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Abstract: Diabetes is a chronic disease caused by a persistently high blood sugar level, causing
other chronic diseases, including cardiovascular, kidney, eye, and nerve damage. Prompt detection
plays a vital role in reducing the risk and severity associated with diabetes, and identifying key risk
factors can help individuals become more mindful of their lifestyles. In this study, we conducted
a questionnaire-based survey utilizing standard diabetes risk variables to examine the prevalence
of diabetes in Bangladesh. To enable prompt detection of diabetes, we compared different machine
learning techniques and proposed an ensemble-based machine learning framework that incorporated
algorithms such as decision tree, random forest, and extreme gradient boost algorithms. In order to
address class imbalance within the dataset, we initially applied the synthetic minority oversampling
technique (SMOTE) and random oversampling (ROS) techniques. We evaluated the performance
of various classifiers, including decision tree (DT), logistic regression (LR), support vector machine
(SVM), gradient boost (GB), extreme gradient boost (XGBoost), random forest (RF), and ensemble
technique (ET), on our diabetes datasets. Our experimental results showed that the ET outperformed
other classifiers; to further enhance its effectiveness, we fine-tuned and evaluated the hyperparameters
of the ET. Using statistical and machine learning techniques, we also ranked features and identified
that age, extreme thirst, and diabetes in the family are significant features that prove instrumental in
the detection of diabetes patients. This method has great potential for clinicians to effectively identify
individuals at risk of diabetes, facilitating timely intervention and care.

Keywords: diabetes mellitus; machine learning; survey; feature selection; feature importance

1. Introduction

Diabetes is a lifelong disease that prevents the body from obtaining energy from food
sources due to a deficiency insulin, an influential factor in enhancing the cells’ ability to
absorb glucose and produce energy [1]. There are three primary types of diabetes: type
1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and gestational diabetes
mellitus (GDM). In this study, we focused on T2DM, as it accounts for approximately 90%
of all occurrences of diabetes [2]: insulin resistance, in which the body does not respond
adequately to insulin, is a defining characteristic. T2DM is diagnosed most frequently in
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elderly adults; however, it is becoming increasingly prevalent in children, teenagers, and
young people due to rising rates of poor diet, physical inactivity, and obesity. Several risk
factors, including diabetes in the family, excess weight, an unhealthy diet, a lack of exercise,
increasing age, and higher blood pressure, are associated with T2DM.

Diabetes is the underlying cause of several associated diseases, including kidney
disease, tuberculosis, cardiovascular disease, and eye management [3]. Patients with
diabetes are susceptible to amputation, blindness, stroke, heart disease, kidney failure,
and premature death [4]. According to the International Diabetes Federation (IDF), there
were approximately 537 million diabetic patients worldwide—1 in 10 people—of whom
81% resided in low- and middle-income nations in 2021 [5]. In 2021, the IDF counted
6.7 million diabetes-related fatalities worldwide. In addition, the global cost of diabetes-
related medical expenses in 2019 was USD 760 billion; this amount is set to grow to USD
825 billion by 2030 and to USD 845 billion by 2045 [6]. Chronic diseases induced by diabetes
have imposed a financial burden on every nation [7].

The IDF estimates that in Bangladesh there are 7.1 million diabetics and approximately
the same number of undiagnosed cases; this number is anticipated to double by 2025. In
addition, the cost of diabetes imposes a significant burden on natural expenditures in low-
and middle-income countries [8].

Our research focused on T2DM-type diabetes. Although this type of diabetes cannot be
cured, most people can still avoid developing it. Early identification and lifestyle changes
can minimize the chance of developing diabetes. T2DM risk can be accurately identified
by doctors when treating an individual patient; however, clinicians encounter significant
obstacles when screening thousands of patients with high-risk illnesses. In this situation,
analytical methods are required for T2DM screening in the population.

Machine learning (ML) methods have been used to solve several problems recently,
such as diagnosing cancer [9], COVID-19 [10], autism [11,12], meningitis, diabetes, and
heart disease. Recent research suggests that ML can summarize patient characteristics
and predict T2DM risk [13–17]. The authors of Haque and Alharbi [18] investigated
18 features of T2DM in Bangladesh. The principal contribution of this study was that the
authors considered demographic and clinical data together and achieved the best output of
83.8% accuracy and 70% F1-score, using the LR model; however, the performance could
be enhanced by including more features related to people’s eating habits, lifestyle, and
clinical diagnosis. In another work, Tasin et al. [19] specifically investigated females in
Bangladesh. They developed a diabetes detection system with 81% accuracy using the
XGBoost model with the ADASYN oversampling technique. They used an explainable AI
approach with the LIME and Shapley additive explanations (SHAP) frameworks to provide
feature weights relating to diabetes. They also deployed a website and an Android mobile
application to detect diabetes in females. The authors only considered eight features in their
detection system; therefore, the question of reliability arose. Nipa et al. [8] examined three
datasets: the Sylhet Diabetes Hospital dataset (SDHD) of 520 samples; the pre-diagnosis
diabetes dataset (PDD) of 558 samples; and the combined SDHD and PDD dataset (MDD).
They tested 32 classifiers, where extra tree (ET), light gradient boosting machine (LGBM),
stacking, multi-layer perceptron (MLP), histogram gradient boosting classifier (HGBC),
RF, bagging, and gradient boosting classifier (GBC) presented more stable outputs. ET
provided the best result of 97.11% accuracy for the SDHD dataset; MLP yielded the highest
accuracy of 96.42%; and LGBM and HGBC showed the maximum output of 94.9% accuracy,
separately. They applied the SHAP framework to find the features more responsible for
diabetes. The authors of Kaur and Kumari [20] employed five ML models to identify a
patient as diabetic or non-diabetic: linear SVM, radial bias SVM, k-NN, artificial neural
network (ANN), and multi-factor dimensionality reduction (MDR). They obtained superior
results with linear SVM and k-NN, where linear SVM displayed an accuracy of 89% and
an F1-score of 87%, and k-NN exhibited an accuracy of 88% and an F1-score of 88%.
Before applying the ML models, they filtered significant features using the Boruta wrapper
feature selection method. In this research, the authors investigated the error analysis of the
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detection system. Zheng et al. [21] analysed the T2DM-related features and experimented
with various ML models to identify diabetic patients. The authors observed that SVM,
J48, and RF presented a more stable output than the other ML models such as LR, NB,
and k-NN.

