pixel values in these datasets are deemed suitable, and no
further adjustment is required.

2. Region of Interest Selection: To select the region of interest, we initially apply a
global thresholding method to the image. Subsequently, we extract the contour
of the largest object present in the image, which corresponds to the breast area.
Utilizing this contour, we generated a mask that enables us to crop the image
and isolate the specific region of interest for further analysis.

3. Image Alignment: In breast cancer datasets, there are two distinct lateral-
ity categories: left and right. To enhance consistency and improve accu-
racy in analysis, we align all laterality labels to the left side. This process
involves horizontally flipping all left breast images to create a uniform
orientation throughout the datasets. By standardizing the laterality represen-
tation, we ensure a consistent and reliable dataset for further research and
analysis purposes.

B. Feature extraction: For feature extraction, we exploit the features computed by pre-
trained CNN models described in Section 2.2. For each model, the features are
extracted from the last layer before the last fully connected (FC) layer as the output
of the final FC layer has been trained for 1000 classes of the ImageNet dataset, and
hence, we skip this layer and extract the features from the last layer before the final
FC layer. Table 2 depicts the layer before the final FC layer and the number of features
extracted for each CNN model used in this paper.

C. Feature concatenation: The 1-dimensional (1D) features extracted in the previous step
are concatenated to form a single 1D feature vector. Note that for each CNN model,
we have extracted features from two different views CC and MLO. Hence, 10 1D
vectors are concatenated here. This forms a vector with a size of 18,384 For the RSNA
dataset that we use as the basis of our research, we have an additional useful feature
for the patient age. Figure 5 depicts the distribution of the age feature provided by
the RSNA dataset for both cancer and non-cancer subjects. As can be observed, age
can also be considered a valuable feature. We can also simply normalize and add age
to our feature vector to have 18,385 features in total.

D. Feature selection: The majority of the features are redundant and do not carry any
useful information and only increase the complexity of the system. Figure 6 illustrates
2 samples of good and weak features. As one can see from the figure, in the case of
weak features, the distribution of the feature for normal and cancerous subjects are
similar showing that there is no useful information in this feature and the calculated
mutual information between them is zero. For the case of good features, normal
and cancerous subjects have obviously different distributions showing that these
features carry useful information, although small, that can improve the performance
of classifiers used in the next step. To compute mutual information we use the method
in [30]. We empirically found a 0.02 threshold gives us the best results. Note that
we have also adopted feature selection based on mutual information empirically and
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after using various feature selection methods. The number of features for each dataset
before and after feature selection is presented in Table 3.

E. Feature classification: After selecting the best features, we need to classify them. For
this purpose, we tried multiple machine learning algorithms such as k-NN, random
forest (RF), SVM, and NN. In our study, we utilize an RF algorithm with specific
parameters to enhance breast cancer detection. We construct an ensemble of 100 trees,
setting the minimum number of samples required to split a node as 2. Additionally, we
limit the maximum number of features considered for each tree to 5 and the maximum
tree depth to 4. These parameter settings are chosen to optimize the performance of
our model and improve the accuracy of breast cancer detection in our X-ray image
datasets. In our SVM classifier implementation, we utilize a linear kernel and set the
regularization parameter “C” to a value of 1. The linear kernel allows us to learn a
linear decision boundary, while the “C” parameter balances the trade-off between
training accuracy and the complexity of the decision boundary. In the k-NN classifier,
we set k = 5, and for the NN classifier, we used two fully connected (FC) layers with a
hidden layer including 96 neurons and a single-neuron classification layer. For the
classification layer, we use a sigmoid activation function that classifies non-cancer
cases from cancerous ones.
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Figure 6. These figures show distributions of (a) a good feature and (b) a weak feature extracted
using a pre-trained CNN model. for cancer and noncancer subjects in the DDSM dataset. The mutual
information computed for these two features is 0.035 and zero, respectively.

