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Abstract: Embeddings, i.e., vector representations of objects, such as texts, images, or graphs, play
a key role in deep learning methodologies nowadays. Prior research has shown the importance
of analyzing the isotropy of textual embeddings for transformer-based text encoders, such as the
BERT model. Anisotropic word embeddings do not use the entire space, instead concentrating on a
narrow cone in such a pretrained vector space, negatively affecting the performance of applications,
such as textual semantic similarity. Transforming a vector space to optimize isotropy has been
shown to be beneficial for improving performance in text processing tasks. This paper is the first
comprehensive investigation of the distribution of multimodal embeddings using the example of
OpenAI’s CLIP pretrained model. We aimed to deepen the understanding of the embedding space
of multimodal embeddings, which has previously been unexplored in this respect, and study the
impact on various end tasks. Our initial efforts were focused on measuring the alignment of image
and text embedding distributions, with an emphasis on their isotropic properties. In addition, we
evaluated several gradient-free approaches to enhance these properties, establishing their efficiency in
improving the isotropy/alignment of the embeddings and, in certain cases, the zero-shot classification
accuracy. Significantly, our analysis revealed that both CLIP and BERT models yielded embeddings
situated within a cone immediately after initialization and preceding training. However, they
were mostly isotropic in the local sense. We further extended our investigation to the structure of
multilingual CLIP text embeddings, confirming that the observed characteristics were language-
independent. By computing the few-shot classification accuracy and point-cloud metrics, we provide
evidence of a strong correlation among multilingual embeddings. Embeddings transformation using
the methods described in this article makes it easier to visualize embeddings. At the same time,
multiple experiments that we conducted showed that, in regard to the transformed embeddings, the
downstream tasks performance does not drop substantially (and sometimes is even improved). This
means that one could obtain an easily visualizable embedding space, without substantially losing the
quality of downstream tasks.

Keywords: NLP; CLIP; isotropy; visualization; multilingualism; multimodality

1. Introduction

The automatically learned vector representations (embeddings) of various objects,
such as texts, images, and graphs are at the heart of almost every successful deep learning
model. Therefore, various researchers have tried to analyze their statistical properties and
suggest transformations for improving the quality of downstream tasks. What is more,
such dense vector representations are a natural common ground for representing objects of
various modalities in the same space. For instance, a text fragment describing an animal,
such as a llama, should be topologically close to a correct image of a llama in such a space.
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Prior research has shown the importance of analyzing the isotropy of textual embed-
dings for transformer-based text encoders, such as the BERT model [1,2]. Anisotropic
word embeddings do not use the entire space, instead concentrating on a narrow cone
in such a pretrained vector space, negatively affecting the performance of applications,
such as textual semantic similarity. Transforming a vector space to optimize isotropy has
been shown to be beneficial for improving performance in text processing tasks [3,4]. This
paper is the first comprehensive investigation of the distribution of multimodal embeddings
using the example of OpenAI’s CLIP [5] pretrained model. Our initial efforts focused on
measuring the alignment of image and text embedding distributions, with an emphasis on
their isotropic properties [1,6–8].

OpenAI’s CLIP [5] serves as a compelling example of such a multimodal model with
zero-shot and open-set classification capabilities. This model excels by learning meaningful
embeddings of images and text (potentially multilingual) in a shared latent space, as shown
in the semantic visualization of the image embeddings space in Figure 1. In this work, we
claim that to truly understand the CLIP’s mechanism, its strengths, and limitations it is
essential to study the distribution of these embeddings.

Figure 1. Semantic visualization of image embeddings.

In this article, we dive deep into several important aspects of CLIP’s embedding
space, aiming to uncover its structure and evaluate its features through visualization and
quantitative analysis. In our study, we optimize the isotropy and modality alignment of
CLIP embeddings, therefore making them more visualizable. Meanwhile, our multiple
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experiments showed that the performance in downstream tasks does not drop substantially
(and is sometimes even improved) with this kind of transformed embeddings. This means
that one could obtain (using the methods described in this article) easily visualizable
embeddings and not lose quality for downstream tasks.