We found many research works on the Pima Indians Diabetes Database (PIDD)
dataset [22–31]. The dataset comprises 768 female patients, of whom 268 have diabetes,
and 500 do not. The dataset has eight input features and one target variable. Here,
Yahyaoui et al. [27], Abdulhadi and Al-Mousa [28], Tigga and Garg [30], Pranto et al. [31],
and Ali et al. [23] proposed RF classifiers, while Saha et al. [22] and Wei et al. [25] pre-
ferred neural network-based models to obtain the best performance. On the other hand,
Birjais et al. [26], Battineni et al. [29], and Howlader et al. [24] achieved the maximum
output by utilizing gradient boosting (GB), LR, and the generalized additive model using
LOESS (GAMLOESS) models, respectively.

The authors of Sneha and Gangil [32] attempted to employ a predictive analysis in
the early detection of diabetes mellitus, ensuring that all significant features were utilized.
With an accuracy of 82.03%, naive Bayes (NB) was the most accurate of the five ML
algorithms utilized in the study. The highest specificities of RF and DT were 98% and
98.2%, respectively. The authors of [33] utilized LR, classification [34], and regression trees
(CART), ANN, SVM, RF, and gradient boosting machine (GBM) classifiers to determine
the likelihood an individual would develop T2DM. The GBM model achieved the best
among those considered. In addition, they identified the significance of factors based
on each classifier and the Shapley additive explanations approach and demonstrated the
relevant features such as sweet affinity, urine glucose, age, heart rate, creatinine, waist
circumference, uric acid, pulse pressure, insulin, and hypertension.

Le et al. [35] presented a ML model to predict early onset diabetes in patients and
employed grey wolf optimization (GWO) and adaptive particle swam optimization (APSO)
to optimize the number of significant input attributes. Using their proposed strategy, their
computational results indicated a higher degree of accuracy (96% for GWO-MLP and 97%
for APGWO-MLP). Next, Islam et al. [36] utilized two statistical analyses to determine the
diabetes risk factors. They used diabetes information from the 2011 Bangladesh Demo-
graphic and Health Survey. Six ML-based classifiers were used to predict and categorize
diabetes. Eleven of the fifteen examined factors were found to be associated with diabetes,
and the bagged CART model had the highest accuracy and area under the curve at 94.3%
and 0.6, respectively. Using ML techniques, Haq et al. [37] developed a diagnostic system
for diabetes. Furthermore, a filtering approach based on the DT algorithm was used to se-
lect the most critical features. Experiments showed that the proposed method for choosing
features improved the accuracy of the classifying predictive models.

Shuja et al. [38] created a model for diabetes prognosis based on data mining cate-
gorization approaches using a dataset from the Kashmir Valley Clinical Institute. After
performing SMOTE for data oversampling, the balanced dataset was fed to five ML algo-
rithms: bagging, SVM, MLP, simple logistic, and DT. DT had the best accuracy of 94.7%,
precision of 0.947, and sensitivity of 0.947. Then, Chatrati et al. [39] suggested developing
a smart domestic system using five different supervised ML approaches to monitor a pa-
tient’s glucose and blood pressure. The accuracy of all algorithms from SVM was 75%, from
k-NN was 74%, from DT was 66.1%, LR was 74.5%, and DA was 74.7%. In another work,
Islam et al. [40] identified risk variables for T2DM and offered an ML method to predict
it. Next, five ML methods predicted T2DM. For 2009–2010, these researchers indicated
six potential risks: age, learning, marital status, SBP, smoking, and BMI. For 2011–2012,
they identified nine threat issues: age, race, martial status, SBP, DBP, direct cholesterol,
bodily activity, smoking, and BMI. The RF-based classifier achieved a correctness of 95.9%,
a sensitivity of 95.7%, an F-score of 95.3%, and an AUC of 0.946.

A significant number of diabetic patients in Bangladesh have gone undetected. Fur-
thermore, inadequate healthcare equipment is incapable of accommodating for or treating
an extensive number of diabetic patients, and the expense of diabetes carries an immense
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strain on the citizens of the country. Unfortunately, we have discovered very little research
on the inhabitants of Bangladesh. Therefore, we must establish an automated system for
the early diagnosis of T2DM. We have made the following contributions in this regard:

• We created a dataset of 508 study populations for diabetes.
• We applied and compared state-of-the-art clinically applicable ML models to conduct

a benchmark analysis, aiming to contribute to further research in the field.
• We proposed a framework that utilizes ML techniques to detect diabetic patients.
• We ranked and identified significant features associated with diabetes mellitus.

