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Abstract: The origin of the trademark similarity analysis problem lies within the legal area, specifically
the protection of intellectual property. One of the possible technical solutions for this issue is the
trademark similarity evaluation pipeline based on the content-based image retrieval approach. CNN-
based off-the-shelf features have shown themselves as a good baseline for trademark retrieval.
However, in recent years, the computer vision area has been transitioning from CNNs to a new
architecture, namely, Vision Transformer. In this paper, we investigate the performance of off-the-shelf
features extracted with vision transformers and explore the effects of pre-, post-processing, and pre-
training on big datasets. We propose the enhancement of the trademark similarity evaluation pipeline
by joint usage of global and local features, which leverages the best aspects of both approaches.
Experimental results on the METU Trademark Dataset show that off-the-shelf features extracted with
ViT-based models outperform off-the-shelf features from CNN-based models. The proposed method
achieves a mAP value of 31.23, surpassing previous state-of-the-art results. We assume that the usage
of an enhanced trademark similarity evaluation pipeline allows for the improvement of the protection
of intellectual property with the help of artificial intelligence methods. Moreover, this approach
enables one to identify cases of unfair use of such data and form an evidence base for litigation.

Keywords: trademarks; data protection; artificial intelligence; image processing; trademark retrieval

1. Introduction

A trademark (logo) is a company’s most valuable intellectual property. Trademarks
require registration to avoid reputational damage and damage to profits caused by trade-
mark infringement. A trademark can only be registered if it is unique and unlike other
registered trademarks.

An estimated 13.4 million trademark applications were filed worldwide in 2020. That
is nearly 1.9 million more than were filed in 2019, an increase of 16.5% over the previous
year. This high growth rate was achieved despite the onset of the COVID-19 pandemic
and the following global economic downturn. This is also the eleventh consecutive year of
growth since the end of the global financial crisis and a return to double-digit growth rates,
up from 5.7% in 2019; see Figure 1 [1].

A quick way to search for similar logos is needed to prevent intellectual property theft.
A manual search is practically impossible due to the number of registered trademarks and
issues with scaling the search. This necessitates the development of methods to automate
such searches. With the help of such methods, it is possible to create a system to help an
expert search for similar logos.

The standard approach for finding similar logos is using off-the-shelf neural network
features based on CNN architecture. In this paper, we compare the quality of off-the-shelf
features extracted by convolutional neural network (CNN) and vision transformer (ViT),
consider the effect of different pre- and post-processing techniques, and add local features
to improve the final result. To the best of our knowledge, this is the first study that examines
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the use of ViT for similar logo search tasks and the effect of pre- and post-processing on the
quality of similar logo searches.

Figure 1. Chart of the number of applications for registration of new trademarks.

The origin of the trademark similarity analysis problem lies within the legal area,
specifically the protection of intellectual property. Trademark infringement is a significant
concern, as unauthorized use of a trademark can lead to reputational damage and financial
losses for businesses. The legal aspect necessitates a technological solution to effectively
detect and address trademark similarities. As a possible solution, the trademarks’ similarity
evaluation pipeline based on the content-based image retrieval (CBIR) approach is used
to solve this legal issue. However, CBIR in such a context also poses some challenges.
These challenges include a large search space, partial/semantic similarity, and limited
computing resources. However, the task of trademark retrieval also introduces unique
obstacles. Trademarks, being heavily stylized, contain less information compared to natural
images and lack the rich texture commonly found in natural image content. Additionally,
trademarks often share common design elements, such as characters and icons. Another
complexity lies in the ambiguous and broad definition of trademark similarity (particularly
in the legal area), which encompasses multiple aspects such as shape, layout, texture, and
partial aspects. This paper addresses these issues by presenting possible technical solutions
to enhance the pre-processing and post-processing steps of the trademarks’ similarity
evaluation pipeline.