At the same time, we investigate the potential of isotropy restoration methods to
improve the quality of the CLIP model. We also consider the role of linear algebra matrix
approximation and dimensionality reduction techniques in boosting CLIP’s zero-shot
abilities. Finally, we analyze the multilingual versions of CLIP, studying the alignment of
text embeddings in different languages. Through this investigation, our goal was to gain a
comprehensive understanding of the structure, isotropy, enhancement methods, zero-shot
capabilities, and multilingual alignment within the CLIP model.

The key findings of our investigation can be summarized as follows:

• The distribution of CLIP embeddings is not centered, therefore forming a cone, but they
have a high level of isotropy in a local sense [8];

• Both CLIP image and text encoders generate embeddings that are located in a cone
not just after training, but also right at initialization, even when layer biases are set
to zero;

• While most elementary linear algebra methods aimed at increasing the isotropy of
embeddings do not substantially improve CLIP’s zero-shot classification performance,
certain dimensionality reduction and distribution alignment techniques may nonethe-
less provide potential enhancements;

• When mBERT [9] and XLM-RoBERTa [10] are used as text encoders, CLIP produces
multilingual text embeddings that correlate with their corresponding image embed-
dings closely, despite not using any image information during training.

2. Literature Review

The issue of how transformers [11] utilize their embedding space has been the sub-
ject of inquiry in various studies. Numerous investigations into the embedding space of
transformer models suggest that the distribution of contextual representations is highly
anisotropic. An isotropic distribution or point cloud is the one that appears similar in all di-
rections in space. However, this characteristic is generally not observed in the embeddings
distributions learned by transformers. Instead, these distributions tend to be stretched in a
specific direction and are confined within a narrow cone around it. For example, in Gao
et al. [1], authors particularly underline this phenomenon, calling it the the Representation
Degeneration Problem. They hypothesize that it limits the representation power of word
embeddings because they are less diverse than they could be; when all of the embeddings
are inside a narrow cone, all of the cosine similarities are positive or even close to 1 in
extreme cases. This is also the reason why classifiers based on the cosine similarity have
small margins, which could lead to poor generalization. The authors attribute this problem
to the gradients of the likelihood loss pushing the embeddings in the same direction during
training. Finally, the authors show that regularization aimed for restoring isotropy can
improve the quality of the model. Techniques with a similar goal are also developed in
other works [6,7]. In Su et al. [4], authors propose to use the whitening procedure to restore
isotropy of the BERT embeddings, which leads to better performance of their cosine similar-
ity scores for the Semantic Similarity tasks. It also enables the reduction in the dimension
of the embeddings. Li et al. [3] show that anisotropy hinders the performance of sentence
embeddings obtained by BERT and propose making their distribution Gaussian using an
additional normalizing flow model.

However, the importance of isotropy in transformer embeddings is disputable. First,
the embeddings may be locally isotropic as discovered by Cai et al. [8]. The researchers
show that each cluster of the embeddings cloud becomes isotropic after centering. Our
research shows that the centering alone already significantly improves the isotropy. This
may mean that the embeddings have a non-degenerate, rich and meaningful structure when
analyzed using the Euclidean distance, and the apparent anisotropy may be attributed to
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their distribution being uncentered. Furthermore, Ding et al. [12] report that the isotropy
restoration techniques do not bring significant improvement to the models.

3. Method Description
3.1. Visualization, Isotropy, and Transformations
3.1.1. Data Description

We started by precomputing the CLIP embeddings on the COCO [13] dataset. We used
the 2014val captions task part of the dataset, containing images and corresponding cap-
tions. We computed the visual and text embeddings for two CLIP models, CLIP-ViT-B/32
with a visual transformer backbone and CLIP-RN101 with a ResNet backbone. The find-
ings are similar for all three models, so we present the first one as a sufficient example,
CLIP-ViT-B/32.