2. Materials and Methods

The workflow of this study is depicted in Figure 1.

Survey Data Preprocessing

Missing value handling

Scaling

Feature engineering

Learning
phase

Applying
machine
learning

Statistical
Analysis

DT

LR

SVM

XGB

GB

RF

ET

Significant
Features

Diabetic positive

Diabetic negative

Feature ranking

Figure 1. Workflow of this study.

The main dataset was gathered through surveys with closed-ended questions and
direct interviews, also called in-person interviews. All respondents were from Bangladesh.
In our study, we used the most commonly used variables (for preparing questionnaires)
from recent articles on diabetes prediction models [33,35,41]. The primary dataset was
converted into a secondary dataset in order to perform several mathematical operations.
We performed an exploratory data analysis on our proposed Bangladeshi T2DM dataset to
find out previously unknown information. Moreover, the dataset was processed through
various stages, including missing value handling, data encoding, feature scaling, feature
engineering, etc. Symmetrical analysis checked the amount of skewness in the target class.
Next, the dataset was segmented into training and testing sets based on the target class
ratio, and the training set exhibited the same level of skewness as before. Initially, seven
ML models were trained and evaluated with this preliminary training set. SMOTE and
ROS were applied to the training set to resolve the skewness property in the target class
and improve the results of the ML model. Furthermore, seven ML models were applied
to the datasets, balanced using SMOTE and ROS techniques. A statistical method known
as the chi-squared test was also applied in order to identify any associative features, and
several ML models were employed to detect any significant feature sets.

2.1. Data Collection and Description

In order to perform this research, we constructed a dataset from the perspective of the
Bangladeshi population. Based on an analysis of the relevant studies, 33 questionnaires
were made to obtain first-hand information. There were 508 respondents. The primary
dataset was acquired by means of both online surveys and in-person interviews. Fur-
thermore, we also collected the respective information about the participants’ locations.
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Therefore, it is seen that the study covered all 64 districts of Bangladesh with no selection
bias. This dataset was turned into secondary data so that it could be used to build a model
for ML. Each property is organized and briefly explained in Table 1, displaying the possible
values for each attribute.

Table 1. Dataset description.

ID Attribute Name Feature Description Count (N = 508), n (%) or
Avg., Min, Max, Median

1 Age Identifying age groups

1–18: 244 (48.03%)
19–40: 95 (18.7%)
40–65: 99 (19.49%)
65 or more: 70 (13.78%)

2 Gender Gender of the respondent Male: 249 (49.01%)
Female: 259 (50.99 %)

3 Education Level Level of education can be no education,
primary, secondary or higher

Primary: 52 (10.36%)
Secondary: 95 (18.7%)
Higher: 305 (60.03%)
No education: 51 (10.03%)

4 Diabetes in the family Respondent’s ancestors or parents suffered
from the disease or not

Yes: 298 (58.66%)
No: 210 (41.34%)

5 Occupation Respondent can be unemployed, employed or
find job

Looking work: 56 (11.02%)
Not working: 189 (37.20%)
Working: 260 (51.18%)

6 Household monthly income Household monthly income of the respondent

Avg.: 30,477
Max: 300,000
Min: 1000
Median: 30,000

7 Wealth index Wealth index can be low, middle or upper class
Poor: 46 (0.09%)
Middle: 406 (79.91%)
Rich: 58 (11%)

8 Place of residence Place of residence indicates in which area the
respondent usually lives

Urban: 233 (45.86%)
Rural: 276 (54.14%)

9 Walk/ Run/ Physical exercise How much jogging or walking the
respondent did

None: 43 (8.46%)
Less half: 90 (17.71%)
More half: 151 (29.72%)
One hour or More: 224 (44.09%)

10 BMI Calculated from Height and Weight

Avg.: 23.2
Max: 58.44
Min: 12
Median: 23.12

11 Smoking Whether the respondent smokes or not Yes: 53 (10.44%)
No: 455 (89.56%)

12 Alcohol consumption Whether or not the respondent drinks alcohol Yes: 22 (4.33%)
No: 486 (95.67%)

13 Hours of sleep Total hour of sleep each day

Avg.: 7.77
Max: 12
Min: 1
Median: 8

14 Regular intake of medicine
(Except insulin) Regular medication use, excluding insulin Yes: 233 (45.86%)

No: 275 (54.14%)

15 Junk food consumption Prevalence of junk food consumption Yes: 194 (38.18%)
No: 314 (61.82%)
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Table 1. Cont.