This paper makes several contributions to the field of trademark retrieval. Firstly,
it evaluates the performance of off-the-shelf features extracted with ViT compared to
traditional CNN-based models, demonstrating the superiority of ViT-based models in
trademark retrieval. Additionally, the paper proposes the joint utilizing global and local
features, effectively combining their strengths to improve the overall search quality. Fur-
thermore, the study investigates all steps of the trademark retrieval pipeline, including
the effects of pre-, post-processing, and using models pre-trained on large datasets. Over-
all, the paper presents a comprehensive analysis and achieves state-of-the-art results in
trademark retrieval.

This article consists of six sections. Here, in Section 1, we justified the need to search
for similar logos and outlined the novelty of the work. In Section 2, we review the relevant
literature and research directions. Section 3 presents an approach to image pre-processing
for analyzing trademark similarity using ViT models and local features. In Section 4, we
describe the dataset and experimental results and analyze the results. In Section 5, we
discuss the search results using the developed method, and in Section 6, we present the
conclusions and describe the directions for further research.

2. Related Work

The trademark retrieval task is a subtask of image retrieval that researchers have been
working on for quite some time. The most common type of retrieval is content-based image
retrieval (CBIR). This approach uses computer vision techniques to solve the challenge of
finding similar images. The following features are used to search similar images: shape,
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color, texture, local features (based on key points), global features (based on the use of
neural networks), and others.

In [2], a dataset for testing the similarity search algorithms, namely, the METU Trade-
mark Dataset, and a comparison of classical features (texture, shape, color histogram) and
features generated by a neural network on the task of searching for similar trademarks
are presented. The article shows that the classical features are significantly inferior to the
features generated by the neural network. We considered AlexNet [3], GoogLeNet [4], and
VGG16 [5], trained on the ImageNet dataset [6]. The fusion of all the models and methods
considered in this article achieved a NAR of 0.062 ± 0.095 (Normalized average rank).

In [7], the authors fine-tuned two VGG19 models pre-trained on the ImageNet dataset.
VGG19v was fine-tuned on data where images are visually similar, and VGG19c on concep-
tually similar images. A classification loss function was used, and the final NAR value was
0.047 ± 0.095.

The development of the trademark retrieval field goes hand in hand with the devel-
opment of the image retrieval field. This is not surprising, since the search for similar
trademarks is a subtask of the search for similar images.

In the following papers, the authors started experiments with Pooling layers: MAC,
SPoC [8], CroW [9], R-MAC [10], and GeM [11]. These articles describe how to obtain better
features from CNN layers using different Pooling layers.

VGG16 and MAC/SPoC/CRoW/R-MAC on the trademark search problem are dis-
cussed in [12]. It also deals with the issue that the neural network is “distracted” by the text
in the trademark, which reduces the search quality. The authors developed two attention
management methods to give more weight to the geometric component of the trademark,
not the text. The best model uses R-MAC, and text removal has a mAP (mean Average
Precision) value equal to 25.7.

In [13], the authors considered the possibility of applying the attention mechanism,
CNN architecture, and unsupervised learning. The final model used ECANet50 and was
trained with instance discrimination. The model showed a NAR of 0.051 ± 0.002.

In [14], the authors applied reinforcement learning to train an ensemble of TTA (test-
time augmentation) image augmentation policies. This technique makes off-the-shelf
features of CNN models more invariant to various image transformations. In this paper,
the mAP metric equal to 30.5 was used.

In [15], improvements of R-MAC such as MR (Multi-Resolution), SMAC (sum and max
activation of convolution), and URA (unsupervised regional attention) were considered.
This work shows state-of-the-art results with a mAP of 31.0% and NAR of 0.028.

As can be seen from the articles listed above, only CNN-generated features and ways
to improve their quality are mainly investigated. Local features are practically not used.
At the same time, a promising architecture—ViT [16]—has not yet been fully tested. Since
the ViT architecture has already been applied to image retrieval issues, we believe it is also
reasonable to test its performance in trademark retrieval. It will also be useful to study the
influence of different pre- and post-processing techniques on the features extracted with
this architecture and their joint work with local features.