3.1.2. Isotropy Analysis

We started by analyzing the distributions of cosine similarities between embeddings
of random positive (corresponding) and negative (non-corresponding, random) image-
text pairs.

Then we visualized the embedding space similarly to the previous works by projecting
the data onto the first two SVD components of the embeddings matrix. Note that we inten-
tionally used a linear projection because the non-linear ones may not preserve anisotropy.

To characterize the isotropy of the embedding space, we adopted the I1 and I2 isotropy
measures from [1,6]. The first measure is defined as

I1(W) =
minv∈E Z(v)
maxv∈E Z(v)

, (1)

where W is the n× d embeddings matrix with rows wi ∈ Rd as individual embeddings,
Z : Rd → R+ is the partition function Z(v) = ∑n

i=1 exp(〈v, wi〉), and E is the set of
eigenvectors of WTW. The second measure, defined as

I2(W) =

√
∑v∈E (Z(v)− Z̄(v)2)

|E |Z̄(v)2 (2)

is the sample standard deviation of the partition function Z(v) normalized by its average
Z̄(v). Z should be close to a constant on E if the embedding matrix W is isotropic. This
way, I1(W) ∈ [0, 1], I2(W) ≥ 0, and larger I1(W) and smaller I2(W) indicate more isotropic
embeddings. For the details, refer to [1,6]. We report the isotropy metrics I1 and I2
for various settings. Because CLIP embeddings are trained with cosine similarity loss,
which is invariant to scaling, we normalized them before computing any metrics. Another
important point is that I1 and I2 metrics are not invariant to scaling, so when we analyzed
the embeddings after different transformations, we also normalized them to ensure a
fair comparison.

Another simpler isotropy metric is the distribution of standard deviations of all of
the embedding coordinates. If it is concentrated, then all of the coordinates have an equal
contribution to the overall variance, and the embeddings are isotropic.

3.1.3. How to Improve Isotropy

We also articulate the importance of centering for the embeddings analysis. The cosine
similarity is not invariant to centering, but it can be expressed in terms of Euclidean distance.
For any vectors x, y of unit norm, we have:

cos(x, y) = 〈x, y〉 = 1− 1
2
‖x− y‖2

2 (3)

That means that we can study the geometric properties of the cluster of normalized
embeddings via Euclidean distance, which is invariant to centering.
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We proceed by using the whitening-k transformations from Su et al. [4] to the obtained
embeddings distributions. It centers the distribution and makes all of the singular values
of the embedding matrix equal to one, which means that the variance is constant in any
direction, and the distribution is spherical and isotropic. The k parameter stands for the
dimensionality of the obtained representations. The first k SVD (PCA) components of the
initial matrix are retained (but their singular values are normalized), and the others are
omitted as in the regular PCA dimensionality reduction technique.

Coming up with a novel approach, we employed simple linear algebra methods to
align the distribution of image representations with the distribution of their respective
caption representations. The most straightforward way to achieve that is to move one of the
distributions with a linear transformation. Suppose A is the (normalized) text embedding
matrix and B is the (normalized) image embedding matrix. We can find a linear transforma-
tion Ω that makes the text representation closer to the corresponding image representations
in terms of L2 norms. Therefore, we aim to minimize ‖AΩ − B‖2

F, where ‖ · ‖F is the
Frobenius norm. This is equivalent to finding the least-squares solution to a linear matrix
equation AΩ = B and commonly referred to as lstsq in linear algebra packages. However,
the arbitrary linear transformation does not preserve the norms of the embeddings, so after
the transformation they will no longer be normalized and their pairwise cosine similarities
will change. If we wish to avoid that, we can impose the orthogonality constraint on
Ω. This way, we can preserve both the normalization and the cosine similarities. Thus,
the inner structure of the text embeddings will not change, their distribution will simply
be rotated. The problem of minimizing ‖AΩ− B‖2