ID Attribute Name Feature Description Count (N = 508), n (%) or
Avg., Min, Max, Median

16 Stress Stress level of respondent

Not at all: 66 (13%)
Sometimes: 329 (64.76%)
Often: 60 (11.8%)
Always: 55 (10.82%)

17 Blood pressure level Average level of blood pressure
High: 83 (16.33%)
Normal: 383 (75.4%)
Low: 43 (8.26%)

18 Hypertension Whether or not the respondent has
hypertension

Yes: 269 (52.95%)
No: 239 (47.05%)

19 Frequency of urination Frequency of urination each day Not much: 360 (70.86%)
Quite much: 148 (29.14%)

20 Extreme thirst Whether or not the respondent is
extremely thirsty

Yes: 253 (49.8%)
No: 255 (50.2%)

21 Sudden weight loss Whether the respondent ever noticed sudden
weight loss

Yes: 110 (21.65%)
No: 334 (65.74%)
May be: 64 (12.6%)

22 Weakness Whether the respondent feels more vulnerable
Yes: 225 (44.29%)
No: 187 (36.81%)
May be: 96 (18.9%)

23 More appetite Whether the respondent feels more hungry
Yes: 151 (29.72%)
No: 250 (49.21%)
May be: 106 (20.86%)

24 Irritability Whether the respondent feels irritability Yes: 250 (49.2%)
No: 258 (50.8%)

25 Delayed healing Whether the respondent notices delayed
healing of the wound

Yes: 213 (41.92%)
No: 295 (58.08%)

26 Muscle stiffness Whether the respondent notices muscle
stiffness of their body

Yes: 234 (46.06%)
No: 274 (53.94%)

27 Partial paralysis. Partial paralysis of any part of the body is
noticed or not

Yes: 69 (13.58%)
No: 396 (77.95%)
May be: 33 (8.46%)

28 Hair loss Whether the respondent notices gradually
losing hair or not

Yes: 231 (45.47%)
No: 203 (39.76%)
May be: 70 (14.76%)

29 Other diseases Whether the respondent has other
serious diseases

Yes: 260 (51.18%)
No: 248 (48.82%)

30 Number of dependent
family members Total number of dependent family members

Avg.: 3.43
Max: 15
Min: 0
Median: 3

31 Living house type Respondent home can be rental or owned Owned: 409 (80.51%)
Rented: 99 (19.49%)

32 Anxiety Whether the respondent has extreme anxiety
or not

Yes: 293 (57.67%)
No: 215 (42.33%)

33 Diabetes (output factor) Diabetes, non-diabetes Yes: 275 (54.14%)
No: 233 (45.86%)
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2.2. Explanatory Data Analysis

Exploratory data analysis was conducted on our dataset in an attempt to reveal buried
information. This dataset comprised 508 samples, and the output variable contained two
distinct categories: Diabetes (affected with diabetes) and non-diabetes (not affected with
diabetes). A property of imbalance was observed by analysing the distribution of output
classes. There were 275 (54.14%) observations belonging to the majority class named
diabetes, and the rest belonged to the minority class, non-diabetes. The maximum age of
the individuals was 78 years, with a minimum of 18 years, and a median of 41 years. A total
of 49.01% were men and 50.99% were women in our dataset. Two hundred and fifty-three
individuals suffered from extreme thirst, while 148 had a high frequency of urination.
A total of 576.7% of the population suffered from anxiety, whereas 51.8% suffered from
other diseases.

The number of people with diabetes who had a family history of the disease was
significantly higher than the number of those without a family history of diabetes. Diabetes
affected 223 individuals whose ancestors or parents had the condition, but only 52 individu-
als whose ancestors or parents did not have the disease. Figure 2 represents the correlation
between the features. We found no significant correlation between the features. Therefore,
we did not remove any characteristics from the dataset. Figure 3 depicts the association be-
tween the category of the output variable non-diabetes and the walk/run/physical exercise
variable, indicating that a person has a higher likelihood of falling into the category of non-
diabetes if they are physically active for at least one hour. We also saw that most diabetic
observations involved higher blood pressure levels compared to non-diabetic observations.

Figure 2. Heatmap between each of the features, representing the correlations between them.
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Figure 3. Relation between the output variable (non-diabetes) and the walk/run/physically ac-
tive variable.

2.3. Data Preprocessing

We used the mean instead of the missing values for age and monthly household
income found in our dataset. The BMI attribute was derived from the height and weight
attributes. To scale the dataset, we also employed the standard scalar technique. The most
important characteristic was determined using the recursive feature elimination technique.
We rectified the class disparity using the SMOTE and ROS techniques.

2.4. Data Balancing Technique

In particular, when working with medical datasets, class imbalance is a prominent
issue. This issue arises when instances are not distributed uniformly throughout the classes.
As a result, the classifications of the classifiers become skewed, and the minority class is
ignored. This problem can be resolved through either oversampling or undersampling. We
utilized two oversampling techniques: the SMOTE and the ROS technique.

SMOTE is a method of oversampling in which the data points of minority classes are
oversampled in order to balance the dataset [42]. It generates synthetic samples from minor-
ity classes and prevents duplication of samples, unlike standard oversampling algorithms.
It randomly selects examples of the minority class, identifies their k nearest minority class
neighbours, and then selects one of the neighbours [43].

On the other hand, ROS is a technique for balancing an unbalanced dataset prior to
feeding it to ML classifiers in order to improve the performance and eliminate bias towards
the majority class of the classifiers. Typically, it substantially increases the size of the dataset.
It is a non-heuristic strategy that achieves data balancing by duplicating or replicating
minority class samples at random [44].

2.5. Feature Transformation

The standard scalar is a process for scaling characteristics that removes the mean
of every feature and normalizes its variance to one. It offers many benefits, including
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being smooth, bidirectional, swift, and highly scalable. The standard scalar’s equation is
presented below:

X̂i =
Xi − X̄

σ
(1)

where the standard scalar is represented as X̂i, each observation as Xi, the mean as X̄, and
the standard deviation as σ [45].