Table 2. This table shows the CNN models used in the proposed method along with the layer name
where the features have been extracted and the number of features extracted from each model.

CNN Models Layer Name 1 Number of Features

ResNet50 avg_pool 2048
AlexNet fc8_preflatten 4096

MobileNetSmall Logits 1000
ConvNeXtSmall head_layer 768

EfficientNet avg_pool 1280
1 Layer’s names have been taken from TensorFlow models.

Table 3. The total number of features obtained from each dataset before and after feature selection.

Dataset Before Feature Selection After Feature Selection

RSNA 18,385 1 452
MIAS 9192 212
DDSM 9192 206

1 RSNA dataset provides two views for each subject and one additional feature for age.

4. Results and Discussion

This section showcases the results obtained from the three datasets introduced in
Section 2.1 using the models described in Section 2.2, as well as a combination of all
datasets as illustrated in Figure 4. For each dataset, we employed k-fold cross-validation
with k = 10. This means that the method was trained and tested 10 times, with 90% of the
data allocated for training and 10% for testing in each iteration.

4.1. Evaluation Metrics [31]

To assess the performance of our experiments, we utilize various evaluation metrics.

• True positives (TP): Instances where the predicted class and actual class are both
positive. This indicates that the classifier accurately classified the instance with a
positive label.

• False positives (FP): Instances where the predicted class is positive but the actual
class is negative. This means that the classifier incorrectly classified the instance with
a positive label. In the context of breast abnormality classification, an FP response
corresponds to a type I error according to statisticians. For example, it could refer to
a calcification image being classified as a mass lesion or a benign mass lesion being
classified as a malignant mammogram in the diagnosis.
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• True negatives (TN): Instances where the predicted class and actual class are both
negative. This indicates that the classifier correctly classified the instance with a
negative label.

• False negatives (FN): Instances where the predicted class is negative but the actual
class is positive. This means that the classifier incorrectly classified the instance with
a negative label. In the context of breast abnormality classification, an FN response
is considered a type II error. For instance, it could refer to a mass mammogram
being classified as calcification or a malignant mass lesion being classified as a be-
nign mammogram in the diagnosis. Type II errors are particularly significant in
their consequences.

• Accuracy: This metric represents the overall number of correctly classified instances.
In the case of the abnormality classifier, accuracy signifies the correct classifica-
tion of image patches containing either mass or calcification. Similarly, accuracy
shows the correct classification of image patches as either malignant or benign in the
pathology classifier.

Acc =
(TP + TN)

(TP + TN + FP + FN)

• Sensitivity or Recall: This metric represents the proportion of positive image patches
that are correctly classified. In the abnormality type classifier, sensitivity indicates
the fraction of image patches that are truly mass lesions and are correctly classified.
Similarly, the abnormality pathology classifier shows the fraction of truly malignant
image patches that are correctly classified. Given the significance of type II errors, this
metric is valuable for evaluating performance.

Sn =
TP

(TP + FN)

• Precision: This metric reflects the proportion of positive predictions that are correctly
categorized. It is calculated using the following formula:

Pr =
TP

(TP + FP)

• F1 Score: This measure combines the impact of recall and precision using the harmonic
mean, giving equal penalties to extreme values. It is commonly calculated using
the formula:

F − Score =
(2 × Sn × xPr)

(Sn + Pr)

4.2. Performance Evaluation of the Proposed Model for Different Classifiers

Table 4 presents a comparison of performance metrics for different CNN models
using the RSNA dataset. Among the individual CNN models, EfficientNet consistently
outperforms the other models in terms of accuracy, sensitivity, precision, AUC, and F-Score.
Its superior performance can be attributed to its architecture, which enables it to capture
relevant features and make accurate predictions on the RSNA dataset. EfficientNet proves to
be the most effective choice among the individual models for accurately classifying medical
images in the RSNA dataset. From the last row of the table, one can see that the proposed
concatenation scheme, significantly improves all performance metrics, for instance, the
achieved accuracy is 6 percent more than the best CNN model, i.e., EfficientNet.
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Table 4. Performance comparison of the proposed method for different CNN models and Concat.
Model with the NN classifier for RSNA dataset.