3. Pipeline Enhancement

In this section, we present improvements for the pipeline for solving the problem of
searching for similar logos. The essence of changes is to apply local and global features to
improve the search quality. A schematic of the pipeline is shown in Figure 2. Each step is
numbered, and the elements inside the blocks represent the possible implementation of the
steps. Next, we describe in detail the goals of each stage and the possible options for their
implementation.

Step 1: Pre-processing. Pre-processing, and in particular the scaling of the image to
a certain size, is an important step in the search for similar images because it is at this stage
where we set the constraints with which our system will have to work. Image scaling will
inevitably lead to loss of information, but we can minimize the negative effect.



Information 2023, 14, 398 4 of 13

DoG + HardNet8 CNN ViT

Pre-processing

Resize(224x224) Resize(256) +
CenterCrop(224x224)

Resize(224x224)
with borders

Query image

Feature Extraction

L2-normalization PCA Whitening aQE

Descriptor
Extraction

smnn + MAGSAC++

Descriptor
Matching Post-processing

K-nn search

Search

Merge of local and
global results

Merge of results

Re-ranking

 Re-ranking

2

3

4

5

6

7

8

1

Figure 2. Pipeline overview.

Image scaling is needed because most neural networks are trained for image classifica-
tion and work effectively only on images with a certain size—the size of images used in the
training phase. The most commonly used image size is 224 × 224. There are several ways
to scale the image to this size, see Figure 3:

• Scaling to 224 × 224 without preserving the aspect ratio (Resize (224 × 224)).
• Scaling to 256 with the aspect ratio preserved, then cropping out a 224 × 224 square

from the center of the image (Resize (256) + CenterCrop (224 × 224)).
• Scaling to 224 × 224 with the aspect ratio preserved, where black bars appear

(Resize (224 × 224) with borders).

Each method has its disadvantages:

• Resize (256) + CenterCrop (224 × 224) is a standard transformation used in classifi-
cation. Its disadvantage is that part of the image is cropped, and thus information
is lost.

• Resize (224 × 224) loses aspect ratio information, which makes the image look very
different visually.

• Resize (224 × 224) with borders preserves the aspect ratio information but reduces the
effective resolution.
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Figure 3. Examples of image scaling.

After scaling is applied, the images are normalized using the mean and standard
deviation of the dataset on which the training occurred. The images are then fed to the
feature extraction stage.

Step 2. Feature extraction. Global features are features that describe the entire image.
Global features can summarize the entire image with a single vector describing color,
texture, or shape. Examples of classical global features are GIST, LBP, and others. In [17], it
was first observed that features extracted by CNNs trained on image classification datasets
are good candidates for most visual recognition tasks, including finding similar images.

In this paper, we extract features using two architectures: CNN and ViT. The features
were extracted for CNN-based networks using Global Max Pooling from the last Conv
layer. For ViT, a CLS token was used. After feature extraction, post-processing takes place.

Step 3. Post-processing. Various techniques can be used to post-process the features
obtained with neural networks to improve the quality of search results. In contrast to
pre-processing, the techniques described below can be applied simultaneously in order of
numbering. The proposed approach uses L2-normalization, PCA whitening, and αQE. Let
us take a closer look at them.

L2-normalization is a common technique for normalizing feature vectors. This tech-
nique divides each feature vector element by its L2-norm, which results in a unit vector of
length 1. It reduces the effect of the feature vector’s magnitude and improves the features’
stability against changes in the image.

Query expansion (QE) is a process of reformulating a search query to improve search
accuracy. Its essence is to use the information obtained from the primary search to modify
the vector by which the search is conducted.

For the task of image retrieval, there are several methods of QE, such as AQE (Average
Query Expansion) [18], αQE (α-weighted query expansion) [11], and others. AQE is based
on averaging the features of the top-ranked images in the original search and using the
averaged feature for a new query, while αQE uses weighted averaging. Thus, when α = 0,
αQE becomes equivalent to AQE.