2.6. Feature Selection

Feature selection is the primary data dimension reduction procedure. It increases the
accuracy of the classifier’s predictions by identifying a collection of attributes that strongly
contribute to the target class. It shortens the procedure and reduces the cost of computation.
We used the recursive feature elimination (RFE) technique in our work. It is an iterative
method for selecting features based on the model’s accuracy. In each iteration, it calculates
the ranking score metric and eliminates low-ranking characteristics. Until the required
number of attributes has been reached, the recursive operation continues [46].

2.7. Statistical Methods Identifying the Most Significant and Associative Diabetes Features

The chi-square test employs the p value to determine the significance of a dependent
variable-related characteristic. H0 is a “null hypothesis”, denoting that the target variable
and categorical feature have nothing in common. H1 is an alternative hypothesis that says
there is a strong link between the categorical feature and target variable. If the p value is
greater than 0.05, the null hypothesis cannot be rejected because there is no connection
between the target variable and categorical features. If the p value is less than 0.05, the
null hypothesis is rejected as there is evidence of a connection between the categorical
characteristics and the target variable. All of these features are then used in the next step of
the ML pipeline [47]. The equation for χ̃2 is given below:

χ2 =
n

∑
k=1

(Ok − Ek)
2

Ek
(2)

where the observed frequencies is denoted as Ok, the expected frequencies as Ek, and the
number of samples as n [46].

2.8. Machine Learning Model

In our work, we applied multiple ML algorithms to predict diabetes, including DT,
LR, SVM, GBs, XGBs, RF, and our custom ETs.

• DT is a white box concept that has an effective learning component. Numerous leaf
nodes, multiple internal nodes, and a central root node constitute DT. Each leaf node
is labelled according to its class and linked to the root of the tree via internal nodes. A
DT’s root node serves as its beginning point, and the route from this node to its leaf
nodes produces the classification rules [48].

• LR is an excellent method for predicting the probability of a result in a variety of
classification situations. Commonly, the LR model is used when people can make
predictions about health or illness. The LR algorithm predicts the probability of the
target category dependent variable by applying the training examples to a logistic
sigmoid activation function. In LR, the target attribute’s calculated probability ranges
from 0 to 1. Additionally, a threshold is established to classify an event into a certain
target class. The predicted probability is input into a certain target category based on
the threshold value [49,50].

• The SVM [51,52] is a type of linear generalized classifier that sorts binary data using
supervised learning. It is appropriate for small data collections with minimal outliers.
The goal is to identify a hyperplane that can be used to connect data points. This
hyperplane divides the space into separate domains, each of which holding different
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kinds of data. There are numerous hyperplanes from which to choose to split the
two groups of data. Our objective was to find the plane with the largest margin. The
margin is the distance between the hyperplane and two data points that are closest
to it that represent two subclasses. The SVM attempts to optimize the algorithm by
increasing this margin value, thereby determining the optimal superplane to divide
the dataset into two layers. The nearest data points to the hyperplane are referred to
as support vectors.

• GB is a prominent supervised ML method for disease forecasting since it creates an
ensemble forecasting model using weak classifiers based on a DT. It constructs DTs
using a gradient decent iterative optimization technique to discover the best parameter
values, unlike RF. Then, we use the weighted majority votes from each DT to forecast
the predicted value [53,54].

• XGBoost [55,56] constructs multiple new algorithms and merges them into a single
ensemble model. First, the inaccuracy the of residuals for every observation is deter-
mined based on an established model. Based on previous errors, a revised model is
developed to predict the residuals. The predictions of this model are then incorporated
into the ensemble models. XGBoost is superior to GB algorithms because it finds a
balance between bias and variation.

• RF is an ML algorithm that uses a random subspace approach and bagging ensemble
learning. In the training stage, RF builds several DTs for arbitrarily partitioning data.
For each node in the root DT, a subset of K attributes is chosen at random from
the node’s attribute set. From this subset, an effective attribute is then chosen for
partitioning. Each tree submits a classification as a vote for the other trees, and the RF
selects the classification with the most votes [29,57].

• ET is a procedure for data mining that combines multiple methods into a single
optimal predictive model to improve predictions. This technique provides superior
predictive performance when compared to a single model. We combined DT, XGB, and
RF to benefits from all the algorithms to improve the overall predictive performance.
By uniting the strengths of multiple models, ETs can provide enhanced generalization,
increased robustness, and enhanced precision. It can help reduce individual model
biases and improve model performance overall [58].

2.9. Model Evaluation

Employing accuracy, precision, recall, ROC-AUC, F1-score, geometric mean (GM), and
log-loss, we assessed the ML classifiers. The entire dataset was divided into 10 parts using a
10-fold cross-validation technique. One part was utilized for model testing, while the other
parts were employed for training the model in each fold. The evaluation procedure was
performed 10 times [59]. Accuracy provides an accurate rating of the categorization. It is
calculated as the ratio of the summation of the true positive (TPS) and true negative (TNG)
in the whole population [60]. Precision is the percentage of predicted positives that are
real [61]. Recall measures the models ability to categorize samples inside a class [62]. The
F1-score maintains a balance between the classifier’s precision and recall [63]. The log-loss
computes the ambiguity of the method’s probability by evaluating its exact labels [64].
A lower log-loss number suggests a more accurate forecast. ROC-AUC demonstrates
the link between sensitivity and specificity as well as reflecting the model’s capacity for
discrimination. TPSs are those in which the model correctly recognizes the positive class.
A TNG is a result which the model forecasts the negative class properly. When the model
wrongly predicts the positive class, a false positive (FPS) is generated. False negatives
(FNG) occur when models incorrectly predict the negative class.