F on the set of orthogonal matrices Ω is
called the orthogonal Procrustes problem. Moreover, we can see that in the case of normalized
embeddings, it is equivalent to maximizing the sum of cosine similarities between the text
and image embeddings

‖AΩ− B‖2
F = ‖AΩ‖2

F + ‖B‖2
F − 2〈AΩ, B〉 → min

Ω
(4)

where 〈·, ·〉 is the element-wise inner product. As AΩ and B consist of unit vectors, this is
equivalent to

〈AΩ, B〉 → max
Ω

(5)

which corresponds to maximizing the sum of the cosine similarities between the rows of AΩ
and B under the orthogonality constraint on Ω. Both LSTSQ and orthogonal Procrustes prob-
lems are implemented in the commonly used linear algebra packages. For example, we used
Torch and SciPy implementations of these functions torch-linalg-lstsq (https://pytorch.org/
docs/stable/generated/torch.linalg.lstsq.html#torch-linalg-lstsq, accessed on 21 June 2023),
scipy-linalg-orthogonal-procruste (https://docs.scipy.org/doc/scipy/reference/generated/
scipy.linalg.orthogonal_procrustes.html#scipy-linalg-orthogonal-procruste, accessed on
21 June 2023). The solutions are computed efficiently in less than a second, even for
moderately-sized 40,000 × 512 input matrices.

3.1.4. Evaluation Settings

We tested the aforementioned approaches using three different conditions. Under the
first condition, the parameters of the transformations were computed (fitted, trained) on
the COCO embeddings and then applied to CIFAR. This can be viewed as an extension to
the CLIP training with further testing of the effect of this procedure on its generalization.
Under the second condition, we computed the parameters on the CIFAR train embeddings
and tested them on the CIFAR test ones. This corresponds to learning a kind of domain
adaptation. Under the third condition, we performed training on the part of CIFAR,
corresponding to 50 random classes (we call them known) and performed tests on the other
instances. This also corresponds to domain adaptation (adapting the CLIP embeddings for
CIFAR classification) but it is closer to the zero-shot paradigm than the second condition.

https://pytorch.org/docs/stable/generated/torch.linalg.lstsq.html#torch-linalg-lstsq
https://pytorch.org/docs/stable/generated/torch.linalg.lstsq.html#torch-linalg-lstsq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.orthogonal_procrustes.html#scipy-linalg-orthogonal-procruste
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.orthogonal_procrustes.html#scipy-linalg-orthogonal-procruste
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3.2. Multilingual CLIP

Multilingualism in CLIP can be achieved by training the text encoder with a corpus of
any language (i.e., there is ruCLIP (https://github.com/ai-forever/ru-clip, accessed on
21 June 2023) for Russian image–text pairs). However, this is not optimal. A more natural
and widely-used way is to take multilingual BERT as a text encoder and train it in a CLIP
setting using captions in a single reference language (standard CLIP training). This text
encoder is then fine-tuned with the objective of text embeddings alignment on a parallel
caption corpus (for example, minimizing MSE loss between human-generated translations).
The question is, how good are the final multilingual textual embeddings in the CLIP space?
How can we measure it?

To address this, we used the WikiCap [14] dataset and a readily available multilingual
CLIP implementation (https://github.com/FreddeFrallan/Multilingual-CLIP, accessed
on 21 June 2023) to compute the corresponding embeddings and inspect them visually
and quantitatively. The dataset presents French–English, Russian–English, and German–
English caption pairs along with the corresponding images from Wikipedia. To visualize the
position of embeddings as point clouds, we use a non-linear projection method UMAP [15],
which aims to preserve local distances and build a low-dimensional graph representation
of the original high-dimensional data. UMAP also tends to preserve the relative positions
of clusters in data, which perfectly suits our task.