Step 4. Search. After all post-processing stages, the resulting features are used to search
for similar images. In the previous studies, a direct relationship between the similarity
of vector representations of images and their visual similarity was found. Moreover, the
closer the numerical values of the vectors of two images are to each other, the more likely
these images will have similar visual characteristics. Therefore, in this paper, we use K-NN
(K nearest neighbors) search to obtain a list of k best-fitting candidates. To measure the
distance between vectors, we apply the distance metric L2, which allows us to determine
the Euclidean distance between two vectors in n-dimensional space.

Step 5. Descriptor Extraction. Local features describe local parts of the image: neigh-
borhoods of keypoints. Key points (keypoints) are special points or areas in the image
with unique visual characteristics and relative invariance to changes in scale, orientation,
illumination, and other affine transformations. A detector is used to find key points, and
a descriptor is used to describe them. By comparing the keypoint descriptors, we can find
out how similar the local parts of different images are. This step uses a combination of
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the DoG detector and the HardNet8 descriptor, which has been shown to be successful in
a number of works, e.g., in [19].

Step 6. Descriptor Matching. Descriptor matching is the process of finding the closest
keypoint descriptors. SMNN (second mutual nearest neighbors) is used for descriptor
matching. We also use RANSAC to filter outliers. In this paper, we use MAGSAC++ [20].
After this step, we obtain a list of candidates sorted by the number of inliers. In step 8, we
will describe the merge of search results obtained using local and global features.

Step 7. Re-ranking. The results obtained with global features are re-ranked with local
features. We use the same methods to extract and compare descriptors as in steps 5 and
6 and obtain the number of inliers. Then we calculate the re-ranking score using the
following formula:

scorereranking =
1

distance + e
× Wglobal + inliers × Wlocal

where distance is L2 distance, e is a small number to prevent division by zero, inliers is
a number of inliers, and Wlocal and Wglobal are weights. The output is a ranked list of
candidates, which is combined with local search results in the next step.

Step 8. Merging of results. The main disadvantage of the global feature approach is its
inability to pay attention to smaller parts of the image. For example, even if an element
is exactly the same as another, if is not the main element in the image, it will be closer to
the bottom of the ranked list. To overcome this issue, we combine local and global search
results. To combine the two search results, we use the following equation to calculate the
final score:

scorejoint = scorereranking × Wjoint + inliers × Wlocal

If the candidate is not on one of the lists, the score for this parameter is zero. In the
next section, we will consider the effect of the steps in our pipeline on the quality of the
search for similar logos.

4. Experimental Evaluation

In this section, we consider the effect of pre-processing and post-processing on the
features generated by the CNN and ViT architecture models, as well as the results of using
local features for re-ranking and joint usage of global and local features.

All experiments were conducted on a PC with Intel Core i5-9600 processor, 32 GB
DDR4 RAM, and NVIDIA GeForce RTX 2060 SUPER graphics card.

Tables 1 and 2 show the tested models of two architectures: CNN and ViT. They also
indicate on which dataset pre-training was performed. CNN models are represented by
ResNet [21]. ViT models are represented by ViT [16] and BEiT [22].

Table 1. CNN Models.

Model Name Pre-Training Dataset

Resnet18_in1k ResNet18 pre-trained on ImageNet-1K
Resnet50_in1k ResNet50 pre-trained on ImageNet-1K
resnetv2_50x1_bitm_in21k ResNet50V2 pre-trained on ImageNet-21K

Table 2. ViT Models.

Model Name Pre-Training Dataset

ViT B/16 in 1k ViT B/16 pre-trained on ImageNet-1K
ViT B/16 in 21k ViT B/16 pre-trained on ImageNet-21K
BEiT ViT B/16 in 21k BEiT ViT B/16 pre-trained on ImageNet-21K
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The tests were performed on the METU Trademark Dataset [17], which is the largest
dataset for the trademark retrieval task. It has two main sets: the query set and the test set.
The test set is unlabeled and contains more than 900,000 images. The query set contains
417 trademark images that belong to 35 different classes; some examples are shown in
Figures 4 and 5.