Accuracy =
TPS + TNG

TPS + TNG + FPS + FNG
(3)

Precision =
TPS

TPS + FPS
(4)



Information 2023, 14, 376 11 of 19

Recall =
TPS

FNG + TPS
(5)

FS = 2 ∗ Precision ∗ Recall
Precision + Recall

(6)

Log − loss = − 1
N

N

∑
i=1

(yi, log(p(yi)) + (1 − yi) log(1 − log(p(yi))) (7)

GM =

√
TPS

TPS + FNG
∗ TNG

TNG + FPS
(8)

3. Results and Discussion

We implemented seven ML models: DT, LR, SVM, GB, XGBoost, RF, and custom-
built ET on the diabetes dataset. First, we discuss the experimental setup and hardware
configuration. After this, we present the implementation output of each model with a
comparative analysis. Finally, we provide a detailed discussion of our detection system.

3.1. Experimental Setup

We used the Google Co-laboratory platform, which provides the Jupyter Notebook
Python language editor (version 3.7.13) and offers many built-in Python modules and
packages through which we applied every ML model. In addition, we generated every
plot and figure using ‘matplotlib’ in Python and ‘ggplot2’ within the R language. To
determine the significance of a variable for the DT, GB, XGB, RF, and ET methods, we
used the ‘feature_importance_’ approach; for SVM and LR, we used the ‘coef_’ technique.
Various evaluation indicators were employed to assess their performance. We used a
10-fold cross-validation method on the dataset to produce a more reliable detection system.

3.2. Result Analysis

The experiment outcome for the primary dataset is displayed in Table 2. All classi-
fiers had an accuracy between 80 and 90%. However, ET provided the best results with
an accuracy of 87.60%. Then, GB, XGB, SVM, LR, and DT successively delivered the
best results.

Table 2. Performance analysis of the various classifiers using the main diabetes dataset.

Classifier DT LR SVM XGB GB RF ET

Accuracy 0.813 0.8386 0.8602 0.8661 0.8681 0.874 0.876
Precision 0.8409 0.8459 0.8864 0.8791 0.8741 0.8809 0.8926
Recall 0.8073 0.8582 0.8509 0.8727 0.8836 0.8873 0.8764
ROC-AUC 0.8135 0.8368 0.8611 0.8655 0.8667 0.8728 0.8760
F1-Score 0.8237 0.852 0.8683 0.8759 0.8788 0.8841 0.8844
Geometric Mean 0.8135 0.8365 0.861 0.8655 0.8665 0.8727 0.8759
Log-Loss 6.7404 5.8181 5.0376 4.8247 4.7538 4.5409 4.47

The classification results for the balanced dataset using SMOTE are subsequently
displayed in Table 3. ET had the highest accuracy of 87.45%, precision of 87.05%, recall
of 88%, ROC-AUC of 0.8745, F1-score of 87.52%, GM of 87.45%, and the lowest log-loss
of 4.5218 in this scenario. DT, on the other hand, yielded the lowest results across all
evaluation metrics. Therefore, the results demonstrate that GB, XGB, and SVM produce are
clearly better than DT and LR.
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Table 3. Performance analysis of the different classifiers using SMOTE.

Classifier DT LR SVM XGB GB RF ET

Accuracy 0.8018 0.8509 0.8655 0.8691 0.8673 0.8636 0.8745
Precision 0.8029 0.8561 0.8708 0.8664 0.8686 0.8676 0.8705
Recall 0.8 0.8436 0.8582 0.8727 0.8655 0.8582 0.88
ROC-AUC 0.8018 0.8509 0.8655 0.8691 0.8673 0.8636 0.8745
F1-Score 0.8015 0.8498 0.8645 0.8696 0.867 0.8629 0.8752
Geometric Mean 0.8018 0.8509 0.8654 0.8691 0.8673 0.8636 0.8745
Log-Loss 7.1432 5.3738 4.8495 4.7184 4.784 4.915 4.5218

Table 4 shows the results of different classifiers in the balanced dataset using the ROS
technique. In this scenario, ET had the best accuracy of 89.27%, precision of 89.71%, recall of
88.73%, ROC-AUC of 0.8927, F1-score of 89.21%, GM of 89.27%, and the lowest log-loss of
3.8665. DT, on the other hand, produced the worst results across all the evaluation metrics.
XGB and RF all produced results that were very close for all evaluation metrics.

Table 4. Performance analysis of the different classifiers using the ROS technique.

Classifier DT LR SVM XGB GB RF ET

Accuracy 0.8473 0.8527 0.8691 0.8873 0.8764 0.8891 0.8927
Precision 0.8577 0.8514 0.883 0.8959 0.8906 0.8934 0.8971
Recall 0.8327 0.8545 0.8509 0.8764 0.8582 0.8836 0.8873
ROC-AUC 0.8473 0.8527 0.8691 0.8873 0.8764 0.8891 0.8927
F1-Score 0.845 0.853 0.8667 0.886 0.8741 0.8885 0.8921
Geometric Mean 0.8471 0.8527 0.8689 0.8872 0.8762 0.8891 0.8927
Log Loss 5.5048 5.3082 4.7184 4.0631 4.4563 3.9976 3.8665

Table 5 depicts the outcomes of several classifiers using 20 significant features. All of
them had an accuracy greater than 80%. ET displayed a maximum accuracy of 88.18%, pre-
cision of 89.77%, ROC-AUC of 0.8818, F1-score of 87.94%, GM of 88.16%, and a minimum
log-loss of 3.8665. On the other hand, SVM generated the highest recall of 87.27% in compar-
ison with other classifiers. However, XGB produced the second-best outcome. Furthermore,
the other classifiers, such as SVM, GB, and RF, also produced excellent outcomes.