CNN
Models Acc Sn Pr AUC F-Score

AlexNet 81% 84% 87% 0.82 0.86
Resnet50 84% 90% 86% 0.89 0.88

MobileNetSmall 77% 85% 81% 0.81 0.83
ConvNexSmall 79% 87% 83% 0.83 0.85

EfficientNet 86% 92% 88% 0.92 0.90
Concat. Model 92% 96% 92% 0.96 0.94

Table 5 presents a summary of the results obtained using the kNN classifier with
k = 5. The findings indicate a significant decline in performance compared to the NN
model. Specifically, without feature concatenation, the highest accuracy is achieved with
AlexNet, which is 8 percent lower than the accuracy of the same model with the NN
classifier, and 13 percent lower than the best-performing EfficientNet model with the NN
classifier. Additionally, the accuracy of the concatenated model is also 14 percent lower
compared to the concatenated model with the NN classifier.

Table 5. Performance comparison of the proposed method for different CNN models and Concat.
Model with the kNN classifier for RSNA dataset.

CNN
Models Acc Sn Pr AUC F-Score

AlexNet 73% 70% 72% 0.70 0.71
Resnet50 72% 75% 71% 0.73 0.73

MobileNetSmall 64% 71% 67% 0.68 0.69
ConvNexSmall 66% 74% 70% 0.71 0.72

EfficientNet 71% 78% 74% 0.76 0.76
Concat. Model 78% 81% 79% 0.82 0.80

Table 6 displays the results obtained from the RF classifier. It demonstrates that
the accuracy of the concatenated Model is equivalent to that of the KNN classifier,
but falls short compared to the NN. Among the individual models, EfficientNet ex-
hibits the most favorable performance metrics, while mobileNetSmall exhibits the least
favorable performance.

Table 6. Performance comparison of the proposed method for different CNN models and Concat.
Model with the RF classifier for RSNA dataset.

CNN
Models Acc Sn Pr AUC F-Score

AlexNet 71% 67% 69% 0.68 0.68
Resnet50 69% 70% 67% 0.71 0.68

MobileNetSmall 60% 67% 63% 0.64 0.65
ConvNexSmall 62% 69% 65% 0.67 0.67

EfficientNet 73% 74% 70% 0.75 0.72
Concat. Model 78% 79% 77% 0.80 0.78

Table 7 displays the results of the proposed method using the SVM classifier. It is
evident from the table that SVM exhibits the lowest accuracy among all four investigated
methods. Specifically, the accuracy of the SVM-based method is 19 percent lower than that
of the NN-based method. Furthermore, in comparison to the KNN and RF-based systems,
the accuracy of the concatenated model decreased by 5 percent.
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Table 7. Performance comparison of the proposed method for different CNN models and Concat.
Model with the SVM classifier for RSNA dataset.

CNN
Models Acc Sn Pr AUC F-Score

AlexNet 62% 61% 63% 0.62 0.62
Resnet50 64% 66% 63% 0.65 0.64

MobileNetSmall 60% 63% 59% 0.60 0.61
ConvNexSmall 62% 65% 61% 0.63 0.63

EfficientNet 68% 70% 66% 0.68 0.68
Concat. Model 73% 75% 72% 0.74 0.73

4.3. Comparison of the Proposed System with State-of-the-Art Methods

Based on the findings presented in Tables 4–7, it is evident that the NN classifier
achieves the highest level of performance. Therefore, we employed the suggested approach
using the NN classifier as the benchmark to compare it with the existing methods.

To the best of our knowledge, the RSNA dataset has not been utilized in any previ-
ously published papers. Consequently, for the purposes of this section, we conducted a
comparison of our proposed model against existing methods using the MIAS and DDSM
datasets and summarized the results in Table 8.