For the evaluation, we injected the query set (labeled) into the test set (unlabeled).
Unlabeled data act as a distraction to make it harder to find relevant trademark logos
among the query set. The same protocol is used in other works, for example, [2].

Figure 4. Example of dataset samples.

Figure 5. Example of similar trademarks from query set.

For the evaluation, we used the mAP value:

mAP@k =
1
N

N

∑
i

AP@ki

It is calculated by using the top k retrieved results, where k is 100, and AP@k is the
average precision at k. Table 3 and Figure 6 show the mean average precision of CNN and
ViT-based models using various resizing techniques without post-processing steps.

From the results of the experiments, we can draw several conclusions. First of all,
versions of neural networks pre-trained on larger datasets show greater mAP.

All models, except resnet18_in_1k and ViT B/16 in 1k, have the highest mAP when
using Resize (224 × 224) with borders. This shows that the aspect ratio information lost
with other types of Resize can be used by neural networks for more accurate search results.
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ViT architecture loses to CNN architecture when pre-trained on small datasets (Ima-
geNet 1K) but wins when pre-trained on larger datasets (ImageNet 21K). This shows that,
with increasing dataset size, ViT features become more useful in solving the problem of
searching for similar logos.

Table 3. Mean average precision of CNN- and ViT-based models.

Neural Network Dimensions Resizing Technique mAP@100

Resnet18_in1k 512
Resize (256) + CenterCrop (224 × 224) 11.05
Resize (224 × 224) 12.23
Resize (224 × 224) with borders 11.25

Resnet50_in1k 2048
Resize (256) + CenterCrop (224 × 224) 11.55
Resize (224 × 224) 13.19
Resize (224 × 224) with borders 13.62

resnetv2_50x1_bitm_in21k 2048
Resize (256) + CenterCrop (224 × 224) 14.02
Resize (224 × 224) 14.93
Resize (224 × 224) with borders 15.17

ViT B/16 in 1k 768
Resize (256) + CenterCrop (224 × 224) 7.44
Resize (224 × 224) 8.30
Resize (224 × 224) with borders 7.35

ViT B/16 in 21k 768
Resize (256) + CenterCrop (224 × 224) 14.65
Resize (224 × 224) 15.97
Resize (224 × 224) with borders 16.83

BEiT ViT B/16 in 21k 768
Resize (256) + CenterCrop (224 × 224) 18.01
Resize (224 × 224) 19.63
Resize (224 × 224) with borders 20.19

Figure 6. Mean average precision of CNN and ViT-based models.

Table 4 shows the results of applying PCAw to resnetv2_50x1_bitm_in21k and BEiT
ViT B/16 in 21k, which are, respectively, the best CNN-based and ViT-based models. The
resizing technique used was Resize (224 × 224) with borders. We can see that PCAw
positively impacted the mAP value and benefited the ViT-based model more than the
CNN-based model.
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Table 4. Results of applying PCAw.

Neural Network mAP@100
before Applying PCAw

mAP@100
after Applying PCAw

resnetv2_50x1_bitm_in21k 15.17 18.50
BEiT ViT B/16 in 21k 20.19 25.12

Figure 7 shows the impact of aQE on the performance of BEiT ViT B/16 in 21k + PCAw.
The best result of 28.46 is achieved with alpha = 0.5 and n = 4, which is slightly better than
AQE (alpha = 0).

Figure 7. Impact of aQE on the mAP value.

Table 5 shows the cumulative effect of post-processing and local features on the mAP
value. The usage of pcaW gave the greatest increase in search accuracy.

Table 5. Cumulative effect of post-processing and local features on the mAP value.

Method mAP@100

BEiT ViT B/16 in 21k 20.19
BEiT ViT B/16 in 21k + pcaW 25.12
BEiT ViT B/16 in 21k + pcaW + aQE 28.46
BEiT ViT B/16 in 21k + pcaW + aQE + reranking 30.62
BEiT ViT B/16 in 21k + pcaW + aQE + reranking + local_features 31.23

Table 6 presents a comparison of our approach with other works. Our approach is
slightly ahead of the current state-of-the-art result shown by MR-R-SMAC w/URA.