Table 5. Classification results (evaluation metrics) with 20 important features.

Classifier DT LR SVM XGB GB RF ET ET (Tuning)

Accuracy 0.8364 0.8545 0.8673 0.8782 0.8655 0.8764 0.8818 0.9927
Precision 0.8627 0.847 0.8633 0.891 0.8764 0.8848 0.8977 1
Recall 0.8 0.8655 0.8727 0.8618 0.8509 0.8655 0.8618 0.9855
ROC-AUC 0.8364 0.8545 0.8673 0.8782 0.8655 0.8764 0.8818 0.9927
F1-Score 0.8302 0.8561 0.868 0.8762 0.8635 0.875 0.8794 0.9927
Geometric Mean 0.8356 0.8545 0.8673 0.878 0.8653 0.8763 0.8816 0.9927
Log-Loss 5.8981 5.2427 4.784 4.3908 4.8495 4.4563 4.2597 0.2621

In addition, we optimized the hypeparameters of the ET algorithm for the highest
performance. ET exhibited 99.27% accuracy, 100% precision, 98.55% recall, 0.9927 ROC-
AUC, 99.27% F1-score, 99.27% GM, and 0.2621 log-loss.

Figure 4 illustrates the associative features with T2DM using −log10(P). The −log10(P)
function changes the p value into a range of positive numbers that can be used to make
good decisions for each feature. If the value of −log10(P) is greater than 1.301, then the
feature is considered significant. Furthermore, a high −log10(P) value indicates a highly
significant feature. The results show that age is the most significant element, whereas
smoking is the least significant component. Other significant factors include extreme thirst,
gender, regular intake of medicine, and having diabetes in the family; while stress and
living house type are less significant.
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Figure 4. Significance of the features, p values with negative 10 base logarithm. The lighter and larger
bubbles represent more significance.

Our research also revealed the significance of features, estimated based on the mean
coefficient value of every classifier employed. We calculated feature significance values for
every method and then normalized them by applying the min–max technique to ensure that
they ranged between 0 and 1. Next, we determined the mean scores for every characteristic.
In Table 6, we examined the significance of the diabetic features and found that age was the
most significant attribute (average coefficient value 0.99). Other crucial elements included
having diabetes in the family, regular intake of medicine, extreme thirst, etc. The least
important characteristics included muscle stiffness, living house type, stress, wealth index,
etc. The ROC curves [65] for each classification method are shown in Figure 5. We observed
that the ET classifier performed better than the rest of the classifiers in the ROC curves.

Table 6. Feature ranking using ML techniques based on coefficient values.

Feature Name DT SVM LR RF XGB GB ET Avg. Rank

Age 1 0.95 1 1 1 1 1 0.99 1

Having diabetes in family 0.26 1 0.94 0.45 0.34 0.23 0.23 0.49 2

Regular intake of medicine 0.08 0.89 0.79 0.48 0.13 0.2 0.19 0.39 3

Extreme thirst 0.08 0.82 0.75 0.39 0.15 0.13 0.19 0.36 4

Occupation 0.06 0.77 0.67 0.17 0.03 0.04 0.06 0.26 5

Frequency of urination 0.04 0.66 0.57 0.06 0.05 0.04 0.04 0.21 6

Walk/ Run/ Physically exercise 0.06 0.62 0.56 0.13 0.01 0.02 0.03 0.21 6
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Table 6. Cont.

Feature Name DT SVM LR RF XGB GB ET Avg. Rank

Weakness 0.06 0.57 0.58 0.11 0.01 0.02 0.05 0.2 7

Smoking 0.05 0.67 0.66 0 0.01 0 0.01 0.2 7

Junk food consumption 0.05 0.64 0.6 0.02 0.03 0 0.01 0.19 8

Partial paralysis 0 0.6 0.58 0.06 0.05 0.02 0.03 0.19 8

Education level 0.08 0.36 0.37 0.22 0.02 0.04 0.09 0.17 9

Hypertension 0.01 0.51 0.53 0.09 0 0.01 0.02 0.17 9

Gender 0.18 0 0 0.48 0.21 0.14 0.21 0.17 9

Hair loss 0.05 0.43 0.38 0.12 0.01 0.01 0.04 0.15 10

Anxiety 0.02 0.43 0.37 0.05 0.01 0 0.02 0.13 11

Wealth index 0.01 0.34 0.33 0.04 0.02 0 0.02 0.11 12

Stress 0.04 0.25 0.25 0.1 0.03 0.02 0.04 0.11 12

Living house type 0.02 0.38 0.34 0 0 0 0 0.11 12

Muscle stiffness 0.04 0.26 0.27 0.06 0.01 0.01 0.05 0.1 13

Figure 5. Comparison of the ROC curves obtained by using the seven ML classifiers.