Evaluating the Quality of Embeddings

To test the quality of the obtained representations, we measured the contrastive loss
used in the CLIP training on the COCO images and captions as the first step. This is the
most straightforward way to see if the similarity between the corresponding embedding
pairs is higher than for the random ones. We split the dataset into the train part used to
compute the parameters of the embedding transformation and the test part for a more
rigorous evaluation of the generalization.

One of the most notable applications of CLIP is performing classification without the
need for prior training on specific classes. Thus, secondly, we used the CIFAR-100 [16] to
measure the accuracy of zero-shot classification with CLIP using the following method.
In our approach, we initially generate a corresponding text for each label. Subsequently,
the predicted label is determined based on the text that exhibits the closest cosine distance
between its embedding and the embedding of an image to be classified. To achieve optimal
accuracy, we experimented with various prompts and selected those that yielded the
highest accuracy. We utilized the template “low-resolution photo of a 〈fine class name〉”
for English captions, while for Russian ones, we employed the template “изображение
〈fine class name〉”. Additionally, we precomputed the embeddings for the CIFAR-100
dataset and divided them into train and test sets. One of the transformations that we
applied to CLIP embeddings, was dimensionality reduction through principal component
analysis (PCA) to achieve better zero-shot classification performance. The idea was that
text embeddings, that were corresponding to a picture, could be redundant. For instance,
the phrase “orange cat on the green grass” could be reduced to “cat” for classification
purposes. However, the phase could potentially be reduced to “grass”, causing errors.
We “trained” the transformation on the COCO dataset and applied it to CIFAR-100 text
and images.

In addition to analyzing the zero-shot classification ability of a model, it is more
common to study its representation learning capabilities. There are many ways to evaluate
the quality of representations. We used the linear probe method, fitting a linear classi-
fier on the representation extracted from the model and measuring its performance on
various datasets.

https://github.com/ai-forever/ru-clip
https://github.com/FreddeFrallan/Multilingual-CLIP
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4. Results
4.1. Visualization and Isotropy Metrics

We present the visualization of the CLIP embeddings using Singular Value Decom-
position (SVD). The image embeddings, after normalization, are situated within a cone
starting from the origin, as depicted in Figure 2. The pairwise cosine similarities between
these embeddings are all positive. However, when the embeddings are centered (Figure 3),
we observe a more or less isotropic distribution, characterized by a slower decay of singular
values. This suggests that, even when viewed as a single cluster, the embeddings exhibit
local isotropy. This observation is further supported by the isotropy metrics presented in
Table 1. It can be speculated that the increase in isotropy from [8] can be attributed to the
centering of each cluster, rather than the clustering itself.

Table 1. Isotropy metrics for CLIP and BERT embeddings. T—text, I—image.

DISTRIBUTION I1 ↑ (T) I2 ↓ (T) I1 ↑ (I) I2 ↓ (I)

CLIP 0.84 0.03 0.83 0.03
+0-BIAS W/RANDOM WEIGHTS 0.02 0.69 0.00 16.61
+CENTERING 0.99 0.00 1.00 0.00
+WHITENING-128 0.99 0.00 1.00 0.00
BERT 0.84 0.03 - -
+CENTERING 0.99 0.00 - -

Figure 4 illustrates the image embeddings after whitening-128. Note the spherical
shape of the distribution and the flat singular values plot.
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Figure 2. CLIP image embeddings distribution and singular values. Note that the embeddings are
not centered, so they are located in a cone (with the vertex at the origin). The first SVD component
captures the shift from the origin. Fast singular value decay indicates anisotropy. I1 = 0.84, I2 = 0.03.
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Figure 3. Centered CLIP image embeddings distribution and singular values. Note a slower singular
value decay. I1 = 0.99, I2 = 0.00.
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Figure 4. Whitened CLIP image embeddings distribution and singular values. All singular values
are equal. I1 = 0.99, I2 = 0.00.