Table 6. Comparison of our approach with other works.

Method mAP@100

SPoC [12] 18.7
CAM MAC [12] 22.3
ATRHA R-MAC [12] 25.7
TTA [14] 30.5
MR-R-SMAC w/URA [16] 31.0
BEiT ViT B/16 in 21k + pcaW + aQE + reranking + local_features 31.23

The experimental results show that ViT networks pre-trained on large datasets can
show better results than CNNs, and they do not require specialized Pooling layers. We can
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significantly increase search accuracy by using efficient pre- and post-processing. Using
local features improves search results, suggesting that off-the-shelf features extracted by
neural networks can still be improved.

5. Discussion

Despite the combined use of global and local features and advanced architectures like
ViT and modern descriptors like HardNet8, the results still need to be better.

As a result of the tests, we have identified some issues that our method faces. Figure 8
shows examples of searches; here, yellow frames show images that similar to the searched
image but are absent from the test dataset, and red frames show false positives.

Figure 8. Examples of searches.

While analyzing the results, we noticed that the system can find images that seem
similar but are not in the query set of the METU Trademark dataset. The test set should
be extended. The presence of text on a logo significantly degrades search results for
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several reasons. With the global features, we are not yet able to distinguish the “important”
and “unimportant” parts of the image because, as shown in Figure 8, the search results
contain pictures with a similar layout or similar font but do not take into account a similar
geometric element of the logo. Also interesting is that, in some cases, the difference in
distance between similar and dissimilar images is minimal, indicating that it is quite
difficult to distinguish between similar and dissimilar images with the current features.

A similar issue is observed with local features. The text in the image receives a lot of
keypoints, due to which there may be cases of false positives, as the letters are similar to
each other, i.e., local features find images with similar text font.

These issues can be solved as follows: it is necessary to perform fine-tuning of the
neural network, with which the global features are extracted, and limit the number of
keypoints in the area around the text in the image.

6. Conclusions

In this paper, we have presented an approach for searching for similar logos and
performed exhaustive testing of all its steps. We found that, for similar logos searching, the
best type of image scaling is scaling with aspect ratio preservation. Despite the decreased
effective resolution, neural networks benefit from retaining information about the original
image such as proportions. For the BEiT model, the gain was 2.1% mAP. A comparison
of the features extracted from ViT- and CNN-based models was performed, and many
interesting properties were found: ViT-based models are inferior to CNN-based models
when pre-trained on the smaller dataset (imagenet-1k) but start to win with the increasing
dataset. The difference between the best CNN and ViT models, without post-processing, is
5% mAP. It was also concluded that PCA whitening works not only on features derived from
CNN models but also on models based on Vision Transformers, with ViT having a higher
mAP gain than CNN (3.3% for ResnetV2 and 4.9% for BEiT). When optimal parameters are
chosen, aQE can perform better than AQE. A further 3.3% gain was achieved with aQE.
This paper demonstrates the use of joint global and local features. Local features have
been used twice: for re-ranking results obtained with global features and for merging local
and global results. This has further improved the search quality, reaching a mAP value
of 31.23%.

In future work, we plan to study metric learning for training models based on the
Vision Transformer and deeper integration of local and global features. Moreover, it is
planned to implement this approach as a digital forensics tool as a part of data analysis
services of the International Digital Forensics Center [23].
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Abbreviations
The following abbreviations are used in this manuscript:

ViT Vision transformer
CNN Convolutional neural network
CBIR Content-based image retrieval
mAP Mean average precision
NAR Normalized average rank
MR Multi-resolution
SMAC Sum and max activation of convolution
URA Unsupervised regional attention
AQE Average query expansion
αQE α-weighted query expansion
K-NN K nearest neighbors
SMNN Second mutual nearest neighbors
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