3.3. Discussion

The detection of diabetes may play a crucial role in the management of this disease.
Initially, we preprocessed the dataset and then normalized the entire dataset using scaling
techniques. We independently applied statistical and ML algorithms to the dataset. In the
statistical study, the most relevant characteristics were found, but in the ML classification
approaches, the patients were divided into diabetic and non-diabetic. We ordered the
characteristics of diabetes according to their significance.

ML techniques are widely accepted as a way to display disease-related characteristics
as distinguishing indicators in predicting disease diagnoses such as diabetes [66–68]. The
potential of ML methods to uncover hidden trends in data by analysing a set of attributes
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might result in a deeper comprehension. The classification results with a high degree
of precision imply a reliable prognosis and ensure practical applicability. The majority
of models studied here are capable of making correct predictions since their accuracy,
precision, recall, ROC-AUC, F1-score, and GM were all greater than 80%. Excellent model
performance was shown by a small log-loss value in binary classification. In comparison to
other models, the ET model reached the highest degree of accuracy.

Our findings imply a number of crucial and relevant characteristics. Depending on
the log-based association, the most significant characteristics include age, extreme thirst,
and gender. In the ML models, the most essential features are age, having diabetes in the
family, regular intake of medicine, and extreme thirst. Our analysis reveals that significant
features are adequate for detecting diabetes, and this will aid in the implementation of
diagnosing diabetes.

We also compared our findings to prior research based on ML techniques, represented
in Table 7. Pranto et al. [31] utilized female diabetic patients from Bangladesh to predict an
accuracy of 81.2%, precision of 80%, and an F1-score of 88%. In another study, Syed and
Khan [69] developed a data-driven predictive model to screen for T2DM in the western
region of Saudi Arabia, achieving 82.1% accuracy, 77.6% precision, 89% recall, 0.867 ROC-
AUC, and 82.9% F1-score. Next, Chou et al. [70] predicted the onset of diabetes using
ML methods, achieving 95.3% accuracy, 92.7% precision, 93.1% recall, 0.991 ROC-AUC,
and 92.9% F1-score. Then, Laila et al. [71] used an ensemble-based ML model to predict
diabetes with an accuracy of 97.11%, precision of 97.1%, recall of 97.1%, and an F1-score of
97.1%. In contrast, our proposed framework outperformed the previous studies, achieving
an accuracy of 99.27%, precision of 100%, ROC-AUC of 0.9927, and an F1-score of 99.27%.
Additionally, we computed a GM of 99.27% and a log-loss of 0.2621. We also determined
the most significant characteristic using both log-based correlations and ML models. It
is important to note that this study was conducted with a limited sample size, restricting
the generalizability of the findings. Nevertheless, this approach shows promise as a
predictive method for real-world applications and could greatly assist practitioners in
prompt diabetes diagnosis.

Table 7. Comparing the performance of the proposed model with existing studies.

Reference Dataset Accuracy Precision Recall ROC-
AUC F1-Score Geometric

Mean Log-Loss

Pranto et al. [31] PIMA, Kurmitola Hospital, Dhaka 0.8120 0.8 1 0.84 0.88 – –
Syed and Khan [69] Western Region of Saudi Arabia 0.821 0.776 0.89 0.867 0.829 – –
Chou et al. [70] Taipei Municipal Medical Center 0.953 0.927 0.931 0.991 0.929 – –
Laila et al. [71] UCI Repository 0.9711 0.971 0.971 – 0.971 – –
This study Bangladesh, 2022 0.9927 1 0.9855 0.9927 0.9927 0.9927 0.2621

The proposed framework for diabetes detection, utilizing an ensemble-based ML
approach, offers several advantages compared to the existing gold standard methods. This
is particularly crucial in Bangladesh, where there is a shortage of diabetologists relative to
the country’s population. While the gold standard relies on costly and time-consuming
lab-based diagnostics and manual interpretation of clinical data by diabetologists, our
automated approach can help alleviate the burden on healthcare providers, allowing
them to efficiently screen a larger number of individuals for diabetes risk. Through the
application of statistical and ML techniques, this study identified age, extreme thirst, and
family history of diabetes as key features that play instrumental roles in diabetes detection.
By implementing the proposed framework in clinical settings, healthcare providers can
proactively identify individuals at risk of diabetes based on their risk factors. This prompt
identification enables timely intervention and personalized care, helping to mitigate the
risks and severity associated with diabetes.
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4. Conclusions

Our proposed ET with hyperparameter tuning outperformed the other ML models to
identify T2DM patients in this region. We obtained an outstanding accuracy of 99.27% and
an F1-score of 99.27%. In addition, using various statistical and ML models we determined
four key factors: age, having diabetes in the family, regular intake of medicine, and extreme
thirst, highly associated with diabetes. Since our proposed diabetes detection system has a
high degree of precision, physicians and clinicians may use our proposed framework to
assess diabetes risk. In Bangladesh, the ratio of diabetic patients to physicians is insufficient,
and there are less detection instruments available across the country. Therefore, a fast
diagnosis system based on ML is effective for patients and diabetologists. In this study, we
found that a number of lifestyle factors are associated with the development of diabetes;
therefore, sustaining a lifestyle that includes the observance of these factors could reduce
the rate of diabetes progression. The quantity of data was a primary limitation in our study.
In the future, we will use additional data to investigate diabetes as well as other medical
conditions such as kidney disease, heart disease, and breast cancer. We will also incorporate
our proposed system into intuitive web and mobile application platforms. Finally, we will
concentrate on diabetes mellitus disease prevention and recovery strategies.
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