Table 8. Performance comparison of our proposed model vs. methods using the MIAS and
DDSM datasets.

Method Dataset Number of Images ACC Sn Pr

SVM & Hough [32] MIAS & InBreast 322&206 86.13% 80.67% 92.81%
LQP & SVM [33] MIAS 95 94% NA NA

GMM & SVM [34] Mini-MIAS dataset 90 92.5% NA NA
KNN [35] Mini-MIAS 120 92% NA NA

Voting Classifier [36] MIAS 322 85% NA NA
CNN-4d [37] Mini-MIAS 547 89.05% 90.63% 83.67%

CNN [38] DDSM 10,480 93.5% NA NA
CNNs [39] DDSM 11,218 85.82% 82.28% 86.59%

Our Method + NN RSNA 54,713 92% 96% 92%
Our Method + NN MIAS 322 94.5% 96.32% 91.80%
Our Method + NN DDSM 55,890 96% 94.70% 97%

Upon examining Table 8, it is evident that our proposed model has exhibited superior
performance compared to state-of-the-art algorithms in terms of accuracy and sensitivity
across both the MIAS and DDSM datasets. While the method described in [32] demon-
strated slightly better precision for the MIAS dataset, our algorithm outperformed it in the
remaining two performance metrics.

4.4. Cross-Dataset Validation

So far, we have trained and tested the proposed method on the same dataset. However,
it is crucial to evaluate the ability of a model trained on one dataset to perform well on
different datasets or images collected from diverse machines and under varying image
collection standards. In this subsection, we assess the performance of our method when
trained on one of three datasets: RSNA, MIAS, and DDSM, and subsequently tested on
images from a different dataset. The results of these experiments are summarized in Table 9.
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Table 9. Performance of the proposed model with cross-dataset validation, i.e., trained and tested
with different datasets.

Train Dataset Test Dataset ACC Sn Pr

RSNA MIAS 79.13% 82.67% 80.81%
RSNA DDSM 74% 77.50% 76%
MIAS RSNA 76.5% 78.80% 78%
MIAS DDSM 80.70% 82% 82.80%
DDSM RSNA 72% 75.50% 76%
DDSM MIAS 79% 80% 79.87%

Since the RSNA dataset comprises images of various types and resolutions, cross-
validating it with another dataset yields slightly lower performance metrics. Specifically,
when the method is trained on either the MIAS or DDSM dataset and tested on RSNA
images, the achieved performance is slightly reduced. Figure 1 visually depicts the resem-
blance between RSNA and MIAS images compared to RSNA and DDSM images, further
supporting the observation that cross-validation between RSNA and MIAS datasets leads
to higher accuracy compared to cross-validation involving RSNA and DDSM datasets.
These findings are also supported by the results presented in Table 9.

5. Conclusions

We have developed a novel method to address the accurate diagnosis of breast cancer
in mammography images. Our approach involves the extraction and selection of features
from multiple pre-trained CNN models, followed by classification using various machine
learning algorithms: kNN, SVM, RF, and NN. The results obtained for different datasets
demonstrate the effectiveness of our proposed scheme.

Our findings indicate that the NN-based classifier yielded the best performance in our
experiments. Notably, we achieved impressive accuracies of 92%, 94.5%, and 96% for the
RSNA, MIAS, and DDASM datasets, respectively. These results surpass those of existing
methods, underscoring the superiority of our approach in terms of accuracy and sensitivity.

In terms of future work, we envision several directions to enhance our method. Firstly,
exploring advanced deep learning techniques, such as attention mechanisms, could further
improve the model’s performance. Secondly, investigating the integration of additional
clinical and genomic data could potentially enhance the accuracy and predictive capabilities
of our system. Lastly, conducting rigorous validation on larger-scale datasets from multiple
healthcare institutions would provide more robust evidence of the method’s effectiveness
and generalizability.
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