It is important to note that the embeddings in CLIP are linearly separable rather than
mixed. This may seem counterintuitive, but the CLIP contrastive loss does not explicitly
restrict this. For instance, if we introduce a coordinate that consistently has a value of
−0.1 for image embeddings and +0.1 for text embeddings, all dot products decrease by
0.01, and the norms do not change significantly. Hence, the cross-entropy loss within the
contrastive loss remains majorly unchanged. However, such a dimension would provide
no meaningful information and could potentially have negative implications for certain
applications that rely on close proximity between image and text embeddings. Furthermore,
we conducted experiments to see if the image and text embeddings were linearly separated.
By training a logistic regression model and a linear Support Vector Classifier (SVC), we
achieved an accuracy of 1.0 in both cases, confirming that the embeddings are indeed
linearly separated.

To understand the anisotropy of embeddings, we checked their initial distribution at
network initialization. The results are shown in Figures 5–7. It turns out that right after
the initialization, both image and text embeddings are offset from the origin and hence
bounded by a cone. To ensure this is not due to bias present in neural network layers, we
set all biases to zero, and the effect still persisted. We leave it to future work to analyze
this property of random initialization of CLIP’s architecture in a probabilistic framework
similar to Neural Tangent Kernel [17].
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Figure 5. CLIP-RN101 image embeddings distribution computed with (left) or without (right) bias
for freshly initialized model (inputs are drawn from COCO-caption-2015).
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Figure 6. CLIP-ViT-B/32 image embeddings distribution computed with (left) or without (right)
bias for freshly initialized model (inputs are drawn from COCO-caption-2015).
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Figure 7. CLIP text embeddings distribution computed with (left) or without (right) bias for freshly
initialized model (inputs are drawn from COCO-caption-2015).

Figure 8 shows visualization of the joint image and text embeddings distribution for
trained CLIP.
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Figure 8. CLIP image and text embeddings distributions and singular values. Note that the two
clusters are clearly separated.

4.2. Procrustes and LSTSQ Transformations

We present the results of the experiments aimed at aligning image and text representa-
tion distributions. In Figures 9–11, the distributions of cosine similarities between random
images and texts and between corresponding ones are depicted. CLIP is trained to separate
those distributions.
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Figure 9. Distributions of cosine similarities between CLIP embeddings. Note that the similarity is
closer to zero.
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Figure 10. Distributions of cosine similarities between CLIP embeddings after the Procrustes trans-
form. Note that the similarity is closer to one. The distributions are still separated well
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Figure 11. Distributions of cosine similarities between CLIP embeddings after LSTSQ transform.
The results are similar to the Procrustes one.

Note that the similarities are much larger after the Procrustes and LSTSQ transforma-
tions. The gap between their peaks is also greater, but the overlap is slightly higher.

As we saw in Figure 8, although the original text and image embeddings distributions
are close, they almost do not intersect, while the transformations fix this. The overlap after
the LSTSQ transformation is more prominent than after the Procrustes.

Figures 12 and 13 display the joint image and text representation distributions after
the Procrustes and LSTSQ transformations correspondingly. Note how the distributions
are better mixed and how LSTSQ warped the text distribution.
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Figure 12. CLIP image and text embeddings distributions after the Procrustes transform. Note
better mixing.
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Figure 13. CLIP image and text embeddings distributions after the LSTSQ transform. Note that the
text distribution looks more compact.

4.3. CLIP Loss Evaluation

In Table 2, we present the CLIP loss evaluation after different embedding transforma-
tions. We hypothesize that we were unable to improve it with SGD-free methods because
the CLIP embeddings are already well-optimized for this objective.

Table 2. CLIP loss on COCO splits after different transformations computed on train split. Whitening-
128 is the best found whitening-k.

TRANSFORM LOSS ON TRAIN LOSS ON TEST

CLIP 0.4183 0.4097
CENTERING 1.6153 1.6201
WHITENING-128 1.5737 1.6042
PROCRUSTES 1.0223 1.2970
LSTSQ 1.1785 1.3523

4.4. CIFAR-100 Zero-Shot Accuracy

Here, we evaluate how our transformations affect the zero-shot capabilities of the CLIP
embeddings. The results are shown in Table 3. Note that the experiment with the whitening
parameters computed on the test sample is not entirely fair. Still, the only simplification is
that during the test all the pictures are available to us at once, not just one picture at a time.
Furthermore, note that the training accuracy does not drop much with the reduction in the
number of components from 128 to 64 in whitening on CIFAR, but on COCO the difference
is significant. This indicates that the parameters of the transformations are sensitive to
the dataset on which they are computed. PCA-450 refers to performing a dimensionality
reduction down to 450 components via PCA, and the results show that it is possible
to preserve or even slightly improve the zero-shot capabilities by eliminating the least
informative dimensions. PCA-90 results were obtained by performing PCA on the 100 text
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prompts used for classification. We conclude that such dimensionality reduction is basically
enough to preserve the subspace of prompts for the accuracy not to drop significantly.
We additionally tested two other ways to obtain the logits using a pair of (unnormalized)
transformed embeddings: dot-product 〈x, y〉 and negated distance 1− 1

2‖x− y‖2
2, but they

yield worse quality.

Table 3. Zero-shot CIFAR-100 accuracy measured on the test split. The dataset name in the left
column indicates which data were used to compute the parameters of the transform.

TRANSFORM ACCURACY

CLIP 63.09%
PROCRUSTES ON COCO 38.42%
LSTSQ ON COCO 39.21%
PROCRUSTES ON CIFAR TRAIN 61.39%
LSTSQ ON CIFAR TRAIN 65.53%
WHITENING-128 ON COCO 42.59%
WHITENING-64 ON COCO 30.49%
WHITENING-32 ON COCO 17.27%
WHITENING-128 ON CIFAR TRAIN 56.77%
WHITENING-128 ON CIFAR TEST 56.04%
WHITENING-64 ON CIFAR TRAIN 54.87%
WHITENING-32 ON CIFAR TRAIN 38.37%
PCA-450 ON COCO 64.1%
PCA-450 ON CIFAR TEST 63.6%
PCA-90 ON TEXT PROMPTS 62.6%

Finally, in Table 4, we present our attempt at CIFAR domain adaptation learned on
half the classes and generalized to the other half. The results are negative. This is probably
because even if the transformation does align the first 50 class representation vectors, it still
has many degrees of freedom to break the other 50, as the overall dimension is 512 or more.

In conclusion, we see that although the Procrustes and LSTSQ transformations change
the embeddings significantly, they do not break the CLIP model and even sometimes
improve it. This is a convincing proof of concept for applying these transformations for
CLIP. They may be incorporated in the training procedure, as they are computationally
cheap, or be used as a post-processing step, but with caution.

Table 4. Generalization test. CIFAR-100 classes are split in half (known/new). The transformation is
learned on the first half, the accuracy is measured on both.

TRANSFORM KNOWN CLASSES ACCURACY NEW CLASSES ACCURACY

CLIP 66.40% 59.78%
PROCRUSTES 70.88% 3.46%
LSTSQ 70.54% 19.68%

4.5. Linear Probe Evaluation

We trained a logistic regression classifier using the scikit-learn L-BFGS implementa-
tion, with a maximum of 1000 iterations, and reported the corresponding metric on test
image embeddings. The results are in Table 5. It is clear that although the dimension of the
embeddings was significantly reduced, the information that was necessary for classification,
was preserved.
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Table 5. Linear probe evaluation on CIFAR-100.

TRANSFORM ACCURACY

CLIP 75.61%
WHITENING-256 ON COCO 74.75%
WHITENING-128 ON COCO 77.1%
WHITENING-64 ON COCO 74.75%

4.6. Semantic Visualization of the Embedding Space

We used T-SNE to compute a two-dimensional visualization of image and text em-
beddings that respects the high-dimensional (Euclidean) distances. Images are displayed
exactly at their embedded location. The result can be seen in Appendix A. The objects of
the same class indeed lay nearby. Note that we found the perplexity parameter that is equal
to 5 for images and 50 for the texts to be the best. This observation indirectly implies that
the text embeddings are located further away from each other, unlike the image ones.

4.7. Multilingual CLIP

To address the question of how multilingual embeddings are distributed we selected Mul-
tilingual CLIP with backbones M-BERT-Distil-40 and XLM-Roberta-Large-Vit-B-16Plus
as the two most popular models. We present the two-dimensional projections of WikiCaps
caption embeddings for these models in Figures 14 and 15 respectfully. It is clear that point
clouds are almost identical, which means that the conventional technique of training the
multilingual CLIP indeed results in high-quality latent representations, at least in terms of
global behaviour and similarity.
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Figure 14. UMAP [15] projections of text embeddings from multilingual CLIP/M-BERT-Distil-40.
French–English (left), German–English (middle), and Russian–English (right) pairs.
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Figure 15. UMAP [15] projections of text embeddings from multilingual CLIP/XLM-Roberta-Large-
Vit-B-16Plus. French–English (left), German–English (middle), and Russian–English (right) pairs.

We also measured pairwise distances between corresponding latent vectors produced
by M-BERT-Distil-40 for parallel text sample and compared those distances with charac-
teristic sizes of the point clouds, as shown in Table 6. The smaller the ratio, the better the
alignment of the embedding cloud. Obtained values indicate major structural similarity
between embedding different languages, which implies that the quality of those is close to
the quality of reference language latents.
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Table 6. Distance statistics for different language pairs.

QUANTITY FR-EN RU-EN DE-EN

MEAN PAIRWISE DISTANCE 10.19 10.57 14.44
MEAN GLOBAL DISTANCE 39.43 37.85 39.88
RATIO 0.26 0.28 0.36

In order to further confirm our assumptions that multilingual model has similar textual
latent spaces, we calculated the I1 and I2 isotropy measures for ruCOCO text embeddings
(captions in Russian for COCO dataset), I1 = 0.81 and I2 = 0.03, which is close to the
corresponding metrics of the English text embeddings, and conducted an experiment as in
Table 3 for the Russian captions as well. The results are in Table 7. Results are matching.

Table 7. Zero-shot CIFAR-100 accuracy measured on the test split. Dataset name in the left column
indicates which data were used to compute the parameters of the transform.

TRANSFORM ACCURACY

RUCLIP 53.14%
PROCRUSTES ON CIFAR TRAIN 59.35%
LSTSQ ON CIFAR TRAIN 65.84%

5. Conclusions

Our study empirically shows that CLIP embeddings, exhibiting a noticeable anisotropy,
reside within a conical structure. We demonstrate that such a formation emerges at initial-
ization and remains largely unchanged due to the absence of any regularization concerning
the absolute location of embeddings in CLIP’s objective function. To fully understand and
address this phenomenon, further exploration of the CLIP architecture is needed.

In addition, we found that the isotropy of embeddings can be restored through a
simple linear transformation, such as whitening. Furthermore, we identified a method for
conducting a learnable linear transformation that, in some cases, can improve performance
without incurring substantial computational costs. Although the current scope of these
methods is somewhat limited, they could be potentially utilized during or after training to
shape an embedding space with desired properties.

The anisotropic characteristic of embeddings extends to the multilingual context
as well. In addition, we used the metric properties of the multilingual embeddings to
confirm their strong correspondence with the original embeddings. This underscores
the consistency of the anisotropic property across diverse linguistic scenarios within the
CLIP model.
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Appendix A. Semantic Visualization

Please see semantic visualisations of CLIP’s text and image embeddings on the
next pages.

Figure A1. Semantic visualisation of image embeddings aligned with textual embeddings below
via Procrustes.
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Figure A2. Semantic visualisation of text embeddings aligned with image embeddings above via Pro-
crustes.
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